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MONOTONICITY OF SOLUTIONS FOR SOME NONLOCAL

ELLIPTIC PROBLEMS IN HALF-SPACES

B. BARRIOS, L. DEL PEZZO, J. GARCÍA-MELIÁN
AND A. QUAAS

Abstract. In this paper we consider classical solutions u of the semi-
linear fractional problem (−∆)su = f(u) in R

N
+ with u = 0 in R

N \RN
+ ,

where (−∆)s, 0 < s < 1, stands for the fractional laplacian, N ≥ 2,
R

N
+ = {x = (x′, xN ) ∈ R

N : xN > 0} is the half-space and f ∈ C1

is a given function. With no additional restriction on the function f ,
we show that bounded, nonnegative, nontrivial classical solutions are
indeed positive in R

N
+ and verify

∂u

∂xN

> 0 in R
N
+ .

This is in contrast with previously known results for the local case s = 1,
where nonnegative solutions which are not positive do exist and the
monotonicity property above is not known to hold in general even for
positive solutions when f(0) < 0.

1. Introduction

The objective of the present paper is to deal with the semilinear problem

(1.1)

{
(−∆)su = f(u) in R

N
+ ,

u = 0 in R
N \RN+ ,

where N ≥ 2, RN+ = {x = (x′, xN ) ∈ R
N : xN > 0} is the half-space and f is

a C1 function. The operator (−∆)s, 0 < s < 1, is the well-known fractional
laplacian, which is defined on smooth functions as

(1.2) (−∆)su(x) =

∫

RN

u(x)− u(y)

|x− y|N+2s
dy,

up to a normalization constant which will be omitted for brevity. The in-
tegral in (1.2) has to be understood in the principal value sense, that is, as
the limit as ε→ 0 of the same integral taken in the complement of the ball
Bε(x) of center x and radius ε. Alternatively, this operator can be defined
(omitting again the normalization constant) as

(1.3) (−∆)su(x) =
1

2

∫

RN

2u(x) − u(x+ y)− u(x− y)

|y|N+2s
dy,

where now the integral is absolutely convergent for sufficiently smooth func-
tions.

Problems with nonlocal diffusion related to (1.1) have been intensively
studied in the last years, after their appearance when modeling different
situations. For instance, anomalous diffusion and quasi-geostrophic flows,
turbulence and water waves, molecular dynamics and relativistic quantum
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mechanics of stars (see [9, 15, 17, 37] and references); or mathematical fi-
nance (cf. [2, 7, 18]), elasticity problems [34], thin obstacle problem [11],
phase transition [1, 10, 36], crystal dislocation [22, 38] and stratified mate-
rials [32].

Our inspiration to study problem (1.1) comes from the local case s = 1,
that is

(1.4)

{
−∆u = f(u) in R

N
+ ,

u = 0 on ∂RN+ .

In a seminal series of papers (cf. [3, 4, 5, 6]), Berestycki, Caffarelli and
Nirenberg obtained interesting qualitative properties for positive solutions
of (1.4) and Lipschitz nonlinearities f . Among other results, they showed
that if f(0) ≥ 0, then any positive solution of (1.4) verifies

(1.5)
∂u

∂xN
> 0 in R

N
+

(see [4] or [5]). This property had been shown initially with additional
assumptions on both the solutions and the nonlinearities by Dancer in [20]
and [21].

The case f(0) < 0 is, however, more subtle, and only partial results are
known for the moment. See [5], [26] for the case N = 2, [27] for N = 2, 3
and [19] for dimensions N ≥ 2. The main reason for this difference is the
existence of nonnegative (periodic) solutions which are not strictly positive.

With regard to a similar property as (1.5) for solutions of the nonlocal
problem (1.1), only some partial results have been achieved so far, at the best
of our knowledge. Let us mention [25] and [30] where monotone, positive
nonlinearities where considered, and [16] for the particular case f(t) = tp,
p > 1. On the other hand, the very recent preprint [23] analyzes the same
question in more general domains, but with a very restricted class of non-
linearities.

Our intention is to show that actually property (1.5) continues to be true
for bounded, nonnegative, nontrivial solutions of (1.1) with no additional
assumptions placed on the nonlinearity f aside its regularity. This is in
striking contrast with problem (1.4), where, as we have remarked, the case
f(0) < 0 remains unsolved in its full generality for the moment.

Throughout this work, we will deal with bounded, classical solutions of
(1.1). However, this will not cause a loss in generality, since it is well-known
from the regularity theory developed in [35, 13, 14] and bootstrapping that
bounded, viscosity solutions of (1.1) are automatically classical. Observe
that classical solutions verify u ∈ C2s+β(RN+ ) for every β ∈ (0, 1), and in

particular they are seen to be in C1(RN+ ).

Our main result is the following:

Theorem 1. Assume f ∈ C1(R) and let u be a bounded, nonnegative,
nontrivial classical solution of (1.1). Then u is positive and

(1.6)
∂u

∂xN
> 0 in R

N
+ .
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As a consequence of Theorem 1, we can also obtain some Liouville theo-
rems for problem (1.1) with some special nonlinearities.

