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One-dimensional models coupling a Langevin equation for the cargo position to stochastic stepping dynamics
for the motors constitute a relevant framework for analyzing multiple-motor microtubule transport. In this work
we explore the consistence of these models focusing on the effects of the thermal noise. We study how to define
consistent stepping and detachment rates for the motors as functions of the local forces acting on them in such
a way that the cargo velocity and run-time match previously specified functions of the external load, which are
set on the base of experimental results. We show that due to the influence of the thermal fluctuations this is not
a trivial problem, even for the single-motor case. As a solution, we propose a motor stepping dynamics which
considers memory on the motor force. This model leads to better results for single-motor transport than the
approaches previously considered in the literature. Moreover, it gives a much better prediction for the stall force
of the two-motor case, highly compatible with the experimental findings. We also analyze the fast fluctuations of
the cargo position and the influence of the viscosity, comparing the proposed model to the standard one, and we
show how the differences on the single-motor dynamics propagate to the multiple motor situations. Finally, we
find that the one-dimensional character of the models impede an appropriate description of the fast fluctuations
of the cargo position at small loads. We show how this problem can be solved by considering two-dimensional
models.
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I. INTRODUCTION

Microtubules are polymeric filaments along which the mo-
tor proteins kinesin and dynein translocate (or walk) carrying
different types of cargoes in the cytoplasm. These includes
lipid droplets, endosomes, mitochondria, and organelles of
various types [1–3]. In order to generate motion against the
large viscous drags observed inside cells, the motors use the
energy from the hydrolysis of adenosine triphosphate (ATP).
Microtubules are polar structures that have a plus end and a
minus end. Kinesin motors move toward the plus end, while
dyneins walk in the opposite direction.

Usually, the transport of a single cargo is mediated by
several motors [2–5]. In the case that both kinesin and dynein
motors participate, the transport is bidirectional [2–5]. This
means that the organelle can move back and forth on the
filament [4–6]. The way in which the bidirectional transport
is coordinated is system dependent and constitutes today a
subject of very active research [3,7]. Local stochastic effects
as well as regulatory mechanisms can be involved [3,6,7].

Mathematical models and numerical simulations play an
important role in the understanding of the complex phenomena
associated to multiple motor transport. This is so because
most experiments provide access only to the cargo motion,
while the motors’ dynamics and action remain hidden. Many
mathematical approaches have been used to model multiple-
motor transport in different contexts and with different degree
of detail. Among the most remarkable, we can mention those
in [5,8,9], which consider even load sharing by motors of the
same species during organelle transport, and the models in
[4,10–13] which consider uneven load sharing. Comparison
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between both types of models have been provided in [10] and
[14]. Other relevant models for multiple motor motion concern
applications to experiments of transport of endosomes [15]
and human adenovirus [16], and to the general problem of
traffic on microtubules [17,18]. The contributions in [19–21]
also provide important discussion on bidirectional transport
by multiple motors. In this work we analyze a special class of
models here referred to as the Langevin–Monte Carlo (LMC)
models [4,6,10,22] and propose an improved version. The
LMC models consider a Langevin dynamics for the cargo
coupled to a stochastic discrete-stepping dynamics for the
motors ruled by a Monte Carlo algorithm. Several versions
of the LMC models [10,14,22] including three-dimensional
formulations [23,24], as well as applications to the analysis of
particular in vitro [6] and in vivo [6,25,26] experiments, have
been developed.

The LMC models constitute a relevant framework for
analyzing multiple-motor transport due to their easy im-
plementation and to the following characteristics. First, the
models consider separate descriptions for individual motors
with independent cargo-motor elastic linkers. Thus the whole
complexity of the cargo and motor motion, attachment,
detachment, and force generation processes can be captured
in a relatively simple way. Second, the Langevin dynamics for
the cargo enables the analysis of the influence of the cargo
size, the viscosity of the medium and the thermal fluctuations.
Moreover, by considering appropriate generalizations of the
Langevin equation, the basic one-dimensional model can be
extended to three dimensions including rotations of the cargo
[23,24], and also to the case of viscoelastic media, as was done
in [26] on base of the developments in [27–29]. The analysis
of the fluctuations of the motion of organelles in vivo is of
relevance for the characterization of the rheological properties
of the cellular medium [30–33] and the elastic properties of
the motor linkers as well [34].
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FIG. 1. Sketchs of the models. (a) Sketch of the single motor
model. The motor is represented as a spring which links the cargo to
the microtubule. The model is one dimensional with x the cargo
position and xi the motor position (i.e., the position where the
motor binds the microtubule). The cargo dynamics is continuous
and determined by the action of the external force Fext together with
the viscous force γ ẋ(t), the force exerted by the motor Fi , and the
thermal noise ξ (t). The motor dynamics is discrete; the allowed motor
positions are represented by arches on the microtubule. The motor
force Fi determines the stepping and detachment probabilities of the
motor called Ps(Fi) and Pd (Fi), respectively. The force Fi is defined
as a function of x and xi in Eq. (3); this corresponds to a nonlinear
interaction with a stiffness k associated. (b) Sketch of the multiple
motor model. Kinesin motors pull the cargo to the right (plus-end),
while dynein motors pull to the left (minus-end). Each motor may
be either attached to the microbutule or detached [this is the case
of the dynein motor indicated as (1) in the figure]. Each attached
motor exerts a force Fi which affects its stepping and detachment
probabilities as indicated in panel (a). Each detached motor has a
probability per time unit � of reattachment.

To dwell in the subject of our work we briefly introduce
the basic assumptions of the one-dimensional LMC models
for cargo transport by a single motor. The general picture of
the system is sketched in Fig. 1(a). The cargo motion follows
the Langevin equation

γ
dx

dt
= −Fext + Fi + ξ. (1)

Here, x is the position of the cargo along the microtubule, γ

is the viscosity coefficient, Fext is a constant external force
representing the action of an optical trap, and ξ is the Gaus-
sian thermal noise satisfying the fluctuation-dissipation re-
lation 〈ξ (t)ξ (t ′)〉 = 2kBT γ δ(t − t ′), with kBT = 4.1 pN nm.

Finally, Fi is the force exerted by the motor. This force is given
by a nonlinear function of the cargo position x and the motor
position xi which models the elastic interaction provided by the
motor stalk [see Fig. 1(a)]. The functional form Fi(x,xi) will be
specified later. The allowed motor positions are discrete sites
separated by a distance �x, which are represented as vertical
arches on the microtubule in Fig. 1(a). The dynamics of the
motor is defined by the stepping and detachment rates, which
depend on Fi . We call them Ps(Fi) and Pd (Fi), respectively, so
that the motor steps a distance �x with a probability per time
unit equal to Ps(Fi) and detaches with probability Pd (Fi).
Throughout the work we set �x = 8 nm, according to the
kinesin step.

In this paper we analyze the role of the thermal fluctuations
in the LMC models, and their interplay with the Monte
Carlo rules for the motor dynamics. In particular, we study
the problem of how to provide consistent definitions for
the stepping and detachment rates of individual motors as
functions of the local force Fi , such that the cargo mean
velocity and detachment time match previously specified (i.e.,
experimentally based) functions of Fext for the case of single
motor transport. This is an open problem which deserves
considerable attention since the appropriate description of
single motors is essential for an accurate modeling of multiple
motor transport, as we show in the section concerning multiple
motors. The main difficulty comes from the fact that the
experiments on single-motor transport give access to the
stepping and detachment rates as functions of the external
force Fext, not as functions of the local force Fi . Clearly, due
to the thermal noise and the viscous force, Fext and Fi are
not expected to be the same at every time. Even more, in
general, the time average of Fi is not expected to be equal
to Fext. Along our work we analyze the validity of the usual
approximations for Ps(Fi) and Pd (Fi) found in the literature,
and we propose a modified model that includes a dependence
on the recent history of the local force. As we will show,
this proposal enhances remarkably the performance of the
LMC models and provides a solution for the problem of
finding consistent definitions for the stepping and detachment
rates.

