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Abstract — The dynamical mean-field theory (DMFT) has become a standard technique for the
study of strongly correlated models and materials overcoming some of the limitations of density
functional approaches based on local approximations. An important step in this method involves
the calculation of response functions of a multiorbital impurity problem which is related to the
original model. Recently there has been considerable progress in the development of techniques
based on the density matrix renormalization group (DMRG) and related matrix product states
(MPS) implying a substantial improvement to previous methods. In this paper we review some of
the standard algorithms and compare them to the newly developed techniques, showing examples
for the particular case of the half-filled two-band Hubbard model.
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Introduction. — The research on materials having

strong electron-electron correlations due to interactions in
local orbitals has attracted a great deal of attention in re-
cent years. This is due to their fascinating properties like
high-temperature superconductivity, colossal magnetore-
sistance or heavy-fermion behavior, and their sensitivity
to external fields which makes them attractive in view of
applications. In these materials, strong electron correla-
tions play a central role and represent a major challenge
for the understanding and control of the different phe-
nomena. In spite of the important success of the meth-
ods based on density functional theory (DFT) [1] in the
electronic-structure calculations of weakly correlated ma-
terials, major difficulties are found when dealing with f or
d electron systems where the screened local interaction en-
ergy is of the order of the conduction electron bandwidth.
The DFT-based local density approximation (LDA) [2]
and its generalizations are unable to describe accurately
the strong electron correlations.

To overcome these difficulties, the dynamical mean-
field theory (DMFT) and its cluster versions were devel-
oped [3-8], which allow to extend these methods and treat
the dynamical electron correlations in a reliable way. The
DMFT has become one of the basic methods to calculate
realistic electronic band structure in strongly correlated
systems. The combination of the DMFT with LDA had

allowed for band structure calculations of a large vari-
ety of correlated materials (for reviews see refs. [9,10]),
where the DMFT accounts more reliably for the local
correlations [11,12].

A recent alternative proposal, the density matrix em-
bedding theory, DMET, was developed, which relies on
the embedding of the wave functions of a local cluster
fragment (instead of the local Green functions) in a self-
consistent finite environment [13,14] and which seems to
be a good alternative to the DMFT.

A key point of the DMFT method is the solution of an
associated quantum impurity problem where the fermionic
environment of the impurity has to be determined self-
consistently until convergence of the local Green function
and the local self-energy is reached. This approach is exact
for the infinitely coordinated system (infinite dimensions),
the non-interacting model and in the atomic limit. There-
fore, the possibility to obtain reliable DMFT solutions of
lattice Hamiltonians relies directly on the ability to solve
(complex) quantum impurity models.

During the early stages of the development of the
DMFT, several quantum impurity solvers were proposed
and used successfully such as the iterated perturbation
theory (IPT) [15-18], exact diagonalization (ED) [19], the
Hirsch-Fye quantum Monte Carlo (HFQMC) [17,20-23],
non-crossing approximations (NCA) [24], and the
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numerical renormalization group (NRG) [25-29]. These
methods were good enough to allow for the calculation of
the metal-insulator transitions and other low-lying energy
properties. However, they suffered from important draw-
backs that had to be overcome if other interesting proper-
ties were to be calculated, such as systems having a larger
number of bands, other kinds of interactions (such as spin-
orbit and electron-phonon coupling, etc.), and interband
hybridization. Among the drawbacks, one can mention the
sign problem and the difficulty in reaching low tempera-
tures in the HFQMC algorithm [30], the failure of the NCA
in obtaining a reliable solution for the metallic state, the
limitation to few lattice sites, far from the thermodynamic
limit of the ED and the reduced high-energy resolution of
the NRG technique (see improvements to this in ref. [31]).

More recently, several other impurity solvers have been
developed that overcome (at least partially) many of these
problems among which we can mention the density matrix
renormalization group (DMRG) [32-36], the continuous-
time quantum Monte Carlo (CTQMC) [37-41] and the
fluctuation exchange approximation (FLEX) [42]. The
CTQMC works at lower temperatures than the HFQMC
but still suffers from sign problems for certain models,
e.g., with interband hybridization and, most importantly,
it also requires an analytical continuation of the Green
functions from the imaginary to the real frequency axis
which makes it unreliable for some physical quantities in-
volving higher-energy bands [43]. In addition, FLEX is
limited to a certain range of interaction strengths [44].
We will expand on the DMRG variant below.

