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SUMMARY

We consider inference under a nonparametric or semiparametric model with likelihood that
factorizes as the product of two or more variation-independent factors.We are interested in a finite-
dimensional parameter that depends on only one of the likelihood factors and whose estimation
requires the auxiliary estimation of one or several nuisance functions. We investigate general
structures conducive to the construction of so-called multiply robust estimating functions, whose
computation requires postulating several dimension-reducing models but which have mean zero
at the true parameter value provided one of these models is correct.

Some key words: Causal inference; Estimating function; Missing data; Semiparametric model.

1. INTRODUCTION

The goal of this paper is to develop a general theory of multiply robust estimation func-
tions for a parameter β( p) in semiparametric or nonparametric models for the law p under
which the likelihood p factorizes as p = gh where g and h are variation-independent func-
tions and β( p) depends on p only through g. Leading examples of such models are ignorable
missing data and causal inference models or combinations thereof where h is the likelihood
factor corresponding to the missingness and/or treatment assignment mechanism and g is the
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likelihood factor corresponding to the full and/or the counterfactual data. In the literature, an
estimating function is called doubly robust if it has mean zero if either a model for h or a model
for g is correct, giving the analyst two opportunities to obtain an unbiased estimating function
for β( p).

Often g and h factorize further as g = g1 · · · gK+1 and h = h1 · · · hK (K � 2)with all functions
gk and hk being variation-independent. For example, in a longitudinal study, hk would correspond
to the missingness mechanism and/or treatment assignment mechanism at occasion k and gk to
the likelihood contribution to the full and/or the counterfactual data at occasion k . In this setting,
we still refer to an estimating function as doubly robust if it has mean zero when either a model
for g is correct or a model for h is correct. A multiply robust estimating function is not only
doubly robust but, in addition, has mean zero when a model for various strict subsets of the gk
and hk are correct.

Many doubly and multiply robust procedures have been proposed to estimate parameters of
models used in causal inference; see Robins (2000), Murphy et al. (2001), Lunceford & Davidian
(2004), Bang & Robins (2005), Tan (2006, 2010a), Zhang et al. (2012), Orellana et al. (2010),
Vansteelandt et al. (2008), Goetgeluk et al. (2008), Tchetgen Tchetgen & Shpitser (2012), van der
Laan & Rubin (2006), and van der Laan & Gruber (2010). Doubly robust estimators have also
been proposed to estimate parameters of models often assumed in studies with missing data, e.g.,
Scharfstein et al. (1999), Vansteelandt et al. (2007), Cao et al. (2009), Tsiatis et al. (2011), Tan
(2010b, 2011), Rotnitzky et al. (2012) and Vermeulen & Vansteelandt (2015).

Recently, Han & Wang (2013), Chan & Yam (2014), and Han (2014, 2016) have described
estimators that are consistent under correct specification of one of multiple working models for
h or multiple working models for g. They refer to these estimators as multiply robust. By our
definition, their estimators would be considered doubly robust but not multiply robust, because
they still require that a model for h or a model for g be correct to achieve consistency. If one
wanted to use the term multiply robust for their estimators, one would need a different descrip-
tion for the estimators of the present article. However, for compatibility with the terminology
used in the literature prior to 2013, e.g., Vansteelandt et al. (2007), Vansteelandt et al. (2008),
Tchetgen Tchetgen (2009), and Tchetgen Tchetgen & Shpitser (2012), we will use our above
definition of multiple robustness.

The construction of doubly and multiply robust estimators appears to be ad hoc. With the
exception of Robins et al. (2000) and Robins & Rotnitzky (2001) for doubly robust estimation
and Robins et al. (2008) for doubly and multiply robust estimation, there is a paucity of theoretical
results giving sufficient conditions under which one can hope to find multiply robust procedures.
The goal of this article is to contribute to filling this gap.

We provide a general theoretical framework under which one can construct estimating equa-
tions that could be used to compute multiply robust estimators. Our results extend some of
the theoretical results in Robins et al. (2000) and Robins & Rotnitzky (2001) from doubly to
multiply robust estimation. An important contribution is to offer sufficient conditions under
which estimation of finite-dimensional nuisance parameters indexing the nuisance functions
is possible without the need to estimate new nuisance functions. Our framework assumes a
model where the likelihood can be written as the product of two or more variation-independent,
possibly infinite-dimensional, factors. Furthermore, the parameter β( p) of interest is function-
ally dependent on only one of the likelihood factors and equals the solution of a population
moment equation. Although not all problems where doubly or multiply robust estimators
exist fit into this framework (e.g., Tchetgen Tchetgen & Shpitser, 2012; Zhang et al., 2012;
Scharfstein et al., 1999; Vansteelandt et al., 2008) our theory is general enough to explain
the existence of many available doubly and multiply robust estimators and sheds light on the
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construction of multiply robust estimators in other interesting problems. Proofs are relegated to the
Supplementary Material.

2. MOTIVATING EXAMPLES

2·1. Example 1: mean estimation in longitudinal missing data

Consider the estimation of the mean of a possibly unobserved outcome Lf
3 at time t3 in a

longitudinal study that suffers from drop-out. Suppose that the study calls for measurements Lf
1

and Lf
2 to be made at times t1 and t2. Assume Lf

1 is always observed. Let Aj denote the indicator of
still being in the study at time tj+1 (j = 1, 2). The data recorded on a given study participant are
then the random vector Z = (L1, A1, L2, A2, L3) where L1 = Lf

1, L2 = A1Lf
2 and L3 = A1A2Lf

3.
Assume pr(A1 = 1 | L1, Lf

3) and pr(A2 = 1 | A1 = 1, L1, L2, Lf
3) do not depend on Lf

3, so Lf
3 is

missing at random. Under these assumptions the mean of Lf
3 is the following function of the

density p of Z (Robins et al., 1995):

β( p) ≡ Ep
[
Ep

{
Ep (L3 | A2 = A1 = 1, L1, L2) | A1 = 1, L1

}]
.