The Langevin equation [35] has been used for describing
transport driven by molecular motors since the pioneering
works on ratchets models in the 1990s [36,37]. Many methods
for resolution of the Langevin equation has been considered
for this and other applications in physics and chemistry
[35], including path integrals techniques [38], mapping to
Fokker-Planck equations, and spectral methods [35,39]. In
the case of the LMC models, the coupling with the Monte
Carlo dynamics for the motors makes preferably a numerical
treatment of the Langevin equation based on a standard time
discretization scheme [4,6,10,22].

The paper is organized as follows. In the next section we
introduce the models that we study along the work. Namely, a
standard LMC model, a zero temperature model developed for
the sake of comparison, and our proposal. We also explain the
way in which simulations are performed and the quantities we
analyze. In the section Results and Analysis we analyze and
compare the models for different single and multiple-motor
situations. The last section contains our main conclusions and
additional discussion.
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II. MODELS, SIMULATIONS AND RELEVANT
QUANTITIES

A. Standard model coupling the Langevin cargo dynamics
to Monte Carlo–ruled motor stepping

As stated in the Introduction, several LMC models have
been developed in the literature. In this work we focus on
the one-dimensional version used in [6,10] and [25], which
from now on is referred to as standard Langevin–Monte Carlo
model (SLMC). At the end of this section we briefly explain
the similarities and differences with other LMC models, some
of which are analyzed in the final part of the paper.

The SLMC model considers the cargo as linked perma-
nently to Nf forward motors (kinesins) and Nb backward
motors (dyneins), as sketched in Fig. 1(b). The motion of
the organelle follows the Langevin equation

γ
dx

dt
= −Fext +

∑
i

Fi + ξ. (2)

Here, Fi with i = 1, . . . ,Nf + Nb is the force exerted by
the ith motor, while Fext is the external force and ξ the
thermal noise as explained for the single motor case of
Eq. (1). The constant γ is calculated using the Stokes formula
[4,10,22] γ = 6πRη, with R the radius of the cargo and
η the viscosity of the medium. Throughout the paper we
fix R = 500 nm and we consider the ratio nw = η/ηw, with
ηw = 9.1 × 10−10 pN s/nm2 the viscosity of water, as the
relevant parameter which quantifies the viscosity.

At a given time, each motor can be either attached to the
microtubule or detached [see Fig. 1(b)]. For an attached motor,
the motor position xi can be interpreted as the center of mass of
the motorheads. The allowed motor positions are the discrete
sites xj = j�x with integer j and �x = 8 nm. Following the
assumptions in [4,6,10,14,22–25], each attached motor can
exert only attractive forces on the cargo provided that a critical
distance xr associated to the motor length is surpassed. The
force Fi is defined as

Fi = Fi(x,xi) =
⎧⎨
⎩

0 for |x − xi | � xr,

k(xi − x − xr ) for (xi − x) > xr,

−k(x − xi − xr ) for (x − xi) > xr,

(3)

where k is the stiffness of the ith motor. For a detached motor,
the position xi is irrelevant and we set Fi = 0.

Each motor has a stepping probability per time unit Ps(Fi)
and a detachment probability Pd (Fi). The steps are of absolute
length �x = 8 nm. Kinesins advance in the positive direction
while dyneins advance in the negative one. Along the work we
consider functional forms for Ps(Fi) and a detachment prob-
ability Pd (Fi) valid for different motor types and conditions
which are given in Table I. Note that no backward steps are
allowed in the SLMC model, i.e., neither negative steps for
kinesins nor positive steps for dyneins (the case of a model
with back-stepping is at the end of the paper). Finally, each
detached motor has a constant probability per time unit �

of attaching to the microtubule. The attachment occurs with
equal probability in any of the sites xj = j�x with integer j

satisfying |x − xj | < xr (i.e., with the motor-linker relaxed).
To compute the evolution of the cargo-motor system, the

time is discretized in steps of duration dt which must be taken
much smaller than the relaxation time of the motor springs
τk = γ /k. Typically we consider dt ∼ 10−6 s or lower, de-
pending on the viscosity. Then, the motor dynamics is evolved
together with a standard discrete-time approximation for
Eq. (2). The details of the algorithm are given in Appendix A.

The differences between the SLMC and other LMC models
involve mainly two aspects. Namely, the details of the Monte
Carlo rules for the motor dynamics and the dimensionality of
the Langevin equation. For instance, Ref. [4] uses the same
Langevin equation but considers only kinesin motors ruled by
a more detailed stepping algorithm which includes two stages
of the chemical cycle. References [14,22] also consider the
one-dimensional Langevin formulation but with a Monte Carlo
algorithm which include motor backstepping. Meanwhile, the
works in [23] and [24] consider three-dimensional versions of
the Langevin equation with the motor dynamics set as in the
SLMC and as in the model in [4], respectively. In some works
[4,6], only the discrete-time version of the Langevin equation
is introduced.

B. Zero temperature model

In order to analyze the influence of the thermal fluctuations
on the SLMC model, we compare the results with those from
a zero temperature model (ZT) which considers Eq. (2) with

TABLE I. Parameters and functional forms for the single-motor dynamics. Data taken from [6]. The functional form for Ps(F ) is also
considered in other works [10,23,25,26], although with different values of v0, w, and F0. In all the cases �x is set equal to 8 nm, the units of
Pd (F ) are s−1, and the formulas for Pd (F ) assume that F is expressed in pN.

kinesin (in vitro) kinesin (in vivo) dynein (in vivo)

Ps(F ) for F < 0 v0/�x

Ps(F ) for 0 � F � F0 v0[1 − (F/F0)w]/�x

Ps(F ) for F > F0 0
v0 1000 nm/s 520 nm/s 800 nm/s
F0 5 pN 2.5 pN 2.5 pN
w 2 2 0.5
Pd (F ) for |F | � F0 exp(|F |/4) 0.35 exp(|F |/2) 0.37 exp(|F |/1.74)
Pd (F ) for |F | > F0 (1.07 + 0.186|F |) (1.535 + 0.186|F |) [0.254(1 − exp(−|F |/1.97))]−1

� not used 1.1 s−1 1.29 s−1

k 0.32 pN/nm 0.32 pN/nm 0.32 pN/nm
nw 1 (water viscosity) 10 10
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vanishing thermal noise. The motor dynamics remains the
same as in the SLMC model so that the motors are assumed
to work at normal physiological conditions. The detailed
algorithm is given in Appendix A.

C. Model with time averaged forces

The SLMC model assumes that the stepping and detach-
ment rates are well defined functions of the instantaneous
(i.e., fast fluctuating) force Fi acting on the motor domain.
As we will show, this approximation leads to some problems
on the reproduction of the experimental results for single
motors, especially when the observed mean run-time is a
nonmonotonous function of Fext. To overcome this problem we
propose an alternative model for the motor dynamics that will
be referred to as the time-averaged forces model (TAF). At this
point it is necessary to write down explicitly the dependences
of the positions and forces on the time t to further develop
the model. Thus we write x(t) and xi(t) for the cargo and
motor positions, respectively, and Fi(x(t),xi(t)) for the forces
determined by the relation given in Eq. (3).

We consider that the cargo dynamics obeys Eq. (2) as in
the SLMC, while the motor stepping dynamics responds not
to the instantaneous values of the forces Fi(x(t),xi(t)) but to
the following time-averaged local forces:

F̃i(t) = 1

τm

∫ t

0
Fi(x(t − t ′),xi(t − t ′)) exp(−t ′/τm)dt ′. (4)

Due to the exponential weight, the average involves essentially
a time window of duration τm on the recent history of the force.
The condition t � τm leading to 1

τm

∫ t

0 exp(−t ′/τm)dt ′ � 1 is
required for a meaningful definition of the average.

Other choices of the weight function could lead to similar
results for the system dynamics; however, the exponential
weight enables us to write the following differential equation
for F̃i(t):

dF̃i

dt
(t) = − 1

τm

[F̃i(t) − Fi(x(t),xi(t))]. (5)

This can be obtained by simple derivation of Eq. (4) and
integration by parts.

