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Abstract. In this paper we extend two nowadays classical results to
a nonlinear Dirichlet problem to equations involving the fractional p-
Laplacian. The first result is an existence in a non-resonant range more
specific between the first and second eigenvalue of the fractional p-
Laplacian. The second result is the anti-maximum principle for the frac-
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1. Introduction

This paper deals with existence and qualitative results for the following non-
linear Dirichlet problem with the fractional p-Laplacian{

(−Δp)su = λ|u|p−2u + f(x) in Ω,
u = 0 in Ωc := R

N\Ω.
(1.1)

Here and in the rest of this introduction, Ω is a smooth bounded open of RN ,
s ∈ (0, 1), and p ∈ (1,∞). The fractional p-Laplacian is a nonlocal version of
the p-Laplacian and is an extension of the fractional Laplacian (p = 2). More
precisely, the fractional p-Laplacian is defined as

(−Δp)su(x) = 2K P.V.
∫
RN

|u(x) − u(y)|p−2(u(x) − u(y))
|x − y|N+sp

dy, (1.2)

with

K = p(1 − s)
(∫

SN−1
|〈ω, e〉|pdHN−1(ω)

)−1

, e ∈ SN−1.

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s11784-017-0405-5&domain=pdf


L. M. Del Pezzo, A. Quaas

where SN−1 denotes the unit sphere in R
N and HN−1 denotes the N − 1-

dimensional Hausdorff measure. For more details, see [14,17].
A pioneer work on existence of nonlinear one-dimensional integral equa-

tion (with L2 kernels) under non-resonant case can be found in [27]. Besides
that let us recall that the Fredholm alternative fails for p-Laplacian and the
situation is much more complex than in the linear case. This can be found in a
large number of results around Fredholm type alternative for the p-Laplacian,
see for instance [9,23,28–31,43,50,51] and the references therein.

For the fractional Laplacian, the standard Fredholm alternative for com-
pact operator can be applied. Observe that the spectrum for the fractional
Laplacian is studied in [46,48].

Let us start by describing our existence results. Denote by λ1(s, p) and
λ2(s, p) the first and second eigenvalues, respectively, for the fractional p-
Laplacian with Dirichlet boundary condition. See Sect. 2 for the definition
and basic properties of the eigenvalues of the fractional p-Laplacian.

First, by standard minimization argument, we show that if λ < λ1(s, p),
then there is a unique weak solution of (1.1), see Sect. 3. Then, also in Section
3, we show the existence of solution to (1.2) for λ ∈ (λ1(s, p), λ2(s, p)) and
f ∈ W−s,p′

(Ω). This existence part relies on an homotopy deformation of the
degree as in [5], see also [4,6,13].

More precisely, we can prove the following Theorem:

Theorem 1.1. Let f ∈ W−s,p′
(Ω). If λ1(s, p) < λ < λ2(s, p) then there is a

weak solution of (1.1).

Let us observe that Fredholm type alternative for fully non-linear oper-
ator can be found in [11, Section 5]. Notice that using the ideas of [11] and
[21] a different homotopy (with respect to s) can be used to prove the above
Theorem. Besides that let us also mention that from [21] other existence re-
sults can be proved using bifurcation from infinity for (1.1). These results
can be found for the case of the p-Laplacian, for example in [9].

Our second aim was to show an anti-maximum principle for the frac-
tional p-Laplacian. This principle has shown to be a powerful tool when ana-
lyzing nonlinear elliptic problems, see [8,12,18,36] and the references therein.
For the p-Laplacian operator, the anti-maximum principle is proven in [32],
see also [10,35]. On the other hand, the link between bifurcation theory and
anti-maximum principle was observed for the first time in [8] (see for instance
[8, Theorem 27] for an improvement of the anti-maximum principle for the
p-Laplacian operator).

In Sect. 4, before proving our anti-maximum principle, we show the
following maximum principle:

Theorem 1.2. Let f ∈ W−s,p′
(Ω) be such that f �≡ 0.

(1) If f ≥ 0 and λ < λ1(s, p), then u > 0 a.e. in Ω for any super-solution u
of (1.1).

(2) If f ≤ 0, and λ < λ1(s, p), then u < 0 a.e. in Ω for any sub-solution u
of (1.1).

Thus, we show the following anti-maximum principle:
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Theorem 1.3. Let f ∈ W−s,p′
(Ω) be such that f �≡ 0. Then there is δ =

δ(f) > 0 such that

(1) if f ≥ 0 and λ ∈ (λ1(s, p), λ1(s, p) + δ), then any weak solution u of
(1.1) satisfies u < 0 a.e. in Ω.

(2) if f ≤ 0 and λ ∈ (λ1(s, p), λ1(s, p) + δ), then any weak solution u of
(1.1) satisfies u > 0 a.e. in Ω.

Let us comment that, for the spectral fractional Laplacian (this is a
different operator than (−Δ)s), the anti-maximum principle is only proved
in the case s = 1/2, see [7]. In fact, we would like to mention that the proof
in [7] can be easily extended to the case s ∈ (0, 1). See also [34] where the
anti-maximum principle is shown for non-singular kernel. So, as far we know,
Theorem 1.3 is new even for the case p = 2. Therefore, we extend in particular
the now classical anti-maximum principle of Clement and Peletier (see [18])
for all the range s ∈ (0, 1) and p ∈ (1,∞).

We want to observe that our proof of the previous theorem is not a
straightforward adaptation of the proof given in the local case due to that
we do not have a suitable Hopf’s lemma for the fractional p-Laplacian. To
overcome this problem we will use Picone’s identity (see Lemma 2.9) and
show a lower bound for the measures of the negative (positive) sets of the
weak super(sub)-solutions of (1.1) (see Lemma 4.5 and Remark 4.6 below).

