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Modification of the quantum mechanical flux formula for electron-hydrogen
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For the single differential cross section (SDCS) for hydrogen ionization by electron impact (e-H problem),
we propose a correction to the flux formula given by R. Peterkop [Theory of Ionization of Atoms by Electron
Impact (Colorado Associated University Press, Boulder, 1977)]. The modification is based on an alternative way
of defining the kinetic energy fraction, using Bohm’s definition of velocities instead of the usual asymptotic
kinematical, or geometrical, approximation. It turns out that the solution-dependent, modified energy fraction is
equally related to the components of the probability flux. Compared to what is usually observed, the correction
yields a finite and well-behaved SDCS value in the asymmetrical situation where one of the continuum electrons
carries all the energy while the other has zero energy. We also discuss, within the S-wave model of the e-H
ionization process, the continuity of the SDCS derivative at the equal energy sharing point, a property not so
clearly observed in published benchmark results obtained with integral and S-matrix formulas with unequal final
states.
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I. INTRODUCTION

In the past decades, several numerical approaches to
evaluating the solution of the quantum three-body Coulomb
breakup problem have been introduced (see, e.g., [1–5]). The
single ionization of atomic hydrogen by electron impact was
one of the first fundamental three-body Coulomb problems
solved [2,6], showing a remarkably good agreement with the
available experimental data [7]. Over the years, particular
attention has been paid to the S-wave approximation, also
known as the Temkin-Poet model [5,8–10]; although simpler
than the physical one, it is a nontrivial problem that contains the
major difficulties, i.e., the long-range character of the Coulomb
interactions. The Temkin-Poet model has been systematically
used as a test bed for the development of theoretical and
numerical methods. In this work we use it to show that, even
in this simplified scattering problem, the task of extracting
the single differential cross section (SDCS) directly from the
asymptotic behavior of the wave function is not trivial because
of the long-range nature of the interaction.

It is well known that transition amplitudes which character-
ize a scattering problem can be obtained from the asymptotic
part of the wave function, as prescribed by scattering theory,
which is well established for short-range potentials (and ex-
tended to Coulomb ones). It is also well known that all channels
are entangled when the Schrödinger equation is exactly solved.
In the case of electron impact ionization of atomic hydrogen,
elastic, excitation, and ionization channels are coupled in the
collision. Numerical solutions of the three-body scattering
problem are nowadays available through several methods.
Such solutions are evaluated in finite, though large, regions
of the configuration space, the restrictions being mainly
determined by computational capabilities (size and speed).
In spite of the long-range nature of the Coulomb scattering
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problem, these large domains (several hundreds atomic units)
have proved to be generally sufficient to calculate—through
integral formulas—the end product, i.e., the cross section. If,
however, the asymptotic part of the solutions is employed
explicitly, one should be sure that the true Coulomb asymptotic
behavior is reached, and care is needed.

There exist several ways to extract the SDCS from quantum
mechanical calculations. Among them, the method designed
by Peterkop [11] of counting particles by means of the quantum
mechanical probability current stands out and has been tested
thoroughly [12,13]. Contrary to integral formulas, this flux
formula procedure does not depend on the chosen description
of the final states, which, for long-range interactions, usually
has a certain arbitrariness. The flux formula is formally correct
and is somehow similar to a measurement; as it corresponds
to counting particles, it can be applied in both finite and
infinite domains, the evaluation at infinite distances providing
the true answer. Practically, the usual technique to extract
the differential cross sections consists in extrapolating the
results obtained from a finite domain to the infinite one.
However, after the appearance of unsatisfactory cross sections
[13], the flux procedure has been questioned. It has been
said that the ionization flux at finite distances is populated
by discrete—excitation—channels which lead to unphysical
behavior of the SDCS in very asymmetric energy regimes [12];
we note, however, that the flux approach in hyperspherical
coordinates gave good results for double-photoionization of
helium in asymmetric regimes [14]. In the end, the advantages
of the integral formulas have been reinforced [15] over the
flux formula, which was finally abandoned for all practical
purposes for the e-H problem. This paper essentially aims to
“rescue” the flux formula procedure.