Hence the TAF model considers Eqs. (2) and (5), which in
the compact notation read

γ
dx

dt
= −Fext +

∑
i

Fi + ξ, (6)

dF̃i

dt
= − 1

τm

[F̃i − Fi], (7)

coupled to the discrete motor dynamics ruled by the time
averaged forces F̃i . This means the same Monte Carlo
algorithm introduced for the SLMC but substituting Ps(Fi) and
Pd (Fi) by Ps(F̃i) and Pd (F̃i), respectively. The details of the
algorithm are given in Appendix A. It is worth remarking that
while the motors obey to the averaged forces, the cargo is still
driven by the instantaneous fast-fluctuating forces Fi defined
in Eq. (3), since this is the appropriate assumption for the
Langevin dynamics and important for reproducing the cargo
motion at small time scales. Note that these considerations do
not lead to inconsistency, as the dynamical models for motor

and cargo are essentially different from each other, given that
one is discrete and probabilistic, while the other is continuous
both in time and space. The introduction of time averaged
forces for the motor dynamics corresponds to a coarse graining
treatment of the force which, as we will show, improves the
results for cargo motion.

Importantly, the idea that the stepping and detachment
rates may be defined in terms of time averaged forces or,
equivalently, considered as dependent on the recent history of
the force, is reasonable from various points of views. First, note
that both for kinesin and dynein the time between steps (i.e.,
the duration of the associated chemical cycles) is of the order of
10−2 s. The cycles involve several stages whose durations may
depend on the local force in different manners [4,40]. Thus the
duration of each cycle would be affected by the history of the
force along the whole cycle. Given that we are not going to
describe the details of the different reactions within the cycle
but assume instead a single stepping probability, it is reason-
able to consider the motor-force averaged on a time window
of duration τm ∼ 10−2 s. Similarly, given that detachment is
not equally probable along the chemical cycle [4] and that we
are not going to describe the details of its time dependence, it
is reasonable to consider the detachment rate as dependent on
an average force acting on the mentioned time scale.

From another point of view, note that if the function
Ps(F ) [or Pd (F )] represented for instance a Kramers rate
derived from a microscopic Langevin description of the
motion of the motor heads, the force F could not correspond
to the instantaneous fast-fluctuating local force Fi . Instead,
it should be a parameter which must remain essentially
constant on the time scale relevant for the transition. More
specifically, a Langevin description of the motion of the
motor heads could consider the local force Fi(x(t),xi(t))
as given by Fi(x(t),xi(t)) = 〈Fi(x(t),xi(t))〉 + δFi(t), with
〈Fi(x(t),xi(t))〉 the mean value of the force during a time
window relevant for the transition and δFi(t) a fast fluctuating
quantity with zero mean. Then, the calculation of the Kramers
rate would average out the fluctuations and lead to a transition
probability dependent only on 〈Fi(x(t),xi(t))〉.

From a mathematical point of view, the definition of the
stepping and detachment rates in terms of the averaged forces
implies the introduction of memory in the motor dynamics.
This is because, at a given time, the rates are conditioned
not only by the current value of the force but also by the
values attained previously. As justified before, a time window
of the order of the time between steps will be considered
for averaging. Thus the memory will be relevant on such time
scale. Interestingly, although with a different formalization, the
existence of memory effects in the motor motion was recently
considered in [21].

D. Simulations: Mean velocities and detachment rates

For the three models (SLMC, ZT, and TAF), the simulations
of single motor transport are made as follows. A constant
value of Fext is considered. As initial condition, at t = 0,
the motor is attached to the microtubule in one of the sites
xj = j�x satisfying |x − xj | < xr . Then, as in [4], a small
transient time ttr is skipped (typically ttr ∼ 0.1 s) to filter out
the initial backward motion of the cargo caused by the action
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of Fext when the motor-linker is not stretched. During such
transient, detachment is not allowed. For t > ttr detachment
is allowed, and the simulation dynamics continues until the
motor detaches. The time at which the motor detaches is
called td . The mean velocity of the run is then defined as
vrun = (x(td ) − x(tr ))/(td − ttr ), while the run time is Trun =
td − ttr . Finally, we average over realizations to define the
mean cargo velocity as a function of Fext as v(Fext) = 〈vrun〉
and the detachment probability Q(Fext) = 1/〈Trun〉. Here, 〈 〉
means average on runs computed with the same value of Fext.

Simulations for multiple motors are performed in a com-
pletely analogous way, as explained in the section concerning
multiple motor transport.

III. RESULTS AND ANALYSIS

A. Force-velocity and force-detachment relations
for single motors

The force-velocity relations found in single-motor experi-
ments with different motor types and setups can be reasonably
well approximated as [6,10,23]

vobs(Fext) =
⎧⎨
⎩

v0, Fext < 0,

v0[1 − (Fext/Fs)w], 0 � Fext � Fs,

0, Fext > Fs.

(8)

Here, vobs(Fext) indicates the observed mean velocity as a
function of the external load, Fs is the stall force leading to a
vanishing velocity, v0 is the zero-load velocity, and w > 0 is
a parameter which controls the decay of the velocity with the
force. Equation (8) neglects the slow backward motor motion
observed at superstall conditions (Fext > Fs) and contemplates
the fact that assisting forces (Fext < 0) produce very small
effects on the motor velocity. Hence Eq. (8) can be taken
as a useful phenomenological formula which approaches the
results of most experiments [6,10,23], although it does not
necessarily give a highly accurate description of any particular
experiment for every value of Fext. For the purpose of this
work, however, vobs(Fext) represents the results that we want
to reproduce with our simulations.

Taking into account this force-velocity relation, the SLMC
models in [6,10,25] and also the three-dimensional model
in [23] assume the stepping rate Ps(Fi) as given by the
formula indicated in Table I with the parameter F0 set equal to
the experimental stall force Fs . This corresponds to setting
Ps(Fi) = vobs(Fi)/�x [41]. The assumption is reasonable
since a random walker with such stepping probability would
advance with mean velocity vobs(Fi) if Fi is constant. However,
this does not take into account the difference existing between
the constant external force Fext and the fluctuating local force
F (t) which acts on the motor domain. In fact, as a consequence
of this assumption, the mean velocity v(Fext) calculated from
simulations results to be different to vobs(Fext). This is shown
in Fig. 2(a) where we plot v(Fext) calculated for the SLMC,
ZT, and TAF models with the parameters indicated in Table I
for kinesin in vitro, together with the corresponding vobs(Fext).
It can be seen that, for the SLMC model, the calculated stall
force (approximately 6.5 pN) is considerably larger than the
expected one (Fs = 5 pN). Moreover, in the range 0.5–3 pN,
the calculated velocity is smaller than vobs(Fext). This all means

(a)

(b)

FIG. 2. Velocity and detachment rates for single-motor transport
calculated with SLMC, ZT, and TAF models. Simulations considering
the parameters for kinesin in vitro indicated in Table I. Panel (a)
shows the results from simulations for the mean velocity v(Fext)
for the models SLMC, ZT, and TAF, together with the expected
result vobs(Fext) given in Eq. (8). Panel (b) shows the calculated
detachment rate Q(Fext) for the same systems together with the
expected curve Pd (Fext). The results from the TAF model are
for τm = 10−2 s.

that, if the experimental force-velocity relation of Eq. (8) is
assumed to hold at the level of the motorheads within the
SLMC model, it does not arise as the relation between the
computed cargo velocity and the external force. In contrast,
the TAF model with τm = 0.01 s and the ZT model provide
good results, since the calculated velocities match the function
vobs(Fext).

Something similar occurs with the detachment rate. The
simulations analyzed in Fig. 2 consider the detachment
probability of the motor as a function of the local force
(Pd (Fi)) defined by the experimental formula given in Table I
for kinesin in vitro. Figure 2(b) shows that, while for the SLMC
the calculated detachment rate Q(Fext) does not coincide with
the expected result Pd (Fext) for every value of Fext, the TAF
and ZT models provide full consistence between these two
quantities.

