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Abstract
Shape memory alloys (SMAs) with double martensitic transitions are potential candidates for
highly effective, nonstandard mechanical damping systems. This paper presents a numerical
model that can be used to simulate pseudoelasticity in systems with two successive martensitic
transformations, such as adequately oriented CuZnAl, CuAlNi and CuAlBe single crystals. The
model is based on stress versus strain data obtained from the tensile test of a CuZnAl single
crystal and is able to simulate the mechanical damping of SMAs with two successive martensitic
transitions. The numerical model has been implemented as an algorithm and used to assess the
mechanical damping capacity of a system based on CuZnAl SMA single crystals, considering
the complete β-18R–6R cycle. A numerical model with a single degree of freedom is used and
the behavior of the SMA-based damper is analyzed both under free and forced oscillation
conditions. The results obtained indicate that the alloy studied is a very effective mechanical
damper.

Keywords: numerical simulations, shape-memory effect, martensitic transformations, pseudoe-
lasticity, CuZnAl, single crystals

(Some figures may appear in colour only in the online journal)

Introduction

Depending on the specific chemical composition, many alloys
as, for example, NiTi, Cu-base and Fe-base shape-memory
alloys (SMAs), in a certain temperature range above the
martensite start (Ms) temperature, show pseudoelastic beha-
vior [1–10]. These alloys undergo a stress-induced martensitic

transition when the load is applied and, when the load is
removed, they retransform to the original austenitic phase.
The transformation stress is usually higher than the retrans-
formation stress, which leads to hysteresis in the load curve.
The hysteresis associated to the pseudoelastic behavior in
SMAs can be used in mechanical damping devices, as a
certain amount of energy is dissipated in each load cycle [11].
Several systems show a second phase transition if the stress
induced martensite is strained further. As an example, we can
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mention the transitions reported in NiFeGa single crystals
[12, 13]. Other known examples have been reported in Cu-
base alloys. Some Cu-base SMA single crystals, depending
on their chemical composition and crystallographic orienta-
tion of the tensile axis, show two successive martensitic
transformations induced by tension: β-18R and 18R–6R
[7, 14–16]. When the load is removed, the alloy retransforms
back to its original austenitic structure (β).

Moreover, because of the fact that the hysteresis asso-
ciated with the 18R–6R transformation is very large, this
transition is especially interesting for potential damping
devices, as the energy dissipated per cycle is many times
greater than in the β-18R transition. The double sequential
martensitic transition can be observed in CuZnAl, CuAlNi
[17] and CuAlBe [18, 19] for tensile axes close to the [001]
crystallographic orientation. As a general rule, temperature
and thermal effects play significant roles during martensitic
phase transformations, as transformation stresses are usually
temperature dependent. However, the 18R–6R martensitic
transformation shows a well-defined plateau during the
transformation and the critical stress to induce the 6R phase
shows a very small, negative dependence on temperature
[7, 20]. This means that if the temperature increases several
degrees K, the 18R–6R transformation stress will decrease
only a few MPa. The exact value of the stress drop can be
predicted from the Clausius–Clapeyron relationship, which
relates changes in temperature (ΔT) to changes in transfor-
mation stress (Δσ) for a given phase transition [7, 20].
Moreover, different types of mechanical behavior can be
obtained according to the test temperature, since the Clau-
sius–Clapeyron relationship corresponding to the first mar-
tensitic transition (β-18R) exhibits a stronger dependence of
critical stresses on test temperature than the 18R to 6R
transition.

Compared to NiTi, the 18R–6R transition in CuZnAl
provides an interesting advantage in applications where sig-
nificant temperature variations are expected, e.g., outdoors in
temperate climates, because martensitic transition stresses in
NiTi are very sensitive to temperature [3]. Because of this
fact, the mechanical behavior of damping devices based on
NiTi should be more sensitive to seasonal or even night/day
temperature variations. Moreover, the enthalpy difference
between phases in NiTi leads to significant heating or cooling
of the material during mechanically-induced transitions,
especially at high transformation speeds which, in turn,
modifies the mechanical behavior of the damping device.

A brief description of the dynamics of one degree-of-
freedom mass–spring systems, with and without SMA
damping, is provided below. Additional details can be found
in [21].