Since the counting of “asymptotic” particles can be consid-
ered a realistic approach to the scattering problem, we believe
that there is something missing in the interpretation of the flux
formula rather than the “counting” approach itself. The aim
of this work is to show that the reason behind the apparent
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flux formula failure is due to the way in which the continuum
electron energy sharing is approximated at finite distances,
and not because of the contribution of discrete channels
(which indeed should be present and coupled to ionization).
The idea is to correct the energy fraction definition to take
into account finite-distance (Coulomb interaction) effects. For
this purpose, we introduce an alternative and more realistic
(solution-dependent) energy fraction; the modified definition
involves the kinetic energy arising from Bohm’s velocity field
evaluated in the asymptotic region, rather than from the usual
(free-wave) geometrical assumption,

r � t k, (1)

which, for Coulomb interactions, is valid only at infinite
distances. It turns out that our proposal is equivalent to
the ratio of flux components, thus providing some further
physical interpretation. Once modified, the definition of energy
sharing leads to a different picture by removing the previously
observed unphysical behaviors, thus rehabilitating the flux
formula approach.

We also study another interesting and somewhat not fully
clear issue. In some benchmark calculations a sharp change
of slope was observed in the Temkin-Poet SDCS at equal
energy sharing. We show that this feature is not exactly what is
expected from the continuity of the asymptotic scattering wave
function and its derivative when it perpendicularly crosses the
curve r1 = r2: the slope of the SDCS at that point must be
continuous and 0. This property is always fulfilled when using
the flux formula, but not necessarily with other methods. In the
S-matrix method [8] or with integral formulas [16], one makes
use of free states for the faster electron and Coulomb states
for the slower one, and its interchange of coordinates when
crossing the equal energy sharing value. These final states,
which are employed to avoid phase divergences in the SDCS
integral formulas, seem to be responsible for a surprisingly
sharp change of slope.

The organization of the paper is as follows. In Sec. II
we present the model equation, the usual definition of the
SDCS through the flux formula given by Peterkop, and the
theoretical correction to the energy sharing definition; we
also show that the SDCS should have a continuous derivative
under the equal energy sharing regime. Then, in Sec. III,
these theoretical points are illustrated through numerical
calculations; cross-section results are presented and analyzed
in detail for an impact energy of 54.4 eV (results for energies
of 40.817 and 150 eV are also reported). Finally, some
conclusions are drawn in Sec. IV.

We employ atomic units (m = � = e = 1) throughout,
which means distances in units of a0, energy in hartree, and
the SDCS in units of πa2

0 .

II. THEORY

Consider the Schrödinger equation for hydrogen ionization
by electron impact,

[
−1

2
�2

r1
−1

2
�2

r2
− 1

r1
− 1

r2
+ 1

r12
− E

]
�+(r1,r2) = 0,

(2)

where E is the total energy of the system, ri (i = 1,2)
denote the electron coordinates, and r12 = |r1 − r2| is the
interelectronic distance. The solution �+ may be separated
into two terms, �+ = �+

sc + �0, where �0 represents the
prepared collision state and �+

sc the scattering wave function,
which contains all the physical information about the collision
process. Depending on whether the two electrons form a
singlet (S = 0) or a triplet (S = 1) spin state, we have
the symmetry condition �+(r1,r2) = (−1)S�+(r2,r1). For
simplicity, throughout this work, we consider only singlet spin
symmetry (all results are applicable to triplet symmetry also).

For the initial channel, we choose the approximate wave
function

�0(r1,r2) = 1√
2

[π−1/2e−r1eiki.r2 + (1 ↔ 2)],

where ki = √
2(E − (−0.5)). This leads to the following

nonhomogeneous Schrödinger equation for the scattering
wave function �+

sc:[
−1

2
�2

r1
−1

2
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r2
− 1

r1
− 1

r2
+ 1

r12
− E

]
�+

sc(r1,r2)

= −
[(

1

r12
− 1

r2

)
�0(r1,r2) + (1 ↔ 2)

]
. (3)

At long distances (r1,r2 → ∞) the solution of this equation
must behave as [11]

lim
ρ→∞ �+

sc(r1,r2) = A(ω5)ρ−5/2ei(Kρ− C(ω5)
K

ln(2Kρ)), (4)

with K = √
2E, and where we have used the hyperspherical

coordinates α and ρ defined through r1 = ρ cos α and r2 =
ρ sin α. In Eq. (4), A(ω5) represents the scattering amplitude
depending on the five hyperangular coordinates (α,r̂1,r̂2), and
the angular-dependent charge C(ω5) is defined as

C(ω5) = − Z

cos α
− Z

sin α
+

∞∑
l=0

4π

2l + 1

×
l∑

m=−l

(−1)mY−m
l (r̂2)Ym

l (r̂1)

{
sec α tanl α

csc α cotl α

}
, (5)

where the upper (lower) value in curly braces corresponds to
α < π/4 (α > π/4).