In Fig. 3 we show results from the SLMC, TAF, and
ZT models for other relevant choices of the stepping and
detachment probabilities. Namely, those corresponding to
kinesin in vivo and dynein in vivo proposed in Ref. [6], and to
a kinesin model with exponential detachment similar to those
considered in [23] and [25]. The results indicate that, in all the
cases, the problem with the SLMC model persists, while the ZT
and TAF models give consistent results. However, in the case
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(a)

(b)

(c)

(d)

(e)

(f)

FIG. 3. Velocity and detachment rate for single motors for various motor types. Panel (a) shows the mean velocity calculated from
simulations for the SLMC, ZT, and TAF models considering the parameters for kinesin in vivo indicated in Table I, together with the expected
result vobs(Fext). Panel (b) shows the results for Q(Fext) for the three models for the same parameters together with the expected result Pd (Fext).
Panels (c) and (d) repeat the calculations in panels (a) and (b) but considering parameters for dynein in vivo from Table I. In this case, a change
of sign is introduced in the velocity so that we get positive velocities for minus-end transport. Panels (e) and (f) consider the case of kinesin
with exponential detachment. This corresponds to the same parameters as for kinesin in vitro but considering Pd (F ) = ε exp [|F |/Fd ] with
ε = 1 s−1 and Fd = 4 pN. In all the cases the results from the TAF model are for τm = 10−2 s.

of kinesin with exponential detachment the deviation of the
SLMC occurs only in the velocity curve.

The errors of the mean quantities plotted in Figs. 2 and 3 are
significantly small. Error bars are not shown since they result
of the same size as the symbols and hinder the identification
of the curves. The relevance of the results becomes apparent
in Fig. 4 where we analyze the distributions of time averaged
velocities of single runs for some selected values of Fext, and
also distributions of run times. Figures 4(a) and 4(b) show the
distributions of velocities corresponding to the calculations
in Fig. 2(a) for Fext = 1.8 pN and Fext = 5 pN, respectively.
The differences between the distribution for the SLMC model
and those for the other models are appreciable. In particular,
for Fext = 5 pN (i.e., the expected stall force) the distributions
for the TAF and ZT models are symmetric around v = 0 as
desired, while the one for the SLMC model is strongly shifted
to positive velocities. In Figs. 4(c) to 4(f) we show velocity
distributions and also distributions of runtimes for two selected
values of the force corresponding to the system analyzed in
Figs. 3(a) and 3(b). This means parameters for kinesin in vivo.
For the sake of simplicity we only include results for SLMC
and TAF. In all the cases, the differences between the TAF and
SLMC models are relevant. Note that, as explained before, the
calculated detachment rate plotted in Fig. 3(b) is the inverse
of the mean of the distributions shown in 4(d) and 4(f), for the
indicated values of Fext.

As the only difference between the ZT and SLMC models
is the consideration on the thermal noise, it becomes apparent
that the problem of the SLMC for fitting the expected results
in Figs. 2 and 3 should be related to the influence of the
fluctuations. To understand this, we begin by focusing on
the results in Fig. 2(a). First, the fact that the calculated
stall force is larger than F0 is easy to understand. Note that
for Fext � F0, the thermal fluctuations can eventually push
forward the cargo so that the elastic linker may relax and the
local force Fi results smaller than F0. Thus Ps(Fi) becomes
nonzero and the motor may step. This means that the motor
works as a ratchetlike device which can advance when helped
by fluctuations. On the other hand, the fact that the cargo
velocity in the range 0.5–3 pN results lower than vobs(Fext) is
due to the thermal fluctuations leading to Fi > Fext (i.e., those
which move the cargo backward). Such fluctuations cannot
be compensated by the fluctuations leading to Fi < Fext since
there is a maximum value of Ps(Fext). Generally speaking, due
to the fluctuations, the calculated velocity curve results flatter
than that for vobs(Fext). Note that, in all the velocity curves in
Figs. 2 and 3, the SLMC yields v(Fext) < vobs(Fext) in the zones
where vobs(Fext) is concave downward and v(Fext) > vobs(Fext),
where vobs(Fext) is concave upward. The differences between
Q(Fext) and Pd (Fext) found for the SLMC model can be
understood in a similar way as those for the velocity taking
into account the influence of the fluctuations. The blurring
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(a)

(b)

(c)

(d)

(e)

(f)

FIG. 4. Velocity distributions and run-time distributions for selected systems analyzed in Figs. 2 and 3 considering different motor models.
Panels (a) and (b) show the velocity distributions for the kinesin in vitro system analyzed in Fig. 2 considering the cases Fext = 1.8 pN and
Fext = 5 pN (stall force), respectively. Results for the SLMC, ZT, and TAF models are shown. Panels (c) and (e) show the velocity distributions
for the kinesin in vivo system analyzed in Fig. 3 considering the cases Fext = 1.27 pN and Fext = 2.7 pN, respectively. Results for SLMC and
TAF models are shown. Finally, panels (d) and (f) show the run-time distributions for the cases analyzed in panels (c) and (e), respectively. The
dash-dotted lines in panels (d) and (f) correspond to exponential laws which approximate the tails of the run-time distributions. The plotted
functions are proportional to exp(−at) with a = 0.65/s [panel (d), SLMC], a = 0.84/s [panel (d), TAF], a = 1.65/s [panel (f), SLMC], and
a = 2 [panel (f), TAF].

of the discontinuities in the detachment probabilities are
expectable.

B. Robustness of the TAF model against varying τm

In order to check the robustness of the TAF model against
changes in the parameter τm, we have systematically studied
the mean velocity v(Fext) and the detachment probability
Q(Fext) results considering different values of τm for the
kinesin in vitro case. Our analysis indicates that in the range
3 × 10−3 s � τm � 3 × 10−2 s, the results for the TAF model
are essentially independent of τm and agree quite well with the
expected velocity and detachment probabilities. This happens
in the whole relevant range of the external force. To illustrate
these results, in Fig. 5 we show the mean velocity v(Fext)
and the computed detachment probability Q(Fext) for the TAF
model considering different values of τm, and also curves of
velocity as function of τm for fixed values of Fext.

Hence, in the range 3 × 10−3 s � τm � 3 × 10−2 s the TAF
model results in a robust consistent model which reproduces
the expected results. As τm decreases in the region τm <

3 × 10−3 s, the TAF model gradually approaches the SLMC
model. For instance, see the case τm = 10−4 s in Figs. 5(a) and
5(b). On the other hand, for τm � 0.1 s, the input and output
probabilities also cease to agree.

The fact that the condition 3 × 10−3 s � τm � 3 × 10−2 s
leads to a matching between the calculated and expected

probabilities for stepping and detachment can be understood
by analyzing the dynamics at different time scales. We focus
on two characteristic times. Namely, the mean time between
steps τs , which is typically of order 10−2 s, and the relaxation
time associated to the motor linker τk = γ /k which is smaller
than τs excepting for very large viscosities (nw > 500). For
example, for a cargo of radius 250 nm and water viscosity we
get τk = 1.4 × 10−5 s. Now, note that the time average of the
cargo velocity 〈ẋ(t)〉 performed on a time window of length
τm would be nonzero for τm � τk due to the coherent motion
associated to the relaxation of the motor springs. Moreover, it
would also be nonzero for τm > τs , since in such a time scale
there is motor-driven motion. In contrast, for τk � τm � τs

we expect 〈ẋ(t)〉 � 0. In this situation, the time average of
the Langevin equation on the same time window leads to
〈Fi〉 � Fext. Thus, for the TAF model in this region of τm

we have Ps(F̃i) � Ps(Fext) and Pd (F̃i) � Pd (Fext) so that the
motor dynamics responds directly to the external force and
leads to a matching between the calculated and expected
quantities.

