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Recent experiments have demonstrated the efficacy of chiral helically shaped molecules in polarizing the
scattered electron spin, an effect termed chiral-induced spin selectivity. Here we solve a simple tight-binding
model for electron transport through a single helical molecule, with spin-orbit interactions on the bonds along
the helix. Quantum interference is introduced via additional electron hopping between neighboring sites in the
direction of the helix axis. When the helix is connected to two one-dimensional single-mode leads, time-reversal
symmetry prevents spin polarization of the outgoing electrons. One possible way to retrieve such a polarization
is to allow leakage of electrons from the helix to the environment, via additional outgoing leads. Technically, the
leakage generates complex site self-energies, which break unitarity. As a result, the electron waves in the helix
become evanescent, with different decay lengths for different spin polarizations, yielding a net spin polarization
of the outgoing electrons, which increases with the length of the helix (as observed experimentally). A maximal
polarization can be measured at a finite angle away from the helix axis.
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I. INTRODUCTION

One of the most promising subfields of spintronics is
organic spintronics [1–3], which exploits organic materi-
als to manipulate and control spin currents. Recently, this
emerging field has experienced significant progress with the
remarkable discovery of spin-dependent transport through
chiral organic molecules at room temperature. This so-called
chiral-induced spin selectivity (CISS) effect was first observed
in double-stranded DNA molecules (dsDNA) [4–6]. Whereas
dsDNA molecules were found to act as highly efficient
spin filters, no CISS effect was found in single-stranded
DNA (ssDNA) molecules [5]. However, recent experiments
found spin polarization of electrons transmitted through a
bacteriorhodopsin (bR) [7,8], a protein composed of seven
parallel single α-helices, when the bR was embedded in
a purple membrane which was adsorbed on a variety of
substrates. These experiments have proved that the CISS effect
results from the intrinsic properties of the helical molecules,
and is almost independent of the substrate [7]. Additionally, a
self-assembled monolayer of a different α-helical protein was
used to demonstrate the operation of a chiral-based magnetic
memory [9].

Following these experimental observations, several groups
have attempted to explain the theory behind the CISS
effect [10–17]. In one approach, tight-binding models are
used to study electron transport through helical molecules
in the presence of spin-orbit interaction (SOI) [10–13]. In
a second approach, a spin-dependent scattering problem is
solved in a three-dimensional potential with chiral helical
symmetry [14–16]. The authors of Ref. [17] studied the effect
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of strong SOI in a metallic substrate on the spin polarization
of photoelectrons due to angular momentum selection.

A natural source of spin polarization is the SOI [18–20]. On
a one-dimensional (1D) wire, this interaction can be removed
by a gauge transformation [12,21,22]. The effect of SOI
becomes nontrivial if one allows for quantum interference,
via more than one electronic path. The simplest model of a
spin filter is thus a two-path interferometer [23–27]. However,
when the interferometer is connected to single input and output
1D single-mode leads there is no spin polarization unless
one breaks time-reversal symmetry [28,29]. This fact stems
from symmetry considerations of the scattering matrix [28],
which show that the combination of unitarity and time-reversal
symmetry leads to a twofold degeneracy of transmission
eigenvalues [30,31]. Due to this Kramers degeneracy of
transmission eigenvalues, a finite spin polarization is forbidden
in a two-terminal setup with single-mode leads [29]. Indeed,
spin filtering does arise from the competition between the SOI
and a magnetic Aharonov-Bohm flux [23–27]. Alternatively,
it has been shown that spin polarization can be obtained in a
two-terminal interferometer in the absence of magnetic flux,
by assuming leakage of electrons from the interferometer to
the environment, via side leads [32]. As shown earlier, such
a leakage breaks unitarity, and gives rise to complex site
self-energies [33]. Some of these physical sources for spin
polarization have been used in the literature. Reference [13]
has introduced hopping between further neighbor sites along
the helix, which gives rise to quantum interference. The
recent observation of the CISS effect in protein-like heli-
cal molecules [7,8], as opposed to ssDNA molecules, was
attributed to the differences in such terms between these
two systems [13]. Apparently, the hopping amplitudes in the
protein-like helical molecules are larger than those in the
ssDNA due to smaller distances between the nucleobases.
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References [12–14] also introduced phase-breaking processes
(either via Büttiker probes [34] or via complex potentials in
the Hamiltonian [35]). The latter processes may indeed result
from the experimentally observed electron capture by DNA
molecules [36,37].

In this paper we present a simple tight-binding model
for nonunitary electronic transport through a single helical
molecule, which contains SOI on the nearest neighbor (NN)
bonds along the helix, and quantum interference, generated
via hopping of electrons to the neighboring sites parallel
to the helix axis. The unitarity is broken by allowing for
leakage of electrons to side leads, which are connected to
each site on the helix. We expect similar results for any model
which generates complex site self-energies on the helix sites.
The simplicity of the model allows an analytical solution,
including a systematic analysis of the roles played by the
various physical processes. In particular, we reproduce the
experimentally observed increase of the relative outgoing spin
polarization with the increase of the helix length, and find the
direction of the maximal polarization.

The paper is organized as follows. Our model is defined in
Sec. II and solved for the band structure of the infinitely long
helix, assuming arbitrary SOI-induced spin rotation matrices
within a unit cell in Sec. III. We then solve the scattering
problem for a finite system (Sec. IV) and introduce a complex
site self-energy, due to leakage of electrons into absorbing
channels (Sec. V). The spin polarization of the transmitted
electrons is studied in Sec. VI for the general model defined
in Secs. II–IV. In Sec. VII we introduce specific expressions
for the SOI-induced spin rotation matrices corresponding to a
helical geometry and study the resulting spin polarization in
this case. We discuss and summarize the results in Sec. VIII.

