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We study the expressive power of the downward and vertical fragments of XPath equipped 
with (in)equality tests over possibly infinite data trees.
We introduce a suitable notion of saturation with respect to node expressions, and show 
that over saturated data trees, the already studied notion of (unary) bisimulation coincides 
with the idea of ‘indistinguishability by means of node expressions’. We also prove 
definability and separation theorems for classes of pointed data trees.
We introduce new notions of binary bisimulations, which relate two pairs of nodes of data 
trees. We show that over finitely branching data trees, these notions correspond to the 
idea of ‘indistinguishability by means of path expressions’. We prove a characterization 
theorem, which describes when a first-order formula with two free variables is expressible 
in the downward fragment. We show definability and separation theorems, for classes of 
two-pointed data trees and in the context of path expressions.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The abstraction of an XML document is a data tree, i.e. a tree whose every node contains a tag or label (such as LastName) 
from a finite domain, and a data value (such as Smith) from an infinite domain. For instance, Fig. 1 depicts a data tree whose 
labels are a or b and whose data values are integers.

XPath is the most widely used query language for XML documents; it is an open standard and constitutes a World Wide 
Web Consortium (W3C) Recommendation [5]. XPath has syntactic operators to navigate the tree using the ‘child’, ‘parent’, 
‘sibling’, etc. accessibility relations, and can make tests on intermediate nodes. Core-XPath [14] is the fragment of XPath 1.0 
containing only the navigational behavior of XPath. It can express properties on nodes with respect to the underlying tree 
structure of the XML document, such as

nodes with a child labeled a and a child labeled b. (1)

It can also express properties on paths along the tree such as

downward paths of length two starting in a node with label a and ending in a node with label b. (2)
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Fig. 1. A data tree T with a and b as labels and integers as data values. Nodes x, y, z, u, v , w are names for nodes. They are not part of the data tree; 
they are mentioned here only for explanatory purposes.

The first types of formulas are evaluated on individual nodes and are called node expressions. In the data tree of Fig. 1, 
condition (1) is true at node x and false at node u. Formulas of the second kind are evaluated on pairs of nodes and are 
called path expressions. In the same example, condition (2) is true at (x, w) because there is a path with the condition 
expressed in (2) connecting x and w , but false at (x, u) because there is no way to connect x and u with a path satisfying 
the condition (2). However, Core-XPath [14] cannot express conditions on the actual data contained in the attributes, such 
as the node expression

nodes with two children with same label a but different data value (3)

(which in our example is true only at z), or the path expression

downward paths of length one whose starting and end point have the same data value (4)

(which is true nowhere). But Core-Data-XPath [3]—here called XPath=—can. Indeed, XPath= is the extension of Core-XPath
with (in)equality tests between attributes of elements in an XML document. Here we study two main fragments of XPath=: 
the downward fragment (containing only the ‘child’ axis) and the vertical fragment (containing both the ‘child’ and the 
‘parent’ axes). Whilst (2) and (4) above describe downward paths, we will see that the latter (4) cannot be formalized using 
only ‘child’, and needs the ‘parent’ axis. Of course, not all paths should be downward. An example of a path that is not 
necessarily downward could be:

paths of length one whose starting and end point have label a, (5)

which can be either downward or upward. In general, vertical XPath= allows us express paths of the form go up and check 
some condition, then go down and check this other condition, etc.

In a recent paper [10], the expressive power of XPath= was studied, from a logical and modal model theoretical point 
of view. Bisimulations are a classic tool of modal logics to determine equivalence between relational models. A node x of a 
data tree T and a node x′ of a data tree T ′ are said to be bisimilar if they satisfy some special (depending of the studied 
fragment) back-and-forth conditions over the structure of the data tree. Of course, different logics have different definitions 
of bisimulations. For non-modal logics, such as first-order logic, the notions of bisimulation are typically stated in terms 
of Ehrenfeucht–Fraïssé games. In [10] suitable notions of bisimulations were given both for the downward and the vertical 
fragment of XPath= . It is shown that if x and x′ are bisimilar then they satisfy exactly the same node expressions, and 
that the converse is also true for trees whose every node has only finitely many children. Hence, bisimulation coincides 
with logical equivalence, i.e., with indistinguishability by means of node expressions. It is also shown a van Benthem-like char-
acterization theorem for the downward fragment of XPath= , which states that it coincides with the bisimulation-invariant 
fragment of first-order logic with one free variable (over the adequate signature). For the case of the vertical fragment of 
XPath= this characterization fails.

This article is a natural continuation of [10], as we develop new tools and delve in some aspects of the model theory 
of the downward and vertical fragments of XPath= . In the first part we show a definability theorem with respect to node 
expressions, which answers the basic question of when a class of pointed data trees is definable by a set of node expressions, 
or by a single node expression, over the downward and the vertical fragments. Our main result in this part is the analog of 
the classic first-order definability theorem (see, e.g. [4, Cor. 6.1.16]), which can be stated as follows:

A class of models K is definable by means of a set of first-order formulas if and only if K is closed under ultraproducts and isomor-
phisms, and the complement of K is closed under ultrapowers. Also, K is definable by a single first-order formula if and only if both 
K and its complement are closed under ultraproducts and isomorphisms.

As a corollary, we obtain the analog of the classic first-order separation theorem (see, e.g. [4, Cor. 6.1.17]), which says:

Let K1 and K2 be two disjoint classes of models such that K1 is closed under isomorphisms and ultraproducts and K2 is closed 
under isomorphisms and ultrapowers. Then there exists a class K that is definable by a set of first-order formulas, contains K1, and 
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is disjoint from K2. Furthermore, if both K1 and K2 are closed under isomorphisms and ultraproducts, then such K is definable by 
a single first-order formula.

Though we take as motivation the current relevance of XML documents (which of course are finite) and the logics for 
reasoning over them, we do not restrict ourselves to the finite case. Indeed, an infinite set of node expressions may force 
all its data tree models to be infinite. Hence, since we aim at working with arbitrary sets of node expressions, we must 
consider arbitrary (i.e. finite or infinite) data trees.

Our definability and separation theorems for XPath= themselves are shown using rather known techniques. The main 
contribution of this part, however, is to devise and calibrate the adequate notions to be used in the XPath= setting, and to 
study the subtle interaction between them:

• Bisimulation: already introduced in [10], it is the counterpart of isomorphisms in the classical theorem for first-order 
logic. It is known that if two (possibly infinite) data trees are bisimilar then they are logically equivalent (that is, they 
are not distinguishable by an XPath= node expression) but that the converse is not true in general.

• Saturation: we define and study the new notion of XPath=-saturation. We show that for XPath=-saturated data trees, 
being bisimilar is the same as being logically equivalent. It is also shown that a 2-saturated data tree (regarded as a 
first-order structure) is already XPath=-saturated.

• Ultraproducts: contrary to other adaptations of the classical first-order definability theorem to modal logics, in our case 
we have to adjust also the notion of ultraproduct, and so we work with a variant of it called quasi-ultraproduct. The 
reason is that we must not abandon the universe of data trees, as these are the only allowed models of XPath= .

In the second part of our work we start a model theoretical study of path expressions of XPath= . We introduce a 
new kind of binary bisimulation for both the downward and the vertical fragment, which captures, over finitely branching 
trees, when two pairs of nodes (instead of single nodes, as in [10]) are indistinguishable by means of path expressions 
(instead of by node expressions). Our binary bisimulations subsume, in fact, the already known unary bisimulation, since 
over finitely branching trees, (x, x) is binary-bisimilar to (x′, x′) if and only if x is unary-bisimilar to x′ . The definitions 
of binary bisimulations require more rules than the unary ones, but they all have the flavor of back-and-forth conditions. 
Furthermore, these rules are slightly simpler than those for the unary bisimulation.

We show a characterization theorem for the path expressions of the downward fragment of XPath=: a first-order formula 
ϕ(x, y) with two free variables is expressible by a path expression in the downward fragment of XPath= if and only if 
ϕ(x, y) is binary-bisimulation-invariant and represents a forward property (that is, a property that holds only for pairs 
(u, v) where v is a descendant of u).

Finally we show restricted definability theorems with respect to path expressions, which answer the question of when a 
class of two-pointed data trees (satisfying some further conditions) is definable by a set of path expressions, or by a single 
path expression, over the downward and the vertical fragments of XPath= . We show separation results over such classes 
of two-pointed data trees in the expected way. We adapt some of the tools developed for single-node pointed data trees, 
and we use the binary bisimulations as the main ingredient. The major obstacle in this case is to deal with the absence of 
complementation and intersection in the of language XPath= path expressions.

1.1. Related work

There are many works in the literature studying the expressive power of Core-XPath (see e.g. [15,18,25]). All these 
consider the navigational fragment of XPath. A first step towards the study of the expressive power of XPath when equipped 
with (in)equality test over data trees, is the recent paper [10], and its full version [9]. The present development is a natural 
continuation of that work.

The notion of bisimulation was introduced independently by van Benthem [26] in the context of modal correspondence 
theory, by Milner [19] and Park [22] in concurrency theory, and by Forti and Honsell [13] in non-wellfounded set theory 
(see [24] for a historical outlook). With respect to our notions of binary bisimulations, we can mention the recent work [12], 
where some notions of bisimulations are given for some fragments of Tarsky’s calculus of binary relations, with the aim of 
understanding the expressive power of the calculus of relations as a database query language for binary relation structures.

The classical result of definability for first-order logic was adapted to the context of many modal logics, where the notion 
of isomorphism is replaced by the weaker concept of bisimulation (the one which turns to be adequate for the chosen modal 
logic). Thus, definability theorems were established for the basic modal logic [7], for temporal logics with since and until
operators [16], for negation-free modal languages [17], etc. A global counterpart was studied in [8], and a general framework 
stating sufficient conditions for an arbitrary (modal) logic L to verify it was given in [1]. One of those requirements is that 
the models of L are closed under ultraproducts, which is true for the aforementioned logics, but not for XPath= . Indeed, 
models of XPath= are data trees, which may not remain connected under ultraproducts. Hence one cannot expect to use 
that framework in this case. The Separation theorem for the basic modal logic was shown by de Rijke in [7], and it was 
studied for other specific modal logics such as the temporal logic [16]. For more general modal logics, Separation was 
studied in [1], but again, XPath= does not fit in here.
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In [26] van Benthem characterizes the basic modal logic as the bisimulation invariant fragment of first-order logic. 
Van Benthem’s original result over arbitrary structures was proved to hold for finite structures by Rosen [23]. The proof was 
then simplified and unified by Otto [20,21], and later expanded by Dawar and Otto [6] to other classes of structures. We 
follow the ideas of [20] to show the characterization result for binary bisimulations in the downward fragment.

1.2. Outline

The paper is organized as follows. In §2 we introduce the formal syntax and semantics of the downward and vertical 
fragments of XPath= , together with notions of (unary) bisimulations from [10,9]. Suitable notions of saturation for both 
fragments are given in §3.1, where it is also shown that for saturated trees bisimilarity coincides with logical equivalence. 
In §3.2 we explain the connection between XPath= and first-order logic, and we introduce the idea of quasi-ultraproducts 
for the downward and vertical fragments. In §3.3 and §3.4 we state the theorems on definability and separation, respectively.

In §4 we start our study of path expressions, which is divided in the downward fragment (§4.1) and the vertical fragment 
(§4.2). For the downward fragment, we begin with some needed facts (§4.1.1), and we then define the notions of logical 
equivalence to be used (§4.1.2). The definitions of binary bisimulations for the downward fragment are given in §4.1.3, where 
it is also shown their coincidence to the logical equivalence for path expressions. The characterization theorem is given 
in §4.1.4. For the vertical fragment, we first show some needed facts in §4.2.1, and then introduce the definition of binary 
bisimulation in §4.2.2, where, again, it is shown that it matches logical equivalence. In §5 we introduce the needed changes 
to the notions of saturation and quasi-ultraproducts for the case of two-pointed data trees, and we state the theorems of 
definability and separation for the scenario of path expressions, over a restricted class of two-pointed data trees. In this 
section some proofs are not given since they are analogous to those of §3.3 and §3.4. However, it is explained in detail 
how to express, in the language of path expression, the needed operations of complementation and intersection, provided 
the universe of two-pointed data trees is restricted. Finally, in §6 we show some simple applications of our definability 
theorems, and we close in §7 with some conclusions and future work.

The following table summarizes the organizational structure of the paper and points out the main results:

Node expressions Path expressions

Downward Vertical Downward Vertical

Bisimulation notion [9, §3.1.2] [9, §3.2.4] §4.1.3 §4.2.2
Characterization [9, §4.1] Fails [9, §4.2] §4.1.4

Theorem 52
Fails

Def. saturation §3.1 §3.1 §5.1 §5.1
Def. quasi-ultraprod. §3.2 §3.2 §5.2 §5.2
Definability §3.3

Theorems 20, 21, 22
§3.3
Theorems 25, 26, 27

§5.3
Theorems 67, 68

§5.3

Separation §3.4
Theorems 28, 29

§3.4 §5.3
Theorems 69, 70

§5.3

2. Preliminaries

2.1. Data trees

Let Trees(A) be the set of ordered and unranked (finite or infinite) trees over an arbitrary alphabet A. We say that T is 
a data tree if it is a tree from Trees(A × D), where A is a finite set of labels and D is an infinite set of data values. For 
instance, the tree T of Fig. 1 belongs to Trees({a, b} ×N). A data tree is finitely branching if every node has finitely many 
children. For any given data tree T , we denote by T its set of nodes. We use letters x, y, z, u, v , w as variables for nodes. 
Given a node x ∈ T of T , we write label(x) ∈ A to denote the node’s label, and data(x) ∈ D to denote the node’s data value.

Given two nodes x, y ∈ T we write x→y if y is a child of x, and x n→y if y is a descendant of x at distance n. In particular, 
1→ is the same as →, and 0→ is the identity relation. We denote by x≤m→y the fact that x n→y for some n ≤ m. ( n→y) denotes 

the sole ancestor of y at distance n (assuming it has one).

2.2. Vertical and downward XPath with data tests

We work with a simplification of XPath, stripped of its syntactic sugar. We consider fragments of XPath that correspond 
to the navigational part of XPath 1.0 with data equality and inequality. XPath= is a two-sorted language, with path ex-
pressions (that we write α, β, γ ) expressing properties of paths, and node expressions (that we write ϕ, ψ, η), expressing 
properties of nodes. The vertical XPath, notated XPath=(↑↓) is defined by mutual recursion as follows:

α,β ::= o | [ϕ] | αβ | α ∪ β o ∈ {ε,↑,↓}
ϕ,ψ ::= a | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | 〈α〉 | 〈α = β〉 | 〈α �= β〉 a ∈A
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We call downward XPath, notated XPath=(↓), to the syntactic fragment which only uses the navigation axis ↓, but not ↑. 
An XPath=(↑↓)-formula [resp. XPath=(↓)-formula] is either a node expression or a path expression of XPath=(↑↓) [resp. 
XPath=(↓)].

Semantics of XPath=(↑↓) in a given data tree T are defined as follows:

�↓�T = {(x, y) | x→y}
�↑�T = {(x, y) | y→x}

�ε�T = {(x, x) | x ∈ T }
�αβ�T = {(x, z) | (∃y ∈ T ) (x, y) ∈ �α�T , (y, z) ∈ �β�T }

�α ∪ β�T = �α�T ∪ �β�T

�[ϕ]�T = {(x, x) | x ∈ �ϕ�T }
�a�T = {x ∈ T | label(x) = a}

�¬ϕ�T = T \ �ϕ�T

�ϕ ∧ ψ �T = �ϕ�T ∩ �ψ �T

�〈α〉�T = {x ∈ T | (∃y ∈ T ) (x, y) ∈ �α�T }
�〈α = β〉�T = {x ∈ T | (∃y, z ∈ T )(x, y) ∈ �α�T , (x, z) ∈ �β�T ,data(y) = data(z)}
�〈α �= β〉�T = {x ∈ T | (∃y, z ∈ T )(x, y) ∈ �α�T , (x, z) ∈ �β�T ,data(y) �= data(z)}

Example 1. Some examples of node expressions over the data tree of Fig. 1:

• ϕ1 = 〈↓[a]〉 ∧ 〈↓[b]〉 expresses property (1), i.e. “nodes with a child labeled a and a child labeled b”, and �ϕ1 �T = {x, z}.
• ϕ2 = 〈↓[a] �= ↓[a]〉 expresses property (4), i.e. “nodes with two children with same label a but different data value”, and 

�ϕ2 �T = {z}
• ϕ3 = 〈ε �= ↑[〈ε �= ↑〉]〉 expresses “nodes with a data value different from the one of his parent, who, in turn, has a data value 

different from his parent”, and �ϕ3 �T = {u, v, w}.
• ϕ4 = 〈ε �= ↓↓[ϕ3]〉 expresses “nodes with a downward path of length 2, with all distinct data values”, and �ϕ4�T = {x}.

Example 2. Some examples of path expressions over the data tree of Fig. 1:

• α1 = [a]↓↓[b] expresses property (2), i.e. “downward paths of length two starting in a node with label a and ending in a node 
with label b”, and �α1 �T = {(x, w)}.

• α2 = [a]↓[a] ∪ [a]↓↓[a] expresses “downward paths of length one or two, starting and ending in a node with label a”, and 
�α2 �T = {(x, y), (x, u), (x, v)}.

• α3 = ↓[〈ε = ↑〉] expresses property (4), i.e. “downward paths of length one whose starting and end point have the same data 
value”, and �α3 �T = ∅. Notice that we needed to use the ‘parent’ relation. As we will see next, this is unavoidable.

• α4 = [a]↓[a] ∪ [a]↑[a] expresses property (5) “paths of length one whose starting and end point have label a”, and 
�α4 �T = {(x, y), (y, x)}.

For a data tree T and u, v ∈ T , we say that T , u is a pointed data tree, and that T , u, v is a two-pointed data tree. 
For a node expression ϕ , we write T , u |= ϕ to denote u ∈ �ϕ�T , and in that case we say that T , u satisfies ϕ or that ϕ
is true at T , u. In the same way, for a path expression α, we write T , u, v |= α to denote (u, v) ∈ �α�T , and we say that 
T , u, v satisfies α or that α is true at T , u, v . We say that the node expressions ϕ, ψ of XPath= are equivalent (notation: 
ϕ ≡ ψ ) iff �ϕ�T = �ψ �T for all data trees T . Similarly, path expressions α, β of XPath= are equivalent (notation: α ≡ β) 
iff �α�T = �β�T for all data trees T .