In short, when presenting the TAF model we have argued
why it is reasonable to consider a value of τm of the order
of the time between steps. Now, our results indicate that the
model is robust in the region τk � τm � τs and that for such
values of τm the functions Ps(F̃i) and Pd (F̃i) can be taken
directly from the experiments. Note that in our analysis we
have considered vobs(Fext) from Eq. (8) and Pd (Fext) from

012401-7
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(a)

(c)

(b)

(d)

FIG. 5. TAF model for different values of τm. (a) Mean velocity as a function of the external force computed with the TAF model
considering different values of τm, together with the results for the SLMC model and the expected result vobs(Fext). All the curves are for
the same system parameters as in Fig. 2 (i.e., kinesin in vitro from Table I). (b) Detachment rate Q(F ) computed from simulations with the
same models considered in panel (a) shown together with the expected detachment rate Pd (F (ext)). (c) Velocity as a function of τm for fixed
Fext = 4.8 pN for the same calculations as in panel (a), together with the expected result vobs(Fext). (d) Detachment rate as a function of τm for
fixed Fext = 4.8 pN together with the expected result Pd (Fext).

Table I as the expected results to be reproduced with the
simulations. However, the same could be done in principle
for any force-velocity and force-detachment relations obtained
experimentally. More specifically, suppose that an experiment
on single-motor cargo transport with imposed external force
yields vexp(Fext) and Pexp(Fext) as the force-velocity and
force-detachment relation, respectively. Then, the appropriate
definitions for the stepping and detachment rates of the
motors within the TAF model are Ps(F̃i) = vexp(F̃i)/�x and
Pd (F̃i) = Pexp(F̃i).

C. Influence of the viscous drag

In order to study the influence of the viscosity on the SLMC,
ZT, and TAF models, we performed simulations for different
values of nw at fixed R = 500 nm. One of the main points here
is to see if the differences between the models remain relevant
at intermediate or large viscosities, since in previous sections
we have only analyzed the cases nw = 1 and nw = 10.

Note that the viscosity affects the viscous force in the three
models and also the noise terms in the SLMC and TAF models.
Recall that a change in the medium viscosity is equivalent to
a change in the particle size, since both parameters enter only
through the combination γ = 6πRnwηw.

In Fig. 6(a) we show the force-velocity relations for varying
nw for the three models, and the approximate analytic solution
explained in Appendix C. As expected, in all the cases the
growth of nw leads to a decreasing of the velocity below stall.
However, the SLMC model is more sensitive to the growth

of nw than the ZT and TAF models. These two latter models
are essentially coincident below stall and agree also with the
analytical approximation. Concerning the behavior at stall, we
find that for the SLMC and ZT models, the stall force does
not change with the viscosity. In contrast, for the TAF model
it increases from 5 pN at nw = 1 to ∼5.7 pN at nw = 100
and ∼5.9 pN at nw = 300. Interestingly, in [42] the authors
have recently predicted a growth of the stall force with the
effective viscosity using a more detailed model for kinesin.
The relation between stall forces and viscosity deserves a deep
analysis since there is a great dispersion of stall values found in
experiments performed in different conditions both for kinesin
and dynein (see [6] and the discussion and references in [25]).

Figure 6(b) analyzes the dependence of the calculated
detachment rate on the external force for a system with
nw = 100. For the three models, the detachment rate at zero
force shifts from the value Pd (0) obtained at nw = 1 to a value
close to Pd (γ v0) (see indication in the figure). This could be
expected since the viscosity increases the effective load acting
on the motor. Regarding the behavior at forces close to stall, we
see that for the SLMC and ZT models the detachment curves
at Fext � 3 found for nw = 100 coincide with those for nw = 1
[compare with Fig. 2(b) for the SLMC]. In contrast, for the TAF
model the viscosity affects the detachment rate around stall,
since the abrupt change found for nw = 1 becomes smoother
with increasing viscosity. Finally, for the sake of completeness
6(c) show the dependence of the velocity on nw for the three
models at a fixed value of the force.
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(a)

(b)

(c)

FIG. 6. Influence of the viscosity. Panel (a) shows the force-
velocity curves calculated with the three models considering nw =
100 and nw = 300 with all the rest of the parameters and probabilities
defined as for the in vitro kinesin system studied in Fig. 2. For the sake
of comparison, we also show the function vobs(Fext) which coincides
with the results for nw = 1 for the TZ and TAF models [see Fig. 2(a)].
The analytical prediction obtained in Appendix C is also shown.
Panel (b) shows Q(Fext) computed for the case nw = 100 with the
three models, together with the assumed Pd (F ) which coincides with
the expected Q(Fext) for nw = 1 [see Fig. 2(b)]. Panel (c) shows the
velocity as a function of nw for the SLMC, ZT, and TAF models at
fixed Fext = 1 pN. The same line styles as in panels (a) and (b) are
used.

As an answer to the question posted at the beginning of the
section, our results indicate that the the differences between the
models remain relevant at large viscosities, specially for forces
close to stall. For small forces, the differences between the
models decrease with the viscosity, but they are still relevant
at nw = 300 [see Fig. 6(c)].

D. Trajectories and mean square displacements

As mentioned in the Introduction, the analysis of fluctu-
ations of the organelle position in different contexts can be
of relevance for the characterization of the properties of the
cellular medium and of the motor linkers as well. Thus it
is interesting to compare the fluctuation’s dynamics in the
different models. Here we analyze the fluctuations of the cargo

position during single-motor transport for the SLMC, TAF,
and ZT models, and also for the two-dimensional (2D) model
introduced in Appendix B. As we will show, the latter model
provides more realistic results at vanishing external forces.

In order to characterize the fluctuations we analyze the
mean square displacement (MSD) of the cargo as a function of
the lag time �t [26,32,33] in the range 10−5–5 s. To calculate
the MSD, we perform simulations with a fixed run time equal
to ten seconds. Thus these simulations are not stopped if the
motor detaches before such a run time. Instead, the motor
is reattached immediately at the microtubule site closest to
x + xr . Another possible way to obtain long trajectories for
single motor transport could be to forbid detachment. However
this could lead to artificial situations with high tension in the
motor-spring that may change the statistics of the fluctuations,
at least for large external force or large viscosity.

For a trajectory x(t) sampled at times ti = iδt with i =
0,1,2, . . . ,N , the MSD is computed as [32]

[�x(�t)]2 = 1

N − �t/δt

N−�t/δt∑
i=1

(x(ti + �t) − x(ti))
2. (9)

Then, we average over trajectories to get the ensemble
averaged mean square displacement ρ(�t) = 〈[�x(�t)]2〉.
For the sake of simplicity we refer to ρ(�t) as the MSD.
We always consider δt = 10−5 s.

For the 2D model, the MSD is computed considering only
the displacements along the x direction. This means using
the same formula given in Eq. (9). As shown in [26], during
motor driven transport, the displacements on the direction per-
pendicular to the microtubule are negligible when compared
with those along the microtubule for lag times larger than
the time between motor steps (typically ∼10−2 s). Thus the
MSD in two dimensions coincide with that of the x coordinate
at intermediate and large lag times. Moreover, at small lag
times, the mean displacements along the x and y directions
are essentially the same so that the MSD in two dimensions is
approximately twice that of the x coordinate [26].

As before mentioned, here we focus on the analysis of the
MSD for single-motor transport to point out some relevant
features. It is worth noting that the MSD for multiple motor
transport has been systematically studied in [26]. Figure 7
shows typical cargo trajectories and MSD results for various
force and viscosity conditions considering the parameters
for kinesin in vitro. Given that the trajectories from the
SLMC and TAF models are indistinguishable at a first glance,
TAF trajectories are not shown. The similarity between the
fluctuations in the SLMC and TAF models is reflected by the
fact that the MSD curves for these two models coincide.