II. THE MODEL

To keep the model analytically tractable, we assume that
electrons can hop between NN sites with hopping amplitude
J or along the axial direction, to the N th neighbor, with a
hopping amplitude J̃ [Fig. 1(a)]. The helical molecule can
then be mapped onto a one-dimensional chain of M unit cells

n=1
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n = N

2

(a)

31
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FIG. 1. Tight-binding model of a single helical molecule with
radius R, pitch h, and twist angle �ϕ. Electrons can hop between
adjacent sites along the helix with hopping amplitude J or vertically
to the N th neighbor with hopping amplitude J̃ . Spin-orbit interaction
is assumed to act only between NN sites. (a) Schematic view of the
helical molecule. (b) Mapping of the model onto a one-dimensional
chain of M unit cells, each containing N sites.

(labeled by m = 1,2, . . . ,M), with a basis consisting of N

sites (labeled by n = 1,2, . . . ,N ), as shown in Fig. 1(b).
The Hamiltonian we study is

Hmol = ε0

M∑
m=1

N∑
n=1

c†m,ncm,n

−
M∑

m=1

N∑
n=1

[Jc
†
m,n+1Vncm,n + J̃ c

†
m+1,ncm,n + H.c.],

(1)

where c
†
m,n = (c†m,n,↑,c

†
m,n,↓) is the creation operator at site

m,n (with c
†
m,N+1 = c

†
m+1,1) and Vn is the unitary matrix which

describes the spin precession due to the SOI for an electron
hopping from site m,n to site m,n + 1. This matrix is given
by [38]

Vn = eiKn·σ , (2)

with σ being the vector of Pauli matrices and

Kn = λ dn,n+1 × En,n+1, (3)

where λ is the parameter representing the SOI strength, dn,n+1
is the vector along the bond between site m,n and its NN
site m,n + 1, and En,n+1 is the average electric field acting
on an electron which moves along this bond. For simplicity,
we assume that the SOI affects only the NN bonds and not
the axial bonds. As shown below, a spin-independent scalar
hopping amplitude J̃ is sufficient for the demonstration of the
CISS effect [39].

In Secs. III–VI we study the band structure of an infinitely
long chain and the scattering problem through a finite chain
assuming arbitrary unitary matrices V1, . . . ,VN . This allows
for an arbitrary structure of the molecule within each unit cell.
This also makes the model general and applicable to other
systems different from helical chiral molecules, for instance
mesoscopic quantum networks. We then employ the specific
geometry of a helix in Sec. VII to study the spin polarization
of the electrons transmitted through a single helical chiral
molecule.

III. BAND STRUCTURE

To study the band structure of the chain we apply periodic
boundary conditions to the Hamiltonian (1); that is, c

†
m+M,n =

c
†
m,n. The Hamiltonian (1) can then be diagonalized in the

orbital space by first applying the Fourier transform

c†m,n = 1√
M

∑
k

c
†
k,ne

−ikm, (4)

where k = 2πr/M (r = 1, . . . ,M) is the wave vector (in units
of Na, where a is the distance between NN sites). Using also
the identity

∑M
m=1 e−i(k−k′)m = Mδk,k′ , the Hamiltonian (1)

then reads

Hmol =
N∑

n=1

∑
k

[(ε0 − 2J̃ cos k)c†k,nck,n

− (Jc
†
k,n+1Vnck,n + H.c.)]. (5)
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Performing the gauge transformation

c
†
k,n = a

†
k,ne

−ikn/NVn/NVNVN−1 × · · · × Vn,
(6)

V ≡ VNVN−1 × · · · × V1,

the Hamiltonian (5) reduces to

Hmol =
∑

k

N∑
n=1

[ε0 − 2J̃ cos k]a†
k,nak,n

− J
∑

k

[
e−ik/N

N∑
n=1

a
†
k,n+1V1/Nak,n + H.c.

]
. (7)

Applying a second Fourier transform,

a
†
k,n = 1√

N

N∑
p=1

a
†
k,pe−2πipn/N , (8)

and using the identity
∑N

n=1 e−2πi(p−p′)n/N = Nδp,p′ , one finds

Hmol =
∑

k

N∑
p=1

a
†
k,pHp(k)ak,p, (9)

where the spin space Hamiltonian for each band index p is

Hp(k) = ε0 − 2J̃ cos k − J [V1/Ne−i(k+2πp)/N + H.c.]. (10)

Since V is a unitary matrix, it can always be written as

V = eiθ n̂·σ , (11)

where n̂ is a unit vector and the angle θ is a measure of the
strength λ of the SOI. In the limit of vanishing SOI, λ → 0,
one has Vn → 1 for n = 1, . . . ,N and therefore V → 1, or
equivalently θ → 0. At small λ, an expansion of V shows that
θ is linear in λ. In Sec. VII we present a specific model of
the helix, which gives an explicit dependence of θ on λ [see
Eqs. (40) below]. The matrix (11) describes the spin precession

of the electron after completing one turn along the helix (i.e.,
transport from site m,n to site m + 1,n). Upon completing one
turn, the electron’s spinor is rotated by an angle 2θ about the
direction n̂. The eigenvalues of the Hamiltonian (10) then read

Ep,σ (k) = ε0 − 2J̃ cos k − 2J cos

(
k + 2πp − σθ

N

)
, (12)

where σ = ±1 corresponds to the eigenspinors |±n̂〉 of the
spin projection along n̂; i.e., n̂ · σ |σ n̂〉 = σ |σ n̂〉. With M 	
1, k becomes quasicontinuous and the band structure consists
of 2N spin-resolved bands. The spin degeneracy has been lifted
by the SOI but time-reversal symmetry is still conserved. As a
result, the bands described by Eq. (12) are Kramers degenerate,
satisfying Ep,σ (k) = E−p,−σ (−k). The band structure (12) is
plotted in Fig. 2 with k lying within the first Brillouin zone
(−π < k � π ), for ε0 = 0 and N = 3 and for various values
of J̃ /J and θ .