The differential equation that describes a linear, one
degree-of-freedom system submitted to an external harmonic
excitation can be readily obtained from Newton’s second law
by considering all forces involved in the problem:

mx cx kx F tcos , 10 ( ) ( )̈ w+ + = ⋅

where m is the equivalent mass, c is the viscous damping, k is
the elastic constant, F0 is the amplitude of the external force,

ω is the angular frequency of the external force and t is time.
The steady-state regimen of the system, at a given angular
frequency ω, is the particular solution of equation (1):

x t X t. cos , 2( ) ( ) ( )w j= -

where x is the position, j is the phase angle and X is the
amplitude of the response, given by:
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According to equations (1)–(7), a linear, one degree-of-
freedom system responds to an external harmonic excitation
by oscillating at exactly the same frequency of the excitation.
However, the amplitude of the response and the phase angle
depend on several factors, namely: the amplitude of the
external force, the ratio between the frequency of the external
force and the natural frequency of the system and also the
viscous damping present.

It must be emphasized that equations (2)–(7) are only
applicable to linear mass–spring systems submitted to har-
monic excitations, not to SMA-based systems. According to
the principle of superposition of forces, it is possible to
describe the behavior of mass–spring systems with SMA
damping by adding the force generated by the SMA to
equation (1). We obtain:

mx cx kx F t Fcos , 80 SMA( ) ( )̈ w+ + = ⋅ +

where FSMA is a generalized function that returns the force
generated by the SMA damping system. The arguments of
FSMA depend on the specific model and parameters such as
temperature and the accumulated number of cycles may be
considered in complex simulations. In this paper, FSMA is a
function of the martensitic transformation stresses, the
geometry of the SMA single crystals, the elasticity of the
system, x, x and the SMA stress in the previous integration
step, as described in the Methods section below.

The presence of SMA damping makes the system non-
linear and, to the extent of the authors’ knowledge, no simple,
algebraic solutions to systems with damping based on SMAs
with double martensitic transformations are available. How-
ever, numerical solutions to equation (8) can be readily
obtained, once FSMA is defined. The approach adopted in this

2

Smart Mater. Struct. 25 (2016) 025013 F de C Bubani et al



work to calculate FSMA and the numerical method used to
obtain approximate solutions is described in the methods
section.

Several approaches have been considered to simulate the
mechanical behavior associated to pseudoelasticity where
only one transformation is taken into account, i.e., from
austenite to martensite, especially in NiTi alloys. As an
example, Torra et al [11] present two different models to
reproduce the behavior of NiTi in damping devices: a bilinear
model, which considers that, during the martensitic transition,
both transformation and retransformation stresses depend
linearly on strain, and a cubic model, which considers that,
during the martensitic transition, transformation and retrans-
formation stresses are cubic functions of strain. The bilinear
model is simpler, but its accuracy is limited. The cubic model,
on the other hand, is more accurate and more complex. Both
models are able to describe partial transformation loops.

Other models to simulate NiTi SMAs were presented in
[22, 23]. Some models go further and consider crystal-
lographic orientation and martensite variants, such as in
[24, 25]. Rao et al presented a model to simulate torsion in
SMA wires [26]. Li et al presented a model to simulate fer-
romagnetic SMAs [27]. However, to the extent of the authors’
knowledge, no model with two sequential martensitic transi-
tions has been proposed to date. The mechanical behavior of
these alloys when two sequential transitions are taken into
account is complex and there is no information in the litera-
ture regarding numerical simulations of these systems.

In this paper, a numerical algorithm that is able to
simulate the pseudoelasticity associated with the austenite to
martensite transition and a subsequent martensite to marten-
site transformation is presented. The model considers that all
martensitic transformations and retransformations occur at
constant stresses, and also considers the linear elastic defor-
mation of the austenite and the 18R martensite. The model is

able to reproduce partial loops in such a way that the load can
be reversed at any point of the stress–strain curve.

The model was applied to a mass–spring system with one
degree of freedom so as to assess the damping capacity of the
SMA with two sequential martensitic transitions in a har-
monic oscillator. The idea is to simulate the first vibration
mode of the porch with x-bracing (figure 1), which corre-
sponds to longitudinal oscillations of the upper part of the
porch. The porch was originally developed by Soul [28] to
test NiTi SMA wires. Some modifications were implemented
so that two CuZnAl SMA single crystals with sequential
martensitic transitions are placed in the bracers, i.e., one
crystal for each diagonal bracer. The model proposed is a first
approximation of the problem and the authors hope that it will
encourage the development of more complex algorithms that
take into consideration variables such as thermal effects and
differential martensitic stabilization.