In the linear case (p = 2), thanks to the regularity results up to the
boundary and the Hopf lemma, we can prove a more general result improving
Theorems 1.2 and 1.3:

Theorem 1.4. Let Ω be a bounded domain with C1,1 boundary, w1 be a positive
eigenfunction of (−Δ)s associated with λ1(s, 2). For any f ∈ L∞(Ω) with∫

Ω

f(x)w1dx �= 0, there is δ = δ(f) > 0 such that

(1) if
∫

Ω

f(x)w1dx > 0 then any weak solution u of (1.1) satisfies

(a) u < 0 in Ω if λ ∈ (λ1(s, 2), λ1(s, 2) + δ);
(b) u > 0 in Ω if λ ∈ (λ1(s, 2) − δ, λ1(s, 2));

(2) if
∫

Ω

f(x)w1dx < 0, then any weak solution u of (1.1) satisfies

(a) u > 0 in Ω if λ ∈ (λ1(s, 2), λ1(s, 2) + δ);
(b) u < 0 in Ω if λ ∈ (λ1(s, 2) − δ, λ1(s, 2)).

The paper is organized as follows: in Sect. 2 we review some prelimi-
naries including the eigenvalue problems. In Sect. 3 we prove our existence
results. Finally, in Sect. 4 we prove Theorems 1.2, 1.3 and 1.4.

2. Preliminaries

Let us start by introducing the notation and definitions that we will use in
this work. We also gather some preliminary properties which will be useful
in the forthcoming sections.
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Here and hereafter, s ∈ (0, 1), p ∈ (1,∞) and we will denote by Ω an
open set in R

N . Given a subset A of RN we set Ac = R
N\A, and A2 = A×A.

For all function u : Ω → R we define

u+(x) := max{u(x), 0} and u−(x) := max{−u(x), 0},

Ω+ := {x ∈ Ω: u(x) > 0} and Ω− := {x ∈ Ω: u(x) < 0}.

2.1. Fractional Sobolev spaces

The fractional Sobolev spaces W s,p(Ω) is defined to be the set of functions
u ∈ Lp(Ω) such that

|u|pW s,p(Ω) :=
∫

Ω2

|u(x) − u(y)|p
|x − y|N+sp

dxdy < ∞.

The fractional Sobolev spaces admit the following norm:

‖u‖W s,p(Ω) :=
(
‖u‖p

Lp(Ω) + |u|pW s,p(Ω)

) 1
p

,

where

‖u‖p
Lp(Ω) :=

∫
Ω

|u(x)|p dx.

The space W s,p(RN ) is defined similarly.
We will denote by W̃ s,p(Ω) the space of all u ∈ W s,p(Ω) such that ũ ∈

W s,p(RN ), where ũ is the extension by zero of u. The dual space of W̃ s,p(Ω)
is denoted by W−s,p′

(Ω) and the corresponding dual pairing is denoted by
〈·, ·〉.
Remark 2.1. By [26, Lemma 6.1], if Ω is bounded, then there is a suitable
constant C = C(N, s, p) > 0 such that for any u ∈ W̃ s,p(Ω) we get

|u|p
W s,p(RN )

≥
∫

Ω×Ωc

|u(x)|p
|x − y|N+sp

dxdy =
∫

Ω

|u(x)|p
∫

Ωc

1
|x − y|N+sp

dydx

≥ C

|Ω|sp/N
‖u‖p

Lp(Ω),

where |Ω| denotes the Lebesgue measure of Ω. Hence, the seminorm | ·
|W s,p(RN ) is a norm in W̃ s,p(Ω) equivalent to the standard norm.

If Ω is bounded, we set

Ŵ s,p(Ω) :=
{
u ∈ Lp

loc(R
N ) : ∃U ⊃⊃ Ω s.t. u ∈ W s,p(U), [u]s,p < ∞}

,

where

[u]s,p :=
∫
RN

|u(x)|p−1

(1 + |x|)N+sp
dx.

Observe that W̃ s,p(Ω) ⊂ Ŵ s,p(Ω).
We will denote by p�

s the fractional critical Sobolev exponent, that is

p�
s :=

⎧⎨
⎩

Np

N − sp
if sp < N,

+∞ if sp ≥ N.
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Remark 2.2. If X = W s,p(Ω) or W̃ s,p(Ω) or Ŵ s,p(Ω) and u ∈ X , then
u+, u− ∈ X owing to

|u−(x) − u−(y)| ≤ |u(x) − u(y)| and |u+(x) − u+(y)| ≤ |u(x) − u(y)|,
for all x, y ∈ Ω.

Further information on fractional Sobolev spaces and many references
may be found in [1,25,26,38,39].

2.2. Dirichlet problems

Let Ω be a bounded open set in R
N , s ∈ (0, 1), and f ∈ W−s,p′

(Ω). We say
that f ≥ (≤)0 if for any v ∈ W̃ s,p(Ω), v ≥ 0 we have that 〈f, v〉 ≥ (≤)0.

We say that u ∈ Ŵ s,p(Ω) is a weak super-solution of{
(−Δp)su = f(x) in Ω,

u = 0 in Ωc,
(2.1)

if u ≥ 0 a.e. in Ωc and

K
∫
R2N

|u(x) − u(y)|p−2(u(x) − u(y))(v(x) − v(y))
|x − y|N+sp

dxdy ≥ 〈f, v〉,

for each v ∈ W̃ s,p(Ω), v ≥ 0.