Figure 7(a) shows trajectories for nw = 1 and Fext = 3 pN
(i.e., small viscosity and an intermediate load force below
stall). For the SLMC (and TAF) the fluctuations are small
enough to appreciate clearly the 8 nm motor steps. This is
compatible with what is usually found in in vitro experiments
[40]. Meanwhile, the trajectory for the ZT model shows no
fast fluctuations and the cargo advance in discrete steps. This
expected unrealistic output of the ZT model is clearly reflected
by the MSD results shown in Fig. 7(b). We see that for �t <

10−2 s the SLMC and TAF models indicate a very slowly
varying MSD in the range 10 nm2 � ρ � 50 nm2, while the
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(a) (c) (e) (g)

(b) (d) (f) (h)

FIG. 7. Trajectories and MSD. Cargo trajectories (top panels) and MSD as function of the lag time (bottom panels) for various force and
viscosity conditions and models. See indications on each panel. Except for the values of nw , in all the cases the parameters are those for kinesin
in vitro indicated in Table I. The curves named as 2D correspond to the bidimensional model introduced in Appendix B.

ZT model exhibit much smaller fluctuations. On the other
hand, at lag times larger than �t > 10−2 s, all the three models
agree in the prediction of a ballistic behavior.

Figure 7(c) and Fig. 7(d) analyze the same system as
Figs. 7(a) and 7(b) but considering Fext = 0. A first remarkable
observation is that the trajectory for the SLMC model has huge
fluctuations with amplitude of order 200 nm. This contrasts
with experiments and with the SLMC simulations for Fext > 0
[see Fig. 7(a)]. The result can be attributed to the effect of
the particular form assumed for the motor-cargo interaction
combined with the one-dimensional character of the model.
Note that the motor-cargo interaction is actually associated to a
symmetric potential well which is constant (and minimum) in a
region of width 2xr = 220 nm and then it grows quadratically.
Thus, in the absence of an external force, the cargo position is
expected to fluctuate almost freely within the region where the
potential is flat. In contrast, for positive enough Fext, the cargo
is pulled away from the motor position xi and is confined
close to xi − xr . The problem at Fext = 0 is associated to
the one-dimensional character of the model. Note that, in
the experiments, the interaction potential is expected to act
along the direction of the motor stalk in three dimensions and
not necessarily along the microtubule. A correct description
of the fluctuations at small loads require thus a higher
dimensional modeling. In fact, the two-dimensional model
introduced in Appendix B solves the problem. It produces the
trajectory shown in Fig. 7(c) which has an appropriate level of
fluctuations enabling for the identification of the 8 nm steps

and MSD values of the order of 10 nm2 at small lag times
[Fig. 7(d)]. We believe that three-dimensional models as those
considered in [23,24] would also provide correct and even
better characterizations of the fast fluctuations of the cargo
position.

Figures 7(e)–7(h) repeat the results of panels (a)–(d) but
considering nw = 100 instead of nw = 1. For Fext = 3, the
trajectories for the SLMC model for nw = 100 are more
wrinkled in the scale of �t ∼ 0.1 s than those for nw = 1,
and the 8 nm steps are hardly observable. Meanwhile, the large
fluctuations observed for the SLMC at Fext = 0 for nw = 1 are
suppressed by the large viscous force. In fact, the Fext = 3 and
Fext = 0 trajectories have quite similar characteristics. The 2D
model does not lead to any significant advantage. Finally, the
ZT-model trajectories for nw = 100 show less steep 8 nm steps
than those for nw = 1. This obeys to the largest relaxation time
γ /k associated to the motor-cargo linker. As for the nw = 1
case, the MSD curves for the SLMC and TAF models coincide,
while the ZT model gives smaller values at small lag times.

E. Results for multiple motor transport

One of the main aims of the development of the LMC
models is the analysis and interpretation of multiple-motor
transport by coupling individual motors dynamics based on
single-motor experiments. Here we compare the results of the
SLMC, ZT, and TAF models for several relevant examples of
multiple motor transport.
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(a)

(d)

(b)

(e)

(c)

(f)

FIG. 8. Multiple motor transport with Nf 	= Nb. Mean velocities (top panels) and mean run times (bottom panels) as functions of the
external force calculated from simulations with the different models and motor numbers. For forward and backward motors we consider the
parameters and probability functions given in Table I for kinesin in vivo and dynein in vivo, respectively. The velocity results for the case
Nb > Nf shown in panel (c) have the signs inverted so that a positive velocity indicates transport towards the minus end.

The simulations for multiple motors are performed in a
completely analogous way to those for single motors. At initial
condition, each motor is attached in one of the sites xj = j�x

satisfying |x − xj | < xr . Each realization ends when all the
motors have been detached.

An important quantity to analyze is the ratio between the
stall force for transport by two kinesins to that of a single
kinesin. This has been experimentally determined as close to
1.87 (see [4] and references therein). Our calculations with
the SLMC model yield the value 1.47 both for the in vitro
and in vivo cases, while the TAF model gives 1.83 and 1.93,
respectively, i.e., much closer to the experimental result. These
values were obtained from the force-velocity relations found in
simulations with the parameters indicated in Table I. The stall
force considered for each case is the one leading to zero mean
velocity. The results for the ratio do not change significantly
if we consider the condition of run-length equal to 8 nm for
defining the stall force [4] instead of the condition of zero
mean velocity. With this prescription, the SLMC gives 1.52
for kinesin in vitro and 1.45 for in vivo, while the TAF model
yields 1.89 and 1.93, respectively. In Ref. [4], using an LMC
model with a Monte Carlo algorithm specialized for kinesin
with no time averaging, the authors found the ratio as equal to
1.77 when considering the run length criterion and equal to 2
for the zero mean-velocity criterion.

Now we present more general results for multiple motor
transport. In all the cases we consider the parameters and
probabilities given for kinesin in vivo and dynein in vivo in
Table I. Note that the parameters for kinesin and dynein are
similar but not equal. Thus, even for Nf = Nb, the dynamics is
not expected to be perfectly symmetric. It is worth remarking
that our main purpose here is to show how the differences
between the SLMC, TAF, and ZT models affect the multiple

motor cases, and not to analyze any particular experiment
reported.

First we consider situations with Nf 	= Nb, and we calcu-
late the mean velocity and mean run time as functions of the
external force Fext in a completely analogous way to what is
done for single motor transport. In all the cases, Fext is assumed
to point against the motion of the motor species with the larger
number of motors. This means to the minus end for Nf > Nb

and to the plus end for Nb > Nf . Figure 8 shows the results
corresponding to the systems with (Nf ,Nb) = (2,0), (2,1),
and (1,2). We see that, in most cases, the TAF and ZT models
give very similar results, while the SLMC model departs
considerably. The exception corresponds to the velocity results
for the case (Nf ,Nb) = (2,1), in which all the three models
differ.

Finally, we turn to cases with Nf = Nb. Figure 9(a)
shows typical trajectories for Nf = Nb = 2 calculated with
the SLMC model. Bidirectional motion [5,10] with forward
and backward stages and also intermediate pauses associated
to the tug-of-war effect [5,10,14] are observed. Trajectories for
the TAF model are indistinguishable at first glance from those
of the SLMC. In our analysis, we focus on the calculation
of the mean maximal excursion to each polarity and the
mean final position as functions of nw. These quantities
are defined as follows. First, the forward (backward) mean
maximal excursion is the average over realizations of the
largest positive (negative) position attained by the cargo
during a run. Meanwhile, the mean final position is the
average on realization of the position at which complete
detachment occurs. In Figs. 9(b) to 9(e) we show the results
for Nb = Nf = 2 and Nb = Nf = 3. We see that, although
kinesin results always the stronger species, the three models
differ in their quantitative predictions. Moreover, it can be seen
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FIG. 9. Multiple motor transport with Nf = Nb. (a) Typical trajectories of bidirectional motion obtained with the SLMC model considering
Nf = Nb = 2. The other panels show results for the mean maximal excursions and mean final position as functions of nw computed for the
cases Nb = Nf = 2 [panels (b) and (d)] and Nb = Nf = 3 [panels (c) and (e)] considering the different motor models. In all the cases, the
parameters used for forward and backward motors are those given in Table I for kinesin in vivo and dynein in vivo, respectively, with the
exception of the value of nw indicated in panels (b) to (e).

that, excepting for some of the quantities computed at small
viscosity, the results from the ZT and TAF models are closer
to each other than those from the SLMC.