Let Th↑↓(T , u) [resp. Th↓(T , u)] be the set of all XPath=(↑↓)-node expressions [resp. XPath=(↓)-node expressions] true 
at T , u. Similarly, let Th↑↓(T , u, v) [resp. Th↓(T , u, v)] be the set of all XPath=(↑↓)-path expressions [resp. XPath=(↓)-path 
expressions] true at T , u, v .

In terms of expressive power of node expressions, it is easy to see that ∪ is unessential (see [10, §2.2]): every XPath=
node expression ϕ has an equivalent ϕ′ with no ∪ in its path expressions. It is enough to use the following equivalences to 
eliminate occurrences of ∪:

〈α 
 β〉 ≡ 〈β 
 α〉
〈β(α ∪ α′)β ′〉 ≡ 〈βαβ ′〉 ∨ 〈βα′β ′〉

〈γ 
 β(α ∪ α′)β ′〉 ≡ 〈γ 
 βαβ ′〉 ∨ 〈γ 
 βα′β ′〉
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where 
 ∈ {=, �=}. Observe also that 〈α〉 ≡ 〈α = ε〉 ∨ 〈α �= ε〉, so we can restrict ourselves to the fragment without formulas 
of the form 〈α〉.

For the case of path expressions, there is no such possible elimination of ∪. Indeed the path expression α2 of Example 2
cannot be restated without using ∪. The reason of this is that there are no intersections or complementations of path 
expressions (in §4 and §5 we will study this issue).

2.3. Equivalences and syntactic measures

Let T and T ′ be data trees, and let u ∈ T , u′ ∈ T ′ . We say that T , u and T ′, u′ are equivalent for XPath=(↑↓) [resp.
equivalent for XPath=(↓)] (notation: T , u ≡↑↓ T ′, u′ [resp. T , u ≡↓ T ′, u′]) iff for all node expressions ϕ ∈ XPath=(↑↓)

[resp. ϕ ∈ XPath=(↓)], we have T , u |= ϕ iff T ′, u′ |= ϕ .
We write dd(ϕ) to denote the downward depth of ϕ , which measures ‘how deep’ the formula can see, and it is defined 

as follows:

dd(a) = 0 dd(λ) = 0

dd(ϕ ∧ ψ) = max{dd(ϕ),dd(ψ)} dd(εα) = dd(α)

dd(¬ϕ) = dd(ϕ) dd([ϕ]α) = max{dd(ϕ),dd(α)}
dd(〈α〉) = dd(α) dd(↓α) = 1 + dd(α)

dd(〈α � β〉) = max{dd(α),dd(β)}
where a ∈A, � ∈ {=, �=}, and α is any path expression or the empty string λ. Let �-XPath=(↓) be the fragment of XPath=(↓)

consisting of all node expressions ϕ with dd(ϕ) ≤ �.
We say that T , u and T ′, u′ are �-equivalent for XPath=(↓) (notation: T , u ≡↓

� T ′, u′) iff for all node expression 
ϕ ∈ �-XPath=(↓), we have T , u |= ϕ iff T ′, u′ |= ϕ .

For the vertical fragment of XPath= , we need to define both the maximum distance r going downward and the maximum 
distance s going upward that the formula can reach. We call the pair (r, s) the vertical depth of a formula (notation: vd(ϕ)). 
The nesting depth of a formula ϕ (notation: nd(ϕ)) is the maximum number of nested [ ] appearing in ϕ .

vd(a) = (0,0) vd(λ) = (0,0)

vd(ϕ ∧ ψ) = max{vd(ϕ),vd(ψ)} vd(εα) = vd(α)

vd(¬ϕ) = vd(ϕ) vd([ϕ]α) = max{vd(ϕ),vd(α)}
vd(〈α〉) = vd(α) vd(↓α) = max{(0,0),vd(α) + (1,−1)}

vd(〈α � β〉) = max{vd(α),vd(β)} vd(↑α) = max{(0,0),vd(α) + (−1,1)}
nd(a) = 0 nd(αβ) = max{nd(α),nd(β)}

nd(ϕ ∧ ψ) = max{nd(ϕ),nd(ψ)} nd(ε) = 0

nd(¬ϕ) = nd(ϕ) nd([ϕ]) = 1 + nd(ϕ)

nd(〈α〉) = nd(α) nd(↓) = 0

nd(〈α � β〉) = max{nd(α),nd(β)} nd(↑) = 0

where, a ∈A, � ∈ {=, �=}, the operations ‘+’ and ‘max’ are performed component-wise, and α is any path expression or the 
empty string λ.

Let (r, s, k)-XPath=(↑↓) be the set of node expressions ϕ in XPath=(↑↓) with vd(ϕ) ≤ (r, s) and nd(ϕ) ≤ k. Let T , u and 
T ′, u′ be pointed data trees. We say that T , u and T ′, u′ are (r, s, k)-equivalent for XPath=(↑↓) (notation: T , u ≡↑↓

r,s,k T ′, u′) 
if they satisfy the same node expressions of (r, s, k)-XPath=(↑↓).

2.4. Bisimulations

In [10] the notions of downward and vertical bisimulations are introduced. We reproduce them here, as they are key 
concepts for our results.

Let us start with the notions of bisimulation for the downward fragment of XPath= . We say that u ∈ T and u′ ∈ T ′ are
bisimilar for XPath=(↓) (or ↓-bisimilar; notation: T , u ↔↓ T ′, u′) iff there is a relation Z ⊆ T × T ′ such that u Zu′ and for 
all x ∈ T and x′ ∈ T ′ we have

• Harmony: If xZ x′ then label(x) = label(x′).

• Zig: If xZ x′ , x
n→v and x

m→w then there are v ′, w ′ ∈ T ′ such that x′ n→v ′ , x′ m→w ′ and
1. data(v) = data(w) ⇔ data(v ′) = data(w ′),

2. (
i→v) Z (

i→v ′) for all 0 ≤ i < n, and
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Fig. 2. Two data trees and an XPath=(↓)-bisimulation between them (represented by dotted lines).

3. (
i→w) Z (

i→w ′) for all 0 ≤ i < m.

• Zag: If xZ x′ , x′ n→v ′ and x′ m→w ′ then there are v, w ∈ T such that x
n→v , x

m→w and items 1, 2 and 3 above are verified.

See Fig. 2, taken from [10] for an example of a ↓-bisimulation. Notice that all pairs of leaves can be in a downward 
bisimulation relation as long as they have the same label.

There is also a notion of step-by-step bisimulation for the downward fragment. We say that u ∈ T and u′ ∈ T ′ are
�-bisimilar for XPath=(↓) (notation: T , u ↔↓

� T ′, u′) if there is a family of relations (Z j) j≤� in T × T ′ such that u Z�u′ and 
for all j ≤ �, x ∈ T and x′ ∈ T ′ we have

• Harmony: If xZ j x′ then label(x) = label(x′).

• Zig: If xZ j x′ , x
n→v and x

m→w with n, m ≤ j then there are v ′, w ′ ∈ T ′ such that x′ n→v ′ , x′ m→w ′ and
1. data(v) = data(w) ⇔ data(v ′) = data(w ′),

2. (
i→v) Z j−n+i (

i→v ′) for all 0 ≤ i < n, and

3. (
i→w) Z j−m+i (

i→w ′) for all 0 ≤ i < m.

• Zag: If xZ j x′ , x′ n→v ′ and x′ m→w ′ with n, m ≤ j then there are v, w ∈ T such that x
n→v , x

m→w and items 1, 2 and 3 
above are verified.

The following result of [10] establishes the connection between bisimulation and equivalence for the downward frag-
ment:

Theorem 3.

1. T , u ↔↓ T ′, u′ implies T , u ≡↓ T ′, u′ . The converse is not true in general, but it holds when T and T ′ are finitely branching.

2. T , u ↔↓
� T ′, u′ iff T , u ≡↓

� T ′, u′ .

Let us turn to bisimulation notions for the vertical fragment of XPath= . We say that u ∈ T and u′ ∈ T ′ are bisimilar for 
XPath=(↑↓) (or ↑↓-bisimilar; notation: T , u ↔↑↓ T ′, u′) iff there is a relation Z ⊆ T × T ′ such that u Zu′ and for all x ∈ T
and x′ ∈ T ′ we have

• Harmony: If xZ x′ then label(x) = label(x′),

• Zig: If xZ x′ , y
n→x and y

m→z then there are y′, z′ ∈ T ′ such that y′ n→x′ , y′ m→z′ , data(z) = data(x) ⇔ data(z′) = data(x′), 
and zZ z′ .

• Zag: If xZ x′ , y′ n→x′ and y′ m→z′ then there are y, z ∈ T such that y
n→x, y

m→z, data(z) = data(x) ⇔ data(z′) = data(x′), 
and zZ z′ .

The notion of step by step bisimulation for XPath=(↑↓) is as follows: We say that u ∈ T and u′ ∈ T ′ are (r, s, k)-bisimilar 
for XPath=(↑↓) (notation: T , u ↔↑↓

r,s,k T ′, u′) if there is a family of relations (Zk̂
r̂,ŝ

)r̂+ŝ≤r+s,k̂≤k in T × T ′ such that u Zk
r,su′ and 

for all r̂ + ŝ ≤ r + s, ̂k ≤ k, x ∈ T and x′ ∈ T ′ we have that the following conditions hold.

• Harmony: If xZk̂
r̂,ŝ

x′ then label(x) = label(x′).

• Zig: If xZk̂
r̂,ŝ

x′ , y
n→x and y

m→z with n ≤ ŝ and m ≤ r̂ + n then there are y′, z′ ∈ T ′ such that y′ n→x′ , y′ m→z′ , and the 
following hold
1. data(z) = data(x) ⇔ data(z′) = data(x′),
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2. if k̂ > 0, zZk̂−1
r̂′,ŝ′ z′ for r̂′ = r̂ + n − m, ŝ′ = ŝ − n + m.

• Zag: If xZk̂
r̂,ŝ

x′ , y′ n→x′ and y′ m→z′ with n ≤ ŝ and m ≤ r̂ + n then there are y, z ∈ T such that y
n→x, y

m→z, and items (1) 
and (2) above are verified.

The following result of [10] establishes the connection between bisimulation and equivalence for the vertical fragment:

Theorem 4.

1. T , u ↔↑↓ T ′, u′ implies T , u ≡↑↓ T ′, u′ . The converse is not true in general, but it holds when T and T ′ are finitely branching.

2. T , u ↔↑↓
r,s,k·(r+s+2)

T ′, u′ implies T , u ≡↑↓
r,s,k T ′, u′ .

3. T , u ≡↑↓
r,s,k T ′, u′ implies T , u ↔↑↓

r,s,k T ′, u′ .

2.5. Connection to first order logic

We fix the signature σ with binary relations � and ∼, and a unary predicate Pa for each a ∈A. Any data tree T can be 
seen as a first-order σ -structure, where

�T = {(x, y) ∈ T 2 | x → y in T };
∼T = {(x, y) ∈ T 2 | data(x) = data(y)};
PT

a = {x ∈ T | label(x) = a}.
If ϕ(x) is a first-order formula with a free variable x, we use T |= ϕ[a], as usual, to denote that ϕ is true in T under 

the valuation which maps x to a ∈ T . In [10] it is shown a truth preserving translation Trx mapping XPath=(↑↓)-node 
expressions into first-order σ -formulas with one free variable x. The following translation is slightly more clear than the 
one described in [10], and it also considers translation of path expressions (resulting in first-order formulas with two 
variables):

Trx(a) = Pa(x) (a ∈A)

Trx(ϕ † ψ) = Trx(ϕ) † Trx(ψ) († ∈ {∧,∨})

Trx(¬ϕ) = ¬Trx(ϕ)

Trx(〈α〉) = (∃y)Trx,y(α) (y a fresh variable)

Trx(〈α = β〉) = (∃y)(∃z)
(

y ∼ z ∧ Trx,y(α) ∧ Trx,z(β)
)

(y, z fresh variables)

Trx(〈α �= β〉) = (∃y)(∃z)
(

y � z ∧ Trx,y(α) ∧ Trx,z(β)
)

(y, z fresh variables)

Trx,y(ε) = (x = y)

Trx,y(↓) = (x � y)

Trx,y(↑) = (y � x)

Trx,y(αβ) = (∃z)
(
Trx,z(α) ∧ Trz,y(β)

)
(z a fresh variable)

Trx,y(α ∪ β) = Trx,y(α) ∨ Trx,y(β)

Trx,y([ϕ]) = Trx(ϕ) ∧ (x = y).

It is easy to see that the above translation is truth preserving:

Proposition 5. If ϕ is a node expression of XPath=(↑↓) then T , u |= ϕ iff T |= Trx(ϕ)[u]. If α is a path expression of XPath=(↑↓)

then T , u, v |= α iff T |= Trx,y(α)[u, v].

3. Definability via node expressions

3.1. Saturation

In [10] it is shown that the reverse implication of Theorem 3 holds over finitely branching trees. However, it does not 
hold in general. In this section we introduce notions of saturation for the downward and vertical fragments of XPath, and 
show that the reverse implication of Theorem 3 is true over saturated data trees.
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Saturation for the downward fragment. Let 〈�1, . . . , �n〉 and 〈�1, . . . , �m〉 be tuples of sets of XPath=(↓)-node expressions. 
Given a data tree T and u ∈ T , we say that 〈�1, . . . , �n〉 and 〈�1, . . . , �m〉 are =↓

n,m-satisfiable [resp. �=↓
n,m-satisfiable] at 

T , u if there exist v0 → v1 → ·· · → vn ∈ T and w0 → w1 → ·· · → wm ∈ T such that u = v0 = w0 and

1. for all i ∈ {1, . . . , n}, T , vi |= �i ;
2. for all j ∈ {1, . . . , m}, T , w j |= � j ; and
3. data(vn) = data(wm) [resp. data(vn) �= data(wm)].

We say that 〈�1, . . . , �n〉 and 〈�1, . . . , �m〉 are =↓
n,m-finitely satisfiable [resp. �=↓

n,m-finitely satisfiable] at T , u if for every 
finite �′

i ⊆ �i and finite �′
j ⊆ � j , we have that 〈�′

1, . . . , �′
n〉 and 〈�′

1, . . . , �
′
m〉 are =↓

n,m-satisfiable [resp. �=↓
n,m-satisfiable] at 

T , u.

Definition 6. We say that a data tree T is ↓-saturated if for every n, m ∈ N, every pair of tuples 〈�1, . . . , �n〉 and 
〈�1, . . . , �m〉 of sets of XPath=(↓)-node expressions, every u ∈ T , and 
 ∈ {=, �=}, the following is true:

if 〈�1, . . . , �n〉 and 〈�1, . . . , �m〉 are 

↓
n,m-finitely satisfiable at T , u then 〈�1, . . . , �n〉 and 〈�1, . . . , �m〉 are 


↓
n,m-

satisfiable at T , u.

Proposition 7. Any finitely branching data tree is ↓-saturated.

Proof. Suppose by contradiction that there is u ∈ T and tuples 〈�1, . . . , �n〉 and 〈�1, . . . , �m〉 of sets of XPath=(↓)-node 
expressions which are finitely =↓

n,m-satisfiable at T , u but not =↓
n,m-satisfiable at T , u (the case for T being �=↓

n,m-satisfiable 
is analogous). Let

P = {(v, w) ∈ T 2 | u
n→v ∧ u

m→w ∧ data(v) = data(w)}.
Observe that P is finite because T is finitely branching. It is clear that if (v, w) ∈ P , so that u = v0 → v1 → ·· · → vn =
v ∈ T , and u = w0 → w1 → ·· · → wm = w ∈ T then either

1. there is i ∈ {1, . . . , n} such that T , vi �|= �i , or
2. there is j ∈ {1, . . . , m} such that T , w j �|= � j .

We will define sets (�i,v,w )1≤i≤n and (� j,v,w)1≤ j≤m , each one of them with at most one element, as follows: If case 1 
holds, assume i0 is the least such number and define �i0,v,w as {ρ} for some node expression ρ ∈ �i0 such that T , vi0 �|= ρ , 
define �i,v,w = ∅ for any i ∈ {1, . . . , n} \ {i0}, and define � j,v,w = ∅ for any j ∈ {1, . . . , m}. If case 1 does not hold then 
case 2 holds, so assume j0 is the least such number and define � j0,v,w as {ρ} for some node expression ρ ∈ � j0 such that 
T , w j0 �|= ρ , define � j,v,w = ∅ for any j ∈ {1, . . . , m} \ { j0}, and define �i,v,w = ∅ for any i ∈ {1, . . . , n}. Finally, define the 
finite sets �′

i = ⋃
(v,w)∈P �i,v,w and �′

j = ⋃
(v,w)∈P � j,v,w . By construction, we have �′

i ⊆ �i , �′
j ⊆ � j and 〈�′

1, . . . , �
′
n〉 and 

〈�′
1, . . . , �

′
m〉 are not =↓

n,m-satisfiable at T , u which is a contradiction. �
Proposition 8. Let T and T ′ be ↓-saturated data trees, and let u ∈ T and u′ ∈ T ′ . If T , u ≡↓ T ′, u′ , then T , u ↔↓ T ′, u′ .

Proof. We show that Z , defined by xZ x′ iff T , x ≡↓ T ′, x′ is a ↓-bisimulation between T , u and T ′, u′ . Clearly u Zu′ , and
Harmony holds. We only need to show that Zig and Zag are satisfied. We see only Zig, as Zag is analogous.