A function u ∈ Ŵ s,p(Ω) is a weak sub-solution of (2.1) if −u is a weak
super-solution. Finally, a function u ∈ Ŵ s,p(Ω) is a weak solution of (2.1) if
and only if it is both a weak super-solution and a weak sub-solution.

Our next result is a minimum principle.

Lemma 2.3. Let f ∈ W−s,p′
(Ω) be such that f ≥ 0, and u be a weak super-

solution of (2.1). Then either u > 0 a.e. in Ω or u = 0 a.e. in Ω.

Proof. Since u is a weak super-solution of (2.1), it follows from the compar-
ison principle (see [39, Proposition 2.10]) that u ≥ 0 in R

N . Moreover, if Ω
is connected, by [15, Theorem A.1], we get if u �= 0 a.e. in Ω, then u > 0 a.e.
in Ω.

Then, we only need to show that u �≡ 0 in Ω if and only if u �≡ 0 in all
connected components of Ω. That is, we only need to show that if u �≡ 0 in
Ω, then u �≡ 0 in all connected components of Ω.

Suppose, on the contrary, that is u �≡ 0 and there is a connected com-
ponent U of Ω such that u ≡ 0 in U. Moreover, for any nonnegative function
v ∈ W̃ s,p(U) we get

0 ≤
∫
R2N

|u(x) − u(y)|p−2(u(x) − u(y))(v(x) − v(y))
|x − y|N+sp

dxdy

= −2
∫

U

∫
Uc

|u(x)|p−2u(x)v(y)
|x − y|N+sp

dxdy

due to u ≡ 0 in U. Then u = 0 a.e. in U c, that is u = 0 a.e. in R
N , which is

a contradiction with the fact that u �= 0 a.e. in Ω. �
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To prove the Theorem 1.1, we will use the homotopy property of the
Leray–Schauder degree. For this reason, we need to recall some properties of
the Dirichlet problem for the fractional p-Laplace equations.

Let f ∈ W−s,p′
(Ω). If Ω is a smooth bounded domain, using the frac-

tional Sobolev compact embedding theorem (see [1,25]), it is easily seen that
(2.1) has a unique weak solution uf ∈ W̃ s,p(Ω). Moreover, the operator

Rs,p : W−s,p′
(Ω) → W̃ s,p(Ω)

f → uf

is continuous, see [21]
Now, let Ω be a smooth bounded domain, f ∈ W−s,p′

(Ω) and t ∈ R; we
define the operator Tt : W̃ s,p(Ω) → W̃ s,p(Ω) by

Tt(u) := Rs,p(λ|u|p−2u + tf).

Notice that by the fractional Sobolev compact embedding theorem and the
continuity of Rs,p, we have that Tt is a completely continuous operator.

2.3. Eigenvalue problems

Now we study the following eigenvalue problems:{
(−Δp)su = λ|u|p−2u in Ω,

u = 0 in Ωc,
(2.2)

We say that λ is an eigenvalue of (−Δp)s if there is a function u ∈
W̃ s,p(Ω)\{0} such that for any v ∈ W̃ s,p(Ω)

K
∫
R2N

|u(x) − u(y)|p−2(u(x) − u(y))(v(x) − v(y))
|x − y|N+sp

dxdy = λ

∫
Ω

|u|p−2uvdx.

The function u is a corresponding eigenfunction of (−Δp)s associated with
λ.

Before showing the existence of a sequence of eigenvalues, we need to
introduce some additional notation. Following [17], we define

Ss,p :=
{

u ∈ W̃ s,p(Ω): ‖u‖Lp(Ω) = 1
}

,

and

Ws,p
m := {K ⊂ Ss,p : K is symmetric and compact, i(K) ≥ m}

for m ∈ N. Here i denotes the Krasnosel’skǐı genus.
For the proof of the following theorem, see [16,17,21,33,40] (for the

local case, see [3,19,41,42,44]).

Theorem 2.4. Let Ω a smooth bounded domain of RN . Then there is a se-
quence of eigenvalues of (−Δp)s

λm(s, p) = inf
K∈Ws,p

m

max
u∈K

K|u|W s,p(RN ).

Moreover,
• If u is an eigenfunction of (−Δp)s, then u ∈ L∞(Ω).
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• λ1(s, p) is the first eigenvalue of (−Δp)s, that is

λ1(s, p) = inf
{

K|u|p
W s,p(RN )

: u ∈ Ss,p
}

.

• λ1(s, p) is simple and isolated.
• Any eigenfunction of (−Δp)s associated with λ1(s, p) has a constant
sign.

• If u is an eigenfunction of (−Δp)s associated with λ > λ1(s, p), then u
must be sign-changing.

• λ2(s, p) is the second eigenvalue

λ2(s, p) = inf
γ∈Γ(w1,−w1)

max
u∈Imγ(0,1)

K|u|p
W s,p(RN )

= inf{λ : λ > λ1(s, p) is an eigenvalue of (−Δp)s},

where w1 is an eigenfunction of (−Δp)s associated with λ1(s, p) and
Γ(w1,−w1) is the set of continuous paths on Ss,p connecting to w1 and
−w1.

Remark 2.5. It is not difficult to see that, if u ∈ W̃ s,p(Ω) is such that

λ1(s, p) =
K|u|p

W s,p(RN )

‖u‖p
Lp(Ω)

,

then u is eigenfunction of (−Δp)s associated with λ1(s, p).

Let us finally observe that in [21], we also prove that λ1(·, p) is contin-
uous.

2.4. Regularity results

Here, we study the regularity up to the boundary of weak solutions of (1.1)
when f ∈ L∞(Ω). For this, we need the following results:

Lemma 2.6. Let f ∈ L∞(Ω) and λ ∈ R. If u is a weak solution of (1.1) then
u ∈ L∞(Ω).