Other methods proposed as impurity solvers include
the equation of motion technique (used in a bath with
separate low- and high-energy degrees of freedom for
single- and multiple-orbital Hamiltonians) [45-47], the
quasicontinuous-time solver [48], an improved IPT ap-
proach for large interactions [49] (which can be compared
with the local moment approach, also developed to deal
with strong interactions and arbitrary fillings [50]), and
a two-mode approximation based on Gutzwiller varia-
tional approach [51]. Also recently proposed are meth-
ods based on exact diagonalization (ED) improved by
the use of a restricted active basis set for the impu-
rity [52], by a stochastic distribution approach [53] and
by an augmented version which involves finite tempera-
ture and cluster perturbation [54]. Other promising meth-
ods have been proposed based on configuration-interaction
approximations to ED and from the quantum chemical
perspective [55].

In recent years the so-called slave-boson approach [56]
in the mean-field approximation [57-59] has been general-
ized to preserve the symmetries of the Hamiltonian in the
multiorbital case. The rotationally invariant slave-boson
mean-field theory (RISB) [60-63], provides a real-axis de-
scription of the low-energy excitations of the system. Its
main advantages are the lack of finite-size effects and the
speed at which solutions of the quantum impurity problem
can be found. The lattice version of RISB is equivalent

to the multiband Gutzwiller wave function approxima-
tion [64]. Recently, these low-energy techniques have
been interfaced with LDA calculations [65-71]. In the
sections below, we present the RISB formalism an com-
pare some results with those calculated within the DMRG
framework.

A recent important extension of the DMFT equations
concerns its application to treat problems out of equi-
librium, extending it to the Keldysh formalism [72-74].
In this context, an interesting improvement [75] performs
an exact mapping of the action of the equations onto
a single impurity Anderson model with time-dependent
parameters.

For newcomers to the field, it is recommendable to
visit the TRIQS and ALPS code libraries containing
state-of-the-art methods for solving interacting quantum
systems [76,77].

The DMRG as an impurity solver of the DMFT.
— It has been shown that the density matrix renormaliza-
tion group (DMRG) [78-81] can be used very reliably to
solve the related impurity problem within DMFT [32-34].
By using the DMRG to solve the related impurity prob-
lem, the density of states is obtained directly on the real
axis (or with a very small imaginary offset) being this its
major advantage as compared, for example, to QMC tech-
niques. In addition, no a priori approximations are made
and the method provides equally reliable solutions for both
gapless and gapful phases. More significantly, it provides
accurate estimates for the distribution of spectral intensi-
ties of high-frequency features such as the Hubbard bands
and their structure, which are of main relevance for the
analysis of x-ray photoemission and optical-conductivity
experiments, among others.

Other techniques using alternative methods for the cal-
culation of dynamical properties within the DMRG have
been proposed [35,36] and, more recently, methods us-
ing the time evolution DMRG algorithm (time-evolving
block decimation, TEBD) [82] for the one- and two-orbital
models were shown in [83] (see below).

In the context of the DMRG and the related ma-
trix product states (MPS) as impurity solvers within
the DMFT, recent developments include the kernel poly-
nomial method (Chebyshev expansion for Green func-
tions) [84-86], the block Lanczos approach [87], a pole
decomposition technique within the correction-vector
method for the dynamics [88] and the application to non-
equilibrium DMFT using MPS [89]. In this work the
authors explore other geometries for the impurity bath
showing an increased efficiency for the star environment.

It was recently realized that converging the DMFT loop
on the the imaginary-frequency axis rather than the real-
frequency axis reduces the computational costs by orders
of magnitude because the bath can be represented in a
controlled way with far fewer bath sites and, crucially, the
imaginary-time evolution does not create entanglement.
The imaginary-time setup can therefore treat much more
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sophisticated model Hamiltonians, opening the possibility
of studying more complicated and realistic models and
performing cluster dynamical mean-field calculations for
multiorbital situations. The price to be paid is a reduced
resolution on the real-frequency axis [90].

Model and implementation. — As an example of an
implementation of the DMRG impurity solver, in this pa-
per we describe the half-filled two-orbital Hubbard model
on a square lattice including a Hund coupling:

H:thft Z (Cgmacjmg)’
i (

ijymo

(1)

where 7,j are the sites of a square lattice and brackets
indicate nearest neighbors, m indicates each of the two
orbitals and o is the spin of the electron, whose creation
and destruction operators are ¢/ and ¢, respectively.