Here and in what follows Ep (·) denotes expectation computed under p. The missing at random
assumption does not impose restrictions on p (Gill et al., 1997). Thus, formally, our goal is to
estimate β( p) based on a random sample of Z under a model M for the law p of Z that places
no restrictions on p.

For any z = (l1, a1, l2, a2, l3) let

g1 (z) ≡ pL1 (l1), g2 (z) ≡ pL2|A1,L1 (l2 | a1, l1) , g3 (z) ≡ pL3|A2,L2

(
l3 | a2, l2

)
, (1)

h1 (z) ≡ pA1|L1 (a1 | l1), h2 (z) ≡ pA2|A1,L2

(
a2 | a1, l2

)
, (2)

where, throughout, an overbar over a variable subscripted by k denotes the history of the variable
up to k , i.e., Lk = (L1, . . . , Lk). The mean β( p) depends on p only through g ≡ (g1, g2, g3), so
we denote it by β(g). In fact, β(g) depends just on g1 and on

ρ1 (g) ≡ Eg2

{
Eg3

(
L3 | A2 = A1 = 1, L2

) | A1 = 1, L1
}
,

ρ2 (g) ≡ Eg3

(
L3 | A2 = A1 = 1, L2

)
. (3)

Furthermore, β(g) is the unique solution of the equation Ep {M (β, h)} = 0, where

M (β, h) ≡ [
A1A2/

{
Eh1 (A1 | L1)Eh2

(
A2 | A1, L2

)}]
(L3 − β),

h ≡ (h1, h2), and, throughout, Eq(· | ·) stands for conditional expectation under q. The function
M (β, h) is a so-called inverse probability of censoring weighted estimating function. The function
takes value zero for drop-outs. For non-drop-outs, M (β, h) equals the residual L3 − β weighted
by the inverse of the product of the probabilities of being observed at each occasion, conditional
on past data.

When L1 and/or L2 are multivariate with continuous components, consistent estimation of
β(g) under model M is not feasible in practice due to the curse of dimensionality (see, e.g.,
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Robins et al., 1994), Robins & Ritov (1997) proved that in this setting there are no uniformly
consistent estimators of β(g). Many dimension-reduction strategies exist for addressing the curse
of dimensionality, including those that yield doubly robust estimators of β(g). Such estimators
are consistent when either working parametric models Hj ≡ {

hj,αj : αj ∈ �j
}

for hj (j = 1, 2)
are correct, or working parametric models Rj ≡ {

ρj,τj : τj ∈ ϒj
}

for ρj (g) (j = 1, 2) are correct
(van der Laan & Robins, 2003; Tsiatis, 2006). Here�j andϒj (j = 1, 2) are subsets of Euclidean
spaces. Tchetgen Tchetgen (2009) recently showed that it is possible to construct a multiply
robust estimator of β(g)which confers further protection with respect to model misspecification.
We will now review his estimator. Throughout, for conciseness, we write p ∈ Rj whenever
ρj (g) ∈ Rj, and we write p ∈ Hj whenever hj ∈ Hj.

Let τ ≡ (τ1, τ2) and α ≡ (α1,α2). Consider the estimating functions

U (β, τ ,α) ≡ {
A2A1/

(
π1,α1π2,α2

)} (
L3 − ρ2,τ2

) + (
A1/π1,α1

) (
ρ2,τ2 − ρ1,τ1

) + (
ρ1,τ1 − β

)
,

T1 (τ ,α) ≡ A1d (L1; τ ,α2)
{(

A2/π2,α2

) (
L3 − ρ2,τ2

) + (
ρ2,τ2 − ρ1,τ1

)}
,

where π1,α1 ≡ Eh1,α1
(A1 | L1) and π2,α2 ≡ Eh2,α2

(
A2 | A1, L2

)
and d (L1; τ ,α2) is a specified

column vector-valued function of (L1; τ ,α2) with as many rows as the dimension of τ1. The
displayed functions satisfy:

(I) Ep [U {β(g), τ ,α}] = 0, provided p ∈ (H1 ∪ R1)∩(H2 ∪ R2) and the parameters indexing
the correctly specified working models are replaced by their true values, e.g., if p ∈ Rj, τj
is replaced by τj (g) satisfying ρj (g) = ρj,τj(g);

(II) Ep [T1 {τ1 (g), τ2,α}] = 0, provided p ∈ R1 and either p ∈ R2 and τ2 = τ2 (g), or p ∈ H2
and α2 is such that h2 = h2,α2 .

Facts (I) and (II), which were proved by Tchetgen Tchetgen (2009), are a consequence of the
results presented in § 3, which imply that one can construct a multiply robust estimator β̂, in the
sense that it converges in probability to β(g) whenever p ∈ (H1 ∪ R1)∩ (H2 ∪ R2), as follows.

Let α̂j be the maximum likelihood estimator of αj ( j = 1, 2). Let τ̂2 be the possibly nonlinear
least squares estimator of τ2 in the regression of L3 on L2 among units with A2 = A1 = 1, i.e., τ̂2
solves Pn {T2 (τ2)} = 0, where T2(τ2) = A1A2

(
∂ρ2,τ2/∂τ2

) (
L3 − ρ2,τ2

)
. Let τ̂1 be the estimator

of τ1 solving Pn
{
T1

(
τ1,τ̂2, α̂2

)} = 0. Here and throughout, Pn is the empirical mean operator, i.e.,
Pn (V ) = n−1 ∑n

i=1 Vi. The multiply robust estimator β̂ solves Pn
{
U

(
β, τ̂1, τ̂2, α̂

)} = 0 and
was derived by Tchetgen Tchetgen (2009).

2·2. Example 2: partial linear regression with missing outcomes

Consider a study that requires measurements of (L1, A1, L2, Lf
3) on a random sample of subjects.