For a given energy E on the left-hand side of Eq. (12),
the solutions with real (complex) wave vector k describe
propagating (evanescent) waves. In an infinite chain one
has to consider only the propagating solutions. The number
of propagating waves for a given energy can be deduced
graphically by considering the number of crossings of a
horizontal line (corresponding to the given energy) in the band
structure (Fig. 2). As seen in Fig. 2, at a given energy E

upward propagating solutions (v = dE/dk > 0) come in pairs
of opposite spins |±n̂〉. These spins are independent of the
wave vector k and the band index p. As a result, conduction
electrons occupy states below the Fermi energy in pairs of
opposite spins. The total spin cancels out completely, leading
to zero spin polarization of the transmitted electrons.

The arguments presented above are valid for an infinitely
long chain. To study transport through a helical molecule in
more detail (and to compare with the experiments) requires
the solution of a scattering off a finite helix.
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FIG. 2. Band structure of the infinite helix for N = 3 sites in each unit cell. The site energy is ε0 = 0 and the values of J̃ /J and θ are
specified in the legend of each panel. Solid (black) and dashed (red) bands correspond to spin up and down along the vector n̂, respectively.
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IV. SCATTERING PROBLEM

We assume that the chain is connected to two ideal
semi-infinite one-dimensional leads with hopping amplitude
J0, free of SOI, at the left (l � 1) and right (l � NM) edges
of Fig. 1(b). Consider now a scattering state at a given energy
E,

|ψl〉 =
{|χin〉 eik0(l−1) + r |χr〉 e−ik0(l−1), l � 1,

t |χt 〉 eik0(l−NM), l � NM,
(13)

with |χin〉, |χr〉, and |χt 〉 being the normalized incoming,
reflected, and transmitted spinors, respectively, and the wave
vector k0 (in units of the lattice constant of the leads) satisfying
the dispersion relation E = −2J0 cos k0.

The solution of the scattering problem is obtained by
solving the tight-binding Schrödinger equations for the spinors
|ψm,n〉 (1 � n � N , 1 � m � M). For l = 1 and l = NM the
solutions inside and outside the chain coincide provided that

|χin〉 + r |χr〉 = |ψ1,1〉,
(14)

t |χt 〉 = |ψM,N 〉.
The equations inside the chain (1 � n � N , 2 � m � M −

1) read

(E − ε0) |ψm,1〉 = −JVN |ψm−1,N 〉 − JV
†

1 |ψm,2〉
− J̃ (|ψm−1,1〉 + |ψm+1,1〉),

(E − ε0) |ψm,n〉 = −JVn−1 |ψm,n−1〉 − JV †
n |ψm,n+1〉

− J̃ (|ψm−1,n〉 + |ψm+1,n〉), (15)

2 � n � N − 1,

(E − ε0) |ψm,N 〉 = −JVN−1 |ψm,N−1〉 − JV
†
N |ψm+1,1〉

− J̃ (|ψm−1,N 〉 + |ψm+1,N 〉).
Similarly, the corresponding tight-binding equations for the N

sites in the unit cell m = 1 are [40]

(E − y0) |ψ1,1〉 = 2iJ0 sin k0 |χin〉 − JV
†

1 |ψ1,2〉 − J̃ |ψ2,1〉,
(E − ε0) |ψ1,n〉 = −JVn−1 |ψ1,n−1〉 − JV †

n |ψ1,n+1〉
− J̃ |ψ2,n〉, 2 � n � N − 1, (16)

(E − ε0) |ψ1,N 〉 = −JVN−1 |ψ1,N−1〉 − JV
†
N |ψ2,1〉

− J̃ |ψ2,N 〉 ,

whereas those in the unit cell m = M are

(E − ε0) |ψM,1〉 = −JV
†

1 |ψM,2〉
− JVN |ψM−1,N 〉 − J̃ |ψM−1,1〉,

(E − ε0) |ψM,n〉 = −JVn−1 |ψM,n−1〉 − JV †
n |ψM,n+1〉

− J̃ |ψM−1,n〉, 2 � n � N − 1,

(E − y0) |ψM,N 〉 = −JVN−1 |ψM,N−1〉 − J̃ |ψM−1,N 〉 . (17)

Here y0 = ε0 − J0e
ik0 and we substituted r |χr〉 = − |χin〉 +

|ψ1,1〉 and t |χt 〉 = |ψM,N 〉 from Eqs. (14).
To solve Eqs. (15) we apply the same transformation as in

Sec. IV [see Eqs. (4) and (6)]; that is,

|ψm,n〉 = eikmeikn/NV †
n × · · · × V

†
NV−n/N |ϕn〉 . (18)