Defining n; and s; as the on-site charge and spin
operators, respectively, a rotationally invariant on-site
Hamiltonian is

Uo, Joa

hi = ST s (2)

For p = 2U and ferromagnetic J (J < 0) the ground
state of h; is a triplet and the total Hamiltonian reads

H = (U - %J) Znianiym + U2n1an2a'

+ JZ Si1-Si2 —t Z (C;rmacjma)
i (

ijymo
-3 3
+ <2U+ 8J) ;niv

where S;,,, is the spin operator of orbital m at site 7.
Applying DMFT to this model leads to a mapping of the
original lattice model onto an associated quantum impu-
rity problem in a self-consistent bath. In the particular
case of the two-orbital Hubbard model, the associated
impurity problem is the single-impurity Anderson model
(SIAM) with two levels, where the hybridization func-
tion A(w), which in the usual SIAM is a flat density of
states of the conduction electrons, is now to be determined
self-consistently.

The DMEFT iterations are given as follows: Starting
from a guessed hybridization A(w+in) for the impurity, its
Green function G(w+1in) is obtained using some numerical
method. At this point we introduce the DMRG [32] to cal-
culate the dynamics using Lanczos [91] or the correction
vectors for an array of discretized energies w [92,93]. From
this we can compute the self-energy % (w-+in) = G~1—g;*,
where gg is the non-interacting Green function correspond-
ing to A(w + in). The self-energy allows us to compute
the Green function on a lattice, in this case on a square
lattice (SL):

Gsr(w+1in) = Z

ks, ky

— Un;.

(3)

1
wei(kz, ky) +w +in — S(w +in)’

(4)

where wg(kz, ky) = t(cos(ks) + cos(ky)) with ¢ = 1/2 to
have a band of half-width D = 1. All energies are given
in units of D. The lattice Green function Gg; defines a
new non-interacting Green function g, - G;i—i—i] which,
in turn, defines a new hybridization 2A(w) = w + in —
9o *(w + n) which is the seed to restart the cycle. The
procedure is repeated until converged lattice or impurity
Green functions are obtained (typically between 5 to 10
iterations) [94].

To implement the algorithm we consider [95,96] a gen-
eral representation of the hybridization function in terms
of continued fractions that define a parametrization of
A(w+1in) in terms of a set of real and positive coefficients.
As we are here dealing with two levels, each one will be hy-
bridized to its own bath. The hybrization can be written
simply as a continued fraction (“chain geometry” [97]),

t2

Ap(w) = (5)

2
blm

W = aim — W—a2m —-..

The aj,, and bj,, coefficients represent the on-site energy
and nearest-neighbor hopping for the sites of a non-
interacting chain (not related to the sites of the original
lattice, egs. (1)—(3)), with Hamiltonian

Nec—1
Hsiam = Hat + Z Z bjmcj'mcrcj-i-l,ma
m,o Jj=1
Nc
+ 3 @yl Cimo + el pgdime + e | (6)
j=1

Here H,y = %NQ + %SQ — uN, where N and S are the
total charge and spin operators of the impurity, df  cre-
ates an electron with spin projection o on orbital m of the
impurity and sza creates an electron at site ¢ of the non-
interacting chain of N¢ sites. This cut-off on the length
of the chains corresponds to a cut-off in the representa-
tion of the continued fraction for the impurity and leads
to finite-size effects in the spectra.

In fig. 1, we show the DMFT+DMRG results for the
densities of states (DOS), mA(w + in) = —ImG(w + in)
for several values of the local interaction U and a finite
ferromagnetic J = —0.1. We have kept around 256 states
in the DMRG decimation procedure and our results were
benchmarked with exact diagonalization calculations for
smaller systems.

This figure depicts the transition between the insulat-
ing (large-U) and the metallic (small-U) regimes, show-
ing the lower and upper Hubbard bands in both cases.
Since our intention in this paper is to briefly review the
new methods developed to solve the impurity within the
DMFT, we will not analyze the results in detail, but only
mention the main physical properties and the comparison
between different, albeit complementary, methods. Here
we can clearly see the existence of some structure in the
upper and lower Hubbard bands, mainly, the presence of
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TA(w +1in)D

Fig. 1: (Color online) Converged densities of states for the half-
filled two-band Hubbard model on the square lattice (1) show-
ing the transition from the metallic to the insulating phases.
Here L = 2N¢ + 2 = 42 sites, J = —0.1 and n = 0.2 (which
leads to a slightly enhanced DOS in the gap for the insulating
states).