Suppose that Lf
3 is a scalar unbounded outcome, A1 is a binary treatment indicator, L1 is a vector

of pre-treatment covariates and L2 is a vector of post-treatment variables measured prior to Lf
3.

Consider the estimation of β∗ ∈ R under the partially linear regression model (Engle et al., 1986)

E
(

Lf
3 | A1, L1

)
= β∗A1 + v (L1) (4)

when (L1, A1, L2) is always observed but Lf
3 is missing in some subjects. In (4) v (L1) is an

unknown function. Under the assumption of no unmeasured confounders, model (4) coincides
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with a structural nested mean model for a point exposure (Robins, 2000) and β∗ quantifies the
average treatment effect of A1 on the mean of Lf

3 in subjects with covariates L1. The variable L2
is not included as a covariate of the semiparametric regression model because conditioning on
post-treatment variables may bias the estimates of treatment effects.

Assume Lf
3 is missing at random, that is, pr(A2 = 1 | L2, A1, L1, Lf

3) = pr(A2 = 1 | L2, A1, L1),
where A2 denotes the binary indicator that Lf

3 is not missing. Under this assumption β∗ is a
function β( p) of the density p of the observed data vector Z = (L1, A1, L2, A2, L3), where L3 =
A2Lf

3. The parameter β( p) satisfies

Ep
{
Ep

(
L3 | A2 = 1, L2, A1

) | A1, L1
} = β( p)A1 + vp (L1) (5)

for some unknown function vp (L1). Thus, formally, our problem is to estimate β( p) from n
independent and identically distributed copies of Z under a model M that imposes no restrictions
on p other than (5).

Let gj and hj be defined as in (1) and (2), respectively. Observe that β( p) and vp (·) depend
on p just through g ≡ (g1, g2, g3). This is because each conditional expectation in the left-hand
side of (5) depends on p only through g. Throughout, we write β(g) instead of β( p) and ρ1 (g)
instead of vp (·) to stress this point. The functional β(g) can also be characterized as the unique
solution of Ep {M (β, h)} = 0, where

M (β, h) ≡ {
A2/Eh2(A2 | L2, A1)

}
(L3 − βA1)

{
A1 − Eh1 (A1 | L1)

}
. (6)

To interpret M (β, h) observe that if L3 were always observed, i.e., if A2 were always 1, (6)
would reduce to (L3 − βA1)

{
A1 − Eh1 (A1 | L1)

}
. This product has mean zero given L1 at β( p)

when L3 is always observed because in such a case, equation (5) is equivalent to the assertion
that Ep {L3 − β( p)A1 | A1, L1} does not depend on A1. Thus, this product would be an unbiased
estimating function for β( p) if L3 were never missing. The right-hand side of (6) is the inverse
probability weighted version of this full-data unbiased estimating function.

Robins (2000) describes doubly robust estimators ofβ(g) that are consistent and asymptotically
normal so long as either some user-specified parametric models Hj ≡ {

hj,αj : αj ∈ �j
}

for hj ( j =
1, 2) are correct or some parametric models Rj ≡ {

ρj,τj : τj ∈ ϒj
}

for ρj (g) ( j = 1, 2), where
ρ2 (g) ≡ E

(
L3 | A2 = 1, L2, A1

)
, are correct. Here we construct a multiply robust estimator of

β(g). To do so, we define πk ,αk (k = 1, 2) as in Example 1, and

U (β, τ ,α) ≡ {(
A2/π2,α2

) (
L3 − ρ2,τ2

) + ρ2,τ2 − βA1 − ρ1,τ1

} (
A1 − π1,α1

)
,

T1 (β, τ1, τ2,α) ≡ d (L1, A1; τ ,α2)
{(

A2/π2,α2

) (
L3 − ρ2,τ2

) + ρ2,τ2 − βA1 − ρ1,τ1

}(
A1 − π1,α1

)
,

where d (L1, A1; τ ,α2) is a specified column vector-valued function of (L1, A1; τ ,α2) with as
many rows as the dimension of τ1.

The functions U and T1 satisfy the properties (I) and (II) stated in Example 1, except that in
condition (II) T1 {τ1 (g), τ2,α} is replaced by T1 {β(g), τ1 (g), τ2,α}. These properties are eas-
ily checked directly, but also follow from the general results presented in § 3. They imply that
the following estimator β̂ is, under regularity conditions, multiply robust in the sense that it
converges in probability to β(g) whenever p ∈ (H1 ∪ R1) ∩ (H2 ∪ R2). Specifically, β̂ solves
Pn

[
U

{
β, τ̂1 (β), τ̂2, α̂

}] = 0 where for each fixed β, τ̂1 (β) solves Pn
{
T1

(
β, τ1,τ̂2, α̂

)} = 0. In
these equations τ̂2 is the least squares estimator of τ2 in the regression of L3 on

(
L2, A1

)
among
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units with A2 = 1 assuming ρ2 (g) ∈ R2, e.g., τ̂2 solves Pn {T2 (τ2)} = 0 where T2(τ2) =
A2

(
∂ρ2,τ2/∂τ2

) (
L3 − ρ2,τ2

)
. Also, α̂j is the maximum likelihood estimator of αj ( j = 1, 2)

under Hj.

3. MODELS RESTRICTING FUNCTIONALS OF CONDITIONAL DENSITIES

3·1. Assumptions

Let Z = (L1, A1, . . . , LK , AK , LK+1) be a random vector that takes values in some set Z and
has density p. Assume p (z) > 0 for all z ∈ Z . Let

gk (z) ≡ p
(

lk | lk−1, ak−1

)
, hk (z) ≡ p

(
ak | lk , ak−1

)

denote the associated conditional densities. Let g ≡ (g1, . . . , gK+1) and h ≡ (h1, . . . , hK ) and let
M be a large, i.e., semiparametric or nonparametric, model for p of strictly positive densities on
Z that may restrict g to belong to some set G but does not restrict h. For instance, in Example 2,
G is the set {g : g satisfies (5)}. Assume there exists M (β, h) ≡ m (Z ;β, h), a known R

r-valued
function of (Z ;β, h) where β is a r × 1 vector, such that for all p in M the equation

Ep {M (β, h)} = 0 (7)

has a unique solution β( p) that depends on p only through g and thus is hereafter denoted by
β(g). We study estimation of β(g) based on n independent and identically distributed copies
Z1, . . . , Zn of Z assuming, as in Examples 1 and 2, that due to the curse of dimensionality,
consistent estimation of β(g) under M is unfeasible in practice.