The wave vector k will be determined below. Equations (15)–
(17) then reduce to

(E − ε0 + 2J̃ cos k) |ϕ1〉 = −Je−ik/NV1/N |ϕN 〉
− Jeik/NV−1/N |ϕ2〉,

(E − ε0 + 2J̃ cos k) |ϕn〉 = −Je−ik/NV1/N |ϕn−1〉
− Jeik/NV−1/N |ϕn+1〉, (19)

2 � n � N − 1,

(E − ε0 + 2J̃ cos k) |ϕN 〉 = −Je−ik/NV1/N |ϕN−1〉
− Jeik/NV−1/N |ϕ1〉 ;

(E − y0 + J̃ eik)eik(1+1/N)V−1/N |ϕ1〉
+ Jeik(1+2/N)V−2/N |ϕ2〉 = 2iJ0 sin k0V |χin〉,

(E − ε0 + J̃ eik) |ϕn〉 + Je−ik/NV1/N |ϕn−1〉
+ Jeik/NV−1/N |ϕn+1〉 = 0, (20)

2 � n � N − 1,

(E − ε0 + J̃ eik) |ϕN 〉 + Je−ik/NV1/N |ϕN−1〉
+ Jeik/NV−1/N |ϕ1〉 = 0;

(E − ε0 + J̃ e−ik) |ϕ1〉 + Je−ik/NV1/N |ϕN 〉
+ Jeik/NV−1/N |ϕ2〉 = 0,

(E − ε0 + J̃ e−ik) |ϕn〉
(21)

+ Je−ik/NV1/N |ϕn−1〉 + Jeik/NV−1/N |ϕn+1〉 = 0,

2 � n � N − 1,

(E − y0 + J̃ e−ik) |ϕN 〉 + Je−ik/NV1/N |ϕN−1〉 = 0.

Looking at Eqs. (19)–(21), one sees that they become simple
if we set the |ϕn〉’s to be eigenstates of V . In particular, the
solution of the eigenvalue problem (19) gives the same band
structure Ep,σ (k) (σ = ±1 is a spin index and p = 1,2, . . . ,N

is a band index) as in Eq. (12) and the corresponding
eigenspinors

|ϕn,p,σ 〉 = e2πinp/N |σ n̂〉 . (22)

At a given energy E, the dispersion relations (12) can be
written as

E − ε0 + 2J̃ cos(Ny) + 2J cos

(
θ

N

)
cos y

= −2Jσ sin

(
θ

N

)
sin y, (23)

where y = (k + 2πp)/N . The left-hand side is a polynomial
of degree N in x = cos y. Squaring the two sides of this
equation gives a polynomial of degree 2N in x, yielding 2N

solutions {xj = cos yj , j = 1,2, . . . ,2N}. For a specific value
of σ , substituting each of these solutions into Eq. (23) identifies
sin yj,σ , and hence eiyj,σ = xj + i sin yj,σ . For each energy E

and spin σ , the solutions of Eq. (15)–(17) must therefore be
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linear combinations of the corresponding 2N solutions,

|ψm,n,σ 〉 = e−iσ θn/NV †
n · · · V †

N

2N∑
j=1

Aσ
j eiyj,σ (mN+n) |σ n̂〉 . (24)

The amplitudes Aσ
j are determined by Eqs. (16) and (17). If

|χin〉 = |n̂〉, then one finds that A−
j = 0, and all the spinors

|ψm,n〉 have only σ = 1. Similarly, if |χin〉 = |−n̂〉, one has
A+

j = 0, and all the spinors |ψm,n〉 have only σ = −1. The
remaining amplitudes are found by solving the 2N linear
equations

2N∑
j=1

[E − y0 + Jei(yj,σ −σθ/N) + J̃ eiyj,σ N ]ei[yj,σ (N+1)−σθ/N]Aσ
j

= 2iJ0 sin k0e
iσθ ,

2N∑
j=1

[E − ε0 + 2J cos(yj,σ − σθ/N) + J̃ eiyj,σ N ]

×eiyj,σ (N+n)Aσ
j = 0, 2 � n � N,

(25)
2N∑
j=1

[E − ε0 + 2J cos(yj,σ − σθ/N) + J̃ e−iyj,σ N ]

×eiyj,σ (MN+n)Aσ
j = 0, 1 � n � N − 1,

2N∑
j=1

[E − y0 + Je−i(yj,σ −σθ/N) + J̃ e−iyj,σ N ]

×eiyj,σ N(M+1)Aσ
j = 0.

Using Eq. (14), it then becomes clear that for |χin〉 = |n̂〉
(|χin〉 = |−n̂〉) the reflected electron is also polarized along
n̂ (−n̂), while the transmitted electron is described by
t |χt 〉 = |ψM,N,σ 〉 = V

†
N

∑2N
j=1 Aσ

j ei[yj,σ N(M+1)−σθ] |σ n̂〉, and
thus |χt 〉 = |σ n̂′〉, where

|σ n̂′〉 ≡ V
†
N |σ n̂〉 . (26)

In the general case, it is convenient to write |χin〉 in the basis
|±n̂〉 and conclude that r |χr〉 = R |χin〉 and t |χt 〉 = T |χin〉,
with the 2 × 2 reflection and transmission amplitude matrices