The scattering amplitude A(ω5) is related to the SDCS
for finding, in the asymptotic region, two electrons with
energies E1 = E cos2 α and E2 = E sin2 α and pointing in
the directions r̂i (i = 1,2). The relation reads

d5σ

dk̂1dk̂2dE2
∝ |A(ω5)|2. (6)

The link between the energies of the electrons and the
coordinate α comes from the formal theory of ionization,
which states that relation (1) is valid in the asymptotic region.
We refer to this relation as the geometrical approximation.

For the Temkin-Poet S-wave model, 1/r12 is replaced
by 1/r>, where r> = max[r1,r2]. In this case for α < π/4
(α > π/4) the −1/r1 (−1/r2) potential is removed from the
left-hand-side of Eq. (2) or (3). The asymptotic behavior
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corresponding to the TP model is similar to (4),

lim
ρ→∞ �+

sc(r1,r2) = A(α)ρ−5/2ei(Kρ− γ (α)
K

ln(2Kρ)), (7)

with the scattering amplitude A(α) depending only on the
angle α and the charge γ (α) defined as

γ (α) =
{

− 1
sin α

if α < π/4,

− 1
cos α

if α > π/4.

Since the geometrical approximation, (1), also relates α

to the ratio between the local momenta of the electrons,
through tan α = k2/k1, the scattering amplitude—and thus the
SDCS ∝ |A(α)|2—can be considered a function of the energy
fraction, defined as

ε ≡ sin2 α = E2

E
. (8)

The SDCS is typically U shaped; since it is symmetric with
respect to α = π/4, only half of the range, i.e., 0 � ε � 0.5,
needs to be considered.

It should be noted that the relation between α and ε is strictly
valid only for ρ → ∞, where the hyperangular structure of
the scattering wave function is smooth enough, i.e., where it
behaves locally as a pure hyperspherical wave. In spite of this,
when numerical calculations are performed in finite domains,
the same energy fraction formula is taken: this can affect
the shape of the SDCS and even lead to wrong results. This
finite-versus-infinite ρ-domain issue constitutes the starting
point of the present investigation, which leads to our correction
proposal.

A. Flux formula for the single differential cross section

The SDCS for the electron-hydrogen scattering problem
is defined as the ratio between the number of electrons which
populate a given final continuum state and the incident flux of
particles,

dσ = dN

k0
, (9)

where dN can be calculated as [1]

dN = Jρd
̂

and d
̂ is the (five-dimensional) element of the solid angle:

d
̂ = ρ5 sin2 α cos2 αdα sin θ1dθ1dϕ1 sin θ2dθ2dϕ2.

Jρ is the flux density along the hyperradial coordinate
direction dρ̂, which can be written as

Jρ = Im

{
(�+

sc)∗
∂�+

sc

∂ρ

}

= 1

2i
[(�+

sc)∗ � �+
sc − �+

sc(��+
sc)∗].(cos α, sin α), (10)

where the dot in the second equality indicates a scalar product.
Taking into account the expression dE2 = 2E sin α cos α

and integrating over the angles θi and ϕi (i = 1,2), the cross
section reads

dσ

dE2
= (4π )2

k02E
Jρρ

5 sin α cos α. (11)

In Ref. [13], the authors applied Eq. (11) to evaluate the
SDCS at finite distances and for values of α which are far from
0 and π/2. Extrapolating procedures have been implemented,
on one hand, to obtain, the value of the flux at infinite ρ

values and, on the other hand, to derive its values for extremely
unequal energy sharing (α = 0 and α = π/2). However, this
flux formula produces bad results close to these two limits,
a feature associated with the contamination of the ionization
flux by discrete channels contribution [12]; for this reason the
flux formula was thereafter abandoned for the e-H problem.

B. Correction for the flux formula and properties of the single
differential cross section

In this section we introduce our proposal to redefine the
energy fraction and provide some justifications. Also, making
use of the asymptotic condition, (7), we study analytically
the derivative of the SDCS as a function of ε and show
that it should be 0 at α = π/4. This is in contrast with the
observations in benchmark calculations in which the SDCS
is evaluated with integral formulas or the S-matrix system of
equations, with asymmetric final states.