Proof. In this proof, we borrow ideas from [33,47].
If ps > N, then u ∈ L∞(Ω) due to the fractional Sobolev embedding

theorem. For the rest of the proof, we assume sp ≤ N.

Let u be a weak solution of (1.1). Up to multiplying u by a small con-
stant we may assume that

‖u‖Lp(Ω) =
√

δ,

where δ > 0 will be selected below.
For any k ∈ N, we define vk := (u − 1 + 2−k)+ and Uk = ‖vk‖p

Lp(Ω).

Observe that, for any k ∈ N we have that

vk ∈ W̃ s,p(Ω), vk+1 ≤ vk a.e. in R
N and

{x ∈ Ω: vk+1 > 0} ⊂ {x ∈ Ω: vk > 2−(k+1)}. (2.3)
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Moreover, Uk → ‖(u − 1)+‖Lp(Ω) as k → ∞. Then, for any k ∈ N

K|vk|pW s,p(Ω) = K
∫

Ω2

|vk+1(x) − vk+1(y)|p
|x − y|N+sp

dxdy

≤ K
∫
R2N

|u(x) − u(y)|p−2(u(x) − u(y))(vk+1(x) − vk+1(y))
|x − y|N+sp

dxdy

= λ

∫
Ω

vp
k+1dx +

∫
Ω

f(x)vk+1dx

≤ |λ|Uk + ‖f‖L∞(Ω)

∫
Ω

vk+1dx

≤ |λ|Uk + ‖f‖L∞(Ω)|{x ∈ Ω: vk+1 > 0}|1−1/pU
1/p

k .

By (2.3), we get

Uk = ‖vk‖p
Lp(Ω) ≥ 2−p(k+1)|{x ∈ Ω: vk+1 > 0}|; (2.4)

then
K|vk|pW s,p(Ω) ≤

(
|λ| + ‖f‖L∞(Ω)2(p−1)

)
2(p−1)kUk. (2.5)

Thus, given q ∈ (p, p�
s), by the Holder inequality, the fractional Sobolev

embedding theorem, (2.4) and (2.5), we have that

Uk+1 ≤ ‖vk+1‖p
Lq(Ω)|{x ∈ Ω: vk+1 > 0}|1−p/q

≤ C|vk|pW s,p(Ω)

(
2p(k+1)Uk

)1−p/q

≤ C
(
|λ| + ‖f‖L∞(Ω)2(p−1)

)
2(p−p2/q)2(2p−1−p2/q)kU

2−q/p

k

≤
{[

1 + C
(
|λ| + ‖f‖L∞(Ω)2(p−1)

)
2(p−p2/q)

]
2(2p−1−p2/q)

}k

U
2−p/q

k

= CkUρ
k ,

where C > 1 and ρ = 2 − p/q > 1.
Now, we choose the number δ > 0 sufficiently small that

δρ <
1

C1/(ρ−1)

and proceeding as in the end of the proof of [49, Proposition 7], we can
conclude that u ≤ 1 a.e. in Ω. By replacing u with −u we obtain ‖u‖L∞(Ω) ≤
1. �

Then, by the previous lemma, [39, Theorem 1.1] and [45, Proposition
1.1 and Theorem 1.2], we have

Theorem 2.7. Let Ω be a bounded domain with C1,1 boundary, f ∈ L∞(Ω),
λ ∈ R, and δ(x) = dist(x, ∂Ω). Then, there is α ∈ (0, s] and C, depending on
Ω such that for all weak solution u of (1.1), u ∈ Cα(Ω) and

‖u‖Cα(Ω) ≤ C
(|λ|‖u‖L∞(Ω) + ‖f‖L∞(Ω)

)
.

In addition, if p = 2 then α = s and
u/δs ∈ Cβ(Ω) and ‖u/δs‖Cβ(Ω) ≤ D

(|λ|‖u‖L∞(Ω) + ‖f‖L∞(Ω),
)
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where β ∈ (0,min{s, 1 − s}). The constants β and D depend only on Ω
and s.

Finally, in the linear case, as a consequence of the fractional Hopf lemma
(see [22,37]), we have the next result:

Lemma 2.8. Let Ω be a bounded domain with C1,1 boundary, δ(x)=dist(x, ∂Ω),
and w1 be an eigenfunction of (−Δ)s. If {vn}n∈N ⊂ Cs(Ω) is such that
vn/δ ∈ C(Ω) and

vn → w1 and
vn

δs
→ w1

δs

strongly in Ω, then there is n0 ∈ N such that vn > 0 for all n ≥ n0.

2.5. Picone inequality

For the proof of the following Picone inequality, see [2, Lemma 6.2 ]:

Lemma 2.9. For every a1, a2 ≥ 0 and b1, b2 > 0

|a1 − a2|p ≥ |b1 − b2|p−2(b1 − b2)

(
ap
1

bp−1
1

− ap
2

bp−1
2

)
.

The equality holds if and only if (a1, a2) = k(b1, b2) for some constant k.

3. Non-resonant Fredholm alternative problem

Let us start this section proving the following existence results for Eq. (1.1)
with λ < λ1(s, p). One of the principal results, that we will use through the
rest of this work, is the fractional Sobolev compact embedding theorem. For
this reason, throughout the rest of this work Ω is a smooth bounded domain
of RN .

Theorem 3.1. Let f ∈ W−s,p′
(Ω). If λ < λ1(s, p) then there is a weak solution

of (1.1).