R = r↑↑ |n̂〉 〈n̂| + r↓↓ |−n̂〉 〈−n̂| ,
T = t↑↑ |n̂′〉 〈n̂| + t↓↓ |−n̂′〉 〈−n̂| , (27)

with the the reflection and transmission amplitudes

rσσ = −1 + e−iσ θ(1+1/N)
2N∑
j=1

Aσ
j eiyj,σ (N+1),

tσσ = e−iσ θ

2N∑
j=1

Aσ
j eiyj,σ N(M+1). (28)

From now on, let us concentrate on the case N = 2 and
demonstrate the above procedure for this simple case. For a
given energy E, the dispersion relations (12) yield the wave
vectors inside the chain as the solutions of a quartic equation

in x ≡ cos (k/2 + πp),

4J̃ 2x4 + 4J J̃ cos

(
θ

2

)
x3 + [2J̃ (E − ε0 − 2J̃ ) + J 2]x2

+ (E − ε0 − 2J̃ )J cos

(
θ

2

)
x + 1

4
(E − ε0 − 2J̃ )2

− J 2 sin2

(
θ

2

)
= 0. (29)

This equation has four solutions for x. Each solution xj (j =
1,2,3,4) leads to two opposite values of yj,σ , corresponding to
waves propagating in opposite directions and carrying opposite
spins (this follows from time-reversal symmetry, as discussed
above).

V. LEAKAGE

For real values of ε0, some solutions of Eq. (29) correspond
to real values of the wave vector k = 2y. These propagating
wave solutions yield four energy bands (two bands for each
spin), similar to those shown in Fig. 2. At each energy E,
these waves come in pairs of opposite spins and therefore
do not give rise to spin splitting. For energies in the gaps
between these bands, the solutions for y become complex, and
the corresponding waves become evanescent. The imaginary
part of y corresponds to the inverse decay length of the
wave function. For real values of ε0, the coefficients of the
polynomial equation (29) are real. Therefore, if y is a complex
solution, then its complex conjugate y∗ is also a solution.
Combining this with the time-reversal symmetry, it follows that
evanescent solutions also come in pairs of opposite spins with
the same decay lengths. Consequently, the net spin polarization
of the scattered electrons still vanishes. This agrees with
symmetry considerations of the scattering matrix [28,30],
which show that the combination of unitarity and time-reversal
symmetry forbids a finite spin polarization in a two-terminal
setup with single-mode leads [29].

In this paper we consider the possibility of generating
a finite spin polarization in a two-terminal setup by break-
ing the unitarity of the scattering matrix. Specifically, we
adopt the same approach as in Refs. [32] and [33], and consider
the leakage of electrons out of the system. Each site on the
helix is connected to an absorbing channel, modeled as a
one-dimensional tight-binding chain (free of SOI) whose site
energies are set to zero. The hopping amplitude on the first
bond of each absorbing channel is Jx , whereas the other bonds
have a hopping amplitude J0. By assuming only outgoing
waves on these absorbing channels, it was shown in Refs. [32]
and [33] that the sole effect of these channels is to introduce
a complex site self-energy for each site of the original chain,
i.e., ε0 → ε̃0 with

ε̃0 = ε0 − |Jx |2eiq

J0

, (30)

where q is the wave vector (in units of the lattice constant of
the leads) of the outgoing waves in the absorbing channels,
determined by the dispersion relation E = −2J0 cos q.

With the leakage, ε̃0 is always complex, and all the
solutions for the wave vectors Ny acquire finite imaginary
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parts. In contrast to the unitary case (real ε̃0), the evanescent
waves associated with opposite spins now have different
decay lengths. This opens up the possibility for a finite spin
polarization, as discussed in detail below. It is important to note
that one has to consider interference terms (represented by J̃

in our model) in order to achieve a finite spin polarization,
even if ε̃0 is complex. As discussed in the introduction, the
SOI can be gauged out if J̃ = 0, resulting in a trivial problem
with zero spin polarization. The technical reason for this can
also be seen from Eq. (12). With J̃ = 0, the solutions for
y become y±,σ = σθ/N ± arccos [(ε̃0 − E)/2J ], so that the
solutions with σ = 1 have the same decay lengths as those
with σ = −1, and no net spin polarization appears.

In the next sections we study quantitatively the spin polar-
ization for N = 2 and identify the direction of maximum polar-
ization n̂′ for an arbitrary value of N using Eq. (26). We show
that some important conclusions regarding the direction of the
spin polarization of the transmitted electrons can be obtained
for an arbitrary value of N . This includes, for example, the
reversal of the spin polarization along the z axis with reversal
of the helix chirality, as found experimentally (see Sec. VII).

VI. SPIN POLARIZATION

Equation (27) shows that for an incoming electron
polarized along ±n̂, the reflected and transmitted waves are
polarized along ±n̂ and ±n̂′, respectively. For an unpolarized
incident beam, we use the second of Eqs. (27) to write the
polarization of the outgoing beam along n̂′ as

Pn̂′ ≡ Tr[T †(n̂′ · σ )T ]

Tr[T †T ]
= |t↑↑|2 − |t↓↓|2

|t↑↑|2 + |t↓↓|2 . (31)

Figure 3 shows the spin polarization along the direction n̂′
[Eq. (31)] and the reflection and transmission coefficients for
an incoming spin up (R↑ ≡ |r↑↑|2 and T↑ ≡ |t↑↑|2) and spin
down (R↓ ≡ |r↓↓|2 and T↓ ≡ |t↓↓|2) along the direction n̂. No
spin polarization is achieved when either Jx = 0 or J̃ = 0. A
finite value of J̃ gives rise to quantum interference whereas a
finite Jx breaks unitarity and yields a complex site self-energy,
and therefore different decay lengths for upward propagating
waves with opposite spins. Figure 4 shows the decay lengths
(the inverse of the imaginary part of the wave vector) in units of
the lattice constant as a function of Jx (in units of J0) for a situ-
ation in which a pair of opposite spins are propagating upward
(v = dE/dk > 0) inside the chain (the parameters are the
same as in Fig. 3). The decay lengths of both waves decrease
when Jx increases but have a different value for each spin.