1. Bohm’s velocity field for assignation
of the kinetic energy fraction

As it is necessary to correct the approximate values of the
electron momenta given by the geometrical approximation, we
propose making use of Bohm’s velocity field associated with
the scattering wave function:

.
ri = �

m
Im

{�ri�
+
sc

�+
sc

}
(i = 1,2). (12)

Each of the vectors gives, with the direction and magnitude,
the velocity of the particle when it is passing through a given
point of space. For a steady state the trajectories do not cross
each other, and the velocity field takes only one value at
each coordinate. Recalling that the energy fraction, (8), is the
kinetic energy ratio E2/E = E2/(E1 + E2), it makes sense to
consider the alternative quantity,

.
r2

2

.
r1

2 + .
r2

2 . (13)

For the S-wave problem, we thus define a modified energy
fraction

ε̃ = sin2 θ ≡
.
r2

2

.
r1

2 + .
r2

2 . (14)

Our proposal consists of replacing the angle α, which is
considered the indicator of the energy sharing between
electrons, with the angle θ , defined by Eq. (14). Note that
our definition is solution dependent since it involves Bohm’s
velocities, (12); the angle θ depends not only on α but also
on the hyperradius ρ at which one counts the particles and
evaluates the SDCS.

Several arguments support the choice of this modified
definition. First, the same definition is obtained from the ratio
of probability currents (or flux)

sin2 θ = J 2
2

J 2
1 + J 2

2

, (15)
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where Ji are the (S-wave) components of the flux operator:

Ji = 1

2i

[
(�+

sc)∗
∂�+

sc

∂ri

− �+
sc

∂(�+
sc)∗

∂ri

]
(i = 1,2). (16)

Equivalently, one may write tan θ = J2/J1, which can be put in
relation to tan α = r2/r1 and thus to tan α = k2/k1 = E2/E1

by using the geometrical assumption, (1).
Second, the velocity components give a measure of the

energy fraction ε̃, which differs from the geometrical definition
ε at finite distances but matches it at ρ → ∞. To show this,
we can use the asymptotic functional form, (7), to evaluate
the ratio, (14). Retaining the leading asymptotic orders [more
important than O(ρ−1)], it is rather easy to show that (� = 1)

m
.
r1 � K cos α + γ ′(α) sin(α)

ln(2Kρ)

Kρ
, (17a)

m
.
r2 � K sin α − γ ′(α) cos(α)

ln(2Kρ)

Kρ
. (17b)

Clearly, in the ρ → ∞ limit, the Bohm velocities, (17a)
and (17b), lead to an energy fraction, (14), that matches the
geometrical definition. At finite distances, on the other hand,
we have the influence of the Coulomb interaction through an
O(ln(ρ)/ρ) correction term.

Third, the new energy fraction—again calculated with the
asymptotic form, (7)—reads

ε̃ � sin2 α − 2

K
sin α cos αγ ′(α)

ln(2Kρ)

Kρ
, (18)

where γ ′(α) is the derivative of the charge γ (α); as for the
velocities, the new energy fraction matches the geometrical
definition at infinite ρ values but involves a correction at finite
distances.

From result (18), we find that the equal energy regime is
not reached at finite distances, say at ρ0. Indeed we find a
value smaller than 0.5 (larger than 0.5) when evaluating ε̃ at
α = π/4 from the left (the right):

ε̃<|α=π/4 � 1

2

[
1 − 2

√
2

K

ln(2Kρ0)

ρ0

]
, (19a)

ε̃>|α=π/4 � 1

2

[
1 + 2

√
2

K

ln(2Kρ0)

ρ0

]
. (19b)

Although with a different interpretation, we observed the same
phenomenon in a semiclassical definition of the energy fraction
[17]. Note that with the exact solution, however, this limitation
does not occur; we see below that if ρ is large enough the
energy fraction defined by Eq. (14) reaches all possible values
between 0 and 1 when one moves through a constant-value
hyperradial contour of the (r1,r2) plane, without being too
close to the axes. Thus, the conflicting regions (the one which
gives unphysical “counting” of particles for the SDCS with
the geometrical definition) become naturally excluded.

In Fig. 1, we have plotted, in the (r1,r2) plane, hyper-
spherical constant-phase contours for the free wave (circles
of radii ρ) and for the Coulomb behavior of Eq. (7). The direc-
tion normal to these contours indicates the two-dimensional
momenta (k1,k2); their directions are clearly modified by the

0 50 100
r1 (a. u.)

0

50

100

r 2 (a
. u

.)