Methods

Even though data is available in the literature concerning the
sequential transformations in CuZnAl single crystals [7, 19], a
specific test has been performed to obtain the required data for
the numerical model. A Cu—14.78 at%Zn—16.61 at%Al
single crystal with electronic concentration e/a=1.48 and
tensile axis [1, 2, 20] was manufactured in the Metals Physics
Division of Centro Atómico Bariloche. A tension test sample
was obtained from the single crystal by mechanical turning,
and was then submitted to the following thermal treatment:
30 min at 1173 K followed by air cooling to 523 K and
quenching in water at 278 K. This thermal treatment has been
reported in the literature and is known to introduce a uniform
distribution of nanoprecipitates [29]. The effect of these
precipitates on the β-18R phase transformation was analyzed
in several papers [30–32] and more recently it has been
shown that they harden the alloy, making it possible to obtain
the 6R martensite without plastic deformation [19].

Finally, the sample was submitted to a tensile test at
303 K on an Instron 5567 machine equipped with a temper-
ature chamber. The crosshead speed was kept constant at
0.3 mmmin−1 and strain was measured by an Instron 2620-
602 extensometer. The experimental stress versus strain curve
obtained is shown in figure 2. Both martensitic transforma-
tions (β-18R and 18R–6R) are clearly seen in the graph, and
critical stress values can be obtained. When both martensitic
transformations are considered, the total recoverable defor-
mation of the alloy can be over 20% (figure 2).

The data obtained from the tension test was used to create
a preliminary numerical model of the mechanical behavior of
the alloy. The model considers the sequential martensitic
transformations of the alloy and the combined elasticity of the
SMA and the mechanical system to which it is connected. The
numerical model is, thus, able to approximate the stress ver-
sus strain curve shown in figure 2. As this is a preliminary
model, stabilization of martensite and thermal effects are not
taken into account, i.e., martensitic transformation and
retransformation stresses are considered constant and plastic

Figure 1. The porch that was used as a base for the simulations.
X-bracing is done with steel cables. A SMA single crystal is placed
along each cable so that whenever relative movement between the
top and the base of the porch occurs, one of the cables is submitted
to tension and the other is free from loads. Adapted from [28] with
modifications.
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deformation and martensite stabilization are disregarded. It is
important to emphasize that, in the present work, there are
two martensitic transitions involved and such effects are
significantly more complex than in SMAs that have only one
martensitic transition. It is also important to mention that
some phenomena related to the double martensitic transfor-
mation are not completely understood. However, as the
Clausius–Clapeyron coefficient of the 18R–6R transformation
is very small [5, 7], the critical stress to induce 6R has a very
weak dependence on temperature. Thus, it is reasonable to
disregard thermal effects on the 18R–6R transition, as a first
approach. This is by no means a general rule and care must be
taken if other transitions are considered.

The numerical model was implemented in the program-
ming language Python 3.4, in a damped mass–spring system
with one degree of freedom. The algorithm calculates the
instant value of the force generated by the SMA (represented
by F ,SMA in equation (8)), considering that the SMA may have
two sequential martensitic transitions, and then solves
equation (8) numerically, for every integration step. The
mass, elasticity and viscous damping of the system were
adjusted to match the behavior of the prototype porch
developed by Soul, with small modifications [28]. A value of
58 000 Nm−1 for the equivalent stiffness coefficient k and an
equivalent mass M of 30 kg were considered, which leads to a
fundamental frequency ω of approximately 7 Hz.

The preliminary numerical model presented in this work
is purely mechanical and is able to approximate the behavior
of alloys with two sequential martensitic transitions (β-18R
and 18R–6R, in CuZnAl SMA single crystals). Alloys with
one martensitic transition, e.g., NiTi, can also be simulated.
The model considers that transition stresses are kept constant.
The information related to the porch that needs to be provided
to the model before the simulation can be run is the equivalent
elasticity of the porch with the bracing system, the equivalent

mass and viscous damping of the system. Moreover, the
cross-section area and length of the SMA must also be pro-
vided, so that the stress versus strain curve of the SMA can be
converted to force versus displacement data. Four transition
stress values must be provided as inputs for the simulations
with CuZnAl: β-18R, 18R–6R, 6R–18R and 18R-β (the first
two correspond to martensitic transformations and the last
two correspond to martensitic retransformations).

As the pseudoelastic effect is characterized by its stress
hysteresis, it is not possible to determine the stress value
considering only the displacement, i.e., for a given displace-
ment value, the SMA may be submitted to different stress
values depending on whether the load is being applied or
removed. In the first case, the SMA is submitted to the
corresponding martensitic transformation stress and, in the
second case, to the retransformation stress. Other stress values
are also possible, because of the elasticity of the system; this
is discussed below together with partial cycles. Therefore, the
model also needs the first derivative of the displacement, i.e.,
velocity, at every integration step, to determine if the SMA is
undergoing martensitic transformation or retransformation,
and calculate the correct stress value.