Suppose xZ x′ , x = v0 → v1 → ·· · → vn and x = w0 → w1 → ·· · → wm are paths on T , and data(vn) = data(wm)

(the case data(vn) �= data(wm) is shown analogously). For i ∈ {1, . . . , n}, let �i = Th↓(T , vi), and for j ∈ {1, . . . , m}, let 
� j = Th↓(T , w j). Furthermore, let �′

i be a finite subset of �i , and let �′
j be a finite subset of � j . Define

ϕ = 〈↓[∧�′
1]↓ . . . ↓ [∧�′

n] = ↓[∧�′
1]↓ . . . ↓ [∧�′

m]〉.
It is clear that T , x |= ϕ , and since by definition of Z we have T , x ≡↓ T ′, x′ , we conclude that T ′, x′ |= ϕ . Hence 
〈�′

1, . . . , �
′
n〉 and 〈�′

1, . . . , �
′
m〉 are =↓

n,m-satisfiable at x′ . This holds for any finite sets �′
i ⊆ �i and �′

j ⊆ � j , and so 
〈�1, . . . , �n〉 and 〈�1, . . . , �m〉 are =↓

n,m-finitely satisfiable at x′ . Since T ′ is ↓-saturated, 〈�1, . . . , �n〉 and 〈�1, . . . , �m〉
are =↓

n,m-satisfiable at T ′, x′ , so there are paths x′ = v ′
0 → v ′

1 → ·· · → v ′
n and x′ = w ′

0 → w ′
1 → ·· · → w ′

m on T ′ such that

i. data(v ′
n) = data(w ′

m).
ii. For all 1 ≤ i ≤ n, T ′, v ′

i |= Th↓(T , vi). This implies T , vi ≡↓ T ′, v ′
i : suppose by the way of contradiction that T ′, v ′

i |= ϕ
but T , vi �|= ϕ . Then, T , vi |= ¬ϕ , and thus T ′, v ′

i |= ¬ϕ , a contradiction.
iii. For all 1 ≤ j ≤ m, T ′, w ′ |= Th↓(T , w j), i.e. T , w j ≡↓ T ′, w ′ .
j j
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By the definition of Z , conditions i, ii and iii above imply items 1, 2 and 3 of the Zig clause for ↓-bisimulation. �
Saturation for the vertical fragment. Given a data tree T and u ∈ T , we say that the set of XPath=(↑↓)-node expres-

sions � is =↑↓
n,m-satisfiable [resp. �=↑↓

n,m-satisfiable] at T , u if there exist v, w ∈ T such that v
n→u, v

m→w , w |= � and 
data(u) = data(w) [resp. data(u) �= data(w)]. We say that � is =↑↓

n,m-finitely satisfiable [resp. �=↑↓
n,m-finitely satisfiable] at 

T , u if for every finite �′ ⊆ �, we have that �′ is =↑↓
n,m-satisfiable [resp. =↑↓

n,m-satisfiable] at T , u.

Definition 9. We say that a data tree T is ↑↓-saturated if for every set of XPath=(↑↓)-node expressions �, every u ∈ T , 
every n, m ∈N, and 
 ∈ {=, �=}, the following is true:

if � is 
↑↓
n,m-finitely satisfiable at T , u then � is 
↑↓

n,m-satisfiable at T , u.

Proposition 10. Let T and T ′ be ↑↓-saturated data trees, and let u ∈ T and u′ ∈ T ′ . If T , u ≡↑↓ T ′, u′ , then T , u ↔↑↓ T ′, u′ .

Proof. We show that Z ⊆ T × T ′ , defined by xZ x′ iff T , x ≡↑↓ T ′, x′ is a ↑↓-bisimulation between T , u and T ′, u′ . Clearly 
u Zu′ , and Harmony also holds, so we only need to show that Zig and Zag are satisfied. We see only Zig, as Zag is analogous.

Suppose xZ x′ , y
n→x and y

m→z are in T , and data(x) = data(z) (the case data(x) �= data(z) can be shown analogously). Let 
� = Th↑↓(T , z), and let �′ be a finite subset of �. Define

ϕ = 〈ε = ↑n ↓m [∧�′]〉.
It is clear that T , x |= ϕ , and since by definition of Z we have T , x ≡↑↓ T ′, x′ , we conclude that T ′, x′ |= ϕ . Hence �′ is 
=↑↓

n,m-satisfiable at x′ . This holds for any finite set �′ ⊆ �, and so � is =↑↓
n,m-finitely satisfiable at x′ . Since T ′ is ↑↓-saturated, 

� is =↑↓
n,m-satisfiable at x′ , and thus there are y′ n→x′ and y′ m→z′ on T ′ such that data(x′) = data(z′) and T ′, z′ |= Th↑↓(T , z), 

i.e. T , z ≡↑↓ T ′, z′ . By the definition of Z , we have zZ z′ and hence the Zig clause for ↑↓-bisimulation is verified. �
3.2. Weak data trees and quasi-ultraproducts

For reasons that will become clearer later on, we will need to work with σ -structures which are slightly more general 
than data trees.

Definition 11. A σ -structure T is a weak data tree if ∼ is an equivalence relation; there is exactly one node r with no u
such that u � r (r is called root of T ); for all nodes x �= r there is exactly one y such that y � x; and for each n ≥ 0 the 
relation � has no cycles of length n.

Observe that a weak data tree need not be connected, and that the class of weak data trees is elementary, i.e. definable 
by a set of first-order σ -sentences (with equality). For a weak data tree T and u ∈ T , let T |u denote the substructure of T
induced by {v ∈ T | u �∗ v}. Observe that in this case T |u is a data tree.

The following proposition shows the ‘local’ aspect of XPath=(↓) and XPath=(↑↓). It is stated in terms of first-order 
because models are weak data trees.

Proposition 12. Let T be a weak data tree and let r �∗ u in T .

1. If ϕ is a XPath=(↓)-node expression then T |= Trx(ϕ)[u] iff T |r |= Trx(ϕ)[u].
2. If r is the root of T and ϕ ∈ XPath=(↑↓) then T |= Trx(ϕ)[u] iff T |r |= Trx(ϕ)[u].

Observe that the condition of r being the root in the second item is needed. Suppose for example we are on the data 
tree with only 2 nodes, the root r and its child u, with same data value. Consider now ϕ = 〈ε = ↑〉. Clearly T |= Trx(ϕ)[u], 
but T |u �|= Trx(ϕ)[u].

If M is a first-order σ -structure and A ⊆ M , we denote by σA the language obtained by adding to σ constant symbols 
for each a ∈ A. M can be seen as a σA structure by interpreting the new symbols in the obvious way. Let ThA(M) be the 
set of all σA -sentences true in M. Let κ be a cardinal. We recall the definition of κ-saturated first-order structures:

Definition 13. We say that the σ -structure M is κ-saturated if for all A ⊆ M and all n, if |A| < κ and �(x1, . . . , xn) is a 
set of σA -formulas with free variables among x1, . . . , xn such that �(x1, . . . , xn) ∪ ThA(M) is satisfiable, then �(x1, . . . , xn)

is realized in M.

We now show that 2-saturated data trees are already both downward and vertical saturated. For technical reasons we 
state these results in the more general setting of weak data trees.
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Proposition 14. Let T be a 2-saturated weak data tree and r ∈ T .

1. T |r is a ↓-saturated data tree.
2. If r is the root of T then T |r is a ↑↓-saturated data tree.

Proof. Let T ′ = T |r and let u ∈ T ′ . For item 1, let 〈�1, . . . , �n〉 and 〈�1, . . . , �m〉 be tuples of sets of XPath=(↓)-node ex-
pressions. Suppose 〈�1, . . . , �n〉 and 〈�1, . . . , �m〉 are =↓

n,m-finitely satisfiable at T ′, u (the case for �=↓
n,m-finitely satisfiable 

is analogous). We show that 〈�1, . . . , �n〉 and 〈�1, . . . , �m〉 are =↓
n,m-satisfiable at T ′, u. Consider the following first-order 

σ{u}-formula with free variables x̄ = x1, . . . , xn and ȳ = y1, . . . , ym:

ϕ(x̄, ȳ) = u � x1 ∧
n−1∧
i=1

xi � xi+1 ∧ u � y1 ∧
m−1∧
j=1

y j � y j+1 ∧ xn ∼ ym.

Define the following set of first-order σ{u}-formulas:

�(x̄, ȳ) = {ϕ(x̄, ȳ)} ∪
n⋃

i=1

Trxi (�i) ∪
m⋃

j=1

Try j (� j).

Let �′(x̄, ȳ) be a finite subset of �(x̄, ȳ). Since 〈�1, . . . , �n〉 and 〈�1, . . . , �m〉 are =↓
n,m-finitely satisfiable at T ′, u, then 

�′(x̄, ȳ) is satisfiable and, by item 1 of Proposition 12, consistent with Th{u}(T ). By compactness, �(x̄, ȳ) is satisfiable 
and consistent with Th{u}(T ). By 2-saturation, we conclude that �(x̄, ȳ) is realizable in T , say at v̄ = v1, . . . , vn and 
w̄ = w1, . . . , wm . Thus we have:

i. u � v1 � · · · � vn and u � w1 � · · · � wm in T , and hence in T ′;
ii. for all i ∈ {1, . . . , n}, T |= Trxi (�i)[vi], and for all j ∈ {1, . . . , m}, T |= Try j (� j)[w j]; by item 1 of Proposition 12 this 

implies that T ′ |= Trxi (�i)[vi] and T ′ |= Try j (� j)[w j];
iii. vn ∼ wm in T , and hence in T ′ .

Since Tr is truth preserving, we have that for all i ∈ {1, . . . , n}, T ′, vi |= �i , and for all j ∈ {1, . . . , m}, T ′, wi |= �i . Together 
with i and iii we conclude that 〈�1, . . . , �n〉 and 〈�1, . . . , �m〉 are =↓

n,m-satisfiable at T ′, u.

For item 2, let � be a set of XPath=(↑↓)-node expressions. Suppose � is =↑↓
n,m-finitely satisfiable at T ′, u (the case for 

�=↑↓
n,m-finitely satisfiable is analogous). We show that � are =↑↓

n,m-satisfiable at T ′, u.
Consider the following first-order σ{u}-formula with free variable y:

ϕ(y) = (∃x0 . . .∃xn)(∃y0 . . .∃ym)[xn = u ∧ y = ym ∧ x0 = y0 ∧
n−1∧
i=0

xi � xi+1 ∧
m−1∧
j=0

y j � y j+1 ∧ xn ∼ ym].

Define the following set of first-order σ{u}-formulas: �(y) = {ϕ(y)} ∪ Try(�). Let �′(y) be a finite subset of �(y). Since �
is =↑↓

n,m-finitely satisfiable at T ′, u, then �′(y) is satisfiable and, by item 2 of Proposition 12, consistent with Th{u}(T ). By 
compactness, �(y) is satisfiable and consistent with Th{u}(T ). By 2-saturation, we conclude that �(y) is realizable in T , 
say at w . Thus we have:

iv. There is v ∈ T such that v
n→u and v

m→w in T and hence in T ′;
v. T |= Try(�)[w]; by item 2 of Proposition 12 this implies that T ′ |= Try(�)[w];

vi. u ∼ w in T , and hence in T ′ .

Since Tr is truth preserving, we have that T ′, w |= �. Together with iv and vi we conclude that � is =↑↓
n,m-satisfiable at 

T ′, u. �
In what follows, we introduce the notion of quasi-ultraproduct, a variant of the usual notion of first-order model theory, 

which will be needed for the definability theorems.
Let I �= ∅, let U be an ultrafilter over I and let (Ti)i∈I be a family of data trees. As usual, we denote with 

∏
U Ti the 

ultraproduct of (Ti)i∈I modulo U . Observe that by the fundamental theorem of ultraproducts (see e.g. [4, Thm. 4.1.9]), 
∏

U Ti
is a weak data tree σ -structure—though it may not be a data tree because it may be disconnected, as it is shown next:

Example 15. For i ∈ N, let Ti be any data tree of height at least i, and let ui be any node of Ti at distance i from the 
root of Ti . Let ϕn(x) be the first-order property “x is at distance at least n from the root”. It is clear that Tm |= ϕn[um] for 
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every m ≥ n. Let u∗ be the ultralimit of (ui)i∈I modulo U . Since {m | m ≥ n} ∈ U for any non-principal U , we conclude that ∏
U Ti |= ϕn[u∗] for every n, and so u∗ is disconnected from the root of 

∏
U Ti .

Let (Ti, ui)i∈I be a family of pointed data trees. The ultraproduct of such pointed data trees is defined, as usual, by 
(
∏

U Ti, u∗), where u∗ is the ultralimit of (ui)i∈I modulo U .

Definition 16. Suppose (Ti, ui)i∈I is a family of pointed data trees, ri is the root of Ti , U is an ultrafilter over I , T ∗ = ∏
U Ti , 

and u∗ and r∗ are the ultralimits of (ui)i∈I and (ri)i∈I modulo U respectively.

1. The ↓-quasi ultraproduct of (Ti, ui)i∈I modulo U is the pointed data tree (T ∗|u∗, u∗).
2. The ↑↓-quasi ultraproduct of (Ti, ui)i∈I modulo U is the pair (T ∗|r∗, u∗).

Observe that both T ∗|u∗ and T ∗|r∗ are data trees. However, while u∗ is in the domain of the former, it may not be in 
the domain of the latter (cf. Example 15). Hence, in general, pointed data trees are not closed under ↑↓-quasi ultraproduct. 
Let k ≥ 0, let T be a data tree and let u ∈ T . We say that T , u is a k-bounded pointed data tree if u is at distance at most 
k from the root of T . In particular, if r is the root of T (as it is often the case) then T , r is a 0-bounded pointed data tree. 
The following proposition states that k-bounded data trees are closed under ↑↓-quasi ultraproducts.

Proposition 17. Let (Ti, ui)i∈I be a family of k-bounded pointed data trees. Then the ↑↓-quasi ultraproduct of (Ti, ui)i∈I is a k-bounded 
pointed data tree.

Proof. Let (T ↑↓, u∗) be the ↑↓-quasi ultraproduct of (Ti, ui)i∈I modulo U . By definition it is clear that T ↑↓ is a data tree. 
To see that u∗ ∈ T ↑↓ , let

ϕ(x) = (∃r) [¬(∃y)y � r ∧ [r = x ∨ r � x ∨∨
1≤i<k

(∃z1 . . .∃zi)[r � z1 ∧ zi−1 � x ∧
∧

1≤ j<i−1

z j � z j+1]]],

which is a first-order formula for “r is the root and x is at distance at most k from r”. Since for every i ∈ I we have 
Ti |= ϕ[ui], we conclude that T ↑↓ |= ϕ[u∗] and hence u∗ is at distance at most k from the root of T ↑↓ . �

As a particular case one has the notion of ↓-quasi ultrapower and ↑↓-quasi ultrapower of a family of pointed data trees. 
Observe that if (T ↑↓, u∗) is the ↑↓-quasi ultrapower of (T , u)i∈I then u∗ belongs to the domain of T ↑↓ and so (T ↑↓, u∗) is 
a pointed data tree.

3.3. Definability

In this section we state the main results. If K is a class of pointed data trees, we denote its complement by K . We begin 
with the downward fragment.

Lemma 18. Let (T , u) and (T ′, u′) be two pointed data trees such that T , u ≡↓ T ′, u′ . Then there exist ↓-quasi ultrapowers (T ↓, u∗)
and (T ′ ↓, u′ ∗) of (T , u) and (T ′, u′) respectively such that (T ↓, u∗) ↔↓ (T ′ ↓, u′ ∗).

Proof. It is known that there is a suitable ultrafilter U such that 
∏

U T and 
∏

U T ′ are ω-saturated (see e.g. [2, Lem-
ma 2.7.3]). By item 1 of Proposition 14, T ↓ = (

∏
U T )|u∗ and T ↓ = (

∏
U T ′)|u′ ∗ are ↓-saturated data trees. By hypothesis 

T , u ≡↓ T ′, u′ , and hence T ↓, u∗ ≡↓ T ′ ↓, u′ ∗ . Finally, by Proposition 8, T ↓, u∗ ↔↓ T ′ ↓, u′ ∗ . �
Lemma 19. Let K be a class of pointed data trees and let � be a set of XPath=(↓)-node expressions finitely satisfiable in K . Then � is 
satisfiable in some ↓-quasi ultraproduct of pointed data trees in K .

Proof. Let I = {�0 ⊂ � | �0 is finite} and for each ϕ ∈ �, let ϕ̂ = {i ∈ I | ϕ ∈ i}. Then the set E = {ϕ̂ | ϕ ∈ �} has the finite 
intersection property: {ϕ1, . . . , ϕn} ∈ ϕ̂1 ∩ · · · ∩ ϕ̂n . By the Ultrafilter Theorem (see [4, Proposition 4.1.3]) E can be extended 
to an ultrafilter U over I .

Since � is finitely satisfiable in K , for each i ∈ I there is (Ti, ui) ∈ K such that Ti, ui |= i. Let (T ↓, u∗) be the ↓-quasi ul-
traproduct of (Ti, ui)i∈I modulo U . We show that T ↓, u∗ |= �: let ϕ ∈ �. Then ϕ̂ ∈ E ⊆ U and ϕ̂ ⊂ {i ∈ I | Ti, ui |= ϕ}. Hence 
{i ∈ I | Ti, ui |= ϕ} ∈ U , which implies that 

∏
U Ti |= Trx(ϕ)[u∗], where u∗ is the ultralimit of (ui)i∈I . Since T ↓ = (

∏
U Ti)|u∗ , 

by item 1 of Proposition 12 we conclude that T ↓, u∗ |= ϕ . �
Theorem 20. Let K be a class of pointed data trees. Then K is definable by a set of XPath=(↓)-node expressions iff K is closed under 
↓-bisimulations and ↓-quasi ultraproducts, and K is closed under ↓-quasi ultrapowers.
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Proof. For (⇒), suppose that K is definable by a set of XPath=(↓)-node expressions. By Theorem 3 it is clear that K is 
closed under ↓-bisimulations. By the fundamental theorem of ultraproducts together with item 1 of Proposition 12 it is 
clear that K is closed under ↓-quasi ultraproducts. It is also clear that the fundamental theorem of ultraproducts and the 
fact that any XPath=(↓)-node expression is expressible in first-order imply that T , u ≡↓ T ↓, u∗ for any (T ↓, u∗) ↓-quasi 
ultrapower modulo U , and therefore that K is closed under ↓-quasi ultrapowers.

For (⇐), suppose K is closed under bisimulations and ↓-quasi ultraproducts, and K is closed under ↓-quasi ultrapowers. 
We show that � = ⋂

(T ,u)∈K Th↓(T , u) defines K . It is clear that if (T , u) ∈ K then T , u |= �.
Now suppose that T , u |= � and consider � = Th↓(T , u). Let � be a finite subset of �, and assume that � is not 

satisfiable in K . Then, ¬ ∧ � is true in every pointed data tree of K , so ¬ ∧ � ∈ �. Therefore T , u |= ¬ ∧ � which is a 
contradiction because � ⊆ �. This shows that � is finitely satisfiable in K .

By Lemma 19, � is satisfiable in some ↓-quasi ultraproduct of pointed data trees in K , and since K is closed under 
↓-quasi ultraproducts, � is satisfiable in K . Then there exists (T ′, u′) ∈ K such that T ′, u′ |= � and therefore T , u ≡↓ T ′, u′ . 
By Lemma 18, there exist ↓-quasi ultrapowers (T ↓, u∗) and (T ′ ↓, u′ ∗) of (T , u) and (T ′, u′) respectively such that 
(T ↓, u∗) ↔↓ (T ′ ↓, u′ ∗). Since K is closed under ↓-bisimulations, (T ↓, u∗) ∈ K . Suppose (T , u) ∈ K . Since K is closed under 
↓-quasi ultrapowers, (T ↓, u∗) ∈ K , and this is a contradiction. Hence we conclude (T , u) ∈ K . �
Theorem 21. Let K be a class of pointed data trees. Then K is definable by an XPath=(↓)-node expression iff both K and K are closed 
under ↓-bisimulations and ↓-quasi ultraproducts.