2.0

—CheMPS
-~ NRG
.. QMC
1.5 b Q
a 1
S0 |
E !q- 7“
0.5} 4 |
.4" “'\
RS =2 =2 0 1 = 3
w/D

Fig. 2: (Color online) DMFT results for the spectral density
of a half-filled two-band Hubbard model in the metallic regime
on the Bethe lattice (extracted from ref. [85] with permission)
using three different quantum impurity solvers: Chebyshev-
expanded matrix product states, numerical renormalization
group, and continuous-time quantum Monte Carlo.

a marked peak in the inner, low-energy, side of the bands.
This feature is ubiquitous in recent results for this model
and has yet to be fully understood. We can also see an
incipient peak in the middle of each band in the insu-
lating regime, which seems to be reminiscent of the van
Hove peak present in the non-interacting half-filled square
lattice. In a separate and more detailed paper we will
show results for the metal-insulator transition as a func-
tion of J [98].

To illustrate other reliable techniques mentioned in
the text, in fig. 2 we show results using three of the
numerical methods mentioned above (Chebyshev expan-
sion of MPS, NRG and analytically continued QMC) for
the calculation of the spectral density for a related two-
orbital Hubbard model on the Bethe lattice (see [85] and
references therein). The observed disagreement at high
energies is due to different broadening convolutions.

—_MPS, N1=N2=120

---QMC (BD=500), Pade
QMC (BD=500), MaxEnt

U/D=1.6

7 D A(o)

Fig. 3: (Color online) Comparison of DMFT spectral func-
tions of a half-filled two-orbital Hubbard model in the metal-
lic regime on the Bethe lattice (extracted from ref. [83] with
permission), using other three different quantum impurity
solvers: real-time dynamics, MPS, QMC+maximum entropy
and QMC + Padé approximants.

To complete the comparison between DMFT impurity
solvers based on DMRG-related methods, such as MPS,
we show in fig. 3 the spectral functions calculated us-
ing other recently developed techniques (for the specific
model and parameters used, please refer to [83]). In this
case, results based on Fourier-transformed real-time dy-
namics with matrix product states (TEBD) show a much
richer structure than the previously used methods based
on QMC, thus providing a much more reliable tool to
study electronic structure in correlated materials.

Rotationally invariant slave-boson mean-field
theory. — In the so-called slave-boson approach [57,58],
the Hilbert space of the on-site Hamiltonian h; (see
eq. (1)) is described using an enlarged space which includes
fermion (quasiparticle) operators with identical structure
as the original (physical) operators, and a set of auxil-
iary bosonic degrees of freedom. To recover the origi-
nal Hilbert space, a set of constraints is imposed on the
fermionic and bosonic degrees of freedom. The advantages
of this approach become clear in the mean-field approxi-
mation, where the bosonic degrees of freedom are replaced
by their mean values. Since the local interaction terms in
the Hamiltonian can be represented by a quadratic form
in the bosons, the mean-field approximation reduces the
fermionic action to a quadratic form in the quasiparticle
operators, together with a set of parameters (the mean
value of the bosonic operators) that can be calculated in
a variational way. The result is a set of non-interacting
fermions having a reduced intersite hopping matrix ele-
ment due to the interactions. The usual interpretation is
that the mean-field approach produces a description of the
low-energy quasiparticles which have a renormalized mass.

It was shown by Li et al. [59] who studied the single-
orbital Hubbard model that, in order to correctly describe
spin fluctuations, it is necessary to properly symmetrize
the bosonic Hilbert space which, in turn, makes the theory
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spin-rotational invariant. Recently, these ideas have been
generalized in a consistent and general way in ref. [60]
where it was also shown that other advantages, such as
the ability to study general forms of the interacting Hamil-
tonian, or to describe systems in which the quasiparticle
weight is non-diagonal, are in close relation with having a
rotationally invariant formalism.

In this approach the auxiliary boson operators have two
indices {¢ap} associated to eigenstates |A) and |B) of h;
having the same charge parity. To obtain a one-to-one
mapping with the original Hilbert space, time-independent
Lagrange multipliers Ao and A are used to enforce the
following constraints:

> obaécs(BIO|A) =0,
A,B,C

(7)

where O = {1, f f5} and f! creates a quasiparticle in the
orbital &« = mo.