Consider parametric working models

Hk = {
hk ,αk : αk ∈ �k

}
(k ∈ [K]), Pk = {

gk ,ςk : ςk ∈ �k
}
(k ∈ [K + 1]) (8)

for hk and gk respectively, where �k and �k lie in some Euclidean spaces and, throughout, for
any k , [k] ≡ {1, . . . , k}. In the following p = gh stands for p = g1 · · · gK+1h1 · · · hK and, for
conciseness, we write p ∈ Hj if hj ∈ Hj and p ∈ Pk if gk ∈ Pk . Let ĥ ≡ (

h1,α̂1 , . . . , hK ,α̂K

)
and ĝ ≡ (

g1,ς̂1 , . . . , gK+1,ς̂K+1

)
, where α̂k and ς̂k are the maximum likelihood estimators of αk

and ςk . Under regularity conditions, the estimator β̂ĥ solving Pn

{
M

(
β, ĥ

)}
= 0 converges in

probability to β(g) if p ∈ Hk for all k ∈ [K]. Likewise, the substitution-type estimator β(ĝ)
converges to β(g) if p ∈ Pk for all k ∈ [K + 1]. However, convergence of β̂ĥ to β(g) is not
guaranteed if p |∈ Hk for some k , and likewise convergence of β(ĝ) to β(g) is not ensured if
p |∈ Pk for some k .

3·2. Multiple robustness

Robins et al. (2000) noted that under our assumptions and regularity conditions, it is possible
to construct an estimator β̃ that is doubly robust in that β̃ converges in probability to β(g) if

(a) p ∈ ⋂K+1
k=2 Pk or (b) p ∈ ⋂K

k=1 Hk . The estimator β̃ solves Pn

{
Q

(
β, ĥ, ĝ

)}
= 0, where for

any p = gh,

Q (β, h, g) ≡ M (β, h)−
∑K

k=1
�k [M (β, h) ; p] (9)
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and

�k [W ; p] ≡ Ep(W | Ak , Lk)− Ep(W | Ak−1, Lk). (10)

When W is a real-valued random variable, the operator�k [·; p] maps W into the closest element of


k ( p) ≡ {
B = b

(
Ak , Lk

)
real-valued : Ep

(
B | Ak−1, Lk

) = 0, Ep
(
B2) < ∞}

. (11)

That is, �k [W ; p] is in 
k( p) and satisfies Ep
{
(W −�k [W ; p])2} � Ep

{
(W − B)2

}
for all B

in 
k( p). The projection �k [W ; p] is the unique element in 
k( p) such that W −�k [W ; p] is
orthogonal to, i.e., uncorrelated with, all elements of 
k( p) under p. When W is multivariate,
�k [W ; p] stands for the vector formed by the projections into 
k( p) of the coordinates of W .
The space 
k( p) is indeed the tangent space in the submodel of M that fixes all conditional
densities but hk , i.e., the space of scores in submodels of model M that parameterize hk and
leave all other conditional densities fixed. The spaces
k( p) (k ∈ [K]) are mutually orthogonal.
See § 4.

In fact β̃ converges, under regularity conditions, to β(g) not only under conditions (a) and

(b) above but also if (c) for some k ∈ [K − 1], p ∈
(⋂k

j=1 Hj

)
∩

(⋂K+1
j=k+2 Pj

)
. We refer to an

estimator as a (K + 1)-multiply robust estimator of β(g) if, like β̃, it converges in probability
to β(g) whenever conditions (a) or (b) of the previous paragraph hold or condition (c) holds. To
the best of our knowledge, the (K + 1)-multiple robustness property of β̃ has not been reported
elsewhere. Aside from regularity conditions, this property is a consequence of Proposition 2,
which is a corollary to the following key result.

THEOREM 1. Given p∗ = gh∗ and p = gh such that p (Z) /p∗ (Z) ∈ L2 ( p∗) and any random
variable D = d (Z) such that Ep∗

(
D2

)
< ∞,

Ep

(
D −

∑K

k=1
�k [D; p∗]

)
= Ep∗ (D). (12)

Below we provide two important results, stated in Propositions 1 and 2 which follow from
Theorem 1 after we observe that by the definition of �j, for any p = gh and p∗∗ = g∗h∗,

Ep
(
�j[D; p∗∗] | Aj−1, Lj

) = Ehj

{
Ep∗∗

(
D | Aj, Lj

) | Aj−1, Lj
}−Eh∗

j

{
Ep∗∗

(
D | Aj, Lj

) | Aj−1, Lj
}
.

Then, for any two densities p and p∗∗ that agree on hj, it follows that the right-hand side of the
previous equation is 0. Consequently, if p = gh, p∗ = gh∗and p∗∗ = g∗h∗, then

hj = h∗
j ⇒ Ep

(
�j[D; p∗]) = Ep

(
�j[D; p∗∗]) = 0. (13)

Now, suppose that for some set C ⊆ [K], (i) hj = h∗
j for all j ∈ C and (ii) �k [D; p∗∗] =

�k [D; p∗] for all k ∈ C where throughout C ≡ [K] − C. Then

Ep

(
D −

∑K

k=1
�k [D; p∗∗]

)
= Ep

(
D −

∑K

k=1
�k [D; p∗]

)

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article-abstract/104/3/561/3868976 by guest on 17 Septem
ber 2018



568 J. MOLINA, A. ROTNITZKY, M. SUED AND J. M. ROBINS

because Ep
(∑

k∈C �k [D; p∗]) = 0 = Ep
(∑

k∈C �k [D; p∗∗]) by (i) and (13) and because∑
k∈C �k [D; p∗] = ∑

k∈C �k [D; p∗∗] by (ii). Theorem 1 then implies that

Ep

(
D −

∑K

k=1
�k [D; p∗∗]

)
= Ep∗ (D).