The velocity at which martensitic transitions occur may
have an effect on transition stresses because of thermal effects
related to entropy differences between phases. The magnitude
of this effect depends on the specific alloy and the martensitic
transition considered. However, as this is a preliminary
model, thermal effects are not considered, so only the sign of
the velocity is taken into account.

The last variable needed by the model is the stress cal-
culated in the previous integration step. This value, combined
with the total elasticity of the system, is used to simulate
partial cycles. In every integration step, the model calculates
the difference in displacement between the current and the
previous integration steps. The maximum stress variation is
then calculated according to Hooke’s law, by considering the
total elasticity of the system and the difference in displace-
ment between steps. This value is used to limit stress varia-
tions between steps in the model, and the final result is that
any kind of partial cycles can be reproduced by the model, as
stress variations are smoothed according to the total elasticity
of the system. For example, if the movement is inverted at
any time during the 18R–6R transition, the stress will
decrease linearly, with a slope that corresponds precisely to
the combined elasticity of the system, until the 6R–18R
retransformation stress is reached. The same behavior is
observed if the direction is reversed during the β-18R trans-
formation but, in this case, the stress will decrease linearly,
with the same slope, until the 18R-β stress is reached. This
purely mechanical approach is relatively simple, yet very
effective and provides a reasonable approximation of exper-
imental data according to the elasticity of the system. Other
variables, such as thermal effects, martensite stabilization and
stress variations during the martensitic transitions may be
included in future models.

The integration method used was proposed by Newmark
[33]. It is a numerical method to solve structural dynamics
problems, and it may be applied to any structure with a finite

Figure 2. Tensile stress versus strain curve of a (Cu—14.78 at%Zn—
16.61 at%Al) single crystal, with two sequential martensitic
transitions (β-18R and 18R–6R, with their respective retransforma-
tions). The approximate hysteresis of each transformation is
indicated by the shaded areas in the curve.
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number of degrees of freedom, in the elastic or plastic range,
submitted to any kind of dynamic loads. In the following
equations, x is the position, x the velocity, x ̈ the acceleration,
and the underscores indicate the number of the integration
step. tD is the time interval between steps (n+1) and n. The
velocity in step (n+1) can be calculated by:

x x t x. , 9n n1 ̈ ( )= + D g+ 

where

x x x1 . 0 1, 10n n 1̈ ( ) ̈ ̈ ( ) g g g= - +g +

where γ is a non-dimensional parameter introduced to
calculate a weighted average of the values of xn̈ and xn 1̈ + to
calculate xn 1+ .

Thus

x x t x t x1 . . . 11n n n n1 1( ) ̈ ̈ ( )g g= + - D + D+ + 

The value of x ,n 1̈ + i.e., the acceleration at the end of the
integration step, must be known before the equation above
can be calculated, except if γ=0. Usually, xn 1̈ + is not known
in advance. It is still possible to use γ=0 to avoid this
problem, but this would introduce other difficulties: Newmark
demonstrates that damping is added to the system as an
undesired effect of the numerical algorithm and that this
damping is proportional to (γ−0.5) [33]. Therefore, using
γ=0 would result in negative damping, i.e., the system
would be self-excited and energy would be introduced. This
effect has no physical meaning and is merely a numerical
artifact caused by a poor choice of parameters. Newmark
suggests using γ=0.5 so that this unwanted effect is
completely eliminated. If damping forces are present in the
system, viscous or otherwise, the total damping force should
be calculated and added to the other forces acting on the
system, at each integration step. This is the approach adopted
in our model.

The position also depends on the acceleration, both in the
beginning and at the end of the integration step. A new non-
dimensional parameter, β, is introduced in order to calculate a
weighted average of xn̈ and xn 1̈ + in the calculation of xn+1.
With γ=0.5, the position at the end of the integration step is:

x x t x t x. 0.5 . , 12n n n1
2 ̈ ( )= + D + D b+ 

where

x x x1 2 2 . 0 2 1. 13n n 1̈ ( ) ̈ ̈ ( ) b b b= - +b +

With γ=0.5, the equations of velocity and position become,
respectively:

x x t x x0.5 . , 14n n n n1 1( ̈ ̈ ) ( )= + D ++ + 

x x t x t x t x. 0.5 . . .
15

n n n n n1
2 2

1( ) ̈ ̈
( )