The physical operators are represented by a linear com-
bination of the quasiparticle operators.

d" — fTRT, (8)
where df = (dI, ..., d}LVI), and the R matrix is a function
of the boson fields such that the matrix elements in the
new representation are identical to the original ones [60].

In the quantum impurity problem, the kinetic energy
is accounted for by the coupling of the atomic states to
the electron bath which is described by the hybridization
matrix v4, and can be written as H, = %dTudd. Using
eq. (8) this can be written in terms of the quasiparticle
operators f. We get H, = %fTVf f. To construct the
action of the system, we write the interaction terms as a
function of the bosons, and the fermionic action, which is
quadratic on the fermion fields, reads

Sp= f% > 1 (iwn) G (iwn) (i), (9)

where T is the temperature,

Gliwp) = [iwn] — vy — A", (10)

and I the identity matrix. We replace the bosons with
time-independent complex numbers and integrate the
fermions,

(11)

The free energy Q = —T'In[Z] in the saddle-point approx-
imation, including the constraints, reads

Q = —TTrln[-G(iwn)] — Mo+ Y ¢4p {dcpro
ACD

+ 6cpEa — (C|fTA£|D)} ¢ac,

Z=Tr[e %],

(12)

where E4 is the eigenenergy of state |A).

The saddle-point equations are obtained performing
partial derivatives of € with respect to the bosons and
the Lagrange multipliers.

. IJ/D = 0.0 ——
AL
08 "y J/D =—-0.1 -a A
0.6 s - J/D=-03 v
N O © e N, J/D=—-05 -o
0.4} S

Fig. 4: (Color online) Quasiparticle weights Z vs. U/U.(J =
0). Top: DMRG results, Uc.(J = 0)/D = 3.2. Bottom: RISB
results for D/T = 10000, U.(J = 0)/D = 4.8.

We have solved the model of eq. (1) using RISB as an
impurity solver. In fig. 4, we compare the results for the
quasiparticle weight, Z, obtained from the DMRG calcu-
lations and the RISB formalism. It is well known that
slave-bosons methods tend to overestimate the metallicity
of a system. This is reflected in a larger value of Z for a
given value of the interaction U, and of the critical inter-
action, U,, at which the metal-insulator transition occurs.
The figure shows that in the present problem when U is
renormalized by the critical interaction of the J = 0 calcu-
lation, a good agreement between the methods is achieved
for non-zero values of J. Interestingly, for J # 0, there is a
jump from finite values of Z to zero at the metal-insulator
transition. We used the RISB formalism to analyze the
behavior of the lattice free energy at the transition and
confirm that the transition is of first order for finite values
of J while it is of second order for J = 0.

Conclusions and perspectives. — Recent advances
in numerical techniques for the resolution of multiorbital
quantum impurity problems have made the implementa-
tion of the dynamical mean-field theory (DMFT) possi-
ble in model Hamiltonians and density-functional-based
methods for the calculation of strongly correlated materi-
als in a realistic way. Here we review several techniques
which have proven useful to calculate spectral densities
and other physical properties of these materials.

In particular, we focus on the density matrix renormal-
ization group (DMRG)-based techniques and compare re-
sults with the rotationally invariant slave-boson (RISB)
spectra. Both methods are complementary: RISB al-
lows for approximate calculations in the thermodynamic
limit of the low-energy properties at a relatively low
computational cost. DMRG (or its equivalent MPS im-
plementation) is a controlled numerical method which al-
lows for the calculation of spectral densities directly on the
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real axis at all energy scales. As an example, we solved
a two-orbital Hubbard model including a Hund coupling
term J on a square lattice. We found a metal-to-insulator
transition as a function of the local repulsion U which is
of second order for J = 0 and becomes of first order for
J # 0. These new proposals for calculating spectral func-
tions on the real axis show a richer structure in the corre-
lated bands when compared to more traditional methods
for response functions on the imaginary axis.

New techniques relying on the optimization of Hilbert
spaces from the quantum information perspective [99,100]
such as the DMRG and extended methods including MPS
and tensor networks in general, are being developed. They
will be able to tackle more complex multiorbital Hamilto-
nians and cluster DMFT approximations to treat spatially
extended correlations. They are likely to produce more
reliable calculations of higher-energy spectra with impor-
tant implications on physical magnitudes such as optical
conductivity, and non-equilibrium properties of complex
correlated systems.
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