Theorem 2. Assume f ∈ C1(R) is such that f ′(t) > 0 for t > 0, and one
of the following holds:

(a) f(0) 6= 0;

(b) f(0) = 0 and f ′(0) > 0.

Then problem (1.1) does not admit bounded, nonnegative, nontrivial solu-
tions.

An interesting particular case in Theorem 2 is obtained when we set
f(t) = t − 1. In this case the differences between the local version (1.4)
and its nonlocal counterpart (1.1) become more evident, since in the former
there exists a unique nonnegative solution given by u(x) = 1 − cos xN (see
[19]), while for the latter we have:

Corollary 3. The problem{
(−∆)su = u− 1 in R

N
+ ,

u = 0 in R
N \ RN+

does not admit any bounded, nonnegative, nontrivial solution.

It is interesting to remark that Theorem 1 is an important tool to prove
other Liouville theorems for bounded solutions of (1.1). Indeed, passing to
the limit as xN → +∞, we find that such solutions converge to a stable
solution of (−∆)su = f(u) in R

N−1. Then one can use the nonexistence
theorems already available in that situation (cf. for instance [24]).

We conclude the introduction with a couple of comments on our proofs.
We use moving planes to show that any nonnegative, bounded, classical
solution of (1.1) is monotone in the xN direction. To deal with the moving
planes method, we mainly follow the approach in [25]. However, instead
of representing the solutions of (1.1) with the aid of Green’s function in
R
N
+ at the onset, we use it for an adequate truncation related to u and its

reflections. This allows us to avoid any monotonicity or sign restriction on
f .

It is to be noted that at one point in the argument, when it is assumed
that the moving of the planes stop somewhere, we need to rule out the
existence of solutions which are symmetric with respect to a hyperplane
contained in R

N
+ . In the local case, this is only possible under the additional

restriction f(0) ≥ 0, since such solutions do exist if f(0) < 0. However, we
show in the present work that symmetric solutions can not exist with no
additional restriction on f (see Theorem 8 below). In our opinion, this is a
result of independent interest. Its proof is based on the regularity inherited
by symmetry in the strip, which allows to evaluate the equation on the
boundary of the half space. Then the nonlocality of the operator implies,
loosely speaking, that the interactions between points which are far away
in R

N
+ is too strong and the solution must vanish. This is a remarkable

difference with respect to the case s = 1, where this interaction is not
present.
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The rest of the paper is organized as follows: in Section 2 we give some
preliminaries and introduce the notation to be used for the moving planes.
Section 3 deals with some properties of the Green’s function in a half-space
taken from [25] and with a different representation in terms of this function.
In Section 4, we obtain a nonexistence result for bounded, nonnegative,
nontrivial solutions which are symmetric with respect to a hyperplane, and
in Section 5 we perform the proof of our main results, Theorems 1 and 2.

2. Some preliminaries

In this section, we gather some preliminary properties which will be useful
in the forthcoming sections. We notice that, although we are mostly con-
cerned with solutions in the classical sense, other more general concepts of
solutions have to be considered at some places in the present work, mainly
due to the fact that we work with truncations of the original functions.

Thus, throughout this section we will consider inequalities in the viscosity
sense (see [13] for a definition). We begin by considering a version of the
maximum principle for the operator (−∆)s in unbounded domains, which
will be needed below. We believe that this result is new.

Lemma 4. Assume D ⊂ R
N
+ is a domain and let u ∈ C(RN ) be a bounded

function verifying (−∆)su ≥ 0 in D in the viscosity sense, with u ≥ 0 in
R
N \D. Then u ≥ 0 in D.

Proof. First of all observe that the function ϕ(x) = (xN )
s
+ is s−harmonic in

R
N
+ , where (xN )+ is the function which coincides with xN in (0,+∞) and

vanishes in (−∞, 0]. Indeed, when x ∈ R
N
+ :

(−∆)sϕ(x) =

∫

R

(xN )
s − (yN )

s
+

|xN − yN |1+2s

(∫

RN−1

|xN − yN |
1+2s

((xN − yN )2 + |x′ − y′|2)
N+2s

2

dy′

)
dyN

=

∫

R

(xN )
s − (yN )

s
+

|xN − yN |1+2s

(∫

RN−1

dz

(1 + z2)
N+2s

2

)
dyN

= C

∫

R

(xN )
s − (yN )

s
+

|xN − yN |1+2s
dyN = 0

(see for instance the introduction in [12] or Proposition 3.1 in [31]).
Next take ε > 0 and consider the function

vε(x) = u(x) + ε(xN )
s
+, x ∈ R

N
+ .

Since u is bounded, there exists M > 0 such that vε ≥ 0 if xN ≥M . Define
the set DM = D ∩ {x ∈ R

N : 0 < xN < M}. Then, in the viscosity sense,

(2.1)

{
(−∆)svε ≥ 0 in DM ,

vε ≥ 0 in R
N \DM .