Proof. For (⇒) suppose that K is definable by an XPath=(↓)-node expression. By Theorem 3 it is clear that K and K are 
closed under bisimulations. By the fundamental theorem of ultraproducts together with item 1 of Proposition 12 it is clear 
that K and K are closed under ↓-quasi ultraproducts.

For (⇐) suppose K and K are closed under bisimulations and ↓-quasi ultraproducts. Then, by Theorem 20, there exist 
sets �1 and �2 of XPath=(↓)-node expression defining K and K respectively. Consider the set of XPath=(↓)-node expres-
sions �1 ∪ �2. This set is clearly inconsistent and so, by compactness, there are finite sets �1 and �2 such that �i ⊆ �i
(i = 1, 2) and

T , u |= ∧�1 → ¬ ∧ �2 (6)

for any pointed data tree (T , u). We show that ϕ = ∧�1 defines K . On the one hand, it is clear that if (T , u) ∈ K then 
T , u |= ϕ . On the other hand, suppose that T , u |= ϕ . From (6) we conclude T , u |= ¬ ∧ �2 and so T , u �|= �2. Then 
(T , u) /∈ K as we wanted to prove. �

Like Theorem 21, the following result characterizes when a class of pointed data trees is definable by a single 
XPath=(↓)-node expression. However, instead of using the rather abstract notion of ↓-quasi ultraproducts, it uses the per-
haps more natural notion of �-bisimulation.

Theorem 22. Let K be a class of pointed data trees. Then K is definable by a node expression of XPath=(↓) iff K is closed by 
�-bisimulations for XPath=(↓) for some �.

Proof. (⇒) is a direct consequence of Theorem 3. Let us see (⇐). We know [10, Corollary 3.2] that {T ′, u′ | T , u ≡↓
� T ′, u′}

is definable by an XPath=(↓)-node expression χ�,T ,u of downward depth ≤ �. We show that

ϕ =
∨

(T ,u)∈K

χ�,T ,u

defines K . In [10, Proposition 3.1] it is shown that ≡↓
� has finite index, and therefore the above disjunction is equivalent to 

a finite one. On the one hand, if (T ′, u′) ∈ K then it is clear that T ′, u′ |= χ�,T ′,u′ and so T ′, u′ |= ϕ . On the other hand, we 
have T ′, u′ |= ϕ iff there is (T , u) ∈ K such that T ′, u′ |= χ�,T ,u iff there is (T , u) ∈ K such that T , u ↔↓

� T ′, u′ . Hence since 
K is closed under ↔↓

� , if T ′, u′ |= ϕ we have (T ′, u′) ∈ K . �
We turn to the vertical fragment.

Lemma 23. Let (T , u) and (T ′, u′) be two pointed data trees such that T , u ≡↑↓ T ′, u′ . Then there exist ↑↓-quasi ultrapowers 
(T ↑↓, u∗) and (T ′ ↑↓, u′ ∗) of (T , u) and (T ′, u′) respectively such that (T ↑↓, u∗) ↔↑↓ (T ′ ↑↓, u′ ∗).

Proof. The proof is analogous to the proof of Lemma 18 but using item 2 instead of item 1 of Proposition 14 and Proposi-
tion 10 instead of Proposition 8. �
Lemma 24. Let K be a class of k-bounded pointed data trees and let � be a set of XPath=(↑↓)-node expressions finitely satisfiable 
in K . Then � is satisfiable in some ↑↓-quasi ultraproduct of pointed data trees in K .
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Proof. The proof is analogous to the proof of Lemma 19 but taking ↑↓-quasi ultraproducts instead of ↓-quasi ultraproducts 
and using item 2 instead of item 1 of Proposition 12. To apply this Proposition, one has to note that u∗ ∈ T ↑↓ since the 
Ti, ui are k-bounded pointed. �

In the next two theorems, the universe of pointed data trees is restricted to those which are k-bounded (for any fixed k). 
Therefore, the operations of closure and complement must be taken with respect to this universe.

Theorem 25. Over k-bounded pointed data trees: K is definable by a set of XPath=(↑↓)-node expressions iff K is closed under 
↑↓-bisimulations and ↑↓-quasi ultraproducts, and K is closed under ↑↓-quasi ultrapowers.

Proof. The proof is analogous to the proof of Theorem 20 but replacing pointed data trees for k-bounded pointed data trees 
and every occurrence of ↓ for ↑↓. Also, for (⇒), one has to use item 2 instead of item 1 of Proposition 12 and for (⇐), 
Lemmas 24 and 23 instead of Lemmas 19 and 18. �
Theorem 26. Over k-bounded pointed data trees: K is definable by an XPath=(↑↓)-node expression iff both K and K are closed under 
↑↓-bisimulations and ↑↓-quasi ultraproducts.

As in Theorem 22, one can also restate Theorem 26 in terms of (r, s, k)-bisimulations for XPath=(↑↓).

Theorem 27. Let K be a class of pointed data trees. Then K is definable by a node expression of XPath=(↑↓) iff K is closed by 
(r, s, k)-bisimulations for XPath=(↑↓) for some r, s, k.

3.4. Separation

The theorem of Separation for first-order is closely related to Definability: it provides conditions to separate two disjoint 
classes of models K1 and K2 by means of a first-order formula, i.e. to find a class K , definable by a first-order formula or 
by a single formula, such that K1 ⊆ K and K ∩ K2 = ∅.

Theorem 28. Let K1 and K2 be two disjoint classes of pointed data trees such that K1 is closed under ↓-bisimulations and ↓-quasi 
ultraproducts and K2 is closed under ↓-bisimulations and ↓-quasi ultrapowers. Then there exists a third class K which is definable by 
a set of XPath=(↓)-node expressions, contains K1 and is disjoint from K2.

Proof. Let K = {(T ′, u′) | there is (T , u) ∈ K1 such that T , u ≡↓ T ′, u′}. Clearly, K1 ⊆ K . We first show that K ∩ K2 = ∅. 
Suppose that there is a pointed model (T ′, u′) ∈ K ∩ K2. Then, there exists (T , u) ∈ K1 such that T , u ≡↓ T ′, u′ and, 
by Lemma 18, there exist ↓-quasi ultrapowers (T ↓, u∗) and (T ′ ↓, u′ ∗) of (T , u) and (T ′, u′) respectively such that 
T ↓, u∗ ↔↓ T ′ ↓, u′ ∗ . Since K1 is closed under ↓-quasi ultraproducts and ↓-bisimulations and K2 is closed under ↓-quasi 
ultrapowers, (T ′ ↓, u′ ∗) ∈ K1 ∩ K2 which is a contradiction.

To conclude the proof, we show that K is definable by a set of XPath=(↓)-node expressions. By Theorem 20, it is enough 
to check that K is closed under ↓-bisimulations and ↓-quasi ultraproducts and K is closed under ↓-quasi ultrapowers. Clearly, 
K is closed under ↓-bisimulations, as ↔↓ implies ≡↓ . Now, let (T ′

i , u′
i)i∈I be a family of pointed data trees contained in K . 

Then, for all i ∈ I , there is (Ti, ui) ∈ K1 such that Ti, ui ≡↓ T ′
i , u′

i . By the fundamental theorem of ultraproducts, if U is 
an ultrafilter over I and T ∗, u∗ , T ′ ∗, u′ ∗ are the ultraproducts of the families (Ti, ui)i∈I and (T ′

i , u′
i)i∈I respectively, then 

(T ∗, u∗) ≡↓ (T ′ ∗, u′ ∗), and by Proposition 12 (T ↓, u∗) ≡↓ (T ′ ↓, u′ ∗). Now, since K1 is closed under ↓-quasi ultraproducts, 
(T ′ ↓, u′ ∗) ∈ K which proves that K is closed under ↓-quasi ultraproducts. Finally, let (T ′, u′) ∈ K . Suppose that (T ′ ↓, u′ ∗), 
some ↓-quasi ultrapower of (T ′, u′), belongs to K . By the fundamental theorem of ultraproducts, (T ′ ↓, u′ ∗) ≡↓ (T ′, u′). So, 
since K is closed under ≡↓ , (T ′, u′) ∈ K , which is a contradiction. �
Theorem 29. Let K1 and K2 be two disjoint classes of pointed data trees closed under ↓-bisimulations and ↓-quasi ultraproducts. Then 
there exists a third class K which is definable by an XPath=(↓)-node expression, contains K1 and is disjoint from K2.

Proof. By Theorem 28, there exists a class K ′ definable by a set of XPath=(↓)-node expressions �1, containing K1 and 
disjoint from K2. Observe that as a consequence of Theorem 3, such K ′ is closed under ↓-bisimulations and ↓-quasi ul-
traproducts. Using Theorem 28 again for K2 and K ′ , we have another class K ′′ also definable by a set of XPath=(↓)-node 
expressions �2, containing K2 and disjoint from K ′ .

Now consider the set of XPath=(↓)-node expressions �1 ∪ �2. This set is clearly inconsistent and so, by com-
pactness, there are finite sets �1 and �2 such that �i ⊆ �i (i = 1, 2) and 

∧
�1 ∧ ∧

�2 is unsatisfiable. Now let 
K = {T , u | T , u |= ∧

�1}. This K satisfies the desired properties, as K1 ⊂ K ′ ⊂ K and K2 ∩ K ⊂ K ′′ ∩ K = ∅. �
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The same proofs apply for the case of XPath=(↑↓), using the corresponding notions of bisimulations and quasi ultraprod-
ucts and Lemmas 23 and 25 instead of Lemmas 18 and 20, with the proviso that the universe of data trees are restricted to 
those which are k-bounded (and so operations of closure and complement must be taken with respect to this universe).

4. Binary bisimulations

We introduce notions of binary bisimulations for the downward and vertical fragments. These notions are suitable in the 
sense that they capture the idea of indistinguishability by path expressions. For the case of the downward fragment, we show 
a van Benthem-like characterization theorem.

4.1. Downward

4.1.1. Some facts about path expressions over XPath=(↓)

The proofs of Theorem 3 or Theorem 4 of [10] assume that node expressions of XPath=(↓) do not contain any ∪. Indeed, 
as explained at the end of §2.2, any ∪ of a path expression can be simulated with a ∨ within a suitable node expression. 
However, we have seen that it is not true that any XPath=(↓)-path expression is equivalent to a ∪-free one. Hence, in 
our context of studying a notion of binary bisimulation which captures the idea of indistinguishability by path expressions, we 
need to develop first some results that allow us to deal with the ∪ operator. Another difference with respect of the previous 
work is that there are no intersection nor complementation of path expressions. As we will see next, under certain contexts, 
we can define them within the language of XPath=(↓).

Definition 30. If α is of the form α = [ϕ0] ↓ [ϕ1] ↓ . . . ↓ [ϕn], we say that it is in simple normal form, and we say that the 
length of α (notation: len(α)) is n.

Fact 31. For each ∪-free XPath=(↓) path expression α there is an XPath=(↓) path expression β in simple normal form such 
that dd(β) = dd(α) and for all data tree T , we have �α�T = �β�T .

Fact 32. If α is a ∪-free XPath=(↓) path expression then T , x, y |= α implies x
n→y in T , where n = len(α).

The ∪ operator is unessential for distinguishing two pairs of nodes:

Lemma 33. If T , x, y |= α and T ′, x′, y′ �|= α then there is a ∪-free XPath=(↓) path expression α̃ with dd(α̃) ≤ dd(α) such that 
T , x, y |= α̃ and T ′, x′, y′ �|= α̃.

Proof. We show it by induction on α. The only interesting case is when α = α1 ∪ α2. Since T , x, y |= α then there is 
i ∈ {1, 2} such that T , x, y |= αi . Since T ′, x′, y′ �|= α then T ′, x′, y′ �|= αi . By inductive hypothesis there is α̃i which is ∪-free 
and such that T , x, y |= α̃i and T ′, x′, y′ �|= α̃i . �

The following lemma gives us a restricted form of negation for path expressions:

Lemma 34. Let x n→y in T and x′ n→y′ in T ′ . If α is an ∪-free XPath=(↓) path expression such that T , x, y |= α and T ′, x′, y′ �|= α
then there is a ∪-free path expression α such that dd(α) = dd(α) and T , x, y �|= α and T ′, x′, y′ |= α.

Proof. By Fact 31 we can assume that α is in simple normal form, say α = [ϕ0] ↓ [ϕ1] ↓ . . . ↓ [ϕn]. Let x = x0→x1→ . . .→
xn = y and x′ = x′

0→x′
1→ . . .→x′

n = y′ . Since T , x, y |= α and T ′, x′, y′ �|= α there is i such that xi |= ϕi and x′
i �|= ϕi . One 

can check that α = ↓i[¬ϕi]↓n−i is as we wanted. �
The following lemma simplifies many of the proofs, and it will be used frequently and without mention.

Lemma 35. If α is a XPath=(↓) path expression, it is equivalent to a XPath=(↓) path expression of the form β1 ∪ · · · ∪ βn, with the βi
in simple normal form.

Definition 36. If α = [ϕ0] ↓ [ϕ1] ↓ . . . ↓ [ϕi] and β = [ψ0] ↓ [ψ1] ↓ . . . ↓ [ψi] are XPath=(↓) path expressions of the same 
length in simple normal form, we define the intersection of α and β as

α ∩ β := [ϕ0 ∧ ψ0] ↓ [ϕ1 ∧ ψ1] ↓ . . . ↓ [ϕi ∧ ψi]. (7)

Fact 37. If α and β are XPath=(↓) path expressions in simple normal form of the same length, then dd(α ∩ β) =
max{dd(α), dd(β)}, and for every data tree T , we have �α ∩ β�T = �α�T ∩ �β�T .
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4.1.2. Equivalence for XPath=(↓) path expressions
For a data tree T , let us define

D(T ) = {(u, v) ∈ T 2 | u
∗→v},

and for � ≥ 0,

D�(T ) = {(u, v) ∈ T 2 | u
≤�→v}.

We say that (x, y) ∈ D(T ) and (x′, y′) ∈ D(T ′) are equivalent for XPath=(↓) path expressions (notation: T , x, y ≡↓
T ′, x′, y′) if for all XPath=(↓) path expressions α, we have T , x, y |= α iff T ′, x′, y′ |= α. We say that (x, y) ∈ D�(T ) and 
(x′, y′) ∈ D�(T ′) are �-equivalent for XPath=(↓) path expressions (notation: T , x, y ≡↓

� T ′, x′, y′) if for all XPath=(↓) path 
expressions α with dd(α) ≤ �, we have T , x, y |= α iff T ′, x′, y′ |= α.

Of course, one could have defined T , x, y ≡↓ T ′, x′, y′ even for pairs (x, y) /∈ D(T ) or for pairs (x′, y′) /∈ D(T ′). For 
instance, if x is not an ancestor of y then T , x, y does not verify any path expression, and so one could say that 
T , x, y ≡↓ T ′, x′, y′ only when x′, y′ does not verify any path expression (in other words, when x′ is not an ancestor of 
y′ , i.e. (x′, y′) /∈ D(T )). We restricted ≡ to D(T ) × D(T ′) for reasons of clarity when comparing logical equivalence with 
binary bisimulations, as we will see next.

Notice that if T , x, y ≡↓ T ′, x′, y′ and x
n→y then T , x, y |= ↓n and hence T ′, x′, y′ |= ↓n , which means x′ n→y′ in T ′ . The 

same holds in case T , x, y ≡↓
� T ′, x′, y′ when n ≤ �.

Lemma 38. Let u m→v in T and u′ n→v ′ in T ′ , and let n, m ≤ �. If T , u, v �≡↓
� T ′, u′, v ′ then there is a ∪-free XPath=(↓) path expression 

α such that dd(α) ≤ �, T , u, v |= α and T ′, u′, v ′ �|= α.

Proof. If n �= m then T , u, v |= ↓m and T ′, u′, v ′ �|= ↓m . Suppose that n = m and that there is an XPath=(↓) path expres-
sion α, dd(α) ≤ �, such that T , u, v |= α and T ′, u′, v ′ �|= α. By Lemma 33, α can be taken ∪-free and we are done. The 
same argument applies in case T , u, v �|= α and T ′, u′, v ′ |= α, via Lemma 34. �
Proposition 39. ≡↓

� has finite index in the context of path expressions, that is, there are finitely many non-equivalent path expressions 
of downward depth at most �.

Proof. Let qr be the quantifier rank of a fist order formula, i.e., the depth of nesting of its quantifiers. It can be easily 
shown by induction that for any path expression α of XPath=(↓) with bounded downward depth and unnecessary uses of ε
(recall that αεβ ≡ αβ) we have that qr(Trx,y(α)) is bounded. It is a well-known result of first order that there are finitely 
many nonequivalent formulas of bounded quantifier rank. Hence there are finitely many nonequivalent node expressions of 
bounded downward depth. �
Corollary 40. Suppose u n→v, with n ≤ �. Then {T ′, u′, v ′ | T , u, v ≡↓

� T ′, u′, v ′} is definable by an �-XPath=(↓) path expression 
γ�,T ,u,v .

Proof. Let

A = {α | T , u, v |= α, α is ∪-free and dd(α) ≤ �}.
First, observe that by Fact 31, each α ∈ A can be written in simple normal form, and all of them have the same length. 
Hence it makes sense to take the intersection between finitely many elements of A. Second, notice that by Proposition 39
there are finitely many non-equivalent α ∈ A, and hence the infinite intersection β = ⋂

A is equivalent to a finite one.
It is clear by Fact 37 that dd(β) ≤ � and that T , u, v |= β . Let us show that

T ′, u′, v ′ |= β iff T , u, v ≡↓
� T ′, u′, v ′.

The right-to-left direction is straightforward. For the left-to-right direction, suppose by contradiction that T ′, u′, v ′ |= β and 
T , u, v �≡↓

� T ′, u′, v ′ . By hypothesis, T , u, v |= ↓n (where n ≤ �), and thus, since T ′, u′, v ′ |= β , we have T ′, u′, v ′ |= ↓n . By 
Lemma 38, there is a ∪-free XPath=(↓) path expression γ such that dd(γ ) ≤ � and T , u, v |= γ and T ′, u′, v ′ �|= γ . Since 
γ ∈ A and T ′, u′, v ′ |= β then T ′, u′, v ′ |= γ , which is a contradiction. �
4.1.3. Binary bisimulation for XPath=(↓)

We introduce a new notion of binary bisimulation between pairs of nodes (x, y) in one data-tree T and pairs of nodes 
(x′, y′) in another data tree T ′ . For simplicity we only define binary bisimulation as a relation in D(T ) × D(T ′). But it can 
be naturally extended to T 2 × T ′ 2 if the definition of ≡ is likewise extended.