Proof. The proof of this theorem is standard. First observe that weak solu-
tions of (1.1) are critical points of the functional J : W̃ s,p(Ω) → R, where

J(u) :=
K
p

|u|p
W s,p(RN )

− λ

p
‖u‖p

Lp(Ω) − 〈f, u〉.

It follows from λ < λ1(s, p) that J is bounded below, coercive, strictly convex
and sequentially weakly lower semi-continuous. Thus J has a unique critical
point which is a global minimum. �

Our next aim is to prove Theorem 1.1, to this end we will use the
homotopy property of the Leray–Schauder degree. We first prove an a priori
bound for the fixed points of Tt.

Lemma 3.2. If λ1(s, p) < λ < λ2(s, p) then there exists R > 0 such that for
all t ∈ [0, 1] there is no solution of (I − Tt)u = 0 for |u|W s,p(RN ) ≥ R
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Proof. Suppose, to the contrary, that is for all n ∈ N there exist tn ∈ [0, 1]
and un ∈ W̃ s,p(Ω) such that (I − Ttn

)un = 0 and |un|W s,p(RN ) → ∞ as
n → ∞. Let us define

vn =
un

|un|W s,p(RN )

∀n ∈ N.

Then for all n ∈ N, we have that vn is a weak solution of⎧⎪⎨
⎪⎩

(−Δp)su = λ|u|p−2u +
tnf(x)

|un|p−1

W s,p(RN )

in Ω,

u = 0 in Ωc.

(3.1)

Using the fractional Sobolev compact embedding theorem, up to a sub-
sequence (still denoted by vn)

vn ⇀ v weakly in W̃ s,p(Ω),

vn → v strongly in Lp(Ω).

Since vn is a weak solution of (3.1) we have

1 = |vn|p
W s,p(RN )

= λ‖vn‖p
Lp(Ω) +

〈
tnf/|un|p−1

W s,p(RN )
, vn

〉
.

Then, using the fact that tnf/|un|p−1
W s,p(RN )

→ 0 strongly in W−s,p′
(Ω), together

with the strong convergence of vn in Lp(Ω), we find that ‖v‖p
Lp(Ω) = 1/λ. �

Now we are in position to prove Theorem 1.1.

Proof of Theorem 1.1. By Lemma 3.2, the Leray–Schauder degree d(I − Tt,
B(0, R), 0) is well defined and constant for all in t ∈ [0, 1] by the invariance
of the degree by homotopy. Thus d(I − Tt, B(0, R), 0) = −1 since d(I −
T0, B(0, R), 0) = −1 by Theorem 5.3 of [21], from here the existence result
follows: �

Observe that, in the above proof, the fact d(I − T0, B(0, R), 0) �= 0 can
be established without using the results of [21] as a consequence of Borsuk
theorem (see for example [24, Theorem 8.3]).

4. Maximum and anti-maximum principle

In this section, we will denote by w1 the positive eigenfunction of (−Δp)s

associated with λ1(s, p) whose Lp-norm is equal to 1. Since w1 ∈ L∞(Ω), by
[39], there is α ∈ (0, 1) such that w1 ∈ Cα(Ω).

We start proving Theorem 1.2.

Proof of Theorem 1.2. We only prove the first statement; the another state-
ment can be proved in an analogous way.
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Since u ≥ 0 a.e. in Ωc we have that u− ∈ W̃ s,p(Ω). Then

K
∫
R2N

|u(x) − u(y)|p−2(u(x) − u(y))(u−(x) − u−(y))
|x − y|N+sp

dxdy

= −λ

∫
Ω

|u−|pdx + 〈f, u−〉;

consequently,

λ

∫
Ω

|u−|pdx = −K
∫
R2N

|u(x) − u(y)|p−2(u(x) − u(y))(u−(x) − u−(y))
|x − y|N+sp

dxdy + 〈f, u−〉
≥ K

∫
R2N

|u−(x) − u−(y)|p
|x − y|N+sp

dxdy.

Thus, if u− �≡ 0 then

λ ≥ K

∫
R2N

|u−(x) − u−(y)|p
|x − y|N+sp

dxdy
∫

Ω

|u−|pdx

≥ λ1(s, p),

a contradiction. Therefore u ≥ 0 in R
N . Moreover, proceeding as in the proof

of Lemma 2.3, we have that u �≡ 0 in all connected components of Ω. Finally,
by [20, Theorem 2.9] , u > 0 a.e. in Ω. �

Before proving Theorem 1.3, we show some previous results:

Lemma 4.1. Let λ ≥ λ1(s, p), and f ∈ W−s,p′
(Ω) be such that f ≥ 0 and

f �≡ 0. Then the problem (1.1) has no non-negative weak super-solutions.

Proof. Suppose, to the contrary, there is a non-negative weak super-solution
u of (1.1). Then, by Lemma 2.3, u > 0 a.e. in Ω. By the definition of Ŵ s,p(Ω),
let U ⊃⊃ Ω be such that

‖u‖W s,p(U) +
∫
RN

|u|p−1

(1 + |x|)N+sp
dx < ∞,

n ∈ N and un := u +
1
n

.