b b= + D + - D + D+ +

The value of β affects the stability, the convergence and the
accuracy of the method [33]. The value that is normally
adopted is β=0.25, in which case the method is called the
average acceleration method:

x x t x t x x. 0.25. . , 16n n n n n1
2

1( ̈ ̈ ) ( )= + D + D ++ +
x x t x x0.5. . . 17n n n n1 1( ̈ ̈ ) ( )= + D ++ + 

Still, the acceleration at the end of the integration step xn 1̈ +
must be known in advance, so that equations (16) and (17)
can be calculated. As it is not usually possible to calculate this
value in advance, an estimation must be made and the method
becomes iterative: calculations are first carried out with an
estimated value of x .n 1̈ + A new value of xn 1̈ + is obtained and
compared to the originally estimated value. After that,
calculations are repeated, now using the calculated value of
xn 1̈ + as the estimation, and so on, until the difference between
the estimated and calculated values of xn 1̈ + is equal to or
smaller than the convergence criterion adopted.

The model presented in this paper uses an iterative
implementation of the Newmark method, with γ=0.5 and
β=0.25. In our model, convergence is achieved when the
difference between the estimated and calculated values of
xn 1+ is smaller than or equal to the precision of the double-
precision floating-point number format used in the algorithm.
As the convergence criterion adopted is very strict, the acc-
uracy of the results obtained is maximized. However, the
number of iterations per integration step increases, which also
increases the total time required for each simulation. Longer
simulation times were partially compensated by advanced
algorithm optimization techniques.

The integration step in all simulations was set to 10−4 s.
This value is more than one order of magnitude below the
value at which stability and convergence issues were
observed at the frequencies simulated, with SMA damping.
To validate our results, simulations were run with even
smaller integration steps and the results obtained were
identical.

The program allows us to compare different situations,
with or without external excitation. The damping capacity of
the system with SMA was analyzed and the results of the
system with and without SMA damping were compared. The
numeric model with one degree of freedom was validated by
an analytical comparison of the results obtained.

The model can be understood as a multi variable function
that approximates the mechanical behavior of the SMA. The
output is a force value, which depends on the predefined
boundary conditions, i.e., the geometry of the SMA and the
equivalent elasticity of the system, and the instantaneous
values of displacement and velocity. The force generated by
the SMA is calculated at each iteration: it is applied to the
mass and the resulting force is used to calculate the accel-
eration of the system. After numerical integration to calculate
the velocity and position at the end of the step, another
iteration takes place: the force generated by the SMA is
recalculated and applied to the mass, and the whole process is
repeated, until convergence is achieved at each step. A dia-
gram of the simulation is shown in figure 3.

The second martensitic transformation in CuZnAl (18R–
6R) has only been observed in tension, so we need two SMA
elements to create a one degree-of-freedom damping device
that applies a force that is symmetrical regarding positive and
negative displacements. The device must be built in such a
way that each SMA damping element only works for half
cycle. At the equilibrium position, corresponding to dis-
placement x=0, no loads are applied to the SMA elements.
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For x>0, one SMA element is under tension while the other
is free from external loads. For x<0, the element that was
previously under tension (for x>0) is now free from external
loads, while the other element, that was previously free from
external loads, is now under tension. So, when one SMA
damping element is under tension, no external load is applied
to the other, and vice versa. The final result is a damping
device that is not linear, but which is capable of applying a
symmetrical force for positive and negative displacements.

The behavior of the SMA was modeled considering that
each element is a single crystal with 0.02 m length and
0.0025 m diameter, unless specifically mentioned. In the
model, the martensitic transformation and retransformation
stresses are constant and approximate the real behavior of
the material with precipitates, described above. The values
of the transformation stresses are: σβ−18R=35MPa,
σ18R−6R=250MPa, σ18R− β=25MPa, σ6R−18R=115MPa
(figure 4) (the corresponding martensitic transition is shown
in superscript). These critical transformation stresses depend

Figure 3. A simplified diagram of the simulation algorithm.

Figure 4. Simulated stress versus strain behavior of each SMA single
crystal. The model is also able to simulate partial loops.
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on the temperature and on the crystallographic orientation of
the tensile axis. It is possible, thus, to simulate the behavior of
the alloy at different temperatures by changing the martensitic
transition tensions, according to the Clausius–Clapeyron
relations available in the literature [5, 7], after corrections by
the Schmid factor. Moreover, the model considers the elas-
ticity of the system as follows: each sample is attached to a
mechanical system that has the equivalent elasticity of a 0.7 m
long carbon steel wire with 0.002 m diameter, which
approximates the x-bracing system of the porch. The simu-
lated stress versus strain behavior of a SMA single crystal is
shown in figure 4.