Coulomb
free

FIG. 1. (Color online) Constant phase contours for the free
[dashed (red) lines] and Coulomb (solid black lines) hyperspherical
waves. The direction perpendicular to these lines is the one followed
by the local momentum vector (k1,k2). The red and black normal
arrows have the same origin at the intersection of two Coulomb-
and free-wave constant phase contours, respectively, highlighting the
differences between the Coulomb and the geometrical definition of
the asymptotic momenta. While zero-energy-fraction values follow
the axes in the case of the free wave, for the Coulomb wave it is the
one indicated by dashed black lines.

Coulomb interactions. Also, the horizontal (vertical) axis,
which corresponds to an energy fraction of 0 (1) in the case
of a free wave, is replaced with one of the dashed lines in the
Coulomb case.

In summary, for given values of α and ρ, we propose
considering the quantity ε̃ = sin2 θ instead of ε = sin2 α as the
local value of the kinetic energy fraction. Our approximation
is based on the physical information carried by the flux and is
of general application; i.e., it is valid for any kind of scattering
problem and can be applied beyond the TP approximation.

2. Continuity of the wave function at α = π/4

Let us now analyze the shape properties of the SDCS as a
function of the energy fraction for values close to 0.5. We
start from the asymptotic behavior of the scattering wave
function given by Eq. (7). At α = π/4, the logarithmic phase
is continuous as a function of α but the derivative is not;
intuitively, this discontinuity must be balanced by a property
of A(α) at that point. For a given large value of ρ we ask
for continuity of the wave function and its derivative with
respect to α. Suppose that A(α) takes two different functional
forms: A<(α) for α < π/4 and A>(α) for α > π/4. Taking
the derivative of Eq. (7) with respect to α we find

∂�sc

∂α
� ρ−5/2ei(Kρ+ 1

K sin α
ln(2Kρ))

×
[
A′

<(α) + A<(α)
i

K
ln(2Kρ)

(− cos α

sin2 α

)]
,

α < π/4; (20a)
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∂�sc

∂α
� ρ−5/2ei(Kρ+ 1

K cos α
ln(2Kρ))

×
[
A′

>(α) + A>(α)
i

K
ln(2Kρ)

(
sin α

cos2 α

)]
,

α > π/4. (20b)

Matching the expressions at α = π/4 and simplifying we
get

A′
<(π/4) − A′

>(π/4) � (A>(π/4) + A<(π/4))
i
√

2

K
ln(2Kρ).

By continuity of the wave function and singlet spin symmetry
we, respectively, have A>(π/4) = A<(π/4) and A′

<(π/4) =
−(−1)SA′

>(π/4). This means that

A′
<(π/4) � A<(π/4)

i
√

2

K
ln(2Kρ) (21)

for S = 0, and A<(π/4) = A>(π/4) = 0 for S = 1. Now we
can use Eq. (21) and its conjugate to calculate the derivative
of the SDCS as a function of α:

d|A<(α)|2
dα

∣∣∣∣
α=π/4

= d

dα
(A<(α)A∗

<(α))

∣∣∣∣
α=π/4

= A′
<(α)A∗

<(α)

+A<(α)(A′
<(α))∗

∣∣
α=π/4 = 0. (22)

Consequently, the slope of the curve |A<(α)|2 with respect to
the variable sin2 α is also 0.

III. RESULTS

In this section we present SDCS results for the singlet e-H
process at an impact energy of 2 a.u. (54.422 eV) and discuss
them in view of the geometrical and new energy fraction
definition. Then we present results also for impact energies
of 1.5 and 5.012 48 a.u. (40.817 and 150 eV). Since for singlet
states SDCSs are symmetric with respect to ε = 0.5, only half
of the curve is shown.

The numerical technique to be used to solve the inhomoge-
neous Schrödinger equation, (3), is based on a configuration-
interaction-type expansion using Sturmian functions with
outgoing flux boundary conditions for each radial coordinate.
Details of the methodology can be found in Refs. [5] and [18],
where the capability of the method is demonstrated. Once the
scattering wave function �+

sc is obtained, we evaluate—at fixed
finite values of ρ—the SDCS through the flux formula given
by Eqs. (10) and (11).

A. Uncorrected results

In Fig. 2 we show, as a function of the usual energy
fraction ε = sin2 α, the SDCS for the singlet solution of the
e-H processes for an impact energy equal to 2 a.u. Benchmark
results were provided by Jones and Stelbovics [8] with the
Finite Element Method (FEM). We plot our results obtained
for different values of ρ, from 10λ up to 40λ (�150 a.u. for
E = 1.5 a.u.), in steps of 2λ, where λ = 2π/

√
2E corresponds

to the wavelength of the hyperspherical outgoing wave given
by Eq. (7). The extrapolation to ρ → ∞ is shown by filled
circles.