We begin by proving that vn :=
wp

1

up−1
n

∈ W̃ s,p(Ω). It is immediate that

vn > 0 in Ω, vn = 0 in Ωc, and since w1 ∈ L∞(Ω) we have that vn ∈ Lp(Ω).
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On the other hand,

|vn(x) − vn(y)| =

∣∣∣∣∣
w1(x)p − w1(y)p

un(x)p−1
+

w1(y)p
(
un(y)p−1 − un(x)p−1

)
un(y)p−1un(x)p−1

∣∣∣∣∣
≤ np−1 |w1(x)p − w1(y)p| + ‖w1‖p

L∞(Ω)

∣∣un(x)p−1 − un(y)p−1
∣∣

un(y)p−1un(x)p−1

≤ np−1p(w1(x)p−1 + w1(y)p−1)|w1(x) − w1(y)|
+‖w1‖p

L∞(Ω)(p − 1)
|un(x)p−2 + un(y)p−2|

un(y)p−1un(x)p−1
|un(x) − un(y)|

≤ 2‖w1‖p−1
L∞(Ω)n

p−1p|w1(x) − w1(y)|

+n‖w1‖p
L∞(Ω)(p − 1)

(
1

un(y)
+

1
un(x)

)
|u(x) − u(y)|

≤ C(n, p, ‖w1‖L∞(Ω)) (|w1(x) − w1(y)| + |u(x) − u(y)|) ,

for all (x, y) ∈ R
N × R

N . Hence vn ∈ W s,p(U) for all m ∈ N due to w1, u ∈
W s,p(U). Then, since vn = 0 in Ωc, and vn ∈ W s,p(U) with Ω ⊂⊂ U, we
have ∫

R2N

|vn(x) − vn(y)|p
|x − y|N+sp

dxdy

=
∫

U2

|vn(x) − vn(y)|p
|x − y|N+sp

dxdy + 2
∫

U×Uc

|vn(x)|p
|x − y|N+sp

dxdy

=
∫

U2

|vn(x) − vn(y)|p
|x − y|N+sp

dxdy + 2
∫

Ω×Uc

|vn(x)|p
|x − y|N+sp

dxdy

=
∫

U2

|vn(x) − vn(y)|p
|x − y|N+sp

dxdy + 2np‖w1‖L∞(Ω)

∫
Ω×Uc

dxdy

|x − y|N+sp

< ∞,

that is vn ∈ W s,p(RN ). Therefore, vn ∈ W̃ s,p(Ω).
Now, set

L(w1, un) := |w1(x) − w1(y)|p − |un(x) − un(y)|p−2(un(x) − un(y))

×
(

w1(x)p

un(x)p−1
− w1(x)p

un(y)p−1

)

By Lemma 2.9, we have

0 ≤ K
∫

Ω2

L(w1, un)(x, y)
|x − y|N+sp

dxdy ≤ K
∫
R2N

L(w1, un)(x, y)
|x − y|N+sp

dxdy

≤ K
∫
R2N

|w1(x) − w1(y)|p
|x − y|N+sp

dxdy

−K
∫
R2N

|u(x) − u(y)|p−2(u(x) − u(y))
|x − y|N+sp

(vn(x) − vn(y)) dxdy

≤ λ1(s, p)
∫

Ω

w1(x)p dx − λ

∫
Ω

u(x)p−1vn(x) dx − 〈f, vn〉
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≤ λ1(s, p)
∫

Ω

w1(x)p dx − λ

∫
Ω

u(x)p−1 w1(x)p

un(x)p−1
dx −

〈
f,

wp
1

up−1
n

〉

≤ λ1(s, p)
∫

Ω

w1(x)p dx − λ

∫
Ω

u(x)p−1 w1(x)p

un(x)p−1
dx,

due to w1 is the positive eigenvalue associated with λ1(s, p), u ∈ Ŵ s,p(Ω) is
a weak super-solution of (1.1) and f ≥ 0.

Since λ1(s, p) ≤ λ, by the Fatou’s lemma and the dominated conver-
gence theorem ∫

Ω2

L(w1, u)(x, y)
|x − y|N+sp

dxdy = 0.

Then, again by Lemma 2.9, L(w1, u)(x, y) = 0 a.e. in Ω. and u = kw1 a.e. in
Ω for some constant k > 0. Then,

λ1(s, p)
∫

Ω

u(x)p−1ϕ(x)dx

= K
∫
R2

|u(x) − u(y)|p−2(u(x) − u(y))(ϕ(x) − ϕ(y))
|x − y|N+sp

dxdy

≥ λ

∫
Ω

u(x)p−1ϕ(x)dx + 〈f, ϕ〉,

for any ϕ ∈ W̃ s,p(Ω), ϕ ≥ 0. This is a contradiction since λ ≥ λ1(s, p) and
f ≥ 0, f �≡ 0. �

Remark 4.2. Observe that Lemma 4.1 implies that if λ ≥ λ1(s, p), and f ∈
W−s,p′

(Ω) is such that f ≤ 0 and f �≡ 0, then the problem (1.1) has no
non-positive weak sub-solutions.

Corollary 4.3. Let f ∈ W−s,p′
(Ω) be such that f ≥ 0 and f �≡ 0. Then the

problem (1.1) with λ = λ1(s, p) has no weak super-solutions.

Proof. We argue by contradiction. If a weak super-solution u of (1.1) with
λ = λ1(s, p) exists by Lemma 4.1 we have u− �≡ 0 in Ω. Since u− ∈ W̃ s,p(Ω),
we get, by the characterization of λ1(s, p) given in Theorem 2.4,

− λ1(s, p)
∫

Ω

u−(x)pdx ≤ λ1(s, p)
∫

Ω

|u(x)|p−2u(x)u−(x)dx + 〈f, u−〉

≤ K
∫
R2N

|u(x) − u(y)|p−2(u(x) − u(y)(u−(x) − u−(y))
|x − y|N+sp

dxdy

≤ −K
∫

Ω2
−

|u−(x) − u−(y)|p
|x − y|N+sp

dxdy

− 2K
∫

Ω−×Ωc
−

(u−(x) + u+(y))p−1u−(x)
|x − y|N+sp

dxdy

≤ −K
∫
R2N

|u−(x) − u−(y)|p
|x − y|N+sp

dxdy.
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Therefore,

λ1(s, p) ≥ K

∫
R2N

|u−(x) − u−(y)|p
|x − y|N+sp

dxdy
∫

Ω

u−(x)pdx

,

that is u− is a corresponding eigenfunction to λ1(s, p) (see Remark 2.5). Then
there is k > 0 such that u− = kw1, and, therefore, u− > 0 in Ω, that is u < 0
in Ω. Moreover,