The elastic strain of the SMA single crystal is very small
compared with the summed pseudoelastic strain of both
martensitic transitions. However, to better approximate the
physical behavior of SMAs in damping applications, one
must consider the elasticity of the mechanical system to
which the SMA single crystals are attached, which is shown
in figure 5. The combined elasticity of the whole system
simulated is significant when compared to the pseudoelastic
strain of the SMA. Please note that the elasticity depends
heavily on the specific mechanical system used, so the curve
shown in figure 5 only represents the porch modeled in this
work and is not representative of other systems.

Results

The model was used to simulate free and forced oscillations.
The first simulation corresponded to free oscillations after an
initial displacement of 6×10−3 m (figure 6). In this simu-
lation, the damping provided by the SMA is considered, and
also the small viscous damping inherent to the porch was
included. The equivalent viscous damping coefficient c used
in free simulations is c=9.3 N s m−1, which is very small
compared to the damping capacity of the SMA used. Both β-

18R and 18R–6R martensitic transitions were considered in
these simulations. In the first cycle, the SMA is submitted to
β-18R–6R sequential transformations and the energy dis-
sipated is very large. In the second cycle, only a small fraction
of the material transforms to 6R martensite. From the third
cycle on, the amplitude in not sufficient to induce the high
hysteresis 18R–6R transformation anymore and the dissipa-
tion of energy per cycle is significantly reduced (the state of
the SMA single crystals during the simulation can be easily
verified comparing the position in figure 6 and the simulated
force versus displacement curve in figure 5). This behavior is
reflected in figure 6, where a significant slope change of the
envelope marks the change in the regimen mentioned above
(initially, β-18R–6R and then only β-18R). Because of the
highly nonlinear characteristics of the SMA damper modeled,
the frequency of the system changes during the simulation. At
about 0.9 s into the simulation, the amplitude of the oscilla-
tions is no longer enough to induce the β-18R transformation,
i.e., no martensitic transformation occurs in the SMA single
crystals and the only energy absorption present in the model
is the very small viscous damping inherent to the porch. At
this point, the system keeps oscillating with lower amplitudes,
which correspond to the elastic zone of the β phase of the
SMA, where the only damping is the one provided by the
viscosity of the model. In these conditions, the amplitude
decays exponentially towards zero, as an underdamped har-
monic oscillator.

The numerical model was then submitted to a frequency
sweep, with and without the presence of the SMA dampers.
For the frequency sweeps, the viscous damping coefficient
was increased to c=50 N s m−1. This is necessary to limit
the dynamic response in conditions close to resonance in the
model without SMA damping. To make the comparison of
the results easier, the same viscous damping coefficient was
used in the system with SMA, even though the maximum

Figure 5. Simulated force versus displacement curve (absolute
values), considering the geometry and the combined elasticity of the
whole system. The elasticity is also considered in partial loops. Force
and displacement are used in this figure to facilitate the analysis in
further simulations of the mechanical behavior of the experimental
system.

Figure 6. Simulation of the dynamic behavior of the system with
damping provided by the complete β-18R–6R cycle. The damping
observed in the first cycles is due to the 18R–6R transformation,
which has a very high hysteresis of approx. 135 MPa. The hysteresis
of the β-18R transformation is approximately one order of
magnitude smaller.
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oscillation amplitude in these cases is limited by the huge
damping provided by the SMA. A frequency sweep from
1 Hz to 30 Hz was done, using steps of 1 Hz. The frequency
was kept constant at every step for 5 s. The external excitation
used was a sinusoidal acceleration with maximum amplitude
of 5 m s−2.

A frequency sweep simulation of the porch without
bracing or SMAs was run. As expected, the maximum
response corresponds to the fundamental frequency calculated
above, approximately 7 Hz, and is limited only by the viscous
damping. In order to isolate the SMA damping effect from the
increase in the rigidity due to the diagonal tensors, a simu-
lation with the x-bracing but without SMA damping was done
(figure 7). The steel cables significantly increase the rigidity
of the system and the maximum response frequency is
increased to 28 Hz.

The same simulation was repeated with the SMA dam-
per, considering the complete β-18R–6R cycle (figure 8). The
dynamic behavior of the system is clearly nonlinear and the
maximum dynamic response occurred at 19 Hz. The oscilla-
tion amplitude obtained at 7 Hz is very small.