In our nonunitary model the total transmission decreases
with increasing length of the molecule. However, since the
decay is larger for one of the spin components, the polarization
is expected to increase with increasing length of the molecule,
as shown in Fig. 5. Both these conclusions are in agreement
with the experimental observations [5,6].

The results in Figs. 3 and 5 depend on the hopping
amplitudes J, J̃ , and Jx . When we set all of these amplitudes
to be equal to J0 we find much larger values of P , at smaller
values of θ . For M = 6, we find |P | ≈ 0.4 at θ = 0.05π and
|P | ≈ 0.8 at θ = 0.15π . Since none of these parameters are
known for specific experimental systems, it is not easy to
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FIG. 3. Spin polarization (solid blue) in a chain of M = 6 unit
cells (other parameters are N = 2, J = 1.5J0, J̃ = 0.6J0, and Jx =
0.2J0) (a) as a function of energy (in units of J0) with θ = 0.4π

and (b) as a function of θ with E = 0 (center of the band). The
spin polarization vanishes (dashed magenta) if either Jx = 0 (unitary
chain), J̃ = 0 (NN chain), or θ = 0 (no SOI). Inset: Reflection (black)
and transmission (green) coefficients for spin up (solid) and spin down
(dashed). The red line is the sum these coefficients.

estimate values of θ which are needed to achieve a significant
polarization. We return to this issue in the next section.

Our simple model allows studying the polarization along an
arbitrary direction m̂ = (cos δ sin γ, sin δ sin γ, cos γ ). With
|n̂′〉 = cos ( α

2 ) |↑〉 + eiβ sin ( α
2 ) |↓〉, where |↑〉 and |↓〉 are the

eigenstates of σz, a straightforward calculation gives the
polarization along m̂ as (see more details in Appendix A)

Pm̂ = Pn̂′ [cos α cos γ + sin α sin γ cos(β − δ)]. (32)
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FIG. 4. Decay length of a pair of spin up (solid black) and spin
down (dashed red) as function of Jx/J0 for N = 2, J = 1.5J0, J̃ =
0.6J0, θ = 0.4π , and E = 0. The inset shows the band structure
corresponding to the chosen parameters, and the pair of opposite spins
propagating upward inside the chain (v = dE/dk > 0) at energy
E = 0 is indicated by blue points.
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FIG. 5. Spin polarization along n̂′ as a function of the number
of unit cells M for various values of θ , with E = 0, J = 1.5J0,
J̃ = 0.6J0, and Jx = 0.2J0.

Equation (32) reveals that |Pm̂| � |Pn̂′ | and the maximal
polarization is obtained along the direction n̂′. Hence our
model suggests that the spin polarization in the experiments,
measured along the z axis, is not the maximum polarization.
One may achieve a larger polarization by measuring the spin
of the transmitted electrons along a different direction n̂′. To
characterize the direction n̂′ in more detail, one should specify
the spin rotation matrices V1, . . . ,VN [see Eqs. (2) and (3)]. In
the next section we employ a helical geometry and introduce
specific spin rotation matrices to study the spin polarization of
helical molecules.

VII. SPIN POLARIZATION IN A HELICAL GEOMETRY

The model presented in Sec. II allowed an arbitrary set of
SOIs on the N bonds within each unit cell along the helix
(allowing, e.g., different sites within the unit cell). The results
presented so far depended only on the product matrix V , and
hence only on the angle θ . In order to present an explicit
relation between the SOI strength λ and the angle θ we now
present a simpler model, in which all the bonds within the unit
cell are identical, except for the rotation around the helix axis.

For a helix of radius R and pitch h [see Fig. 1(a)] the vector
dn,n+1 is given by (the z axis is chosen as the symmetry axis
of the helix)

dn,n+1 = 2R sin(0.5�ϕ)(−snx̂ + cnŷ) + h

N
ẑ, (33)

where sn = sin [(n + 0.5)�ϕ], cn = cos [(n + 0.5)�ϕ], and
�ϕ = ±2π/N is the twist angle between nearest neighbors,
with the plus (minus) sign corresponding to right-handed
(left-handed) chirality. For a SOI induced by the confinement
of the electron to the cylinder which contains the helix, the
electric field can be assumed to be radial [see Fig. 1(a)] [12,41],

En,n+1 = E0(cnx̂ + snŷ). (34)

Inserting Eqs. (33) and (34) into (3), we obtain

Kn = λ̃ên, (35)

where λ̃ = λE0� is a dimensionless parameter with � =√
(h/N )2 + [2R sin (0.5�ϕ)]2 being the length of each bond,

and the unit vector ên is

ên = 1

�

[
h

N
(−snx̂ + cnŷ) − 2R sin(0.5�ϕ)ẑ

]
. (36)

The spin rotation matrices are then related by a similarity
transformation,

Vn = U−nVNUn,
(37)

U = e±i(π/N)σz ,

where the two signs correspond to right-handed and left-
handed helix, respectively. Since UN = −1, we can express
the unitary matrix V [Eqs. (6) and (11)] as

V ≡ VNVN−1 × · · · × V1 = −(VNU )N. (38)

Using Eqs. (2), (35), (36), and (37), we obtain

VNU = eiφ n̂·σ (39)

with (see Appendix B for more details)

cos φ = cos

(
π

N

)
cos λ̃ + 2R

�
sin2

(
π

N

)
sin λ̃,

nx sin φ = ∓ h

N�
sin

(
2π

N

)
sin λ̃,

(40)

ny sin φ = h

N�
cos

(
2π

N

)
sin λ̃,

nz sin φ = ±
[

sin

(
π

N

)
cos λ̃ − R

�
sin

(
2π

N

)
sin λ̃

]
.