We are in a position to apply Theorem 2.3 in [30] to conclude that vε ≥ 0
in R

N . Letting ε → 0, we obtain that u ≥ 0 in R
N . It is worth remarking

that, although Theorem 2.3 in [30] is stated for functions which vanish in
R
N \DM , a careful inspection shows that it is still valid when the involved

functions are nonnegative there. �
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Before giving our next result, let us introduce some notation related to
the method of moving planes. For λ > 0 we denote, as customary:

Σλ := {x ∈ R
N
+ : 0 < xN < λ}

Tλ := {x ∈ R
N : xN = λ}

xλ := (x′, 2λ− xN ) (the reflection of x with respect to Tλ).

If f is a given nonlinearity and u stands for a a bounded, classical nonneg-
ative solution of our problem (1.1) we also set

uλ(x) =

{
u(x), x ∈ Σλ ∪ (RN \ RN+ )
u(xλ), x 6∈ Σλ ∪ (RN \ RN+ )

wλ(x) = uλ(x)− u(x), x ∈ R
N .

Since our ultimate objective is to show that wλ is always nonnegative in Σλ,
the following will also be relevant:

Dλ = {x ∈ Σλ : wλ(x) < 0}

Wλ = {x ∈ Dλ : f(u(x)) > f(uλ(x))}

vλ = wλχDλ
,

where χ will stand throughout the paper for the characteristic function of
a set. It is plain that the function vλ will only be meaningful when wλ is
negative somewhere in Σλ. We next state one of its important properties.

Lemma 5. Assume wλ < 0 somewhere in Σλ, for some λ > 0. Then,

(2.2) (−∆)svλ ≥ (f(uλ)− f(u))χDλ
in R

N
+ ,

in the viscosity sense.

Proof. Let us prove first that, when x ∈ Dλ, (2.2) holds in the classical sense
(cf. the proof of Theorem 1.1 in [28]). Denote

zλ = wλ − vλ.

It is clear that in Dλ (2.2) is equivalent to (−∆)szλ ≤ 0. To prove this last
inequality, denote by Eλ the reflection through the hyperplane Tλ of Dλ.
Using that zλ ≡ 0 in Dλ and zλ ≥ 0 in Σλ \Dλ, we have for every x ∈ Dλ:

(−∆)szλ(x) = −

(∫

Σλ\Dλ

+

∫

Eλ

+

∫

Σc
λ
\Eλ

)
zλ(y)

|x− y|N+2s
dy

≤ −

(∫

Σλ\Dλ

+

∫

Σc
λ
\Eλ

)
zλ(y)

|x− y|N+2s
dy

= −

∫

Σλ\Dλ

zλ(y)

(
1

|x− y|N+2s
−

1

|x− yλ|N+2s

)
dy ≤ 0.

Here we have used that |x− y| ≤ |x− yλ| when x ∈ Dλ, y ∈ Σλ, which can
be easily checked. Thus (2.2) is proved in Dλ.

On the other hand, when x ∈ R
N
+ \Dλ, it is immediate that

(−∆)svλ(x) = −

∫

Dλ

vλ(y)

|x− y|N+2s
dy ≥ 0,
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since vλ = 0 in R
N
+ \Dλ and vλ < 0 in Dλ. Therefore (2.2) also holds in the

classical sense in R
N
+ \Dλ.

However, the function vλ needs not be smooth on ∂Dλ, so that it is not to
be expected that its fractional laplacian is even well-defined there. But the
inequality can be checked in the viscosity sense. To prove this, take x0 ∈ ∂Dλ

and let ϕ ∈ C∞(RN ) be such that ϕ < vλ in a reduced neighborhood
U \ {x0} of x0, with ϕ(x0) = vλ(x0) = 0. Then (−∆)svλ(x0) ≥ 0 means
(−∆)sψ(x0) ≥ 0, where

ψ(x) =

{
ϕ(x) x ∈ U
vλ(x) x ∈ R

N \ U

(cf. [13]). The inequality (−∆)sψ(x0) ≥ 0 is easily checked since, taking
into account that vλ ≤ 0 in R

N , so that ϕ ≤ 0 in U , we deduce

(−∆)sψ(x0) = −

∫

U

ϕ(y)

|x− y|N+2s
dy −

∫

RN\U

vλ(y)

|x− y|N+2s
dy ≥ 0,

as was to be shown. �

3. A representation in the half-space

In this section, we will show that the function vλ verifies an inequality
which involves the Green’s function in the half-space. As we have already
remarked in the Introduction, the representation is rather general and does
not impose any additional properties on the nonlinear term f . Recall that
we are always assuming 0 < s < 1.

We introduce the Green’s function for RN+ (see [25]). If x, y ∈ R
N
+ , we let

(3.1) G+
∞(x, y) =

ksN
2
|x− y|2s−N

∫ ψ+
∞(x,y)

0

ts−1

(t+ 1)
N
2

dt,

where

ψ+
∞(x, y) =

4xNyN
|x− y|2

.

In (3.1), kN is a positive constant whose actual value is immaterial for us.
It is shown in Theorem 3.1 of [25] that if u ∈ L∞(RN ) vanishes outside R

N
+

and (−∆)su ∈ L∞(RN+ ) is nonnegative, then

u(x) =

∫

RN
+

G+
∞(x, y)(−∆)su(y)dy, x ∈ R

N
+ .