In order to highlight the advantages of the 18R–6R
martensitic transformation in CuZnAl SMAs compared to the
B2–B19 transition in NiTi SMAs, frequency sweep simula-
tions were done at two different temperatures (271 K and
323 K), for each alloy. In CuZnAl, only the 18R–6R trans-
ition was considered, which can be achieved by stabilizing a
mechanically-induced 18R single crystal. The martensitic
transformation and retransformation stresses of NiTi were
taken from [3], considering cycle n=30 at 323 K, and are
equal to 520MPa and 425MPa, respectively. For the simu-
lation at 271 K, martensitic transformation and retransfor-
mation stresses were calculated considering the value of the
Clausius–Clapeyron coefficient of the B2–B19 transition in
NiTi (6MPa K−1), and are equal to 208MPa and 113MPa,
respectively. In the simulations, stress hysteresis is equal to
95MPa at both temperatures. In order to approximate the

Figure 7. Frequency sweep of the system with steel tensors but
without SMA. The numbers over the curve indicate the frequency in
Hz. The resonance frequency is increased to 28 Hz.

Figure 8. Frequency sweep with SMA damping, with both
martensitic transformations (β-18R–6R). The numbers above the
curve indicate the frequency in Hz.

Figure 9. Frequency sweep with NiTi SMA damping. The simulated
temperature is 271 K. The numbers above the curve indicate the
frequency in Hz.

Figure 10. Frequency sweep with NiTi SMA damping. The
simulated temperature is 323 K. The numbers above the curve
indicate the frequency in Hz.
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forces generated by the SMA damping elements, the simu-
lations considered that the diameter of the NiTi wires were
equal to 1.5 mm. The simulated diameter of CuZnAl single
crystals is 2.5 mm.

In NiTi transition stresses at 271 K are approximately
312MPa smaller than those at 323 K. This difference is sig-
nificant and is reflected in the dynamic behavior of the system
(figures 9 and 10). At 271 K, smaller stresses (and, conse-
quently, smaller displacements) are needed to induce the
martensitic transition in NiTi. This means that the damping
action of the SMA is active at smaller amplitudes than at
323 K, making it much more effective at 271 K than at 323 K.
This effect can be clearly seen comparing the amplitudes in
figures 9 and 10 at 25 Hz and above: at 271 K (figure 9), the
amplitude is considerably smaller than at 323 K (figure 10).
Moreover, the maximum dynamic response at 271 K is
observed at 23 Hz, whereas at 323 K the peak response is seen
at 25 Hz. These results demonstrate that the behavior of NiTi
SMA based mechanical dampers can be significantly affected
by temperature variations.

On the other hand, the 18R–6R transition stresses in
CuZnAl are only slightly affected by temperature, i.e., the
Clausius–Clapeyron coefficient is small (−0.4 MPa K−1). The
difference in the simulated frequency sweeps at 271 K and
323 K is small, which is why only the results of the simulation
at 323 K are shown (figure 11).

Discussion

In the simulations done for the free oscillations, the SMA
introduces significant damping on the system (figure 6).
Originally, the amplitude of oscillation is enough to submit
the SMA to the complete β-18R–6R cycle. The hysteresis is
very large and, consequently, so is the energy dissipation in
each cycle. After few oscillations, the amplitude of the system
is no longer enough to cycle the SMA through both sequential
martensitic transitions. Only the first martensitic transition (β-

18R) occurs. The energy dissipation in each cycle is con-
siderably reduced, as the hysteresis of the β-18R transfor-
mation is much smaller than the hysteresis of the 18R–6R
transformation. Nevertheless, the hysteresis of the SMA
damper keeps dissipating the energy of the system, until the
amplitude is so small that the SMA is restricted to the elastic
phase of the austenite, i.e., no martensitic transitions occur
and energy is no longer dissipated by the SMA. If no other
damping mechanisms were present, such as viscous damping,
the system would keep oscillating with constant amplitude,
which could be considered the steady state of the system.
However, some viscous damping is considered in our simu-
lations, so the amplitude decreases asymptotically
towards zero.

From the results shown in figure 7 (forced oscillations),
we can observe that the system with x-bracing but without
SMA damping is linear and behaves according to theory: the
system behaves linearly and the maximum amplitude at
resonance is only limited by the viscous damping. The
introduction of diagonal tensors on the porch significantly
changes its dynamic behavior because of the increase in the
rigidity of the system: the resonance frequency increases and
the amplitude of oscillation decreases in all the frequency
range analyzed, except at frequencies close to the natural
frequency of the system (approximately 28 Hz). Nevertheless,
no increase in the dissipation of energy is observed, which
clearly happens once the SMA damper is introduced.