This result states that we can recover from the law p the mean of any random variable D under
another law p∗ so long as (i) p and p∗ agree on the factors hj with indexes j in some set C and
(ii) for those hj factors for which they don’t agree we can compute the correct projections into
the corresponding tangent spaces. Specifically, under (i) and (ii) the mean under p∗ of D agrees
with the mean under p of D minus the sum of the projections of D into the K tangent spaces.

Upon substituting M {β(g), h∗} for D, the preceding argument is a proof of the following
proposition.

PROPOSITION 1. Let p∗∗ = g∗h∗, p∗ = gh∗ and p = gh be such that p (Z) /p∗ (Z) ∈ L2 ( p∗)
and p (Z) /p∗∗ (Z) ∈ L2 ( p∗∗). Suppose that g satisfies the restrictions of model M and for some
C ⊆ [K], (i) hj = h∗

j for all j ∈ C and (ii) �k [M (β, h∗) ; p∗∗] = �k [M (β, h∗) ; p∗] for all

k ∈ C and β ∈ R
r. Then

Ep

(
M

{
β(g), h∗} −

∑K

k=1
�k

[
M

{
β(g), h∗} ; p∗∗]) = Ep∗

[
M

{
β(g), h∗}] = 0. (14)

We are now ready to argue why the doubly robust estimator β̃ is actually a (K + 1)-
multiply robust estimator. First, notice that because �k [D; p] depends on g only through
gk+1 ≡ (gk+1, . . . , gK+1), we have that �k [D; p∗∗] = �k [D; p∗] for all k ∈ {l + 1, . . . , K}
when gj = g∗

j for j ∈ {l + 2, . . . , K + 1}. Thus, given l ∈ {0, . . . , K}, the assumptions (i) and (ii)
of Proposition 1 hold for C= {1, . . . , l} if (a) hj = h∗

j for all j ∈ {1, . . . , l} and (b) gj = g∗
j for

j ∈ {l + 2, . . . , K + 1} where {1, . . . , l} ≡ ∅ if l = 0 and {l + 2, . . . , K + 1} ≡ ∅ if l = K .
Consequently, we have the following corollary of Proposition 1.

PROPOSITION 2. Let p∗∗ = g∗h∗, p∗ = gh∗ and p = gh be such that p (Z) /p∗ (Z) ∈ L2 ( p∗)
and p (Z) /p∗∗ (Z) ∈ L2 ( p∗∗). Suppose that g satisfies the restrictions of model M and one of the
following holds: (a) hk = h∗

k for all k ∈ [K], (b) gk = g∗
k for all k ∈ {2, . . . , K + 1} or (c) there

exists k ∈ [K − 1] such that hj = h∗
j for j ∈ {1, . . . , k} and gj = g∗

j for j ∈ {k + 2, . . . , K + 1}.
Then equality (14) holds.

The (K + 1)-multiple robustness of the estimator β̃ follows from Proposition 2 under regularity
conditions. Specifically, suppose that p = gh belongs either to

⋂K
j=1 Hj or to

⋂K+1
j=2 Pj or to(⋂k

j=1 Hj

)
∩

(⋂K+1
j=k+2 Pj

)
for some k ∈ {1, . . . , K − 1}. Then, under p and regularity conditions,

ĥ converges to some h∗ and ĝ converges to some g∗ where h∗ and g∗ satisfy one of the conditions
(a), (b) or (c) of Proposition 2. Thus, Q

(
β, ĥ, ĝ

)
converges to Q (β, h∗, g∗) = M (β, h∗) −∑K

k=1�k [M (β, h∗) ; p∗∗] where p∗∗ = g∗h∗, which, by the conclusion (14) of Proposition 2, is
an unbiased estimating function for β(g).

In computing β̃ one specifies fully parametric models for each of the components gk of g.
This modelling strategy yields β̃ that is generally inconsistent if for some k ∈ [K] : (A) the
model for hk is incorrect and (B) the parametric model for any single one of the components of
gk+1 ≡ (gk+1, . . . , gK+1) is incorrect. This is so because letting p∗∗ = g∗h∗ with g∗ and h∗ the
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probability limits of ĝ and ĥ , (A) and (B) imply that there can be no subset C of [K] satisfying

conditions (i) and (ii) of Proposition 1 and thus Q
(
β, ĥ, ĝ

)
is not guaranteed to converge to

an unbiased estimating function for β(g). Notice that no such subset C can exist, because if it
existed, then k would have to belong to either C or C. However, k cannot belong to C because
hk |= h∗

k , and k cannot belong to C because �k [M (β, h∗) ; p∗∗] |= �k [M (β, h∗) ; p∗] for
p∗ = h∗g as gk+1 |= g∗

k+1 and �k [M (β, h∗) ; p∗∗] and �k [M (β, h∗) ; p∗] depend on g∗
k+1 and

gk+1 respectively.
In the next section we will argue that parametric models for the conditional densities gk

(k ∈ [K]) are unnecessarily restrictive in the sense that consistent estimators of β(g) exist under
models that parameterize just some components of gk (k ∈ [K]) but not the entire conditional
laws.