To avoid the sign restriction just mentioned, we follow a different approach.
The information we obtain is slightly weaker, but it suffices for our argu-
ments in the proofs of Section 5. Here is the main result of this section:

Lemma 6. Assume f is locally bounded and let u be a nonnegative, bounded
solution of (1.1). Suppose wλ < 0 somewhere in Σλ, for some λ > 0. Then,
for every x ∈Wλ = {x ∈ Dλ : f(u(x)) > f(uλ(x))},

vλ(x) ≥

∫

Wλ

G+
∞(x, y)(f(uλ(y))− f(u(y)))dy,

where the integral is absolutely convergent.
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In order to prove Lemma 6, we borrow some notation and results from
[25]. For R > 0, define B+

R := BR(ReN ) ⊂ R
N
+ , where eN stands for the last

vector in the canonical basis, and let

G+
R(x, y) =

ksN
2
|x− y|2s−N

∫ ψ+

R
(x,y)

0

ts−1

(t+ 1)
N
2

dt,

with

ψ+
R(x, y) =

(R2 − |x−ReN |
2)(R2 − |y −ReN |

2)

R2|x− y|2
,

be the Green’s function in the ball B+
R . We also introduce

Γ+
R(x, y) = CN,s

(
R2 − |x−ReN |

2

|y −ReN |2 −R2

)s
|x− y|−N ,

the Poisson kernel for the same ball (cf. [8] for some properties of both
functions). According to Corollary 2.9 in [25], if hR is the unique solution
of the Dirichlet problem

{
(−∆)sh = g1 in B+

R ,

h = g2 in R
N \B+

R ,

where g1 ∈ L∞(B+
R ) and g2 ∈ L∞(RN \B+

R ), then we can write:

(3.2) hR(x) =

∫

B+

R

G+
R(x, y)g1(y)dy +

∫

RN\B+

R

Γ+
R(x, y)g2(y)dy.

Regarding this representation, it is to be noted that, when g2 ∈ L∞(RN ),
as a consequence of equation (3.7) in [25], then

(3.3) lim
R→+∞

∫

RN\B+

R

Γ+
R(x, y)g2(y)dy = 0

for every x ∈ R
N
+ . The following properties of Green’s function will be used

in our proof of Lemma 6 and in the proof of Theorem 1 in Section 5.

Lemma 7. Fix R0 > 0. Then the functions G+
R(x, y) are nondecreasing

with respect to R in B+
R0

×B+
R0

if R > R0 and verify

G+
R → G+

∞ in B+
R0

×B+
R0

as R→ +∞.

Moreover, for every λ > 0, there exists C = C(N, s, λ) such that

(3.4) G+
∞(x, y) ≤ Cmin{|x− y|2s−N , |x− y|−N} for x, y ∈ Σλ.

In addition, the function G+
∞(x, y) enjoys the following properties:

(a) If {xn} is a bounded sequence, then for every λ > 0

lim
R→+∞

∫

Σλ∩B
c
R

G+
∞(xn, y)dy = 0,

uniformly in n.
(b) If λ > 0 and {xn} is a bounded sequence, then for every R > 0 there

exists a positive constant C such that∫

Σλ∩BR

G+
∞(xn, y)dy ≤ C for every n ∈ N.
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(c) For every λ > 0 and x0 ∈ ∂RN+ , we have

lim
x→x0

∫

Σλ

G+
∞(x, y)dy = 0.

Sketch of proof. The statements about monotonicity and convergence of G+
R

are a consequence of Lemma 3.2 in [25]. The estimates (3.4) follow because
of Lemma 4.1 there.

Parts (a) and (b) are a direct consequence of (3.4), while for the proof of
(c), we only have to notice that, if h ∈ C(RN ) is the unique solution of

{
(−∆)sh = χΣλ

in R
N
+ ,

h = 0 in R
N \ RN+ ,

then by Theorem 3.1 in [25] we have

h(x) =

∫

Σλ

G+
∞(x, y)dy,

and the proof follows because of the continuity of h up to the boundary of
R
N
+ . �

We can now proceed to the proof of Lemma 6.

Proof of Lemma 6. We start by observing that, by Lemma 5

(3.5) (−∆)svλ ≥ (f(uλ)− f(u))χDλ
in R

N
+ .

Consider the balls B+
R introduced before and denote by hR the unique solu-

tion of the problem

(3.6)

{
(−∆)sh = (f(uλ)− f(u))χDλ

in B+
R ,

h = vλ in R
N \B+

R .

It is clear by (3.5) and the maximum principle that vλ ≥ hR in B+
R . There-

fore, according to (3.2), we may write

(3.7)

vλ(x) ≥ hR(x) =

∫

B+

R
∩Dλ

G+
R(x, y)(f(u

λ(y))− f(u(y)))dy

+

∫

RN
+
\B+

R

Γ+
R(x, y)vλ(y)dy.

Our intention is to pass to the limit in (3.7). Notice that, since vλ is bounded,
we have by (3.3) that the last integral converges to zero as R→ +∞.