We say that (t, u) ∈ D(T ) is bisimilar to (t′, u′) ∈ D(T ′) for XPath=(↓) (notation: T , t, u ↔↓ T ′, t′, u′) if there is a 
relation Z ⊆ D(T ) × D(T ′) such that (t, u)Z(t′, u′) and for all x, y ∈ T and x′, y′ ∈ T ′ we have:
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Fig. 3. A XPath=(↓) binary bisimulation Z between the same data tree T . Pairs (u, u)Z(u, u), (v, v)Z(v, v), (w, w)Z(w, w), (w, w)Z(v, v) and 
(v, v)Z(w, w) are not shown.

• Harmony: if (x, y)Z(x′, y′) then label(x) = label(x′).

• Equidistance: if (x, y)Z(x′, y′) then there is k such that x
k→y and x′ k→y′ .

• Split: if (x, y)Z(x′, y′), x
n→z

m→y and x′ n→z′ m→y′ then (x, z)Z(x′, z′) and (z, y)Z(z′, y′).

• Zig: if (x, y)Z(x′, y′), x
n→v and x

m→w then there are v ′, w ′ ∈ T ′ such that: x′ n→v ′; x′ m→w ′; (x, v)Z(x′, v ′);
(x, w)Z(x′, w ′); and data(v) = data(w) iff data(v ′) = data(w ′).

• Zag: if (x, y)Z(x′, y′), x′ n→v ′ and x′ m→w ′ then there are v, w ∈ T such that: x n→v; x m→w; (x, v)Z(x′, v ′); (x, w)Z(x′, w ′); 
and data(v) = data(w) iff data(v ′) = data(w ′).

See Fig. 3 for an example of a binary-bisimulation for XPath=(↓).
We say that (t, u) ∈ D�(T ) is �-bisimilar to (t′, u′) ∈ D�(T ′) for XPath=(↓) (notation: T , t, u ↔↓

� T ′, t′, u′) if there is a 
family of relations (Z j) j≤� in D j(T ) × D j(T ′) such that (t, u)Z�(t′, u′) and for all j ≤ �, (x, y) ∈ D j(T ) and (x′, y′) ∈ D j(T ′)
we have:

• Harmony: if (x, y)Z j(x′, y′) then label(x) = label(x′).

• Equidistance: if (x, y)Z j(x′, y′) then there is k ≤ j such that x
k→y and x′ k→y′ .

• Split: if (x, y)Z j(x′, y′), x
n→z

m→y and x′ n→z′ m→y′ then (x, z)Z j(x′, z′) and (z, y)Z j−n(z′, y′).

• Zig: if (x, y)Z j(x′, y′), x
n→v and x

m→w , with n, m ≤ j, then there are v ′, w ′ ∈ T ′ such that: x′ n→v ′ , x′ m→w ′ , 
(x, v)Z j(x′, v ′), (x, w)Z j(x′, w ′), and data(v) = data(w) iff data(v ′) = data(w ′).

• Zag: if (x, y)Z j(x′, y′), x′ n→v ′ and x′ m→w ′ , with n, m ≤ j, then there are v, w ∈ T such that: x n→v , x m→w , (x, v)Z j(x′, v ′), 
(x, w)Z j(x′, w ′), and data(v) = data(w) iff data(v ′) = data(w ′).

Notice that, because of the Split condition, the rules Zig and Zag for binary bisimulations only require Z to relate (x, v)

and (x′, v ′) on one hand and (x, w) and (x′, w ′) on the other, instead of relating all nodes along the path from x to v to the 
corresponding nodes in the path from x′ to v ′ , and the same for the paths from x to w and x′ to w ′ .

For a data tree T and u ∈ T , let T |u denote the subtree of T induced by {v ∈ T | (∃n) u
n→v}. Observe that the root of 

T |u is u. The following results are straightforward consequences of the definition of binary bisimulation:

Proposition 41. If (u, v) ∈ D(T ) then T , u, v ↔↓ (T |u), u, v.

Proposition 42. If T is a subtree of T ′ and (u, v) ∈ D(T ) then T , u, v ↔↓ T ′, u, v.

For a data tree T and u ∈ T , let T |�u denote the subtree of T induced by {v ∈ T | (∃n ≤ �) u n→v}.

Proposition 43. If (u, v) ∈ D�(T ) then T , u, v ↔↓
� (T |�u), u, v.

Proof. Define the family (Z j) j≤� , Z j ⊆ D j(T |�u) × D j(T ) as following: given j ≤ �, if x
≤ j→y and u

�− j→x, then (x, y)Z j(x, y)

(observe that j = � − (� − j); intuitively, start with a Z� which matches all identical pairs of nodes in D(T |�u), then consider 
Z�−1 the subset where the first coordinate of the pairs must be at a downward distance of 1 from u, and so on). The reader 
can check that T , u, v and (T |�u), u, v are �-bisimilar via this family of relations. �
Proposition 44. Suppose T and T ′ have height at most �, (u, v) ∈ D�(T ), and (u′, v ′) ∈ D�(T ′). Then T , u, v ↔↓

� T ′, u′, v ′ iff 
T , u, v ↔↓ T ′, u′, v ′ .
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We now show that in the new context of path expressions of XPath=(↓) we have an analog of Theorem 3 for binary 
bisimulations and path equivalence, i.e., ↔↓ coincides with ≡↓ on finitely branching data trees, and ↔↓

� always coincides 
with ≡↓

� .

Theorem 45.

1. T , u, v ↔↓ T ′, u′, v ′ implies T , u, v ≡↓ T ′, u′, v ′ . The converse also holds when T and T ′ are finitely branching.

2. T , u, v ↔↓
� T ′, u′, v ′ iff T , u, v ≡↓

� T ′, u′, v ′ .

Item 2 of the above theorem is a consequence of the next two propositions. Item 1 can be shown analogously (the set P
that will appear in the proof of Proposition 47 for showing Zig is finite when T ′ is finitely branching, and its version over 
T for showing Zag is finite when T is finitely branching).

Proposition 46. If T , t, u ↔↓
� T ′, t′, u′ then T , t, u ≡↓

� T , t′, u′ .

Proof. We actually show that if T , t, u ↔↓
� T ′, t′, u′ via (Zi)i≤� then for all 0 ≤ n ≤ j ≤ �, for all ϕ with dd(ϕ) ≤ j, and for 

all α with dd(α) ≤ j:

1. If (x, x)Z j(x′, x′) then T , x |= ϕ iff T ′, x′ |= ϕ ,
2. If (x, y)Z j(x′, y′) then T , x, y |= α iff T ′, x′, y′ |= α.

We show 1 and 2 by induction on |ϕ| + |α|.
Let us see item 1. The base case is ϕ = a for some a ∈ A. By Harmony, label(x) = label(x′) and then T , x |= ϕ iff 

T ′, x′ |= ϕ . The Boolean cases for ϕ are straightforward.
Suppose ϕ = 〈α = β〉. We will show T , x |= ϕ ⇒ T ′, x′ |= ϕ , so assume T , x |= ϕ . Suppose there are v, w ∈ T and 

n, m ≤ j such that x
n→v , x

m→w , T , x, v |= α, T , x, w |= β and data(v) = data(w). By Zig, there are v ′, w ′ ∈ T ′ such that 
x′ n→v ′ , x′ m→w ′ , (x, v)Z j(x′, v ′), (x, w)Z j(x′, w ′) and data(v ′) = data(w ′). By inductive hypothesis 2 (twice), T ′, x′, v ′ |= α
and T ′, x′, w ′ |= β . Hence T ′, x′ |= ϕ . The implication T ′, x′ |= ϕ ⇒ T , x |= ϕ is analogous. The case ϕ = 〈α �= β〉 is shown 
similarly.

Let us now analyze item 2. We only show the ‘only if’ direction, as the ‘if’ is analogous. The base case is when α ∈ {ε, ↓}. 
If α = ε, we have:

T , x, y |= α iff x
0→y

iff x′ 0→y′ (Equidistance)

iff T ′, x′, y′ |= α

If α =↓, we have the same argument but with 1→ instead of 0→. For the inductive step, suppose α = βγ and assume 
T , x, y |= α. Then there is z ∈ T such that x

n→z
m→y, T , x, z |= β and T , z, y |= γ . By Split we have (x, z)Z j(x′, z′) and 

(z, y)Z j−n(z′, y′). Observe that dd(β) ≤ dd(α) ≤ j and dd(γ ) ≤ dd(α) − n ≤ j − n, where z′ is the only node such that 
x′ n→z′ m→y′ (observe that by Equidistance, x′n+m→ y′). By inductive hypothesis 2 (again, twice), we conclude T ′, x′, z′ |= β and 
T ′, z′, y′ |= γ , and hence T ′, x′, y′ |= α.

Suppose α = α1 ∪α2 and assume T , x, y |= α. We have T , x, y |= αi for some i ∈ {1, 2}. By inductive hypothesis we have 
T ′, x′, y′ |= αi , and so T ′, x′, y′ |= α.

Finally, suppose α = [ϕ] and assume T , x, y |= α. By semantics we have x = y and T , x |= ϕ . By inductive hypothesis, 
T ′, x′ |= ϕ , and by Equidistance we have x′ = y′ . Hence we conclude T ′, x′, y′ |= α. �
Proposition 47. If T , t, u ≡↓

� T ′, t′, u′ then T , t, u ↔↓
� T ′, t′, u′ .

Proof. Fix (t, u) ∈ D�(T ) and (t′, u′) ∈ D�(T ′) such that T , t, u ≡↓
� T ′, t′, u′ . Define (Z j) j≤� by

(x, y)Z j(x′, y′) iff T , x, y ≡↓
j T

′, x′, y′

for all (x, y) ∈ D�(T ) and all (x′, y′) ∈ D�(T ′). We show that (Z j) j≤� is an �-bisimulation between T , u, v and T ′, u′, v ′ .
By hypothesis, (t, u)Z�(t′, u′). To check all the rules of �-bisimulation for XPath=(↓), suppose x

k→y for some k ≤ j, 
and assume (x, y)Z j(x′, y′). To see Harmony, let a = label(x) and let α = [a]↓k , of downward depth k ≤ j. It is clear that 
T , x, y |= α, and so T , x′, y′ |= α, which means that label(x′) = a. The implication label(x′) = a ⇒ label(x) = a is seen analo-
gously.
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For Equidistance, since T , x, y |= ↓k , then T ′, x′, y′ |= ↓k , and so x′ k→y′ . The implication x′ k→y′ ⇒ x
k→y is seen analo-

gously.

Let us see Split. Suppose x
n→z

m→y and x′ n→z′ m→y′ , where k = m + n ≤ j. We prove that:

1. T , x, z ≡↓
j T ′, x′, z′ and

2. T , z, y ≡↓
j−n T ′, z′, y′ .

To see 1, assume by contradiction that α is path expression with dd(α) ≤ j such that T , x, z |= α and T ′, x′, z′ �|= α (the 
other case is analogous). Observe that len(α) = n. Now, T , x, y |= α↓m and T ′, x′, y′ �|= α↓m . But dd(α↓m) = max{dd(α), m +
len(α)} ≤ j, so, since T , x, y ≡↓

j T ′, x′, y′ , we have T ′, x′, y′ |= α ↓m , a contradiction.
To see 2, assume by contradiction that α is a path expression with dd(α) ≤ j −n such that T , z, y |= α and T ′, z′, y′ �|= α

(the other case is analogous). Observe that len(α) = m. Now, T , x, y |=↓n α and T ′, x′, y′ �|= ↓nα. But dd(↓nα) = n +dd(α) ≤
n + j − n = j, so, since T , x, y ≡↓

j T ′, x′, y′ , we have T ′, x′, y′ |=↓n α, a contradiction.

Finally, let us show Zig (the case for Zag is analogous). Suppose x n→v , x m→w , where n, m ≤ j, and data(v) = data(w) (the 
case �= is analogous).

Let P ⊆ T ′ 2 be defined by:

P = {(v ′, w ′) | x′ n→v ′ ∧ x′ m→w ′ ∧ data(v ′) = data(w ′)}.
Observe that T , x |= 〈↓n=↓m〉. Hence T , x, y |= [〈↓n=↓m〉]↓k and so T ′, x′, y′ |= [〈↓n=↓m〉]↓k , which implies
T ′, x′ |= 〈↓n=↓m〉. Therefore P �= ∅.

We next show that there exists (v ′, w ′) ∈ P such that T , x, v ≡↓
j T ′, x′, v ′ and T , x, w ≡↓

j T ′, x′, w ′ , and hence Zig is 
satisfied by Z j .

Suppose by way of contradiction that for all (v ′, w ′) ∈ P , either T , x, v �≡↓
j T ′, x′, v ′ or T , x, w �≡↓

j T ′, x′, w ′ . Because 
of Lemma 38, for all (v ′, w ′) in P , either there exists a ∪-free path expression αv ′,w ′ such that dd(αv ′,w ′ ) ≤ j and 
T , x, v |= αv ′,w ′ but T ′, x′, v ′ �|= αv ′,w ′ , or there exists a path expression βv ′,w ′ such that dd(βv ′,w ′ ) ≤ j and T , x, w |= βv ′,w ′
but T ′, x′, w ′ �|= βv ′,w ′ .

Call A the set of pairs of the first type, and B the set of pairs of the second type.

α =
{⋂

(v ′,w ′)∈A αv ′,w ′ if A �= ∅;
↓n otherwise.

and β =
{⋂

(v ′,w ′)∈B βv ′,w ′ if B �= ∅;
↓m otherwise.

Now, by Proposition 39, there are only finitely many non-equivalent path expressions of downward depth at most �, so 
the intersections that define α and β can be considered finite. Notice that by Fact 31 we may take all the αv ′,w ′ involved 
in simple normal form, and they will all have the same length (namely, n, the distance from x to v). An analog argument 
holds for the βv ′,w ′ expressions. Therefore, it makes sense to take the operation ∩ among all the αv ′,w ′ and among all 
the βv ′,w ′ . Let ψ = 〈α = β〉. By construction, T , x |= ψ , and so T , x, y |= [ψ]↓k . Furthermore, since A or B are nonempty, 
T ′, x′ �|= ψ , and so T ′, x′, y′ �|= [ψ]↓k . Since dd(ψ) ≤ j (by Fact 37) and k ≤ j we have dd([ψ]↓k) = max{dd(ψ), k} ≤ j. Hence 
T , x, y �≡ j T ′, x′, y′ , which is a contradiction. This concludes the proof. �

The following corollary shows that binary downward bisimulations subsume unary ones.

Corollary 48. T , x ≡↓ T ′, x′ iff T , x, x ≡↓ T ′, x′, x′ . Thus, if T and T ′ are finitely branching, then T , x ↔↓ T ′, x′ iff
T , x, x ↔↓ T ′, x′, x′ .

Proof. The second part follows from the first part, item 1 of Theorem 45 and the corresponding result for nodes [10].
For the left-to-right implication, let T , x ≡↓ T ′, x′ . Take α = [ϕ0] ↓ . . . ↓ [ϕn] (we can assume α has this form from 

Lemma 33 and Fact 31). Suppose T , x, x |= α and let us see that T , x′, x′ |= α (the other implication is analogous). We have 
n = 0 and thus α = [ϕ0], so T , x |= ϕ0. Then T ′, x′ |= ϕ0, and T ′, x′, x′ |= [ϕ0].

For the right-to-left implication, assume T , x, x ≡↓ T ′, x′, x′ . In particular, T , x, x |= [ϕ] iff T ′, x′, x′ |= [ϕ]. Since 
T , x, x |= [ϕ] iff T , x |= ϕ and T ′, x′, x′ |= [ϕ] iff T ′, x′ |= ϕ , we arrive at T , x |= ϕ iff T ′, x′ |= ϕ , as we wanted. �
4.1.4. Characterization for XPath=(↓) paths

In this section we show that for each formula ϕ(x, y) of first order, over the appropriate signature and with two free 
variables x and y: there is a path expression α of XPath=(↓) such that Trx,y(α) is equivalent to ϕ(x, y) if and only if ϕ is a 
‘forward property’ (defined below), and it is bisimulation-invariant over data trees. We begin with some definitions.

We say that ϕ(x, y) ∈ FO(σ ) is ↔↓-invariant (resp. ↔↓
� -invariant) if for all data trees T and T ′ , u

∗→v (resp. u
≤�→v) in 

T , u′ ∗→v ′ (resp. u′ ≤�→v ′) in T ′ , and T , u, v ↔↓ T ′, u′, v ′ (resp. T , u, v ↔↓ T ′, u′, v ′) we have T |= ϕ[u, v] iff T ′ |= ϕ[u′, v ′].
�
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A first-order σ -formula ϕ(x, y) is said to be a forward property if for every σ -structure A and u, v ∈ A, we have that 
A |= ϕ(u, v) implies u �∗ v in A. By Compactness, ϕ(x, y) is a forward property iff there is k such that A |= ϕ(u, v) implies 
u �≤k v in A. In this case we say that ϕ(x, y) is a k-forward property.

Recall that for a data tree T and u ∈ T , we denote by T |�u the subtree of T induced by {v ∈ T | (∃n ≤ �) u n→v}. Let k ≤ �. 
We say that a first-order formula ϕ(x, y) with two free variables is (k, �)-local whenever T |= ϕ[u, v] iff T |�u |= ϕ[u, v] for 
all (u, v) ∈ Dk(T ).

We now state some lemmas that will be used for the proof.

Lemma 49. Let ϕ(x, y) ∈ FO(σ ) be ↔↓-invariant over [finite] data trees. Then for each k there is � (large enough, depending on the 
quantifier rank of ϕ and k) such that ϕ is (k, �)-local.

Proof. A straightforward modification of the proof in [10, Prop. 6.2], which, in turn, follows Otto’s idea [20]. �
Lemma 50. If ϕ(x, y) ∈ FO(σ ) is a k-forward property, ↔↓-invariant over [finite] data trees and (k, �)-local, then ϕ(x, y) is 
↔↓

� -invariant.