3·3. Multiply robust estimating functions for the parameter of interest

Proposition 1 and the analysis of the reasons for inconsistency of β̃ when (A) and (B) hold invite
one to explore the existence of functionals of g

k+1
that are non-injective and do not depend on h,

such that Ep
{
M (β, h) | Ak , Lk

}
or Ep

[
M {β(g), h} | Ak , Lk

]
, and consequently�k [M (β, h) ; p]

or�k [M {β(g), h} ; p], depend on g only through those functionals. The hope is that, by modelling
such functionals for all k ∈ [K] instead of the entire g, one could perhaps find an estimator of
β(g) that confers even more robustness with respect to model misspecification than β̃.

Such non-injective functionals do indeed exist in Examples 1 and 2. This point is seen in
Example 1 after noticing that the conditional expectation of M (β, h) can be written as

Ep
{
M (β, h) | Ak , Lk

} =
∏k

j=1

{
Aj/Ehj

(
Aj | Aj−1, Lj

)} {ρk (g)− β}, (15)

where ρk (g) (k = 1, 2) are defined in (3). Thus, we see that the conditional expectation in (15)
depends on g through the non-injective functionals ρk (g) (k = 1, 2). These functionals were
precisely the ones modelled to arrive at the multiply robust estimator of Example 1.

In Example 2, the conditional expectations of M (β, h) are

Ep
{
M (β, h) | A2, L2

} = {ρ2(g)− βA1}
{
A1 − Eh1 (A1 | L1)

}
A2/Eh2(A2 | A1, L2), (16)

Ep {M (β, h) | A1, L1} = [ρ1(g)− {β − β(g)}A1]
{
A1 − Eh1 (A1 | L1)

}
, (17)

where ρ2 (g) = E
(
L3 | A2 = 1, L2, A1

)
and ρ1 (g) is the nonparametric component vp (·) in

model (5) . Observe that Ep
{
M (β, h) | A2, L2

}
in (16) depends on g only through ρ2(g) and

Ep {M (β, h) | A1, L1} in (17) evaluated at β = β(g) depends on g only through ρ1(g). The
functionals ρ1(g) and ρ2(g) were precisely the ones modelled to construct the multiply robust
estimator of Example 2.

We then see that we can arrive at the hoped-for functionals by exploring the form of
Ep

{
M (β, h) | Ak , Lk

}
(k = 1, 2). Interestingly, in (17) the mean of M (β, h)depends on g through

ρ1(g) and also through the unknown β(g),whereas the mean of M {β(g), h} depends on g only
through ρ1(g). In contrast, in equation (16), the mean of M (β, h) does not depend on β(g) but
the mean of M {β(g), h} does. These examples illustrate that we can eliminate the dependence
on the unknown β(g) by modelling sometimes Ep

{
M (β, h) | Ak , Lk

}
, i.e., the mean of M (β, h)

with β unspecified, and sometimes Ep
[
M {β(g), h} | Ak , Lk

]
, i.e., the mean of M (β, h) with β

fixed at β(g).
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In formulating the general theory that we will develop next, we will assume that there exist
functionals ηk (g) (k ∈ [K]), independent of β and h, such that Ep

{
M (β, h) | Ak , Lk

}
depends

on g only through ηk (g). Whereas we could write this assumption as Ep
{
M (β, h) | Ak , Lk

} =
ek {ηk (g),β, h} for some ek , we will instead write it as

Ep
{
M (β, h) | Ak , Lk

} = ek [ψk {ηk (g),β}, h] (18)

for some ek and ψk . This is without loss of generality, as ψk may be taken to be the identity,
but writing the assumption as (18) will allow us to distinguish situations in which we model the
dependence on g of the conditional expectation of M (β, h) with β fixed at β(g), corresponding
to modelling ψk {ηk (g),β(g)}, from situations in which we model the dependence on g of the
expectation of M (β, h)with β unspecified, corresponding to modelling ηk (g). While our results
will be valid whether or not ηk (g) is an injective functional of g, they will only be useful
for coming up with estimators that confer more robustness to model misspecification than the
(K + 1)-multiply robust estimator β̃ when, for some k ∈ [K], ηk (g) is non-injective.

To clarify the meaning of ηk andψk , consider again Examples 1 and 2. Examining the identity
(15), we see that (18) holds in Example 1 if we define ηk (g) ≡ ρk (g) and ψk (·, ·) to be the
identity function (k = 1, 2). The models adopted to construct the multiply robust estimator of
Example 1 are models for ηk (g) (k = 1, 2), i.e., for the dependence of �k [M (β, h) ; p] on g
for any β. On the other hand, upon examining identity (16) we see that (18) holds if we define
η2 (g) ≡ ρ2 (g) andψ2 (·, ·) to be the identity function, whereas by examining identity (17) we see
that (18) holds if we define η1 (g) ≡ (ρ1 (g),β(g)) and ψ1 {η1 (g),β} ≡ ρ1 (g)− {β(g)− β}A1.
Note that ψ1 {η1 (g),β(g)} ≡ ρ1 (g) is the functional that governs the dependence on g of
Ep {M (β, h) | A1, L1} with β fixed at β(g). This is precisely the functional modelled to construct
the multiply robust estimator of Example 2.

Recall that in Example 2, G is the set {g : g satisfies (5)}. However, in this example, η2 (g) =
ρ2 (g) = Eg

(
L3 | A2 = 1, L2, A1

)
is indeed defined on the larger set G2 = {g : g unrestricted}.

Furthermore,

e2 [ψ2 {η2 (g),β}, h] ≡ {
A2/Eh2(A2 | A1, L2)

} {ρ2(g)− βA1}
{
A1 − Eh1 (A1 | L1)

}
satisfies (18) for g ∈ G but is also well defined for all g in G2 and is a random variable that
depends only on

(
A2, L2

)
. This, in turn, implies that for k = 2,

hk = h∗
k ⇒ Egh

(
πk

[
ψk {ηk (g),β}, h∗]) = 0 for any g in Gk (19)

where

πk [ψk {ηk (g),β}, h] ≡ ek [ψk {ηk (g),β}, h] − Ehk

(
ek [ψk {ηk (g),β}, h] | Ak−1, Lk

)
. (20)

That property (19) holds on a set Gk that possibly includes G strictly is important to ensure
the multiple robustness of the estimator β̂ in Example 2 even when the model for ρ2 (g) is
incompatible with the model (5). For instance, in Example 2, even in the extreme case in which one
were to specify a model R2 = {

ρ2,τ2 = τ2L1A1 : τ2 > 0
}

for ρ2 (g) = E
(
L3 | A2 = 1, L2, A1

)
,

which cannot be true for any g satisfying (5), the estimator β̂ would be consistent for β(g)
provided model H2 for h2 is correct and either model R1 for g or model H1 for h1 is correct.