On the other hand, we obtain from Lemma 7 that G+
R is nondecreasing

as a function of R and, for fixed x ∈ Σλ

G+
R(x, y) ≤ G+

∞(x, y) ≤ Cmin{|x− y|−N+2s, |x− y|−N} ∈ L1(Σλ),

as a function of y. Therefore, letting R→ +∞ in (3.7) and using dominated
convergence we arrive at

vλ(x) ≥

∫

Dλ

G+
∞(x, y)(f(uλ(y))− f(u(y)))dy

≥

∫

Wλ

G+
∞(x, y)(f(uλ(y))− f(u(y)))dy,
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as was to be proved. �

Remark 1. Similar results as the ones given in this section follow easily in
other half-spaces by means of a simple change of variables. For instance, in
H := {x ∈ R

N : xN < λ}, the Green’s function is given by

G(x; y) = G+
∞(x′, λ− xN ; y

′, λ− yN ), x, y ∈ H,

and similar properties as those given in Lemma 6 are obtained at once.

4. A nonexistence theorem

In this section we will state and prove a nonexistence result for nonneg-
ative solutions of (1.1) which are symmetric with respect to a hyperplane.
This result is fairly important in the moving planes argument, and it is the
reason why the case f(0) < 0 can be included in our proofs, in contrast with
the local case s = 1. We believe it is interesting in its own right.

It is to be noted that, when the nonlinearity verifies f(0) ≥ 0, the nonex-
istence of these symmetric solutions is a direct consequence of the strong
maximum principle. The proof we give, however, covers also this case. Ob-
serve that next theorem holds with minimal hypotheses on f .

Theorem 8. Assume f is continuous at zero and let u ∈ C2s+β(RN+ )
(0 < β < 1) be a bounded, nonnegative, classical solution of (1.1) which
is symmetric with respect to Tλ in Σ2λ for some λ > 0, that is

u(x′, 2λ− xN ) = u(x′, xN ), x ∈ Σ2λ.

Then f(0) = 0 and u ≡ 0 in R
N .

Proof. We begin by showing that u verifies the equation at x = 0, that is,

(4.1)

∫

RN
+

u(y)

|y|N+2s
dy = −f(0).

To see this, we first observe that with no loss of generality we may assume
that β is restricted to satisfy 2s + β < 2. Thus the symmetry of u implies
that the same regularity holds up to the boundary of RN+ , since necessarily

u and ∇u vanish there. Therefore u ∈ C2s+β(RN ).
Take an arbitrary sequence {xn} ⊂ Σ2λ with xn → 0. Evaluating the

equation at xn, but using expression (1.3) for (−∆)s, we see that

(4.2) f(u(xn)) =
1

2

∫

RN

2u(xn)− u(xn + y)− u(xn − y)

|y|N+2s
dy.

Now we have to distinguish between the cases 0 < s < 1
2 and 1

2 ≤ s < 1. In
the former case, assuming β is such that 2s + β < 1, we deduce from the
regularity of u that for sufficiently large n:

(4.3) |u(xn)− u(xn + y)| ≤ C|y|2s+β whenever |y| ≤ 1,

for some positive constant C. In the latter, if β is such that 2s+ β < 2, the
regularity implies, also for large enough n

(4.4) |u(xn)− u(xn + y)− u(xn − y)| ≤ C|y|2s+β if |y| ≤ 1.
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On the other hand, for |y| ≥ 1,

(4.5)

∣∣∣∣
u(xn)− u(xn + y)− u(xn − y)

|y|N+2s

∣∣∣∣ ≤ 3‖u‖L∞(RN
+
)|y|

−N+2s.

Inequalities (4.3), (4.4) and (4.5) show that the integrand in (4.2) is bounded
in absolute value by a function which is in L1(RN ). Therefore, we may pass
to the limit in (4.2) with the aid of dominated convergence to arrive at

f(0) = −
1

2

∫

RN

u(y) + u(−y)

|y|N+2s
dy,

which is equivalent to (4.1).
By evaluating the equation at x = 2λeN , using the fact that u(2λeN ) = 0

by symmetry, we deduce from (4.1) that

(4.6)

∫

RN
+

u(y)

|y|N+2s
dy =

∫

RN
+

u(y)

|2λeN − y|N+2s
dy.

Next, we split the second integral in two parts and use the symmetry of u
in Σ2λ to have:

∫

RN
+

u(y)

|2λeN − y|N+2s
dy =

(∫

Σ2λ

+

∫

RN
+
\Σ2λ

)
u(y)

|2λeN − y|N+2s
dy

=

∫

Σ2λ

u(z)

|z|N+2s
dz +

∫

RN
+
\Σ2λ

u(y)

|2λeN − y|N+2s
dy.

Hence, from (4.6) we see that
∫

RN
+\Σ2λ

u(y)

|y|N+2s
dy =

∫

RN
+ \Σ2λ

u(y)

|2λeN − y|N+2s
dy.

Taking into account that u ≥ 0 and |2λeN − y| ≤ |y| for y ∈ R
N
+ \ Σ2λ, we

deduce u ≡ 0 in R
N
+ \ Σ2λ.