Proof. Since ϕ(x, y) is k-forward, it suffices to show that for T , u, v and T ′, u′, v ′ such that T , u, v ↔↓
� T ′, u′, v ′ and u ≤k→v

(and so u′ ≤k→v ′) we have T |= ϕ[u, v] iff T ′ |= ϕ[u′, v ′].
Now for such T , u, v and T ′, u′, v ′ we have

T , u, v ↔↓
� T ′, u′, v ′ iff (T |�u), u, v ↔↓

� (T ′|�u′), u′, v ′ (Proposition 43)

iff (T |�u), u, v ↔↓ (T ′|�u′), u′, v ′. (Proposition 44)

By (k, �)-locality, we have T |= ϕ[u, v] iff T |�u |= ϕ[u, v]. By ↔↓-invariance, T |�u |= ϕ[u, v] iff T ′|�u′ |= ϕ[u′, v ′] and by 
(k, �)-locality again, T |= ϕ[u, v] iff T ′ |= ϕ[u′, v ′]. �
Lemma 51. If ϕ(x, y) ∈ FO(σ ) is a k-forward property which is ↔↓

� -invariant over [finite] data trees, then there is an XPath=(↓) path 
expression δ such that dd(δ) ≤ � and for all [finite] data trees T and u, v ∈ T we have T , u, v |= δ iff T |= ϕ[u, v].

Proof. By Corollary 40, for every T , u, v , with u
≤�→v , there is an �-XPath=(↓) path expression γ�,T ,u,v such that 

T , u, v ≡↓
� T ′, u′, v ′ iff T ′, u′, v ′ |= γ�,T ,u,v . Let

δ =
⋃

T |=ϕ[u,v]
γ�,T ,u,v .

Since γ�,T ,u,v ∈ �-XPath=(↓) and, by Proposition 39, ≡↓
� has finite index, it follows that δ is equivalent to a finite union.

We now show that ϕ ≡ Trx,y(δ). Let us see that ϕ |= Trx,y(δ). Suppose T |= ϕ[u, v]. Since ϕ(x, y) is a k-forward property, 
we have u

n→v for some n ≤ k ≤ �. Since T , u, v |= γ�,T ,u,v , we have T , u, v |= δ and so T |= Trx,y(δ)[u, v]. Let us now see 
that Trx,y(δ) |= ϕ . Assume T |= Trx,y(δ)[u, v], and so T , u, v |= δ. Then there exists T ′, u′, v ′ such that T ′ |= ϕ[u′, v ′] and 
T , u, v |= γ�,T ′,u′,v ′ . By the property of γ�,T ′,u′,v ′ , we have T , u, v ≡↓

� T ′, u′, v ′ and since ϕ is ↔↓
� -invariant (and hence 

≡↓
� -invariant by Theorem 45) we conclude T |= ϕ[u, v]. �

The main result has two readings: one classical, and one restricted to finite models.

Theorem 52 (Characterization). Let ϕ(x, y) ∈ FO(σ ). The following are equivalent:

(i) ϕ is a forward property ↔↓-invariant over [finite] data trees.
(ii) ϕ is expressible in XPath=(↓).

Observe that the condition on ϕ to be a forward property is necessary. Indeed, if ϕ(x, y) is universally valid then it is 
trivially ↔↓-invariant over [finite] data trees, but it is clearly not XPath=(↓)-expressible, as its semantics include pairs of 
nodes with arbitrarily large distance between them, or even pairs (x, y) where y is not descendant of x.

Proof of Theorem 52. The implication (ii) ⇒ (i) follows straightforwardly from Theorem 45. The proof of (i) ⇒ (ii) goes as 
in the proof of [10, Th. 6.1], by Lemma 49, Lemma 50, and Lemma 51. �
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4.2. Vertical

4.2.1. Some facts about path expressions over XPath=(↑↓)

We use the following definitions introduced in [10]. We say that a path expression α of XPath=(↑↓) is downward [resp.
upward] if it is of the form ↓n [ϕ] [resp. [ϕ]↑n] for some n ≥ 0, with ϕ ∈ XPath=(↑↓). We say that a path expression α↑↓
is in up–down form if either α↑↓ = ε , α↑↓ = β↑ , α↑↓ = β↓ , or α↑↓ = β↑β↓ , where β↑ is upward and β↓ is downward. We 
say that a node or path expression in XPath=(↑↓) is in up–down normal form if every path expression contained in it is 
up–down and every data test is of the form 〈ε 
 α↑↓〉, where α↑↓ is up–down and 
 ∈ {=, �=}.

Proposition 53. [9, Prop. 12] Given a XPath=(↑↓) node expression ϕ , there is ϕ↑↓ in up–down normal form such that ϕ ≡ ϕ↑↓ .

Proposition 54. [9, Lem. 13] Given a ∪-free XPath=(↑↓) path expression α, there is α↑↓ in up–down normal form such that α ≡ α↑↓ .

We say that a path expression α is in ∪-NF (union normal form) if α = β1 ∪ β2 ∪ · · · ∪ βn and the βi are in up–down 
normal form (and thus ∪-free).

Proposition 55. For all path expressions α in XPath=(↑↓), there is α′ in ∪-NF such that α ≡ α′ .

Proof. We proceed by structural induction over α. If α = ε or α = ↓ or α = ↑, the result holds trivially. If α = [ϕ], with ϕ a 
node expression, we can take, by Proposition 53, a node expression ψ in up–down normal form (and therefore ∪-free) with 
ψ ≡ ϕ . Finally, for the concatenation α = βγ , we can assume by induction that β ≡ β1 ∪ · · · ∪ βm , and γ ≡ γ1 ∪ · · · ∪ γn , 
with βi , γi being in up–down normal form. The conclusion follows from the fact that

(β1 ∪ · · · ∪ βm)(γ1 ∪ · · · ∪ γn) ≡ β1γ1 ∪ β1γ2 ∪ · · · ∪ β1γn ∪ β2γ1 ∪ · · · ∪ βmγn

and the application of Proposition 54 on the ∪-free path expressions βiγ j . �
From now on, we only consider the fragment of XPath=(↑↓) where all path expressions are in ∪-NF and all node 

expressions are in up–down normal form. Observe that, by Proposition 53 and Proposition 55, this fragment is semantically 
equivalent to full XPath=(↑↓).

Lemma 56. Let y
n→x, y

m→z in T and y′ n→x′ , y′ m→z′ in T ′ . If α is an XPath=(↑↓) path expression (in ∪-NF) such that T , x, z |= α
and T ′, x′, z′ �|= α then there is a path expression α in up–down form such that T , x, z �|= α and T ′, x′, z′ |= α.

Proof. Let α = β1 ∪ β2 ∪ · · · ∪ βn , with βi = [ϕi]↑ni ↓mi [ψi]. Let β j be such that T , x, z |= β j . Since for all i we have 
T ′, x′, z′ �|= βi , we have that either T ′, x′ �|= 〈↑n j ↓m j 〉 (recall that both y

n→x, y
m→z, and y′ n→x′ , y′ m→z′), or T ′, x′ �|= ϕ j , 

or T ′, z′ �|= ψ j . So either T ′, x′ |= ¬〈↑n j ↓m j 〉 or T ′, x′ |= ¬ϕ j or T ′, z′ |= ¬ψ j . In the first case, let α = [¬〈↑n j ↓m j 〉]↑n↓m , in 
the second case, let α = [¬ϕ j]↑n↓m , and in the third case, let α = ↑n↓m[¬ψ j]. �
4.2.2. Binary bisimulation for XPath=(↑↓)

Let T and T ′ be data trees. We say that (u, v) ∈ T 2 is bisimilar to (u′, v ′) ∈ T ′ 2 for XPath=(↑↓) (notation:
T , u, v ↔↑↓ T ′, u′, v ′) if there is a relation Z ⊆ T 2 × T ′ 2 such that (u, v)Z(u′, v ′) and for all x, y ∈ T and x′, y′ ∈ T ′ we 
have:

• Harmony: if (x, y)Z(x′, y′) then label(x) = label(x′).
• Reverse: (x, y)Z(x′, y′) iff (y, x)Z(y′, x′).

• Split-Zig: If (x, y)Z(x′, y′), then for all z such that z
m→x, z

n→y, there is z′ such that z′ m→x′, z′ n→y′ , (x, z)Z(x′, z′), and 
(z, y)Z(z′, y′).

• Split-Zag: If (x, y)Z(x′, y′), then for all z′ such that z′ m→x′ , z′ n→y′ , there is z such that z
m→x, z

n→y, (x, z)Z(x′, z′), and 
(z, y)Z(z′, y′).

• Zig: If (x, y)Z(x′, y′), then for all z, w such that z
m→x, z

n→w , there are z′ , w ′ such that z′ m→x′ , z′ n→w ′ , (z, w)Z(z′, w ′), 
and data(x) = data(w) iff data(x′) = data(w ′).

• Zag: If (x, y)Z(x′, y′), then for all z′ , w ′ such that z′ m→x′ , z′ n→w ′ , there are z, w such that z
m→x, z

n→w , (z, w)Z(z′, w ′), 
and data(x) = data(w) iff data(x′) = data(w ′).

Observe that any of Split-Zig or Split-Zag imply that (x, y)Z(x′, y′) ⇒ (x, x)Z(x′, x′), and this property in conjunction 
with Reverse implies that (x, y)Z(x′, y′) ⇒ (y, y)Z(y′, y′). We call these two implications Endpoints. See Fig. 4 for an 
(incomplete) example of a XPath=(↑↓) bisimulation.
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Fig. 4. Part of a XPath=(↑↓) binary bisimulation Z between T and T ′ . Not shown: bisimulation of the all the reverse and singleton paths, and of the other 
two pairs of leaves in T .

We say that (x, y) ∈ T 2 and (x′, y′) ∈ T ′ 2 are equivalent for XPath=(↑↓) path expressions (notation:
T , x, y ≡↑↓ T ′, x′, y′) if for all XPath=(↑↓) path expressions α, we have T , x, y |= α iff T ′, x′, y′ |= α.

Again, in the context of path expressions of XPath=(↑↓) we have an analog of Theorem 4 for binary bisimulations and 
path equivalence.

Theorem 57. T , u, v ↔↑↓ T ′, u′, v ′ implies T , u, v ≡↑↓ T ′, u′, v ′ . The converse also holds when T and T ′ are finitely branching.

Proof. We first show that if T , u, v ↔↑↓ T ′, u′, v ′ then T , u, v ≡↑↓ T ′, u′, v ′ . We actually show that if T , u, v ↔↑↓ T ′, u′, v ′
via Z , then:

1. If (x, x)Z(x′, x′), then T , x, x |= [ϕ] iff T ′, x′, x′ |= [ϕ].
2. If (x, y)Z(x′, y′), then T , x, y |= α iff T ′, x′, y′ |= α.

We show 1 and 2 by structural induction on |ϕ| + |α|. We start with the Item 1. The base case for item 1 is ϕ = a, 
for some label a. Suppose T , x, x |= [a]. By Harmony, since (x, x)Z(x′, x′), label(x) = label(x′), so T ′, x′, x′ |= [a]. The case for 
T ′, x′, x′ |= [a] is identical. The Boolean cases for ϕ are straightforward.

Now suppose ϕ = 〈ε = α↑↓〉, and further assume that α↑↓ = [ψ1]↑m↓n[ψ2] (the cases with data inequality are analo-
gous). Observe that by inductive hypothesis, it is enough to check T , x, x |= [〈ε = ↑m↓n[ψ2]〉] iff T ′, x′, x′ |= [〈ε = ↑m↓n[ψ2]〉]. 
We show the left-to-right implication, as the reverse is analogous. So, suppose T , x, x |= 〈ε = ↑m↓n[ψ2]〉. There exist z, w

such that z
m→x, z

n→w , T , x, w |= ↑m↓n[ψ2], and data(x) = data(w). By Zig, there are z′ , w ′ such that z′ m→x′ , z′ n→w ′ , 
(x, z)Z(x′, z′), (z, w)Z(z′, w ′), and data(x′) = data(w ′). By inductive hypothesis, since (z, w)Z(z′, w ′) and T , z, w |= ↓n[ψ2]
we have T ′, z′, w ′ |= ↓n[ψ2]. Since also T ′, x′, z′ |= ↑m , we conclude T ′, x′, w ′ |= ↑m↓n[ψ2], and therefore (because 
data(x′) = data(w ′)), T ′, x′, x′ |= 〈ε = ↑m↓n[ψ2]〉, as we wanted.

We now proceed to Item 2. We only show the left-to-right direction, as the reverse is analogous. The base case is when 
α ∈ {ε, ↑, ↓}. If α = ε then T , x, y |= α iff x = y. Thus, taking z = x (and thus m = n = 0) in Split-Zig, it follows that x′ = y′
and therefore T ′, x′, y′ |= α. If α = ↑ then T , x, y |= α implies y→x. Now, T , y, x |= ↓, and, from Split-Zig we deduce, 
T , y′, x′ |= ↓. Therefore we conclude T , x′, y′ |= α, as we wanted. If α = ↓, we proceed as before.

Finally, for the general case where α = α↑↓ . Suppose without loss of generality that T , x, y |= [ϕ]↑m↓n[ψ]. Then, there 
exists z such that T , x, z |= [ϕ]↑m and T , z, y |= ↓n[ψ]. Since z

m→x and z
n→y, by Split-Zig, we have a corresponding z′ such 

that z′ m→x′ and z′ n→y′ , (x, z)Z(x′, z′), and (z, y)Z(z′, y′). If m = n = 0, then x = y, and the problem consists of the already 
considered case T , x, x |= [ϕ]. If m �= 0 or n �= 0, then |[ϕ]↑m| < |α| and |↓n[ψ]| < |α|, and thus, since (x, z)Z(x′, z′) and 
(z, y)Z(z′, y′), we can use the inductive hypothesis to conclude that T ′, x′, z′ |= [ϕ]↑m and T ′, z′, y′ |= ↓n[ψ], and therefore 
T ′, x′, y′ |= [ϕ]↑m↓n[ψ], as we wanted.

We now show that if T and T ′ are finitely branching, then T , u, v ≡↑↓ T ′, u′, v ′ implies T , u, v ↔↑↓ T ′, u′, v ′ . Let 
T , u, v ≡↑↓ T ′, u′, v ′ . Define the relation Z by:

(x, y)Z(x′, y′) iff T , x, y ≡↑↓ T ′, x′, y′.

We show that Z is a bisimulation between T , u, v and T ′, u′, v ′ .
First of all, by construction, it holds that (u, v)Z(u′, v ′).
To prove Harmony, let (x, y)Z(x′, y′). We will see that if label(x) = a then label(x′) = a (the other implication is analo-

gous). Note that, since T is a tree, there are m, n such that T , x, y |= ↑m↓n . Also, if label(x) = a, T , x, y |= [a]↑m↓n . Therefore, 
since T , x, y ≡↑↓ T ′, x′, y′ , we have T ′, x′, y′ |= [a]↑m↓n , and thus label(x′) = a = label(x).
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Now we check Reverse. Let (x, y)Z(x′, y′). Observe first that it is enough to check that (x, y)Z(x′, y′) ⇒ (y, x)Z(y′, x′). 
Now, let β be a path expression, which we can assume to be in up–down normal form β = [ψ] ↑n ↓m[ϕ], such that 
T , y, x |= β . Then, T , x, y |= [ϕ] ↑m ↓n[ψ], and, since (x, y)Z(x′, y′), this implies that T ′, x′, y′ |= [ϕ] ↑m ↓n[ψ]. In turn, this 
implies that T ′, y′, x′ |= [ψ] ↑n ↓m[ϕ] = β , as we wanted.

Now we check Split-Zig (Split-Zag is analogous). Let (x, y)Z(x′, y′). We prove that if z
m→x and z

n→y then there is z′ in 
T ′ such that z′ m→x′ , z′ n→y′ , (x, z)Z(x′, z′), and (z, y)Z(z′, y′). We have T , x, y |= ↑m↓n , and then so does T ′, x′, y′ |= ↑m↓n . 
In particular, there exists z′ such that z′ m→x′ , z′ n→y′ . To verify (x, z)Z(x′, z′), we see that if α is a path expression such 
that T , x, z |= α, then T ′, x′, z′ |= α (the other implication is analogous). Observe that T , x, y |= α↓n , which implies that 
T ′, x′, y′ |= α↓n . As there is only one w such that w

n→y′ , namely z′ , we conclude that T ′, x′, z′ |= α, as we wanted. To 
verify (z, y)Z(z′, y′), we see that if α is a path expression such that T , z, y |= α, then, T ′, z′, y′ |= α (the other implication 
is analogous). Now, T , z, y |= α implies T , x, y |= ↑mα, and then T ′, x′, y′ |= ↑mα. Since T ′ is a tree, this in turn implies 
that T ′, z′, y′ |= α, as we wanted.

For the last step, we check that Zig holds (Zag is analogous). Suppose T , x, y ≡↑↓ T ′, x′, y′ (that is, (x, y)Z(x′, y′)). Let 
z, w be such that z

m→x, z
n→w , and assume that data(x) = data(w) (the case for �= is analogous). We want to see that there 

are z′ , w ′ in T ′ such that z′ m→x′ , z′ n→w ′ , data(x′) = data(w ′), and (z, w)Z(z′, w ′). By Split-Zig, let z′ ∈ T ′ such that z′ m→x′
and (x, z)Z(x′, z′). Let

P = {w ′ ∈ T ′ | z′ n→w ′ and data(x′) = data(w ′)}.
Notice that P is finite since T ′ is finitely branching. We show that there is w ′ ∈ P such that (z, w)Z(z′, w ′). By Split-Zig

we had T , x, z ≡↑↓ T ′, x′, z′ , and thus T , x, z |= [〈ε = ↑m↓n〉]↑m implies T ′, x′, z′ |= [〈ε = ↑m↓n〉]↑m , and so there is w ′ such 
that z′ n→w ′ and data(x′) = data(w ′). Hence P �= ∅.

Now, suppose by the way of contradiction that for all w ′ ∈ P , we have T , z, w �≡↑↓ T ′, z′, w ′ . That is, for every w ′ ∈ P , 
there exists a path expression, which we can assume is in up–down form αw ′ = [ϕw ′ ]↑aw′ ↓bw′ [ψw ′ ], such that either

1. T , z, w |= αw ′ and T ′, z′, w ′ �|= αw ′ , or
2. T , z, w �|= αw ′ and T ′, z′, w ′ |= αw ′ .

First we are going to see that we can assume that αw ′ is of the form [ϕw ′ ]↓n[ψw ′ ]. First of all, observe that since 
T , x, z ≡↑↓ T ′, x′, z′ , by Endpoints we have that (z, z)Z(z′, z′). Now suppose by the way of contradiction that ↑aw′ ↓bw′

holds in T , z, w but not in T ′, z′, w ′ (the other case is analogous). Since z
n→w , it must be that bw ′ − aw ′ = n. Since 

also z′ n→w ′ but T ′, z′, w ′ �|= ↑aw′ ↓bw′ , we have T ′, z′, z′ �|= [〈↑aw′ ↓bw′ 〉], or, equivalently, T ′, z′, z′ |= [¬〈↑aw′ ↓bw′ 〉]. But then 
T , z, z |= [¬〈↑aw′ ↓bw′ 〉], and this implies that T , z, w �|= ↑aw′ ↓bw′ , a contradiction. So we can assume without loss of gener-
ality that always ↑aw′ ↓bw′ = ↓n .