The behavior of the system with SMA damping and
forced oscillations (figure 8), submitted to a frequency sweep,
is different. On the one hand, the presence of SMA damping
increases the rigidity of the system, which, in turn, shifts the
maximum dynamic response from 7 Hz to higher values. In
figure 8, we can observe that the maximum dynamic response
of the system occurs at 16 Hz, with an amplitude of,
approximately, 4.5×10−3 m. The response of the system at
7 Hz is very small. It should be emphasized that the SMA
damping presented in this paper is highly nonlinear, so the
results obtained from the frequency sweep simulation are
specific to the boundary conditions considered and should not
be extrapolated. For instance, the frequency where maximum
dynamic response is observed depends on the amplitude of
the excitation.

Compared to the porch with tensors but without SMA
(figure 7), we can observe that the maximum amplitude of
oscillation of the porch with SMA (figure 8) corresponds to
only 15% of the maximum amplitude of the porch only with
steel tensors. This difference is very large and demonstrates
the beneficial effect of SMA damping. The increase in the
rigidity of the system can be beneficial in seismic resistant
structures because it limits the amplitude of oscillation and
increases the frequencies of their corresponding vibration
modes. Nevertheless, the introduction of the SMA damper,
besides increasing the rigidity of the system, adds significant
hysteretic damping associated with the mechanically induced
martensitic transitions. With SMA, the maximum amplitude
of oscillation is considerably smaller than without SMA and
nonlinear effects appear on the system.

Figure 11. Frequency sweep with CuZnAl SMA damping. Only the
18R–6R transition is considered. The simulated temperature is
323 K. The numbers above the curve indicate the frequency in Hz.
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Compared to NiTi, 18R–6R transition stresses in CuZnAl
are much more stable regarding temperature variations. This
fact can be used to produce damping devices whose
mechanical behavior is more predictable, especially in out-
doors applications.

The apparently better damping capacity of NiTi at 271 K
(figure 9), compared with CuZnAl (figure 11) is due to
smaller NiTi martensitic transformation stresses at this
temperature, combined with a smaller diameter of the NiTi
SMA. The result is that, under these conditions, significantly
smaller forces are required to induce the martensitic trans-
formation in NiTi than in CuZnAl. As the force applied to the
SMA is related to the position of the system, the amplitude of
movement of the mass–spring system must be sufficiently
high for the SMA to reach the martensitic transformation
stress, otherwise the pseudoelastic damping effect is not
activated. In other words, if the amplitude is too small, the
stress in the SMA is not enough to induce martensitic trans-
formation, so no hysteretic damping occurs. In the simula-
tions shown, hysteretic damping is active at smaller
displacements in NiTi at 271 K (figure 9) than in CuZnAl
(figure 11), which explains the lower amplitudes observed in
figure 11.

However, the total damping capacity of the SMA, i.e.,
the total energy absorbed per loading cycle, is directly related
to the stress hysteresis of the martensitic transformations
considered. The hysteresis of the 18R–6R transformation is
greater than the hysteresis of the NiTi alloys simulated, so the
18R–6R transformation has the potential to dissipate more
energy per load cycle, if the amplitude of movement is high
enough to induce the martensitic transition. As a con-
sequence, a nonlinear relationship is established between the
amplitude of excitation and the energy dissipated per cycle,
which has a direct effect on the dynamic behavior of the
system. A detailed analysis of this behavior will be published
in future works.

From the results obtained in this study, we can see that
the dynamic behavior of SMA-based damping systems is
complex, nonlinear and several variables have a direct effect
on the behavior of a mass–spring system with SMA damping.

Conclusions

A preliminary numerical model that is capable of simulating
two consecutive martensitic transitions (β-18R and 18R–6R)
in pseudoelastic Cu-base SMAs has been presented. The
model was incorporated into a one degree of freedom mass–
spring system so that the damping provided by the SMA can
be assessed.

The introduction of SMA damping changes the dynamic
response of the system. The SMA damper proposed in this
manuscript is very efficient and its main effects are an
increase in the rigidity and an important reduction in the
maximum amplitude of the system.

The simulations have shown that, besides increasing the
rigidity of the system, the SMA damper also dissipates
energy, which makes it more efficient at reducing the

dynamic response associated to external excitation than
merely increasing the rigidity of the system.
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