0 0.1 0.2 0.3 0.4 0.5
Energy fraction

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

σ
(ε

) (
un

its
 o

f a
02

π)

SF extrapolated (α > 0.05)
FEM [9]

singlet

FIG. 2. SDCS for the e-H process for an impact energy of 2 a.u.
as a function of the energy fraction ε = sin2 α. Thick dashed line:
FEM results [19]. Solid lines: Sturmian function evaluation and flux
formula given by Eq. (11), for different values of ρ from 10λ up to
40λ in steps of 2λ. Filled circles: extrapolated flux formula result.

It is clear that the flux formula results show unphysical
behavior near ε � 0 (by symmetry, the same behavior is
found for ε � 1) which constitutes the apparent failure of the
extraction technique. The extrapolated result (which depends
on the finite domain used) is much smoother but can be
considered accurate only for ε > 0.05.

B. Correction of the energy fraction value

The proposed correction consists of considering, as the
argument of the SDCS, the energy fraction ε̃ = sin2 θ defined
by Eq. (14) instead of ε = sin2 α. Before applying the recipe to
cross-section results, let us first analyze how the two definitions
are related. For this purpose, we plot in Fig. 3 the value of sin2 θ

as a function of sin2 α for different values of ρ. We observe
a peak structure which develops in a region of small values
of sin2 α, which we characterize by α < αc(ρ). This region
reflects the strong distortion observed close to the r2 = 0 axis
and becomes smaller as ρ increases. Beyond αc(ρ), sin2 θ

behaves almost linearly, with a slope which tends to 1 as ρ

increases; this behavior indicates that sin2 θ is equal to sin2 α

at ρ → ∞. Furthermore, at finite but sufficiently large values
of ρ, the modified energy fraction (i) is smaller than sin2 α; (ii)

0 0.1 0.2 0.3 0.4 0.5
sin2α

0

0.2

0.4

0.6

0.8

si
n2 θ

curve: sin2θ = sin2α

ρ = 10

ρ = 140

αc(10)

αc(20)

FIG. 3. sin2 θ calculated with Eq. (14) as a function of sin2 α, for
different values of ρ = 10,20, . . . ,140.

062706-5



J. M. RANDAZZO AND L. U. ANCARANI PHYSICAL REVIEW A 92, 062706 (2015)

0 0.1 0.2 0.3 0.4 0.5
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0.01
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0.05

σ
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) (
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 o

f a
02

π)

FEM [9]
ECS [11]
SF extrapolated

FIG. 4. Same SDCS as in Fig. 2 but presented as a function of
the new energy fraction sin2 θ calculated through Bohm’s velocities.

vanishes at sin αc (for ρ < 20 a.u. it has a small finite value but
zero slope at a value of αc which is close to α = 0); and (iii)
from α = αc to α = π/4 takes all possible values between
0 and 0.5. The latter property indicates that the new energy
fraction is a mathematically acceptable variable for the SDCS.

What happens for α < αc and finite ρ values may be
physically interpreted in the following way. The continuum
electron with the lower energy is strongly affected by the
central potential; in order to conserve its total energy the
kinetic energy increases. While the usual definition ε = sin2 α

of the energy fraction maintains a reasonable value, counting
of the electrons by means of the flux formula, (11), becomes
incorrect in that region (overestimating it in its major part).
Besides, small α values correspond to the region where the
initial-channel wave function is nonnegligible. Since it is
the “source” of the electrons, this region is not adequate to
perform the “measurement” of continuum electrons, since they
are in the processes of being “created.” The flux component
sometimes becomes negative for α < αc (in fact, the sign
alternates with increasing ρ values) and reaches very high
values close to α = 0.

The contour through which we evaluate the flux is a constant
ρ surface. It should be noted, however, that, in principle, any
curve covering the sin2 θ range [0,0.5] which satisfies α > αc

would be valid. In practice, for each fixed ρ contour we need
only the domain αc < α < π/4.

Figure 4 shows the SDCS results presented in Fig. 2,
but as a function of sin2 θ . We see that after redefining the
abscissas, the unphysical amplitudes close to the asymmetric
energy sharing situation are no longer present. The SDCS can
now be considered acceptable in the complete energy fraction
domain, and the ρ → ∞ extrapolation can be performed for all
their values. In this way the flux formula procedure is clearly
rehabilitated.