Using this information and evaluating the equation at points x ∈ R
N
+ \Σ2λ,

we obtain

(4.7)

∫

Σ2λ

u(y)

|x− y|N+2s
dy = −f(0).

Now observe that the integral above is a smooth function of x if, say, xN ≥
2λ+1, since the integrand is uniformly bounded and the integral is uniformly
convergent at infinity when x belongs to a compact set. Therefore, we are
allowed to differentiate (4.7) with respect to xN to get:

∫

Σ2λ

u(y)(xN − yN )

|x− y|N+2s+2
dy = 0.

However, xN − yN ≥ xN − 2λ ≥ 1 for y ∈ Σ2λ and the chosen values of x,
so that the integrand is nonnegative and this gives u ≡ 0 in Σ2λ, therefore
in R

N . It is clear that this can only happen when f(0) = 0, and the proof
is concluded. �
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5. Proof of the main results

In this final section we will prove our main contributions, Theorems 1
and 2. The proof of Corollary 3 will not be given, since it is an immediate
consequence of Theorem 2.

Proof of Theorem 1. We have already said that the proof is an application
of the method of moving planes, as used in [30] and [25], but with some
significant changes. In particular, we remark that we work with some trun-
cations of the original functions, so we are led to the use of inequalities in the
viscosity sense and Lemma 6. We also need at some point the nonexistence
result given by Theorem 8.

We follow the notation introduced in Section 2.

Step 1. wλ ≥ 0 in Σλ if λ > 0 is small enough.

To prove this, assume for a contradiction that Dλ is not empty if λ is
small. Since u is bounded and f is C1, there exists a constant L such that
f(uλ)− f(u) ≥ −L|uλ − u|. Therefore, using Lemma 5 we have

(−∆)svλ ≥ f(uλ)− f(u) ≥ −L|uλ − u| = Lvλ in Dλ.

By Theorem 2.4 in [30] we obtain vλ ≥ 0 in Dλ when λ is small enough,
which is a contradiction. Therefore, Dλ = ∅ for small λ and this shows the
claim.

Step 2. Setting

λ∗ = sup{λ > 0 : wµ ≥ 0 in Σµ for every µ ∈ (0, λ)},

we have λ∗ = +∞.

Assume again for a contradiction that λ∗ < +∞. Then there exists a
sequence {λj} of values such that λj > λ∗ for every j and λj → λ∗ as
j → +∞, with wλj negative somewhere in Σλj . Consider the sets

Dj = {x ∈ Σλj : wλj (x) < 0}

and

Wj = {x ∈ Dj : f(u(x)) > f(uλj(x))}.

By the choice of λj , the sets Dj are nonempty for every j. We claim that

the same is true for Wj . Indeed, if we had Wj = ∅, then f(uλj ) ≥ f(u) in
Dj . Hence

(−∆)svλj ≥ 0 in Dj.

By Lemma 4 we obtain vλj ≥ 0 in Dj , which is not possible. Therefore
Wj 6= ∅. Thus it is possible to choose points xj ∈Wj such that

(5.1) vλj(xj) ≤ −
1

2
‖vλj‖L∞(Wj),

and we can define the functions

ũj(x) = u(x′ + x′j , xN ), x ∈ R
N
+ .
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It is easily seen that ũj is a solution of (1.1), verifying ‖ũj‖L∞(RN
+
) =

‖u‖L∞(RN
+
). It is then standard, with the use of regularity theory, Ascoli-

Arzelá’s theorem and a diagonal argument, that for some subsequence

ũj → ū

locally uniformly in R
N , where ū is a nonnegative solution of (1.1). We may

also assume that xj,N → x0 ∈ [0, λ∗]. Now three cases are possible:

(a) ū 6≡ 0, x0 ∈ (0, λ∗);

(b) ū 6≡ 0, x0 = 0 or x0 = λ∗;

(c) ū ≡ 0.

Before dealing with each of this cases, let us introduce some notation related
to the functions ũj. Let:

w̃λj (x) = ũj(x
λj )− ũj(x), x ∈ Σλj ,

D̃j = {x ∈ Σλj : w̃j(x) < 0},

ṽλj (x) = w̃λj (x)χD̃j
(x), x ∈ Σλj ,

W̃j = {x ∈ D̃j : f(ũj(x)) > f(ũj(x
λ
j ))}

(observe that D̃j and W̃j are nothing more than translations of Dj and Wj,
respectively). Denote also zj = (0, xj,N ), z0 = (0, x0). By our choice of xj

in (5.1) above, since it follows that w̃λj (zj) < 0 and f(ũj(zj)) > f(ũj(z
λj
j )),

we deduce that zj ∈ W̃j. Moreover we also get

(5.2) ṽλj (zj) ≤ −
1

2
‖ṽλj‖L∞(W̃j)

.

Now consider in turn each one of the cases (a), (b) and (c).