Altogether, our results for multiple motors show that the
differences between the single-motor models propagate to the
case of multiple motor transport. The fact that the TAF and ZT
models predict the correct force-velocity and force-detachment
relations for single motors, and also the correct ratio between
the two-motor and single motor stall forces, suggests that these
models are more reliable than the SLMC model for general
multiple motor situations.

F. Other LMC models: Parameter fitting and models
with back steps

Here we go back to single motor transport and analyze the
relation of our results with previous studies on LMC models
different from the SLMC.

Our analysis of the SLMC showed that the calculated stall
force for single motors is larger than the parameter F0 defined
in Table I as the local force leading to zero stepping probability.
This also occurs in other LMC models which consider
the motor’s stepping and detachment rates as dependent on
the instantaneous forces (i.e., with no time averaging). For
instance, in [4] the authors consider an LMC model for kinesin
with a stepping algorithm which includes two instances of the
chemical cycle of kinesin and two mechanisms for detachment.
In that model, the stepping probability includes a global factor
(1 − (F/F0)w) just as in the SLMC, and the parameter F0

is actually tuned to values smaller than stall to observe the

correct stall force. For example, the authors use F0 = 5.1 pN
to get a stall value of 5.7 pN. The factor (1 − (F/F0)w) is
interpreted as a coupling efficiency between ATP hydrolysis
and mechanical stepping.

Within the SLMC model, one could also think on the
possibility of fitting the parameter F0 to a value smaller than
stall in order to get the correct stall force in simulations.
However, a problem would arise with the detachment proba-
bility, at least for the case of nonmonotonous or discontinuous
detachment rates. In fact, there is not an obvious way for
defining Pd (F ) in order to get the expected Q(Fext) for the
cases analyzed in Figs. 2(b), 3(b), and 3(d) without time
averaging. The fluctuations of the force always seem to flatten
the nonmonotonic behaviors. We have in fact attempted several
definitions of Pd (F ) to reproduce the results in Fig. 2(b) within
the SLMC with no success. Finally, this failure led us to
propose the TAF model to solve the problem.

A relevant question that arises is whether the consideration
of time-averaged forces in the motor dynamics may be useful
to improve the performance of other LMC models different
from the SLMC. In particular, the case of models with motor
back-stepping [14,22] is of interest, since in such models the
behavior at stall is qualitatively different from that in the
SLMC. While in the SLMC the stall condition occurs when
the motor-stepping probability tends to zero, in the model
with back steps it occurs when forward and backward steps
becomes equally probable. Moreover, the models with back
steps reproduces the processive backward motion observed at
superstall conditions [22]. To answer the question posed, we
analyze the model with back steps introduced in Appendix B
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which was developed originally in [14,22], and we also
implement the corresponding version with time averaged

forces (see in Appendix B). The following definition for
vobs(Fext) is considered:

vobs(Fext) =

⎧⎪⎨
⎪⎩

v0, Fext < 0,

v0[1 − (F/F0)2], 0 � Fext � F0,

−50 nm/s tanh[1.5(pN)−1(F − F0)], Fext > F0,

(10)

which includes slow backward motion at superstall (Fext >

F0). We consider v0 = 1000 nm/s and F0 = 5 pN. As in our
previous analysis for the SLMC and TAF models using Eq. (8),
the formula in Eq. (10) is the force-velocity relation that we
want to reproduce with the simulations at small viscosity. In
Fig. 10(a) we show vobs(Fext) as defined in Eq. (10) together
with the velocity results from simulations performed with the
backsteps model with and without time averaged forces. We
see that the model with time averaged forces leads to a much
better agreement with vobs(Fext). In particular, note that the
model with no time averaging overestimates the stall force as
happened with the SLMC. The results are thus completely
analogous to those found in Fig. 4 when comparing the
SLMC and TAF models. Finally, Fig. 10(b) shows the velocity

(a)

(b)

FIG. 10. Results for the model with back steps with and without
the time averaging procedure. (a) Mean velocity as a function of the
external force computed from simulations with the model with back
steps introduced in Appendix B. Results for motor models with and
without time averaging of the forces. For the sake of comparison, the
expected velocity vobs given in Eq. (10) is also shown. Except for the
definition of the stepping probability, the parameters are those given
in Table I for kinesin in vitro. (b) Velocity distributions for the same
systems analyzed in panel (a) for fixed Fext = 5 pN. The solid line
corresponds to the back-steps model with no time averaging, while
the dashed line is for the case τm = 0.01 s.

distributions calculated for the backsteps model with and
without time averaging for Fext = 5 pN (i.e., stall condition).
Again, the conclusions are analogous to those found when
comparing the SLMC and TAF models in the analysis done in
Figs. 4(b) and 4(e). These results indicate that the consideration
of time averaged forces for ruling the motor dynamics is useful
not only for the SLMC scheme but also for more general LMC
frameworks.

IV. DISCUSSION AND CONCLUSIONS

We have analyzed the performance of one-dimensional
models for microtubule transport which combine a continuous
dynamics for the cargo with a stochastic stepping dynamics for
the motors. In particular, we have introduced a model for the
motor dynamics which was referred to as the time-averaged
forces model (TAF) and compared it to a standard Langevin–
Monte Carlo model (SLMC) previously considered in various
publications, and to a zero temperature (ZT) version of the
SLMC.

The consideration of time-averaged forces for ruling the
motor dynamics in the TAF model implies the introduction of
memory on the history of the force felt by the motors. Due to
the fact that the various stages of the chemical cycles of the
motors depend on the force in different ways which are not
described in detail in our model, we have proposed the time
between steps as the appropriate time scale for averaging.
Our results and further mathematical analysis in the section
“Robustness of the TAF model against varying τm” support
this consideration.

Our main results show that the TAF and ZT models perform
significantly better than the SLMC in the reproduction of
the force-velocity and force-detachment relations for single
motors. Moreover, they give a much more exact prediction
for the stall force of two motors than the SLMC. On the
other hand, given that the ZT model does not consider
thermal noise, only the TAF and SLMC models can produce
reasonable descriptions of the rapid fluctuations of the particle
position. Thus, among the studied models, the TAF arise
as the best option for interpreting experiments in which
not only the global properties of the motion but also the
fluctuations are of interest. Regarding this, we have also shown
that, depending on the external forces and viscosities, the
one-dimensional modeling can have some limitations and two-
or three-dimensional formulations may be needed.

The results presented for the model with motor back-
stepping indicate that the consideration of time averaged
forces for the motor dynamics is useful for improving the
performance of more general Langevin–Monte Carlo schemes.

012401-13



SEBASTIÁN BOUZAT PHYSICAL REVIEW E 93, 012401 (2016)

The one-dimensional models analyzed in this paper con-
sider the nonlinear function given in Eq. (3) for modeling
the elastic properties of the motors. This assumption was
also introduced in [4,6,10,14,23,26,43] and other works. As
we have shown, the approximation allows for instance for
the prediction of the correct value of the stall force for two
motors within the TAF model, but it does not produce a good
description of the fluctuations of the cargo position at small
loads. Concerning this, we have also shown that the inclusion
of an additional repulsive interaction at small distances in a
two dimensional framework improves the results. Moreover,
the studies in [4,14], among others, indicate that the results
for multiple-motor transport depend on the values of the
stiffness constants. This all strongly suggests that the validity
of the approximation is limited and that further studies on the
influence of the elastic properties of the motors are needed.

Concerning multiple-motor transport, we have seen that
the simulation’s results are rather sensible to the differences
on the single motor modeling. Note that for some of the
quantities analyzed in Figs. 8 and 9 the predictions of the
ZT and TAF do not coincide, even though these two models
agree in reproducing the correct force-velocities relations,
and also the correct two motor’s stall force. This indicates
that special care should be taken for interpreting multiple-
motor experiments. Verifications using several models could
be necessary sometimes. Although our analysis has focused
on the mean velocities, the run lengths and the maximal
excursions, other quantities relevant for the characterization
of multiple-motor transport such as pause times [6] and
distributions of segmental velocities [6,25] are also expected
to be affected by the details of the modeling.