Returning to the formulation of the general theory, define πk [ψk {ηk (g),β}, h] as in (20). With
this definition, for any g ∈ G and p = gh, one has that

�k [M (β, h) ; p] = πk [ψk {ηk (g),β}, h]. (21)
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Examples 1 and 2 illustrate that given the decomposition (18) under our general setting, for
each k one may choose to model either ψk {ηk (g),β(g)} or ηk (g). That is, one may choose to
model ψk {ηk (g),β(g)} for all k in some subset E of [K] and model ηk (g) for all k not in E, i.e.,
to model functionals defined as

ρk (g) ≡
{
ψk {ηk (g),β(g)}, k ∈ E,
ηk (g), k |∈ E.

(22)

Until § 4, we will assume that the decomposition (18) holds for some ek , ψk and ηk and all g
in a set Gk , possibly larger than G, and ρk (g) is defined as in (22). Having defined the target
functional ρk (g) for each k ∈ [K], we now define a parametric model

Rk ≡ {
ρk ,τk : τk ∈ ϒk

}
,

where ϒk lies in some Euclidean space. We assume that Rk ⊂ {ρk (g) : g ∈ Gk} ; the inclusion
ensures that ek

(
ρk ,τk , h

)
(k ∈ E) and ek

{
ψk

(
ρk ,τk ,β

)
, h

}
(k |∈ E) are functions of

(
Ak , Lk

)
for

all τk ∈ ϒk and all β ∈ R
r . Defining

πk
(
ρk ,τk , h

) ≡ ek
(
ρk ,τk , h

) − Ehk

{
ek

(
ρk ,τk , h

) | Ak−1, Lk
}
, k ∈ E,

πk
{
ψk

(
ρk ,τk ,β

)
, h

} ≡ ek
{
ψk

(
ρk ,τk ,β

)
, h

} − Ehk

[
ek

{
ψk

(
ρk ,τk ,β

)
, h

} | Ak−1, Lk
]
, k |∈ E,

we conclude that the following condition holds, where 
k (p) is defined in (11).

Condition 1. There exist maps πk (k ∈ [K]) satisfying (21) such that for any τk ∈ ϒk , any
β ∈ R

r and any p = gh, (i) πk
(
ρk ,τk , h

) ∈ 
k ( p) for k ∈ E, and (ii) πk
{
ψk

(
ρk ,τk ,β

)
, h

} ∈

k ( p) for k |∈ E.

Observing that the elements of 
k ( p) have mean zero under p, we conclude that for p = gh
and p∗ = gh∗ such that p (Z) /p∗ (Z) ∈ L2 ( p∗),

hk = h∗
k ⇒

{
Ep

{
πk

(
ρk ,τk , h∗)} = 0, k ∈ E,

Ep
[
πk

{
ψk

(
ρk ,τk ,β

)
, h∗}] = 0, k |∈ E;

(23)

this restates (19) in terms of the parameterization of model Rk for ρk (g).
Next, suppose that in addition to models Rk for ρk (g), we postulate models Hk as in (8) for

hk , k ∈ [K]. Define

U (β, τ ,α) ≡ M (β, hα)−
∑

j∈E
πj

(
ρj,τj , hα

) −
∑

j |∈E
πj

{
ψj

(
ρj,τj ,β

)
, hα

}
, (24)

where hα ≡ (
h1,α1 , . . . , hK ,αK

)
. The right-hand side of (24) yields the estimating function U of

Examples 1 and 2, taking E = ∅ in Example 1 and E = {1} in Example 2.
We can now invoke Theorem 1 and (23) to argue that, as in Examples 1 and 2, U (β, τ ,α)must

satisfy Ep [U {β(g), τ ,α}] = 0 whenever ρj (g) ∈ Rj or hj ∈ Hj for each j ∈ [K], for p = gh,
and the parameters indexing the correctly specified dimension-reducing models are replaced by
their true values. To give a precise statement we write, as in § 2, p ∈ Rk if ρk (g) ∈ Rk and for
such g we define τk (g) such that ρk ,τk (g) = ρk (g) ; likewise, if p ∈ Hj we define αj

(
hj

)
such

that hj,αj(hj) = hj, and give the following definition.
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DEFINITION 1. We say that U (β, τ ,α) is a multiply robust estimating function for β(g) in the
intersection-union model

⋂K
k=1 (Hk ∪ Rk) if for any C ⊆ [K] and

p ∈ M (C) ≡ {
p = gh ∈ M : p ∈ Hl for l ∈ C and p ∈ Rs for s ∈ C

}
,

we have that Ep {U (β, τ ,α)} = 0 at β = β(g),αl = αl (hl) , and τs = τs (g), for l ∈ C
and s ∈ C.

We then have the following result.

LEMMA 1. Suppose that for all p ≡ gh ∈ M and all α, it is true that p(Z)/pα(Z) ∈ L2 ( pα),
where pα ≡ ghα . Then U (β, τ ,α) defined as in (24) is multiply robust for β(g) in model⋂K

k=1 (Hk ∪ Rk).