λ1(s, p)
∫

Ω

|u(x)|p−2uvdx

= −K
∫
R2N

|u−(x) − u−(y)|p−2(u−(x) − u−(y))(v(x) − v(y))
|x − y|N+sp

dxdy

≥ K
∫
R2N

|u(x) − u(y)|p−2(u(x) − u(y))(v(x) − v(y))
|x − y|N+sp

dxdy

≥ λ1(s, p)
∫

Ω

|u(x)|p−2uvdx + 〈f, v〉

for any v ∈ W̃ s,p(Ω), v ≥ 0. This is a contradiction since f ≥ 0, and f �≡ 0.
�

Remark 4.4. Note that it follows straightforward from Corollary 4.3 that if
f ∈ W−s,p′

(Ω) is such that f ≤ 0 and f �≡ 0, then the problem (1.1) with
λ = λ1(s, p) has no weak sub-solutions.

Lemma 4.5. Let λ ≥ λ1(s, p), and f ∈ W−s,p′
(Ω) be such that f ≥ 0 and

f �≡ 0. Then there exist α > 1 and a constant C > 0 such that for all u is a
weak super-solution of (1.1); we have that(

C

λ

)α

≤ |Ω−|,

where Ω− = {x ∈ Ω: u(x) < 0}.

Proof. Let u be a weak super-solution of (1.1). By Lemma 4.1, u− �≡ 0 in Ω.
Taking u− as test function, we have that

K
∫
R2N

|u(x) − u(y)|p−2(u(x) − u(y))(u−(x) − u−(y))
|x − y|N+sp

dxdy

≥ −λ

∫
Ω

|u−|pdx + 〈f, u−〉.
If p < q < p�

s, by fractional Sobolev embedding theorem, then there is a
constant C such that

CK‖u−‖p
Lq(Ω) ≤ K|u−|p

W s,p(RN )

≤ −K
∫
R2N

|u(x) − u(y)|p−2(u(x) − u(y))(u−(x) − u−(y))
|x − y|N+sp

dxdy
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≤ −K
∫
R2N

|u(x) − u(y)|p−2(u(x) − u(y))(u−(x) − u−(y))
|x − y|N+sp

dxdy + 〈f, u−〉

≤ λ

∫
Ω

|u−|pdx,

and using the Hölder inequality

CK‖u−‖p
Lq(Ω) ≤ λ‖u−‖p

Lq(Ω)|Ω−|1−p/q,

which, by using that u− �≡ 0 in Ω, concludes the proof. �

Remark 4.6. As an immediate consequence of Lemma 4.5, we have that if
λ ≥ λ1(s, p), and f ∈ W−s,p′

(Ω) with f ≤ 0 and f �≡ 0, then there exist
α > 1 and a constant C > 0 such that for all u weak sub-solution of (1.1) we
have that (

C

λ

)α

≤ |Ω+|,

where Ω+ = {x ∈ Ω: u(x) > 0}.

Next, we prove our first anti-maximum principle.

Proof of Theorem 1.3. Again, we only prove the first statement; as before
the another statement can be proved in an analogous way.

Suppose, to the contrary, there are sequences {λn}n∈N and {un}n∈N

such that λn ↘ λ1(s, p) and un is a weak solution of (1.1) with λ = λn and
(un)+ �≡ 0 for all n ∈ N.

We claim that
‖un‖Lq(Ω) → ∞ (4.1)

for all p ≤ q < p�
s.

Suppose not, so there exists q ∈ (p, p�
s) such that {un}n∈N is bounded in

Lq(Ω). Then, using that un is a weak solution of (1.1) for all n ∈ N, Hölder’s
inequality and λn ↘ λ1(s, p), we have that {un}n∈N is bounded in W̃ s,p(Ω).
Then, since T1 is a completely continuous operator (see Sect. 2.2), up to a
subsequence (still denoted by un)

un → u strongly in W̃ s,p(Ω),

where u is a weak solution of (1.1) with λ = λ1(s, p). By Corollary 4.3, this
is a contradiction. We have to prove our claim.

Set q ∈ (p, p�
s) and

vn :=
un

‖un‖Lq(Ω)
∀n ∈ N.

Then for all n ∈ N vn is a weak solution of⎧⎪⎨
⎪⎩

(−Δp)su = λn|u|p−2u +
f(x)

‖un‖p−1
Lq(Ω)

in Ω,

u = 0 in Ωc.
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Now, using again that T1 is a completely continuous operator and the
fractional Sobolev compact embedding theorem, up to a subsequence (still
denoted by vn)

vn → v strongly in W̃ s,p(Ω),

vn → v strongly in Lq(Ω).

Thus, v �≡ 0 in Ω and, v is a weak solution of (2.2) since λn → λ1(s, p)
and f/‖un‖p−1

Lq(Ω) → 0 strongly in W−s,p′
(Ω). That is, v is an eigenfunction of

(−Δp)s associated with λ1(s, p). Therefore, either v > 0 in Ω or v < 0 in Ω.
The case v > 0 is a contradiction by Lemma 4.5. To complete the proof of
the theorem it remains to consider the case when v < 0.

If v < 0 then (vn)+ → 0 strongly in Lq(Ω). Therefore, using (4.1), it
turns out that ‖(un)+‖Lq(Ω) → ∞.