In case (a), we see from ũj(x
λ∗) ≥ ũj(x) in Σλ∗ that ū(xλ

∗

) ≥ ū(x) in

Σλ∗ . Moreover, since ũ(z
λj
j ) < ũ(zj), we also have ū(zλ

∗

0 ) = ū(z0). Let us

see that this implies ū(xλ
∗

) ≡ ū(x) in R
N . Indeed, arguing as in the proof

of Lemma 5 and denoting w̄λ∗ = ūλ
∗

− ū, we obtain

0 = f(ūλ
∗

(z0))− f(ū(z0)) = (−∆)sw̄λ∗(z0)

= −

∫

Σλ∗∪R
N
−

w̄λ∗(y)

(
1

|z0 − y|N+2s
−

1

|z0 − yλ|N+2s

)
dy,

which implies w̄λ∗ ≡ 0 in R
N , since w̄λ∗ ≥ 0 in Σλ∗ ∪ R

N
− and |z0 − y| ≤

|z0 − yλ| for every y ∈ Σλ∗ ∪ R
N
− .

This means that ū is symmetric with respect to Tλ∗ , so that Theorem 8
implies ū ≡ 0, a contradiction.
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As for case (b), assume x0 = 0. We deduce from Lemma 6 and the choice
of the points zj :

1

2
‖ṽλj‖L∞(W̃j)

≤ −ṽλj (zj) ≤ L‖ṽλj‖L∞(W̃j)

∫

W̃j

G+
∞(zj , y)dy

≤ L‖ṽλj‖L∞(W̃j)

∫

Σλ∗+1

G+
∞(zj , y)dy,

where L denotes a bound for the derivative of f in [0, ‖u‖L∞(RN
+
)]. By

Lemma 7, part (c), the last integral converges to zero since zj → 0 ∈ ∂RN+ .

We deduce that ṽλj = 0 in W̃j when j is large enough, a contradiction.
When x0 = λ∗, a similar contradiction is reached. The only difference is

that one now works with the Green’s function in the half-space {x ∈ R
N :

xN < λj} (see Remark 1).

Finally, we consider case (c). This case can only arise when f(0) = 0 and
the proof is different depending on the sign of f ′(0). We begin by assuming
that f ′(0) > 0.

In what follows, we denote by λ1(Ω) the principal eigenvalue of (−∆)s

in Ω under Dirichlet boundary conditions (cf. Proposition 9 in [33]). If we
take a ball BR with arbitrary center and radius R then it can be seen by
means of a simple scaling that

λ1(BR) =
λ1(B1)

R2s
→ 0 as R→ +∞.

Thus it is possible to select a ball B ⊂⊂ R
N
+ with the property that

(5.3) λ1(B) <
1

2
f ′(0).

Since ũj → 0 uniformly in B, we deduce

(5.4) (−∆)sũj =
f(ũj)

ũj
ũj ≥

1

2
f ′(0) ũj in B

if j is large enough. By Theorem 1.1 in [29], (5.4) implies the opposite
inequality in (5.3), which is a contradiction.

Hence to conclude the proof only the case f ′(0) ≤ 0 needs to be dealt

with. Using the mean value theorem, we may write, for y ∈ W̃j:

f(ũ
λj
j (y))− f(ũj(y)) = f ′(ξj(y))ṽj(y),

where ξj(y) is an intermediate value between ũj(y) and ũ
λj
j (y). Observe

that ξj → 0 uniformly on compact sets of RN+ while f ′(ξj) ≥ 0. By Lemma
6 and (5.2), we see that

(5.5)
1

2
‖ṽλj‖L∞(W̃j)

≤ ‖ṽλj‖L∞(W̃j)

∫

Σλ∗+1

G+
∞(zj , y)f

′(ξj(y))dy.
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Now choose R > 0 and split the integral in (5.5) in BR and Bc
R. If L stands

again for a bound for the derivative of f in [0, ‖u‖L∞(RN
+
)], we have

1

2
‖ṽλj‖L∞(W̃j)

≤ ‖ṽλj‖L∞(W̃j)

(∫

Σλ∗+1∩BR

G+
∞(zj , y)f

′(ξj(y))dy

+L

∫

Σλ∗+1∩B
c
R

G+
∞(zj , y)dy

)
.

Observe that the integral in Σλ∗+1 ∩B
c
R can be made as small as desired by

taking R large enough, thanks to the fact that {zj} is a bounded sequence
and Lemma 7, part (a). Therefore the last term in the above inequality can
be made less than 1

4 , say, if R is chosen large. After we have fixed such a
value of R, we observe that ξj → 0 uniformly in BR, so that f ′(ξj) ≤ o(1),
since we are assuming f ′(0) ≤ 0. Therefore, using Lemma 7, part (b), we
arrive at

1

4
‖ṽλj‖L∞(W̃j)

≤ o(1)‖ṽλj‖L∞(W̃j)

which, as above, is a contradiction.

Step 3. Proof of (1.6).

As a consequence of steps 1 and 2, we have shown that uλ ≥ u in Σλ for
every λ > 0, that is, u is nondecreasing as a function of the variable xN .
Since u ∈ C1(RN+ ), this implies

(5.6)
∂u

∂xN
≥ 0 in R

N
+ .