It is noteworthy that the ε = 0 extrapolated value yields a
very small SDCS value. This fact is observed also for other
energies, as we see in next section, where we discuss its origin
and try to understand whether this collapse is the true physical
behavior or an incorrect artifact of the novel energy fraction
definition. But first let us mention a possible connection with
vortices. In the small energy fraction region, one may observe
periodic nodal structure in the scattering wave function. These
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FIG. 5. (Color online) Light (gray) circles: zero phase contours
of �+

sc for 40.8 eV. Darker (red) circles along vertical axis:
.
r1 = 0

points. Darker (blue) circles along horizontal axis:
.
r2 = 0 points.

Inner box: velocity vectors normalized to unity surrounding a point
(large circle) where

.
r1 = .

r2 = 0.

points correspond to sites where Bohm’s velocities (evaluated
with the numerical scattering wave function obtained as
described in Sec. III) vanish and have a definite circulation
[20]. They are marked with darker circles in a two-dimensional
radial domain (see Fig. 5). As a visual reference, lighter circles
indicate constant phase contours of �+

sc; these approximately
follow the dashed circular lines in Fig. 1 representing free
hyperspherical waves. We also plot the velocity field in the
inset.

Since the scattering state is a superposition of outgoing
waves with nonzero modulus, vortices appear as an inter-
ference process between waves of different periodicities, in
our case the double-continuum and the discrete channels.
If we considered elastic scattering, we would observe the
interference pattern between waves of momenta K and ki ,
thus a periodicity λ = 2π/(K − ki). For the energy (40.8 eV)
chosen for �+

sc in Fig. 5, one gets λ � 23 a.u., which is of
the order of magnitude of the observed distance between
the nodes. Differences could be explained by contributions
from excitation channels with which higher values of λ are
associated. Recall that exact zero interference patterns occur
with waves of the same amplitude. Modulation of the outgoing
waves associated with the discrete channels by the bound states
in the other coordinate may provide coincident amplitude
values.

It is known [21–23] that vortices in atomic wave functions
have observable consequences. In recent studies [24,25]
Navarrete and collaborators associated vortex lines with 0’s
in the transition matrix element for positron-impact ionization
of hydrogen. Because of the dimensionality of our problem
vortices are related to points which are well located in the
two-dimensional domain. Without any evidence, we suggest
that their periodic appearance may be connected with a
vanishing extrapolated SDCS value at zero energy sharing.
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FIG. 6. (Color online) Results of SDCS for incident energy val-
ues equal to 40.8 eV (top, black lines), 54.4 eV [middle (red) lines],
and 150 eV [bottom (blue) lines; multiplied by 5]. Dashed lines:
FEM results [8]. Open symbols with lines: ECS results [12] with
the uncorrected flux formula (only for 40.8- and 54.4-eV incident
energies) and with a linear extrapolation to reach zero energy fraction.
Filled symbols with lines: present Sturmian function results with the
corrected flux formula. Insets: For the 54.4- and 150-eV cases, the
details close to equal energy sharing.

C. Results for other incident energy values

Results of the SDCS for incident energies equal to 40.8 eV
(upper, black lines), 54.4 eV [middle (red) lines], and 150 eV
[multiplied by 5; lower (blue) lines] are shown in Fig. 6. We
show the FEM benchmark results [8] with the sharp behavior
of the slope of the SDCS at ε = 0.5. We do not include the
cross sections obtained by Bartlett and Stelbovics [16] with
integral formulas using asymmetrical noncorrelated final states
because they coincide with the FEM calculation followed by
the S-matrix formulation of the SDCS. On the other hand,
we show the results of Baertschy et al. obtained with the
exterior complex scaling (ECS) method [12]. These SDCSs
were evaluated with the usual (uncorrected) flux formula, with
a ρ → ∞ extrapolation procedure; as the cross sections did not
seem reasonable close to energy fractions of 0 and 1, a linear
extrapolation in α was performed to obtain reasonable values
at α = 0 and α = π/2. Finally, the results of our Sturmian
function calculation, with ρ → ∞ extrapolation and with the
new definition of the energy fraction, are also plotted.

For an incident energy equal to 40.8 eV one can easily
appreciate the discrepancies in the slope, at the equal energy
sharing point, between the FEM benchmark results and those
obtained with the flux formula (the ECS or ours). The
difference is further illustrated in the insets, which correspond
to the less evident cases with incident energies equal to
54.4 and 150 eV. Note that ECS results obtained with the
uncorrected flux formula also have a zero slope at the middle
point; this can be easily understood, since close to the equal
energy sharing situation the corrected definition ε̃ is not very
different from the usual definition ε (see the linear behavior
close to α = π/4 in Fig. 3).