On the other hand, by the Sobolev embedding theorem, there is a con-
stant C independent of n such that

CK‖(un)+‖p
Lq(Ω) ≤ K|(un)+|p

W s,p(RN )

≤ K
∫
R2N

|un(x) − un(y)|p−2(un(x) − un(y))((un)+(x) − (un)+(y))
|x − y|N+sp

dxdy

≤ λn

∫
Ω

(un)p
+dx + 〈f(x), (un)+〉

≤ λn‖(un)+‖p
Lq(Ω)|{x ∈ Ω: un(x) > 0}|1−p/q

+ ‖f‖W −s,p′(Ω)|(un)+|W s,p(RN )

for all n ∈ N. Then

C ≤ λn|{x ∈ Ω: un(x) > 0}|1−p/q +
‖f‖W −s,p′(Ω)

‖(un)+‖p−1
Lq(Ω)

|vn|W s,p(RN ),

for all n ∈ N. Therefore,
C

λ1(s, p)
≤ lim inf

n→∞ |{x ∈ Ω: un(x) > 0}|1−p/q,

which is a contradiction with the fact that (vn)+ → 0 strongly in Lq(Ω).

Finally, We show our anti-maximum principle for the linear case.

Proof of Theorem 1.4. As before, we only prove the first statement; the other
statements can be proved in an analogous way.

It suffices to prove that, for any two sequences {λn}n∈N and {un}n∈N

such that λn ↘ λ1(s, 2) and un is a weak solution of (1.1) with λ = λn,
there is n0 ∈ N such that un < 0 in Ω for all n ≥ n0. For such sequences, by
Lemma 2.6, un ∈ L∞(Ω) for all n ∈ N.

We claim that

‖un‖L∞(Ω) → ∞.

If we assume by contradiction that {un}n∈N is bounded in L∞(Ω). Then,
using that un is a weak solution of (1.1) for all n ∈ N, Hölder’s inequality
and λn ↘ λ1(s, p), we have that {un}n∈N is bounded in W̃ s,2(Ω). Then, since
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T1 is a completely continuous operator, up to a subsequence (still denoted by
un)

un → u strongly in W̃ s,2(Ω),

where u is a weak solution of (1.1) with λ = λ1(s, 2). Then

λ1(s, 2)
∫

Ω

uw1dx = K
∫
R2k

(u(x) − u(y))(w1(x) − w1(y))
|x − y|N+2s

dxdy

= λ1(s, 2)
∫

Ω

uw1dx +
∫

Ω

fw1dx.

Therefore, ∫
Ω

fw1dx = 0,

and we have a contradiction. Thus our claim is proved.
Set

vn :=
un

‖un‖L∞(Ω)
∀n ∈ N.

Then for all n ∈ N vn is a weak solution of⎧⎨
⎩

(−Δp)su = λn|u|p−2u +
f(x)

‖un‖L∞(Ω)
in Ω,

u = 0 in Ωc.

Now, using again that T1 is a completely continuous operator and the
fractional Sobolev compact embedding theorem, up to a subsequence (still
denoted by vn)

vn → v strongly in W̃ s,2(Ω).

Thus, v �≡ 0 in Ω, and v is a weak solution of (2.2) since λn → λ1(s, 2)
and f/‖un‖L∞(Ω) → 0 strongly in Ω. That is, v is an eigenfunction of (−Δ)s

associated with λ1(s, 2). Therefore, either v > 0 in Ω or v < 0 in Ω.
On the other hand, for any n ∈ N

(λ1(s, 2) − λn)
∫

Ω

w1vndx =
1

‖u‖L∞(Ω)

∫
Ω

f(x)w1dx > 0

then, since λ1(s, 2) < λn for any n ∈ N, we have that∫
Ω

w1vndx < 0 ∀n ∈ N

Therefore, v < 0 in Ω.
In addition, by Theorem 2.7 and the Arzela–Ascoli theorem, up to a

subsequence (still denoted by vn)

vn → w1 and
vn

δs
→ w1

δs

strongly in Ω. Here δ(x) = dist(x, ∂Ω). Then, by Lemma 2.8, there is n0 ∈ N

such that vn < 0 for all n ∈ N. That is, there is n0 ∈ N such that un < 0 for
all n ≥ n0. �
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[43] Manásevich, R., Takáč, P.: On the Fredholm alternative for the p-Laplacian in
one dimension. Proc. Lond. Math. Soc. (3) 84(2), 324–342 (2002)

[44] Parini, E.: Continuity of the variational eigenvalues of the p-Laplacian with
respect to p. Bull. Aust. Math. Soc. 83(3), 376–381 (2011)

[45] Ros-Oton, X., Serra, J.: The Dirichlet problem for the fractional Laplacian:
regularity up to the boundary. J. Math. Pures et Appl. (9) 101(3), 275–302
(2014)

[46] Servadei, R., Valdinoci, E.: Variational methods for non-local operators of el-
liptic type. Discrete Contin. Dyn. Syst. 33(5), 2105–2137 (2013)

[47] Servadei, R., Valdinoci, E.: A Brezis–Nirenberg result for non-local critical e-
quations in low dimension. Commun. Pure Appl. Anal. 12(6), 2445–2464 (2013)

[48] Servadei, R., Valdinoci, E.: On the spectrum of two different fractional opera-
tors. Proc. R. Soc. Edinb. Sect. A 144(4), 831–855 (2014)

[49] Servadei, R., Valdinoci, E.: Weak and viscosity solutions of the fractional
Laplace equation. Publ. Mat. 58(1), 133–154 (2014)
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