To conclude the proof of our theorem, we only have to show that the in-
equality is strict in (5.6). This is a consequence of the strong maximum
principle for the derivative with respect to xN . However, this function does
not directly verify an equation in R

N
+ , since u is not expected to be C1 on

∂RN+ . We overcome this difficulty by localizing the problem and working
with incremental quotients.

Assume there exists x0 ∈ R
N
+ such that

(5.7)
∂u

∂xN
(x0) = 0.

Choose δ > 0 such that B2δ(x0) ⊂⊂ R
N
+ , and let φ ∈ C∞

0 (B2δ(x0)) be a
cut-off function with the usual properties: 0 ≤ φ ≤ 1 and φ = 1 in Bδ(x0).
Choose a small τ > 0 and define for x ∈ R

N :

zτ (x) =
u(x+ τeN )− u(x)

τ
φ(x).

Since u is nondecreasing we have zτ ≥ 0, and we obtain

(−∆)szτ ≥
f(u(x+ τeN ))− f(u(x))

τ
in Bδ(x0),

with zτ ≥ 0 in R
N . Letting τ → 0, it is clear that

zt → z :=
∂u

∂xN
φ uniformly in R

N ,
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and using Lemma 4.5 in [13] we see that

(−∆)sz ≥ f ′(u)z in Bδ(x0),

in the viscosity sense. The strong maximum principle and (5.7) imply z = 0
in Bδ(x0), so that ∂u

∂xN
= 0 in Bδ(x0). A standard connectedness argument

then implies that
∂u

∂xN
= 0 in R

N
+ ,

which is impossible. This concludes the proof of (1.6). Observe by the way
that u > 0 in R

N
+ is a direct consequence of (1.6). �

Proof of Theorem 2. Assume u is a nonnegative, bounded, nontrivial solu-
tion of (1.1). By Theorem 1, we have u > 0 in R

N
+ . We first claim that for

every δ > 0, there exists c(δ) > 0 such that

u(x) ≥ c(δ) if xN ≥ δ.

Suppose for a contradiction that this is not true. Then there exists δ > 0
and a sequence {x′n} ⊂ R

N−1 such that u(x′n, δ) → 0. Define

un(x) = u(x′ + x′n, xN ), x ∈ R
N
+ .

Since {un} is uniformly bounded, we obtain after passing to a subsequence
that un → ū locally uniformly in R

N , where ū is a nonnegative, bounded
solution of (1.1) which verifies ū(0, δ) = 0. Again by Theorem 1 we see that
ū ≡ 0.

This is impossible if f verifies (a) in the statement. When f verifies (b),
a similar argument as in case (c) in step 2 of the proof of Theorem 1 also
leads to a contradiction. This contradiction proves the claim.

Now fix any δ > 0 and let

θ = inf
c(δ)≤t≤M

f ′(t) > 0,

where M = ‖u‖L∞(RN
+
). If we choose any function φ ∈ C∞

0 (RN+ \ Σδ) such

that 0 ≤ φ ≤ 1 and φ = 1 in R
N \ Σ2δ, we see as in step 3 in the proof of

Theorem 1 that the function

z =
∂u

∂xN
φ

verifies
(−∆)sz ≥ θz in R

N \ Σ2δ.

Arguing again with the principal eigenvalue λ1(B) in a sufficiently large
ball B contained in R

N \ Σ2δ we reach a contradiction. This shows that
no bounded, nonnegative, nontrivial solution to (1.1) may exist under our
hypotheses. �
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[10] X. Cabré, J. Sola-Morales, Layer solutions in a half-space for boundary reactions.

Comm. Pure Appl. Math. 58 (12) (2005), 1678-1732.
[11] L. Caffarelli, Further regularity for the Signorini problem. Comm. Partial Differ-

ential Equations 4 (9) (1979), 1067-1075.
[12] L. Caffarelli, J. M. Roquejoffre, Y. Sire, Variational problems with free bound-

aries for the fractional Laplacian. J. Eur. Math. Soc. 12 (2010), no. 5, 1151–1179.
[13] L. Caffarelli, L. Silvestre, Regularity theory for fully nonlinear integro -

differential equations. Comm. Pure Appl. Math. 62 (2009), no. 5, 597–638.
[14] L. Caffarelli, L. Silvestre, Regularity results for nonlocal equations by approxi-

mation. Arch. Rat Mech. Anal. 200 (2011), 59–88.
[15] L. Caffarelli, L. Vasseur, Drift diffusion equations with fractional diffusion and

the quasi-geostrophic equation, Ann. of Math. (2) 171 (2010), no. 3, 1903–1930.
[16] W. Chen, Y. Fang, R. Yang, Liouville theorems involving the fractional Laplacian

on a half space. Adv. Math. 274 (2015), 167–198.
[17] P. Constantin, Euler equations, Navier-Stokes equations and turbulence, in “Math-

ematical Foundation of Turbulent Viscous Flows”, Vol. 1871 of Lecture Notes in
Math., Springer, Berlin, 2006.

[18] R. Cont, P. Tankov, “Financial Modelling with Jump Processes”, Chapman &
Hall/CRC Financial Mathematics Series, Boca Raton, Fl, 2004.
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