Comparing Eqs. (11), (38), and (39) we identify θ = Nφ + π ,
which gives the relation between θ and the SOI strength rep-
resented by λ̃ [42]. We can then readily identify the direction
of maximum polarization n̂′ = (cos β sin α, sin β sin α, cos α),
defined by Eq. (26) (see Appendix B). It should be emphasized
that Eqs. (40), (B3), and (B4) depend only on the SOI strength
and on the geometrical parameters characterizing the helix.
They are independent of the complex site self-energy or the
electron energy.

Let us discuss now the order of magnitude of θ . In the limit
λ̃ = λE0� � 1, one finds θ ≈ 2N sin (π/N )RE0λ, so that θ

is proportional to the SOI strength [see also discussion after
Eq. (11)]. In vacuum, one has λ = e/(4mec

2), where e and
me are the free electron charge and mass, respectively, and
c is the speed of light. If we estimate the radial confining
field using typical values for the electric field in light atoms,
E0 ≈ 5 × 1011 V/m (for which the SOI is of the order of a few
meV), and set R ≈ 5 Å, we obtain θ/π ≈ 2.5 × 10−4. Similar
values are expected for carbon nanotubes, since in this case
the SOI is of the order of the SOI in atomic carbon (i.e., a few
meV) [43]. However, the experimental results indicate that the
observed spin polarization in chiral helical molecules cannot
be explained using SOI of the order of a few meV [5–8,44].
The explanation of the observed spin polarization magnitude
requires the SOI to be two or three orders of magnitude
larger than the SOI in carbon systems. In the previous section
we saw that our model yields significant values of the spin
polarization (as measured, e.g., in Refs. [5–8]) assuming
values of θ , and therefore λ, which are one or two orders
of magnitude larger. Such an enhanced SOI may result from
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band structure effects (e.g., a smaller effective mass), as in
narrow-gap semiconductors with strong Rashba SOI [19,20].
However, the details of the mechanism for strong SOI in chiral
helical molecules are yet to be clarified.

Equations (B3) and (B4) can be used to investigate the
spin polarization along an arbitrary direction [see Eq. (32)].
In particular, the experimentally measurable spin polarization
along the z axis, Pẑ, is of special interest. Experiments reveal
that this quantity differs by a sign for molecules with opposite
chiralities. This observation is analytically reproduced by our
model; the polarization along the z axis is given by Eq. (32)
with γ = 0; that is,

Pẑ = Pn̂′ cos α. (41)

Combining Eqs. (40) and (B3) one finds that cos α, and hence
Pẑ, reverses sign when the chirality is reversed.

VIII. DISCUSSION AND CONCLUSIONS

We have presented a simple tight-binding model for elec-
tron transport in the presence of SOI in which spin polarization
is generated by nonunitary hopping. Our model takes interfer-
ence of electronic waves into account by considering hopping
terms beyond NN ones. Although our model resembles that
of Refs. [12] and [13], there are several important differences.
First, we consider only two hopping paths at each site. This
simplifies the model and allows an analytical solution. One
can then study in more detail the direction of maximum
spin polarization. Second, we allow arbitrary SOI interactions
on the bonds within each unit cell, which may imitate the
internal structure of the helical molecules. This also makes
our model applicable to other systems such as mesoscopic
interferometers made of narrow-gap semiconductors with
strong SOI. Third, our mechanism for the generation of a
complex self-energy, due to electron leakage to side leads,
differs from those of Refs. [12] and [13].

At first look, our nonunitary effect may seem artificial.
However, such a leakage out of the helical molecules and
into the surrounding environment may in fact be the cause for
the observed decay of the total current through the molecules
with the molecule’s length. Interestingly, our model also
reproduces the experimentally observed increase in the spin
polarization with the molecule’s length. Our leakage may
also mimic in a very simplified way complex effects such
as electron capturing by DNA molecules [36,37], as well
as a variety of other phase-breaking processes. In general, a
given microscopic phase-breaking mechanism (e.g., electron-
electron or electron-phonon interactions) can be incorporated
by a suitable choice of the complex self-energy function using

the nonequilibrium Green’s function formalism. However,
phase-breaking processes are usually introduced by relatively
simple phenomenological models [45]. One phenomenologi-
cal model for the inclusion of such processes was proposed by
Büttiker [34], in which phase-breaking processes are modeled
by an additional electron reservoir coupled to the system via
fictitious voltage probes, subject to the condition of zero net
current. These Büttiker probes remove electrons from the
phase-coherent region and subsequently reinject them without
any phase relationship. Another phenomenological model
introduces phase-breaking processes by adding a spatially
uniform pure imaginary potential to the Hamiltonian [35]. The
latter model is similar to our approach. These two models were
compared in Ref. [46] and the limit in which they are equivalent
was identified. In the context of the CISS effect, the authors
of Refs. [12] and [13] employed Büttiker’s method, whereas
in Ref. [14] a phenomenological imaginary potential was
introduced. In terms of the tight-binding formalism used here,
both methods are expected to give a complex site self-energy
which results in a spin splitting as discussed above.