As pointed out in the Introduction, the analysis of the
fluctuations of the motion of organelles in vivo is of relevance
for the characterization of the viscoelastic properties of the
cytoplasm and the elastic properties of the motor linkers as
well. The study of the interplay between thermal and active
transport taking into account the rheological properties of the
cellular medium is on its beginnings [26,27,43], and needs for
motor models which can correctly reproduce the results for
the mean velocities and run-times in a noisy environment. We
believe that the TAF model here developed is a step forward
in this direction.
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APPENDIX A: ALGORITHMS FOR THE TIME
EVOLUTION OF THE SLMC, ZT, AND TAF MODELS

In the SLMC model, the evolution of the cargo-motor
system is computed as follows. The time is discretized in steps
of duration dt which must be considered much smaller than
the relaxation time of the motor springs γ /k. Typically we
consider dt ∼ 10−6 s or lower, depending on the viscosity.
At each time step, given the cargo position x(t) and the
motor positions xi(t) (i = 1, . . . ,Nb + Nf ), the forces Fi(t)

are computed with the formulas given in the main text. Then,
the cargo position at t + dt is calculated using the standard
discretization of the Langevin equation

x(t + dt) = x(t) +
⎡
⎣−Fext +

Nf +Nb∑
i=1

Fi

⎤
⎦dt

γ
+

√
2kBT dt

γ
g.

(A1)
Here, g is a random number (different for each time step)
taken from a Gaussian distribution with zero mean and unitary
variance. After computing x(t + dt), the following algorithm
steps are implemented for each attached motor. First, the
detachment probability pd = Pd (Fi(t))dt for the present time
step is computed. Then, a random number r1 uniformly
distributed between 0 and 1 is computed. If r1 < pd , the
motor is marked as detached at time t + dt . If the motor
does not result detached, the probability ps = Ps(Fi(t))dt is
computed and an analogous test with a new random number r2

is performed to evaluate the possibility of stepping. If the step
is approved, we set xi(t + dt) = xi(t) + �x or xi(t + dt) =
xi(t) − �x depending on whether the ith motor is a forward
or a backward motor. If not, we set xi(t + dt) = xi(t). Finally,
each detached motor is allowed to attach to the microtubule
with a probability �dt (not the motors marked in the present
time step but only those that were already detached at time
t). The attachment occurs with equal probability in any of the
sites xj = j�x with integer j satisfying |x(t) − xj | < xr (i.e.,
with the motor-linker relaxed).

The algorithm for the ZT model is the same as that for
the SLMC but we take kBT = 0 (or equivalently g = 0) in
Eq. (A1) for all the time steps.

Finally, the algorithm for computing the time evolution of
the TAF model is the following. At each time step, given the
values of x(t), xi(t), and F̃i(t), we first compute the forces
Fi(t) as in the SLMC model. Then, we compute x(t + dt)
using Eq. (A1). After that, using the values of F̃i(t) and the
calculated Fi(t), we compute F̃i(t + dt) as

F̃i(t + dt) = F̃i(t) − dt

τm

[F̃i(t) − Fi(t)]. (A2)

This is just the Euler approximation for Eq. (5). Finally,
the motor positions are evolved with the same Monte Carlo
algorithm explained for the SLMC, but using the time-
averaged forces F̃i(t) instead of Fi(t) for defining the stepping
and detachment probability.

APPENDIX B: OTHER LMC MODELS

1. Model with back steps

We consider an LMC model which includes motor back-
stepping. The dynamics of the cargo is given by Eq. (1). The
algorithm for motor stepping is defined as in [14,22] through
two quantities that can be measured in experiments [40].
Namely, the dwell time τd (Fi) (i.e., the mean time between
steps) and the ratio between forward and backward steps
Rf b(Fi).

At each time step, after evaluating the possibility of
detachment as in the SLMC model, the motor performs an
8 nm step with probability dt/τd (Fi). The step is defined to be a
forward step with probability Rf b(Fv)/(Rf b(Fi) + 1), while it
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is defined as a backward step with probability 1/(Rf b(Fi) + 1).
For such a motor model, the expected velocity at constant load
force Fi (i.e., without cargo and thermal fluctuations) is

vE(Fi) = (�x/τd )(Rf b(Fi) − 1)/(Rf b(Fi) + 1). (B1)

We consider Rf b(Fi) defined as in [22]

Rf b(Fi) = 1000 exp [− log (1000)Fi/F0]. (B2)

Note that for Fi = F0 we get Rf b = 1.
Now, assuming for vobs(Fext) the formula given in Eq. (10)

of the main text (which is negative at superstall conditions)
and equating vE(Fi) to vobs(Fi) [14,22] we get

τd (Fi) = (Rf b(Fi) − 1)�x

(1 + Rf b(Fi))vobs(Fi)
. (B3)

Recall that, as indicated in the main text, vobs(Fext) represents
the results that we want to reproduce with our simulations.

Finally, by considering the time averaged forces F̃i(t)
instead of Fi for defining the motor dynamics [see Eqs. (4)
and (5)], we arrive at a model with back steps and time averaged
forces which depends on the parameter τm.

2. Two-dimensional model for cargo transport
along a microtubule

In order to solve the problem of large fluctuations observed
in one-dimensional schemes for vanishing external force (see
Fig. 7), we introduce a two-dimensional model (2D) for
the cargo-motor system. This 2D scheme was previously
considered in [26] although for a viscoelastic medium.

We allow the organelle to move in two dimensions by
considering the 2D Langevin equation given by

γ 
̇r = − 
Fext + 
F + 
ξ, (B4)

where now the position of the cargo 
r(t) = (x(t),y(t)), the
external force 
Fext = (Fext,0), the motor force 
F = (Fx,Fy),
and the thermal noise 
ξ are vectorial quantities. Concerning
the model for the motors motion, we still consider a one

dimensional filament along the x axis so that the allowed
positions for the motor heads on the filaments are of the form

r = (j�x,0) with integer j and �x = 8 nm as before. The
force 
F exerted on the cargo (at position 
r) by the motor
at position 
ri is calculated as 
F = −krep(|
r − 
ri | − r0)n̂ for
|
r − 
ri | � r0 and 
F = −k(|
r − 
ri | − r0)n̂ for |
r − 
ri | > r0.
Here r0 = 110 nm, n̂ = (
r − 
ri)/|
r − 
ri |, k = 0.3 pN/nm is
the motor stiffness considered in the one-dimensional model
and krep = 0.05 pN/nm the motor repulsion constant at small
length. Finally, the motor dynamics along the x axis remains as
that for the SLMC but determined only by the x component of

F . This means we consider Ps(Fx) and Pd (Fx) as the stepping

and detachment rates.
Note that the inclusion of a repulsive interaction in a one

dimensional model may be meaningless since it would confine
the cargo to regions close to either x = xi + xr or to x = xi −
xr . In contrast, in two dimensions, the repulsive interaction
favors the relaxation of the motor spring to the natural length
r0 while the relative position of the cargo with respect to the
motor along the microtubule can change through a trajectory
in two dimensions (approximately circular).

APPENDIX C: ANALYTICAL APPROXIMATION FOR
THE VELOCITY OF SINGLE-MOTOR TRANSPORT

IN VISCOUS MEDIA

We consider the viscous force as an additional load force
acting on the motor and solve the equation

v = v0

(
1 −

(
F + γ v

F0

)2
)

(C1)

for the variable v. Note that this equation is just the definition
of vobs(F ) but with the change F → F + γ v. We get two
solutions. The relevant (positive) one is

v =
−F 2

0 − 2Fγ v0 + F0

√
F 2

0 + 4Fγ v0 + 4γ 2v2
0

2γ 2v0
. (C2)
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