Now, by Lemma 56, we can always assume that case 1 applies. We take

α = [
∧

w ′∈P

ϕw ′ ]↓n[
∧

w ′∈P

ψw ′ ]↑n

and observe that T , z, z |= α but T ′, z′, z′ �|= α, a contradiction. �
Corollary 58. T , x ≡↑↓ T ′, x′ iff T , x, x ≡↑↓ T ′, x′, x′ . Thus, if T and T ′ are finitely branching, then T , x ↔↑↓ T ′, x′ iff 
T , x, x↔↑↓ T ′, x′, x′ .

Proof. The proof is similar to that of Corollary 48. For the second part we use that if T and T ′ are finitely branching, then 
↔↑↓ and ≡↑↓ coincide (Theorem 57).

Assume first that x ≡↑↓ x′ . Suppose that T , x, x |= α and let us prove that T ′, x′, x′ |= α (the other implication is 
analogous). Without loss of generality we can assume that α = [ϕ]↑m↓n[ψ]. So n = m, T , x |= ϕ , and T , x |= ψ . Since 
T , x ≡↑↓ T ′, x′ , we conclude that T ′, x′, x′ |= [ϕ]↑m↓n[ψ].

For the other implication, assume x, x ≡↑↓ x′, x′ . In particular, T , x, x |= [ϕ] iff T ′, x′, x′ |= [ϕ]. As T , x, x |= [ϕ] iff T , x |= ϕ
and T ′, x′, x′ |= [ϕ] iff T ′, x′ |= ϕ , we get T , x |= ϕ iff T ′, x′ |= ϕ , as we wanted. �
5. Definability via path expressions

5.1. Saturation

Saturation for the downward fragment. Let � and � be sets of XPath=(↓)-path expressions. Given a data tree T and 
u ∈ T , we say that � and � are =↓-satisfiable [resp. �=↓-satisfiable] at T , u if there exist v, w ∈ T such that T , u, v |= �, 
T , u, w |= �, and data(v) = data(w) [resp. data(v) �= data(w)]. We say that � and � are =↓-finitely satisfiable [resp.
�=↓-finitely satisfiable] at T , u if for every finite �′ ⊆ � and finite �′ ⊆ �, we have that �′ and �′ are =↓-satisfiable [resp. 
�=↓-satisfiable] at T , u.
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Definition 59. We say that a data tree T is binary ↓-saturated if for every pair of sets �, � of XPath=(↓)-path expressions, 
every u ∈ T , and 
 ∈ {=, �=}, the following is true:

if � and � are 
↓-finitely satisfiable at T , u then � and � are 
↓-satisfiable at T , u.

Proposition 60. Let T and T ′ be ↓-saturated data trees, and let u, v ∈ T and u′, v ′ ∈ T ′ . If T , u, v ≡↓ T ′, u′, v ′ , then 
T , u, v ↔↓ T ′, u′, v ′ .

Proof. We show that Z , defined by (x, y)Z(x′, y′) iff T , x, y ≡↓ T ′, x′, y′ is a ↓-bisimulation between T , u, v and 
T ′, u′, v ′ . Clearly (u, v)Z(u′, v ′), and Harmony also holds. For Equidistance, if (x, y)Z(x′, y′), assume x

k→y. Then, since 
(x, y) ≡↓ (x′, y′), T , x, y |=↓k iff T ′, x′, y′ |=↓k . For Split, let (x, y)Z(x′, y′), x

n→z
m→y, and x′ n→z′ m→y′ . We check first 

that (x, z)Z(x′, z′): T , x, z |= α ⇔ T , x, y |= α ↓m⇔ T ′, x′, y′ |= α ↓m⇔ T ′, x′, z′ |= α. The proof is similar for checking 
(z, y)Z(z′, y′): T , z, y |= α ⇔ T , x, y |=↓n α ⇔ T ′, x′, y′ |=↓n α ⇔ T ′, z′, y′ |= α.

We now need to show that Zig and Zag are satisfied. We see only Zig, as Zag is analogous. Suppose (x, y)Z(x′, y′), x m→a, 
x

n→b and data(a) = data(b) (the case with data(a) �= data(b) is analogous). Let

� = {α | T , x,a |= α and α is ∪-free} and � = {α | T , x,b |= α and α is ∪-free}.
That is, � and � are the ∪-free theories of T , x, a and T , x, b, respectively. Furthermore, let �′ be a finite subset of �, and 
let �′ be a finite subset of �. Observe that, being in XPath=(↓), all path expressions in � and � are of the same length, 
and thus we have a notion of intersection as in Equation (7).

Now define ϕ = 〈∩�′ = ∩�′〉. Observe that, from Split, (x, y) ≡↓ (x′, y′) implies (x, x) ≡↓ (x′, x′) implies (Corollary 48) 
x ≡↓ x′ . Now, it is clear that T , x |= ϕ , and thus T ′, x′ |= ϕ . Therefore, there exist a′, b′ such that T ′, x′, a′ |= �′ (in particular, 
x′ m→a′), T ′, x′, b′ |= �′ (in particular, x′ n→b′), and data(a′) = data(b′). Hence �′ and �′ are =↓-satisfiable at x′ , for any finite 
sets �′, �′ and thus � and � are =↓-finitely satisfiable at x′ . Since T ′ is ↓-saturated, this implies that � and � are 
=↓-satisfiable at x′ , for some a′ and b′ .

Finally, we see that T ′, x′, a′ |= � implies that Th↓(T , x, a) = Th↓(T ′, x′, a′) and thus (x, a) ≡↓ (x′, a′) (the case for 
(x, b) ≡↓ (x′, b′) is analogous). We are only going to prove that T ′, x′, a′ |= α ⇒ T , x, a |= α, as the other implication 
is clear. Suppose by way of contradiction that there is an α, which by Lemma 33 can be assumed to be ∪-free, such 
that T ′, x′, a′ |= α but T , x, a �|= α. Then, by Lemma 34, there is a ∪-free path expression ᾱ such that T ′, x′, a′ �|= ᾱ and 
T , x, a |= ᾱ. Then, since T ′, x′, a′ |= �, we have that T ′, x′, a′ |= ᾱ, a contradiction. �
Saturation for the vertical fragment. Given a data tree T and u ∈ T , we say that the set of XPath=(↑↓)-path expres-
sions � is =↑↓-satisfiable [resp. �=↑↓-satisfiable] at T , u if there exist v, w ∈ T such that v

∗→u, v
∗→w , T , u, w |= � and 

data(u) = data(w) [resp. data(u) �= data(w)]. We say that � is =↑↓-finitely satisfiable [resp. �=↑↓-finitely satisfiable] at T , u
if for every finite �′, we have that �′ is =↑↓-satisfiable [resp. =↑↓-satisfiable] at T , u.

Definition 61. We say that a data tree T is binary ↑↓-saturated if for every set of XPath=(↑↓)-path expressions �, every 
u ∈ T and 
 ∈ {=, �=}, the following is true:

if � is 
↑↓-finitely satisfiable at T , u then � is 
↑↓-satisfiable at T , u.

Proposition 62. Let T and T ′ be binary ↑↓-saturated data trees, and let u, v ∈ T and u′, v ′ ∈ T ′ . If T , u, v ≡↑↓ T ′, u′, v ′ , then 
T , u, v ↔↑↓ T ′, u′, v ′ .

Proof. We show that Z ⊆ T 2 × T ′ 2, defined by

(x, y)Z(x′, y′) iff T , x, y ≡↑↓ T ′, x′, y′

is a ↑↓-bisimulation between T , u, v and T ′, u′, v ′ . Clearly (u, v)Z(u′, v ′). Harmony, Reverse, Split-Zig, and Split-Zag hold 
with the same proofs as in the second part of the proof of Theorem 57.

We now need to show that Zig and Zag are satisfied. We see only Zig, as Zag is analogous.

Suppose (x, y)Z(x′, y′), s
a→x, s

b→y, z
m→x, z

n→w , and data(x) = data(w) (the case �= is analogous). We want to see that 
there are z′, w ′ ∈ T ′ such that z′ m→x′ , z′ n→w ′ , (z, w)Z(z′, w ′), and data(x′) = data(w ′). Let

� = {β | T , x, w |= β and β is of the form [ϕ] ↑m↓n [ψ], for some ϕ and ψ},
and let �′ be a finite subset of �. If β1 = [ϕ1] ↑m↓n [ψ1] and β2 = [ϕ2] ↑m↓n [ψ2], we will define β1 ∩ β2 = [ϕ1 ∩ ϕ2] ↑m↓n

[ψ1 ∩ ψ2].
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Now, define

α = [〈ε = ∩�′〉] ↑a↓b .

It can be seen that T , x, y |= α, and thus, since by definition of Z we have T , x, y ≡↑↓ T ′, x′, y′ , we conclude T ′, x′, y′ |= α. 
This implies that there are p′ , q′ such that p′ m→x′ , p′ n→q′ , data(x′) = data(q′), and T ′, x′, q′ |= �′ . Therefore, � is =↑↓-finitely 
satisfiable at T ′, x′ . Since T ′ is binary ↑↓-saturated, this implies that � is =↑↓-satisfiable at T ′, x′ , and therefore there exist 
nodes z′, w ′ ∈ T ′ such that t m→x′ , t n→w ′ , data(x′) = data(w ′), and T ′, x′, w ′ |= �.

It remains to prove that Th↑↓(T , x, w) = Th↑↓(T ′, x′, w ′), as this property in conjunction with Split-Zig will imply that 
(z, w)Z(z′, w ′).

First we prove that Th↑↓(T , x, w) ⊂ Th↑↓(T ′, x′, w ′). Let β ∈ Th↑↓(T , x, w). Without loss of generality, we can assume 
that β is ∪-free, and thus of the form β = [ϕ] ↑ j↓k [ψ]. Since z′ m→x′ and z′ n→w ′ , T ′, x′, w ′ |= β iff T ′, x′, w ′ |= γ , with 
γ = [ϕ ∧ 〈↑ j↓k〉] ↑m↓n [ψ]. But γ ∈ �, and thus T ′, x′, w ′ |= γ .

We now see that Th↑↓(T ′, x′, w ′) ⊂ Th↑↓(T , x, w). Suppose by way of contradiction that there is a β (which can be 
assumed to be ∪-free) such that β = [ϕ] ↑ j↓k [ψ] and T ′, x′, w ′ |= β but T , x, w �|= β . As z

m→x and z
n→w , T , x, w |= β iff 

T , x, w |= [ϕ∧〈↑ j↓k〉] ↑m↓n [ψ], and as z′ m→x′ and z′ n→w ′ , we also have T ′, x′, w ′ |= β iff T ′, x′, w ′ |= [ϕ ∧ 〈↑ j↓k〉] ↑m↓n [ψ]. 
So from our supposition we have T , x, w �|= [ϕ ∧ 〈↑ j↓k〉] ↑m↓n [ψ]. Since T , x, w |=↑m↓n , it must be that either
T , x, w |= [¬(ϕ ∧ 〈↑ j↓k〉)] ↑m↓n or T , x, w |=↑m↓n [¬ψ]. But since T ′, x′, w ′ |= �, this implies that either
T ′, x′, w ′ |= [¬(ϕ ∧ 〈↑ j↓k〉)] ↑m↓n or T ′, x′, w ′ |=↑m↓n [¬ψ], which contradicts the fact that T ′, x′, w ′ |= [ϕ ∧ 〈↑ j↓k〉] ↑m↓n

[ψ].
So we have (x, w)Z(x′, w ′). As z

m→x and z
n→w , we can use Split-Zig to finally obtain (z, w)Z(z′, w ′), as we wanted. �

5.2. Weak data trees and quasi-ultraproducts

The following proposition shows the ‘local’ aspect of XPath=(↓) and XPath=(↑↓) for paths, whereas Proposition 12
showed it for nodes. It is stated in terms of first-order because models are weak data trees.

Proposition 63. Let T be a weak data tree and let both r �∗ u and r �∗ v in T .

1. If α is a XPath=(↓)-path expression then T |= Trx,y(α)[u, v] iff T |r |= Trx,y(α)[u, v].
2. If r is the root of T and α ∈ XPath=(↑↓) then T |= Trx,y(α)[u, v] iff T |r |= Trx,y(α)[u, v].

We now show that 2-saturated data trees are already both binary ↓-saturated and binary ↑↓-saturated. For technical 
reasons we state these results in the more general setting of weak data trees.

Proposition 64. Let T be a 2-saturated weak data tree and r ∈ T .

1. T |r is a binary ↓-saturated data tree.
2. If r is the root of T then T |r is a binary ↑↓-saturated data tree.

Proof. The proof goes as the proof of Proposition 14. �
Let (Ti, ui, vi)i∈I be a family of two-pointed data trees. The ultraproduct of such two-pointed data trees is defined, as 

usual, by (
∏

U Ti, u∗, v∗), where u∗ and v∗ are the ultralimits of (ui)i∈I and (ui)i∈I modulo U , respectively.

Example 65. For i ∈N, let Ti be any data tree of height at least i, and let ui, vi be any pair of nodes of Ti at distance i from 
each other. Let ρn(x, y) be the first-order property “x is at distance at least n from y”. It is clear that Tm |= ρn[um, vm] for 
every m ≥ n. Let u∗ and v∗ be the ultralimits of (ui)i∈I and (vi)i∈I modulo U . Since {m | m ≥ n} ∈ U for any non-principal U , 
we conclude that 

∏
U Ti |= ρn[u∗, v∗] for every n, and so u∗ is disconnected from v∗ in 

∏
U Ti .

Hence, in general, two-pointed data trees are not closed under ↑↓-quasi ultraproduct.
Let k ≥ 0, let T be a data tree and let u, v ∈ T . We say that (T , u, v) is a k-bounded two-pointed data tree if u, v are 

at distance at most k from the root of T . In particular, if r is the root of T then (T , r, r) is a 0-bounded two-pointed data 
tree.

Let n ≥ 0, let T be a data tree and let u, v ∈ T . We say that a two-pointed data tree T , u, v is n-two-pointed if the 
minimum distance between u and v is at most n. That is, if w is the first common ancestor of u and v (i.e. the closest 
common ancestor), and w

c→u, w d→v , then c + d ≤ n.
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Definition 66. Suppose (Ti, ui, vi)i∈I is a family of n-two-pointed data trees, ri is the root of Ti , U is an ultrafilter over I , 
T ∗ = ∏

U Ti , and u∗ , v∗ and r∗ are the ultralimits of (ui)i∈I , (vi)i∈I , and (ri)i∈I modulo U respectively. Then:

1. If ui
∗→vi , the ↓-quasi ultraproduct of (Ti, ui, vi)i∈I modulo U is the n-two-pointed data tree (T ∗|u∗, u∗, v∗).

2. If (Ti, ui, vi)i∈I is also a family of k-bounded data trees, the ↑↓-quasi ultraproduct of (Ti, ui, vi)i∈I modulo U is the 
k-bounded n-two-pointed data tree (T ∗|r∗, u∗, v∗).

Observe that in the definition of ↑↓-quasi ultraproduct, u∗ and v∗ are effectively in T ∗|r∗ for similar reasons as those in 
Proposition 17.

5.3. Definability and separation

We begin with the downward fragment and we state our definability results of two-pointed data trees. Since the language 
of path expressions does not have complementation or negation, we will deal with a restricted class of data trees. We 
work with n-two-pointed data trees which are forward, that is, data trees of the form T , u, v where u

≤n→v . If α, β are 
XPath=(↓)-path expressions, we say that α ≡n β if for every forward n-two-pointed data tree T , u, v we have T , u, v |= α
iff T , u, v |= β . For a path expression α = [ϕ0]↓ . . .↓[ϕi] in simple normal form, we define the complement (over the class 
of forward n-two-pointed data trees) as

∼n α =
{

� if i > n;⋃
0≤ j≤i ↓ j[¬ϕ j]↓i− j ∪ ⋃

0≤ j≤n,i �= j ↓ j otherwise.

(We represent ε as ↓0, and � as 
⋃

0≤ j≤n ↓ j .) ∼n α is thus true for all downward paths of a length at most n and different 
to that of α, and for paths of the same length as α but that do not satisfy some intermediate node expression [ϕ j ]. So for 
every forward n-two-pointed data tree T , u, v , we have T , u, v |= α iff T , u, v �|=∼n α, that is, ∼n α works as a kind of path 
expression negation over this restricted class of data trees. Notice that it is not possible to negate path expressions without 
a restriction on the class of data trees.

Recall that for XPath=(↓) expressions α, β in simple normal form and of the same length we have defined the inter-
section α ∩ β in Definition 36. We extend this definition of intersection to path expressions in simple normal form, and of 
length at most n. Let α and β be path expressions in simple normal form, with len(α) = i, len(β) = j. We define α∩n β as ⊥
(we let ⊥ be [〈ε �= ε〉]) in case i �= j and as in (7) of Definition 36 otherwise. It is clear that for every forward n-two-pointed 
data tree T , u, v , we have T , u, v |= α ∩n β iff T , u, v |= α and T , u, v |= β . These observations allow us to extend, over the 
class of forward n-two-pointed data trees, the operations of complement and intersection to any XPath=(↓)-path expression:

α ≡n ⊥ (α in simple normal form and len(α) > n)

∼n (α ∪ β) ≡n (∼n α) ∩n (∼n β) (α,β in simple normal form and len(α), len(β) ≤ n)

∼n (α ∩n β) ≡n (∼n α) ∪ (∼n β) (idem)

(α ∪ β) ∩n γ ≡n (α ∩n γ ) ∪ (β ∩n γ ) (idem)

α ∩n β ≡n β ∩n α (idem)

Therefore, when restricted to n-two pointed data trees, we can pretend to have complementation and intersection of path 
expressions with the standard meaning and within the language. This allows us to prove the results of definability for path 
expressions using the obvious modifications to the proofs of Theorems 20 and 21. It is important to remark that these 
results are true only when restricting the universe to forward n-two-pointed data trees. In what follows, the universe is 
restricted to such data trees, and the operations of closure and complement must be taken with respect to this universe.

Theorem 67. Over n-two-pointed data trees: A class K is definable by a set of XPath=(↓)-path expressions iff K is closed under 
↓-bisimulations and ↓-quasi ultraproducts, and K is closed under ↓-quasi ultrapowers.

Theorem 68. Over n-two-pointed data trees: A class K is definable by an XPath=(↓)-path expression iff both K and K are closed under 
↓-bisimulations and ↓-quasi ultraproducts.

Theorems 28 and 29 can also be straightforwardly adapted.