The analytical solution of our simple model also suggests
that one may achieve a larger CISS effect by measuring the
spin polarization along an axis different from the z axis,
conventionally used to measure the CISS effect. We identify
the direction of this axis in terms of the SOI strength and the
geometrical parameters characterizing the helix. Finally, we
show analytically that the spin polarization along the z axis
changes sign when the chirality of the helix is reversed, also
in agreement with experiments.

As we noted, coupling the molecule to two terminals and
assuming time-reversal symmetry cannot yield a nonzero spin
polarization. In some sense, our leakage model overcomes
this problem by adding many more terminals, in which the
electrons only go away from the molecule. An alternative way
to achieve a nonzero spin polarization is to use a multiterminal
setup, namely a system with more than single input and output
leads [47]. In the context of our model one may consider N in-
put and output leads, connected to each of the N sites in the left-
most and rightmost cells (m = 1 and m = M). Such a model,
which does not break unitarity, will be discussed elsewhere.
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APPENDIX A: CALCULATION OF THE POLARIZATION ALONG AN ARBITRARY AXIS

The eigenspinors of the spin projection n̂′ · σ along the direction n̂′ = (cos β sin α, sin β sin α, cos α) are

|n̂′〉 =
(

cos
(

α
2

)
eiβ sin

(
α
2

)
)

, |−n̂′〉 =
(

sin
(

α
2

)
−eiβ cos

(
α
2

)
)

. (A1)

Using the second of Eqs. (27), we obtain

T T † = |t↑↑|2 |n̂′〉 〈n̂′| + |t↓↓|2 |−n̂′〉 〈−n̂′| =
(

|t↑↑|2 cos2
(

α
2

) + |t↓↓|2 sin2
(

α
2

)
1
2e−iβ sin α(|t↑↑|2 − |t↓↓|2)

1
2eiβ sin α(|t↑↑|2 − |t↓↓|2) |t↑↑|2 sin2

(
α
2

) + |t↓↓|2 cos2
(

α
2

)
)

. (A2)
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Thus, for an arbitrary direction m̂ = (cos δ sin γ, sin δ sin γ, cos γ ) we find

Tr[T †T ] = Tr[T T †] = |t↑↑|2 + |t↓↓|2,
(A3)

Tr[T †(m̂ · σ )T ] = Tr[T T †(m̂ · σ )] = [cos α cos γ + sin α sin γ cos(β − δ)](|t↑↑|2 − |t↓↓|2),

from which one obtains Eq. (32).

APPENDIX B: CALCULATION OF THE MAXIMUM POLARIZATION DIRECTION n̂′

Using Eq. (36) the matrix VN is

VN = eiλ̃êN ·σ =
(

cos λ̃ ± i 2R
�

sin
(

π
N

)
sin λ̃ h

N�
e∓πi/N sin λ̃

− h
N�

e±πi/N sin λ̃ cos λ̃ ± i 2R
�

sin
(

π
N

)
sin λ̃

)
. (B1)

Combining the second of Eqs. (37) and Eq. (B1), we find

VNU =
[

cos

(
π

N

)
cos λ̃ + 2R

�
sin2

(
π

N

)
sin λ̃

]
1

+ i

(
±[

sin
(

π
N

)
cos λ̃ − R

�
sin

(
2π
N

)
sin λ̃

] −i h
N�

e∓2πi/N sin λ̃

−i h
N�

e±2πi/N sin λ̃ ∓[
sin

(
π
N

)
cos λ̃ − R

�
sin

(
2π
N

)
sin λ̃

]
)

. (B2)

Comparing this form with Eq. (39) one arrives at Eqs. (40). Using Eq. (26), one can operate with V
†
N on |±n̂〉 to find the direction

of maximum polarization n̂′ = (cos β sin α, sin β sin α, cos α). A straightforward algebra gives

cos α = h

N�

[
4R

�
sin2

(
π

N

)
sin2 λ̃ − cos

(
π

N

)
sin(2λ̃)

]
nx ∓ h

N�

[
2R

�
sin

(
2π

N

)
sin2 λ̃ + sin

(
π

N

)
sin(2λ̃)

]
ny

+
(

1 − 2h2

N2�2
sin2 λ̃

)
nz, tan β = ±Anx + Bny ∓ Cnz

Dnx ± Eny + Fnz

, (B3)

with

A = h2

2N2�2
cos

(
2π

N

)
sin2 λ̃ + R

�
sin

(
π

N

)
sin(2λ̃),

B = 1

2

{
cos(2λ̃) + h2

N2�2

[
1 + cos

(
2π

N

)]
sin2 λ̃

}
,

C = h

N�

[
R

�
sin

(
2π

N

)
sin2 λ̃ + 1

2
sin

(
π

N

)
sin(2λ̃)

]
,

(B4)

D = 1

2

{
cos(2λ̃) + h2

N2�2

[
1 − cos

(
2π

N

)]
sin2 λ̃

}
,

E = h2

2N2�2
sin

(
2π

N

)
sin2 λ̃ − R

�
sin

(
π

N

)
sin(2λ̃),

F = h

N�

[
2R

�
sin2

(
π

N

)
sin2 λ̃ + 1

2
sin

(
π

N

)
sin(2λ̃)

]
.
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