The most important discrepancies, especially for the lower-
incident-energy case, appear in the very unequal energy
sharing region. First, we note that the flux formula extrapolated

results are larger than the FEM cross sections. Our results
are similar in magnitude (although slightly lower) to those
obtained with the ECS method, except that in our case
the SDCS go sharply to 0 for zero energy fraction. This
surprising result is a direct consequence of the behavior of the
approximate SDCS values at the different ρ values and their
subsequent extrapolation to ρ → ∞. By performing a linear
extrapolation in α in order to reach α = 0 and α = π/2—
as done with the ECS results—this peculiar cross-section
collapse would be hidden. The collapse of the SDCS at extreme
asymmetric sharing, if it is physical, is a behavior clearly in
strong contrast with the FEM benchmark results. On the other
hand, we also have to admit, in favor of the FEM results,
that close to ε � 0 the asymmetrical final-state approximation
seems to be the most adequate representation for the final state.

One final comment. We recall that the zero slope at
the points αc(ρ) shown in Fig. 3 is a consequence of the
competition phenomenon between an increase in the slower
electron momentum due to the proximity to the nucleus
and a decrease related to the hyperspherical wave behavior
when α → 0. When changing the variable from sin2 α to
sin2 θ , the zero slope becomes the extreme point of the
SDCS with a well-established value, which decreases as
ρ increases. The zero value is emphasized and strongly
determined by the extrapolation if only large ρ contours are
used; this is why we do not rule out that this collapse at zero
energy sharing could be the actual SDCS behavior. A similar
phenomenon was found for breakup processes in scattering
of particles interacting through short-range potentials [26,27]
for which the asymptotic region is easily reached in not
too large computational domains. An additional argument
possibly supporting the SDCS collapse is that, for zero-energy
ionized electrons, the single-particle density of states vanishes.
Whether or not this link to the density of states is the correct
justification could be investigated by solving the e-H problem
in one and two dimensions, where the density of states has
different properties [28].

IV. CONCLUDING REMARKS

We have studied the problem of extracting the SDCS from
the scattering wave function for e-H processes in the S-wave
approximation. We have focused on the flux formula proposed
by Peterkop, which makes use of the quantum mechanical
flux component to count the emitted particles in an element
of the solid angle of the physical space. Although from
the theoretical point of view this procedure resembles the
experimental measurement, it gives worse results than the
integral formulas associated with the transition matrix.

Rather than placing in doubt the counting of particles itself,
our investigation starts by questioning the correctness of the
way in which the energy sharing fraction (the argument of
the SDCS) is defined. The main idea lies in the fact that the
geometrical approximation of the electron momenta should
not be valid for a Coulombic distorted hyperspherical wave
in finite domains. In order to get a more realistic definition,
we propose an alternative form to evaluate the energy fraction
based on Bohm’s velocity. This solution-dependent definition
is equivalent to that obtained from the components of the
quantum mechanical flux, as a measurement of the electron
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classical “velocity.” The new proposal has good properties:
it matches the geometrical definition at infinite distances
and avoids considering the region in which either of the
two electrons is very close to the nucleus as part of the
ionization region. In our opinion, the unphysical SDCS
behavior appearing in the “problematic” region (very unequal
energy sharing) is due to the measurement of the flux in a
place which coincides with the “source” of electrons, i.e.,
the nonhomogeneous term of the Schrödinger equation. In
fact, we have shown that at sufficiently large ρ values, the
double-continuum hyperspherical wave reaches all possible
energy fraction values in a hyperangle domain which excludes
the discrete channel region.

As a result of modifying the definition of the energy sharing
fraction, very good SDCS results are obtained at three energies.
There is one exception: in very extremely unequal energy
sharing regimes, where, instead of having the unphysical very
high value (as observed with the geometrical approximation),
it collapses to 0, in clear contradiction with benchmark FEM

results. If a linear extrapolation to the ε = 0 and ε = 1 values
is performed, as done with the ECS calculations, then this
collapse will be hidden. On the other hand, if this collapsing
behavior were really true and not an artifact of our new
definition, it would mean that integral and S-matrix formulas
are not correct at the 0 and 1 energy sharing values.

The study presented in this paper aimed to rescue the
quantum mechanical flux procedure to extract the cross section
for e-H ionization, a task that we believe we have achieved.
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