Theorem 69. Over n-two-pointed data trees: Let K1 and K2 be two disjoint classes such that K1 is closed under ↓-bisimulations 
and ↓-quasi ultraproducts and K2 is closed under ↓-bisimulations and ↓-quasi ultrapowers. Then there exists a third class K which is 
definable by a set of XPath=(↓)-path expressions, contains K1, and is disjoint from K2.
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Theorem 70. Over n-two-pointed data trees: Let K1 and K2 be two disjoint classes closed under ↓-bisimulations and ↓-quasi ultra-
products. Then there exists a third class K which is definable by an XPath=(↓)-path expression, contains K1, and is disjoint from K2 .

Let us move to the vertical fragment. Not having complementation or intersection is more cumbersome in this case. We 
will state definability theorems restricted to classes of special two-pointed data trees which we denote n, m, k-two-pointed
data trees. These are two-pointed data trees T , u, v such that if w is the first common ancestor of u and v (i.e. the closest 
common ancestor) then w

n→u, w
m→v , and w is at distance k from the root of T . Observe that any n, m, k-two-pointed data 

tree is k + max{n, m}-bounded.
If α, β are XPath=(↑↓)-path expressions, we say that α ≡n,m,k β if for every n, m, k-two-pointed data tree T , u, v we 

have T , u, v |= α iff T , u, v |= β . The following equivalences, which are straightforward to verify, allow us to express in 
XPath=(↑↓) the complementation ∼n,m,k and intersection ∩n,m,k over the class of n, m, k-two-pointed data trees.

[ϕ]↑n′↓m′ [ψ] ≡n,m,k

{
[ϕ]↑n↓m[ψ] if n − n′ = m − m′ and n ≤ n′ ≤ n + k

⊥ otherwise (where ⊥ := [〈ε �= ε〉] ↑n↓m)

∼n,m,k ([ϕ]↑n↓m[ψ]) ≡n,m,k ([¬ϕ]↑n↓m) ∪ (↑n↓m[¬ψ])
([ϕ]↑n↓m[ψ]) ∩n,m,k ([ϕ′]↑n↓m[ψ ′]) ≡n,m,k [ϕ ∧ ϕ′]↑n↓m[ψ ∧ ψ ′]

∼n,m,k (α ∩n,m,k β) ≡n,m,k (∼n,m,k α) ∪ (∼n,m,k β)

(α ∪ β) ∩n,m,k γ ≡n,m,k (α ∩n,m,k γ ) ∪ (β ∩n,m,k γ )

α ∩n,m,k β ≡n,m,k β ∩n,m,k α

In the last three equivalencies, α is of the form [ϕ]↑n↓m[ψ] for some ϕ and ψ , and β is of the form [ϕ′]↑n↓m[ψ ′] for some 
ϕ′ and ψ ′ .

In the first equivalence, the condition n − n′ = m − m′ means that the navigation via ↑n′↓m′
could actually connect the 

same nodes as ↑n↓m , assuming the tree extends sufficiently upwards and a common ancestor is reached. The condition 
n ≤ n′ assures that the upward portion of the navigation reaches at least the first common ancestor of the nodes, and the 
condition n′ ≤ n + k means that ↑n′

reaches at most up to the root of the tree, and not higher. Notice that if any of these 
conditions do not hold, the path expression ↑n′↓m′

is always false in the context of n, m, k-two-pointed data trees. If the 
three conditions hold simultaneously, then T , u, v |= ↑n′↓m′

for any n, m, k-two-pointed data tree T , u, v .
The reader can check that, as expected, we arrive at results of definability and separation for XPath=(↑↓) path expres-

sions, as in Theorems 67, 68, 69, and 70, but over the class of n, m, k-two-pointed data trees and using the notions of 
↑↓-bisimulation and ↑↓-quasi ultraproducts.

6. Applications

We list some simple applications of our theorems of definability:

A class of pointed data trees definable in first-order (over data trees) but not definable by a set of XPath=(↑↓)-node ex-
pressions. Let K be the class of pointed data trees (T , u) where u is the root of T and T has some node labeled a. 
On the one hand, K is definable by a first-order σ -formula over the class of data trees. On the other, K is closed under 
XPath=(↑↓)-bisimulations but not closed under ↑↓-quasi ultraproducts: for i ∈ N define Ti as any tree of height i whose 
only node labeled a is at distance i from the root, and define ui as the root of Ti . By an argument similar to the one used 
in Example 15 one can show that if (T ↑↓, u∗) is any ↑↓-quasi ultraproduct of (Ti, ui)i∈N then no node of T ↑↓ has label a. 
By Theorem 25, K is not definable by a set of XPath=(↑↓)-node expression.

A class of pointed data trees definable by a single XPath=(↑↓)-node expression but not definable by set of XPath=(↓)-node 
expressions. Let dist3(x) be the property stating that there are nodes y, z so that x→y→z and x, y, z have pairwise distinct 
data values. It can be checked that the XPath=(↑↓)-node expression ϕ4 = 〈ε �= ↓↓[〈ε �= ↑[〈ε �= ↑〉]〉]〉 from Example 1
expresses dist3(x). Fig. 2 shows that K is not closed under ↓-bisimulations and hence, by Theorem 20, K is not definable by 
a set of XPath=(↓)-node expressions.

A class of pointed data trees definable by set of XPath=(↑↓)-node expressions but not definable by single XPath=(↑↓)-node 
expression. Let K be the class of pointed data trees (T , u), where u is the root of T , and for all v ∈ T we have dist3(v). 
On the one hand, K is definable by the set of XPath=(↑↓)-node expressions {¬〈↓n [¬ϕ4]〉 | n ≥ 0}. On the other, for i ∈ N, 
let (Ti, ui) be any pointed data tree not in K , of height at least i + 1, where ui is the root of Ti , and such that for all v ∈ Ti
at distance at most i from ui we have dist3(v). Let (T ↑↓, u∗) be any ↑↓-quasi ultraproduct of (Ti, ui)i∈N . One can see that 
all nodes of v ∈ T ↑↓ satisfy dist3(v), and so (T ↑↓, u∗) ∈ K . Therefore K is not closed under ↑↓-quasi ultraproducts and by 
Theorem 26, K is not definable by an XPath=(↑↓)-node expression.
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A class of two-pointed data trees definable by a single XPath=(↑↓)-path expression but not definable by set of 
XPath=(↓)-path expressions. Let K be the class of two-pointed data trees T , u, v such that v is a child of u and they 
have the same data value. On the one hand, this class is definable by the path expression α3 = ↓[〈ε = ↑〉] of Example 2. 
On the other hand, the auto bisimulation on T shown in Fig. 3 shows that K is not closed under binary bisimulations for 
XPath=(↓), since T , u, w is bisimilar to T , u, v but data(u) �= data(v). Thus, by Theorem 68, K is not definable by a set of 
XPath=(↓) path expressions.

A class of two-pointed data trees definable in first-order (over data trees) but not definable by a set of XPath=(↑↓)-path 
expressions. Let K be the class of two-pointed data trees T , u, v such that u and v are both children of the root of T , and 
they have the same data value. It is straightforward that this property is definable by a σ -first-order formula over the class 
of data trees. On the other, the auto bisimulation between T and T ′ shown in Fig. 4 shows that K is not closed under binary 
bisimulations for XPath=(↑↓), as T , v, w is bisimilar to T ′, v ′, w ′ but data(v ′) �= data(w ′). Thus, by the corresponding 
theorem of definability, K is not definable by a set of XPath=(↑↓) path expressions.

7. Conclusions

In this work we introduced new tools for showing definability and separation results for the downward and vertical 
fragments of XPath with (in)equality tests over data trees, here called XPath= . The general road to prove these theorems 
themselves was somewhat similar to the one used for the basic modal logic BML (namely, a detour to first-order), but the 
new concepts (and their interactions) needed to be used in the context of XPath= are more sophisticated. The notions of 
↓-saturation and ↑↓-saturation are more refined than the usual notions of BML, as they need to take care of the (in)equality 
tests over the data. Another difference with respect to the models of BML, namely Kripke models, is that models of XPath=
are trees (in particular, connected) and so they are not closed under ultraproducts. Thus arose the notions of ↓-quasi and 
↑↓-quasi ultraproducts. These are variants of the classical first-order ultraproducts, and are, of course, absent in the BML 
framework.

We also introduced new notions of binary bisimulation for both the downward and vertical XPath= , which consist of 
a relation Z linking pairs (x, y) in some data tree with pairs (x′, y′) in some other. In order to maintain the structure of 
the pairs (x, y) and (x′, y′) in the bisimulation Z , more rules were needed than in the case of unary bisimulations. Binary 
bisimulations were shown to match, within finitely branching data trees, to logical equivalences in terms of path expres-
sions, i.e., a bisimulation links (x, y) with (x′, y′) if and only if (x, y) and (x′, y′) satisfy the same path expressions. They 
supersede unary bisimulations, in that they keep all the information of the latter (but they carry more). Furthermore, binary 
bisimulations are robust in the sense that they allow us to show the essential theorems of definability and separation using 
the language of path expressions, and evaluating in pairs of nodes. Finally, a characterization theorem à la van Benthem was 
shown for the case of downward XPath=—for the case of vertical it is known to be false for unary bisimulations, and so as 
well for binary ones.

An interesting question is what can be said about other fragments of XPath= such as XPath=(↓↓∗) (‘child’ and ‘de-
scendant’ axes) or XPath=(↓↑↓∗↑∗) (‘child’, ‘parent’, ‘descendant’ and ‘ancestor’ axes). As it is mentioned in [10, §5], the 
bisimulation notions of these two fragments correspond to those for XPath=(↓) and XPath=(↑↓) respectively. However, 
in the case of XPath=(↓↓∗) and XPath=(↓↑↓∗↑∗), the connection to first-order logic is not clear, as we cannot express 
transitive closure.

We can also try to relax the restrictions in the classes of two-pointed data trees used to show definability and separation 
for the language of path expressions. Though it seems difficult to work with a broader class in the case of downward, it 
would still be possible to obtain stronger results for the case of vertical.

Another question is to investigate the size of shortest node or path expressions distinguishing two nodes or two pairs of 
nodes, respectively, in a data tree, following the ideas in [11], where the notion of bisimulation plays a central role.

Finally, one can devise XPath= as a query language over graph-structured databases (graph data is everywhere these 
days: from social media like Facebook and Twitter, to biological databases and the Semantic Web). What can we say when 
we consider general data graphs instead of data trees? It is easy to see that the notion of unary and even binary downward 
bisimulation could be suitable in this case. However, the notions of bisimulations for the vertical fragment rely heavily in 
the existence of the up–down normal form, which does not hold in data graphs (not even in DAGs). An interesting study 
would be to develop notions of bisimulations and understand the model theory of the vertical XPath= in the context of 
data graphs.
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[3] M. Bojańczyk, A. Muscholl, T. Schwentick, L. Segoufin, Two-variable logic on data trees and XML reasoning, J. ACM 56 (3) (2009) 1–48.
[4] C.C. Chang, H.J. Keisler, Model Theory, Stud. Logic Found. Math., North-Holland, 1990.
[5] J. Clark, S. DeRose, XML path language (XPath), Website, 1999, W3C Recommendation, http://www.w3.org/TR/xpath.
[6] A. Dawar, M. Otto, Modal characterisation theorems over special classes of frames, Ann. Pure Appl. Log. 161 (1) (2009) 1–42.
[7] M. de Rijke, Modal Model Theory, Technical Report CS-R9517, CWI, Amsterdam, 1995.
[8] M. de Rijke, H. Sturm, Global definability in basic modal logic, in: Essays on Non-classical Logic, vol. 1, 2001, pp. 111–135.
[9] D. Figueira, S. Figueira, C. Areces, Model theory of XPath on data trees. Part I: bisimulation and characterization, J. Artif. Intell. Res. 53 (2015) 271–314, 

http://www.glyc.dc.uba.ar/santiago/papers/xpath-part1.pdf.
[10] D. Figueira, S. Figueira, C. Areces, Basic model theory of XPath on data trees, in: International Conference on Database Theory, 2014, pp. 50–60.
[11] S. Figueira, D. Gorín, On the size of shortest modal descriptions, in: Advances in Modal Logic, vol. 8, 2010, pp. 114–132.
[12] G.H.L. Fletcher, M. Gyssens, D. Leinders, J. Van den Bussche, D. Van Gucht, S. Vansummeren, Similarity and bisimilarity notions appropriate for charac-

terizing indistinguishability in fragments of the calculus of relations, J. Log. Comput. 25 (3) (2015) 549–580 (published online 2014).
[13] M. Forti, F. Honsell, Set theory with free construction principles, Ann. Sc. Norm. Super. Pisa X (3) (1983) 493–522.
[14] G. Gottlob, C. Koch, R. Pichler, Efficient algorithms for processing XPath queries, ACM Trans. Database Syst. 30 (2) (2005) 444–491.
[15] M. Gyssens, J. Paredaens, D. Van Gucht, G.H.L. Fletcher, Structural characterizations of the semantics of XPath as navigation tool on a document, in: 

PODS, ACM, 2006, pp. 318–327.
[16] N. Kurtonina, M. de Rijke, Bisimulations for temporal logic, J. Log. Lang. Inf. 6 (1997) 403–425.
[17] N. Kurtonina, M. de Rijke, Simulating without negation, J. Log. Comput. 7 (1997) 503–524.
[18] M. Marx, M. de Rijke, Semantic characterizations of navigational XPath, SIGMOD Rec. 34 (2) (2005) 41–46.
[19] R. Milner, A Calculus of Communicating Systems, Lect. Notes Comput. Sci., vol. 92, Springer, 1980.
[20] M. Otto, Elementary Proof of the van Benthem–Rosen Characterisation Theorem, Technical Report 2342, Fachbereich Mathematik, Technische Universität 

Darmstadt, 2004.
[21] M. Otto, Bisimulation invariance and finite models, in: Logic Colloquium ’02, in: Lect. Notes Logic, vol. 27, 2006, pp. 276–298.
[22] D. Park, Concurrency and automata on infinite sequences, in: Theoretical Computer Science, in: Lect. Notes Comput. Sci., vol. 104, Springer, 1981, 

pp. 167–183.
[23] E. Rosen, Modal logic over finite structures, J. Log. Lang. Inf. 6 (4) (1997) 427–439.
[24] D. Sangiorgi, On the origins of bisimulation and coinduction, ACM Trans. Program. Lang. Syst. 31 (4) (2009).
[25] B. ten Cate, The expressivity of XPath with transitive closure, in: Stijn Vansummeren (Ed.), PODS, ACM, 2006, pp. 328–337.
[26] J. van Benthem, Modal Correspondence Theory, PhD thesis, Universiteit van Amsterdam, 1976.

http://refhub.elsevier.com/S0890-5401(17)30003-2/bib626C61636B6275726E323030316D6F64616Cs1
http://refhub.elsevier.com/S0890-5401(17)30003-2/bib424D535330393A786D6C3A6A61636Ds1
http://refhub.elsevier.com/S0890-5401(17)30003-2/bib6368616E67313939306D6F64656Cs1
http://www.w3.org/TR/xpath
http://refhub.elsevier.com/S0890-5401(17)30003-2/bib44617761724F3039s1
http://refhub.elsevier.com/S0890-5401(17)30003-2/bib646572693A6D6F64613935s1
http://refhub.elsevier.com/S0890-5401(17)30003-2/bib646532303031676C6F62616Cs1
http://www.glyc.dc.uba.ar/santiago/papers/xpath-part1.pdf
http://refhub.elsevier.com/S0890-5401(17)30003-2/bib494344543134s1
http://refhub.elsevier.com/S0890-5401(17)30003-2/bib46473130s1
http://refhub.elsevier.com/S0890-5401(17)30003-2/bib666C6574636865723134s1
http://refhub.elsevier.com/S0890-5401(17)30003-2/bib666C6574636865723134s1
http://refhub.elsevier.com/S0890-5401(17)30003-2/bib666F7274693833s1
http://refhub.elsevier.com/S0890-5401(17)30003-2/bib474B503035s1
http://refhub.elsevier.com/S0890-5401(17)30003-2/bib47797373656E735047463036s1
http://refhub.elsevier.com/S0890-5401(17)30003-2/bib47797373656E735047463036s1
http://refhub.elsevier.com/S0890-5401(17)30003-2/bib4B5254454D504Fs1
http://refhub.elsevier.com/S0890-5401(17)30003-2/bib4B523937s1
http://refhub.elsevier.com/S0890-5401(17)30003-2/bib4D617278523035s1
http://refhub.elsevier.com/S0890-5401(17)30003-2/bib4D696C6E65723830s1
http://refhub.elsevier.com/S0890-5401(17)30003-2/bib4F74746F4E6F7465s1
http://refhub.elsevier.com/S0890-5401(17)30003-2/bib4F74746F4E6F7465s1
http://refhub.elsevier.com/S0890-5401(17)30003-2/bib6F74746F32303036626973696D756C6174696F6Es1
http://refhub.elsevier.com/S0890-5401(17)30003-2/bib5061726B3831s1
http://refhub.elsevier.com/S0890-5401(17)30003-2/bib5061726B3831s1
http://refhub.elsevier.com/S0890-5401(17)30003-2/bib526F73656E3937s1
http://refhub.elsevier.com/S0890-5401(17)30003-2/bib53616E67696F7267693039s1
http://refhub.elsevier.com/S0890-5401(17)30003-2/bib636F6E662F706F64732F436174653036s1
http://refhub.elsevier.com/S0890-5401(17)30003-2/bib76616E42656E7468656D506864s1

	Model theory of XPath on data trees. Part II: Binary bisimulation and deﬁnability
	1 Introduction
	1.1 Related work
	1.2 Outline

	2 Preliminaries
	2.1 Data trees
	2.2 Vertical and downward XPath with data tests
	2.3 Equivalences and syntactic measures
	2.4 Bisimulations
	2.5 Connection to ﬁrst order logic

	3 Deﬁnability via node expressions
	3.1 Saturation
	3.2 Weak data trees and quasi-ultraproducts
	3.3 Deﬁnability
	3.4 Separation

	4 Binary bisimulations
	4.1 Downward
	4.1.1 Some facts about path expressions over XPath=(↓)
	4.1.2 Equivalence for XPath=(↓) path expressions
	4.1.3 Binary bisimulation for XPath=(↓)
	4.1.4 Characterization for XPath=(↓) paths

	4.2 Vertical
	4.2.1 Some facts about path expressions over XPath=(↓)
	4.2.2 Binary bisimulation for XPath=(↓)


	5 Deﬁnability via path expressions
	5.1 Saturation
	5.2 Weak data trees and quasi-ultraproducts
	5.3 Deﬁnability and separation

	6 Applications
	7 Conclusions
	Acknowledgments
	References