Lemma 1 is stronger than Proposition 2 because it establishes that by modelling functions of
g

j+1
and not necessarily the entire g

j+1
, one can obtain estimators that confer more protection

against model misspecification than the (K + 1)-multiply robust estimators in § 3·2.
We now to highlight a few points about the structure of model

⋂K
k=1 (Hk ∪ Rk). Observe

that this model is the same as
⋃

C:C⊂[K] M (C). When no M (C) is included in another M (
C ′)

and no M (C) is empty, the union comprises 2K distinct models. In such a case, we would
hope that an estimation strategy exploiting U (β, τ ,α) would confer 2K modelling options for
arriving at valid inference about β(g). Our formulation, however, allows the possibility that
M (C) ⊂ M (

C ′) for some C |= C ′ or that some M (C) is empty. The latter may occur either
because for some k ∈ C there is no p in M ∩ Rk , or because for some k , k ′ ∈ C models Rk
and Rk ′ are incompatible in the sense that there is no p in both Rk and Rk ′ . Yet, even under
such scenarios, model

⋂K
k=1 (Hk ∪ Rk) is never empty, because it includes

⋂K
k=1 Hk , which is

non-empty since models for different h′
k are always compatible. Thus, even under a worst model

incompatibility scenario, a multiply robust estimating function is always unbiased for β(g) in
model

⋂K
k=1 Hk .

3·4. Multiply robust estimating functions for nuisance parameters

We now construct K different estimating functions Tk (β, τ ,α) (k ∈ [K]), distinct from
U (β, τ ,α), such that, as in Examples 1 and 2, each Tk is multiply robust for {β(g), τk (g)}
in

⋂K
j=1,j |=k

(Hj ∪ Rj
)
. More precisely, Tk (β, τ ,α) (k ∈ [K]) is a system of K nuisance multiply

robust estimating functions as defined next.

DEFINITION 2. A collection {Tk (β, τ ,α) : k ∈ [K]} is a set of nuisance multiply robust esti-
mating functions in model

⋂K
k=1 (Hk ∪ Rk) if for any C ⊆ [K], any p ∈ M (C) and any k ∈ C,

i.e., any k such that model Rk is correctly specified under p, we have that Ep {Tk (β, τ ,α)} = 0
at (β, τk)= {β(g), τk(g)}, αl = αl(hl) and τs = τs (g) for l ∈ C and s ∈ C.

The usefulness of nuisance multiply robust estimating functions is that, as Examples 1 and 2
illustrate, we can use them to form a system of estimating equations in (β, τ),

Pn
{
U

(
β, τ , α̂

)} = 0, Pn
{
Tk

(
β, τ , α̂

)} = 0 (k ∈ [K]).

Under regularity conditions, such a system should have a solution τ̂ = (
τ̂1, . . . , τ̂K

)
for τ such

that τ̂k converges in probability to τk (g) whenever p ∈ M (C), provided k ∈ C. The solution
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β̂ of the system would then be multiply robust for β(g) in the sense that it would converge in
probability to β(g) whenever p ∈ M (C) for some C ⊆ [K].

Under the assumptions of this section it is indeed possible to come up with nuisance multiply
robust estimating functions. To construct Tk (β, τ ,α) we first exhibit an rk × 1 random function
Mk (β, τk , h) of (β, τk), with rk ≡ dim (τk), such that when p ∈ M and p ∈ Rk , {β(g), τk(g)}
solves the equation Ep {Mk (β, τk , h)} = 0. Given U (β, τ ,α) defined in (24) for a choice of E,
one such function is

Mk (β, τk , h) ≡
{

dk
(
Ak , Lk

) {
M (β, h)− ek

(
ρk ,τk , h

)}
, k ∈ E,

dk
(
Ak , Lk

) [
M (β, h)− ek

{
ψk

(
ρk ,τk ,β

)
, h

}]
, k |∈ E,

(25)

where dk
(
Ak , Lk

)
is a given rk ×r matrix-valued function of

(
Ak , Lk

)
. Next, just as earlier starting

from M (β, h) we constructed a multiply robust estimating function U (β, τ ,α) for β(g), now
starting from Mk (β, τk , h) we construct a multiply robust estimating function Tk (β, τ ,α) for
{β(g), τk (g)}. We first note that if condition (18) holds then

�j [Mk {β(g), τk (g), h} ; p] = 0, j ∈ [k],
�j [Mk (β, τk , h) ; p] = dk

(
Ak , Lk

)
πj[ψj

{
ηj (g),β

}
, h], j ∈ [K] − [k].

(26)

We thus note that the right-hand sides in (25) and (26) depend on g at most through ηk(g), i.e.,
no new functionals of g emerge, so we can reproduce the construction in § 3·3 without having
to model new functionals of g. Specifically, having already constructed a function U from M
as in (24) using a given set E, we now use the same recipe to construct a function Tk from Mk ,
choosing to model E

[
Mk {β(g), τk (g), h} | Aj, Lj

]
for all j in E∗ ≡ {1, . . . , k} ∪ E. This yields

Tk (β, τ ,α) ≡ Mk (β, τk , hα)

− dk
(
Ak , Lk

) [∑
j∈E,j>k

πj
(
ρj,τj , hα

) +
∑

j |∈E,j>k
πj

{
ψj

(
ρj,τj ,β

)
, hα

}]
. (27)

Recall that E is the set of indexes j ∈ [K] for which a model for E
{
M (β, h) | Aj, Lj

}
with β

fixed at β(g), rather than unspecified, is posited in constructing U (β, τ ,α) in (24). Because of
(26), choosing to model E

{
Mk (β, τk , h) | Aj, Lj

}
with (β, τk) fixed at {β(g), τk (g)} not only for

j in E but also for j in {1, . . . , k}, i.e., for all j ∈ E∗, makes the right-hand side of (27) not involve
a summation from 1 to k . In fact, Tk depends on τ = (τ1, . . . , τK ) only through (τk , . . . , τK ),
but we do not make this explicit in the argument of Tk to simplify notation. The following result
mimics Lemma 1.

LEMMA 2. Suppose that for all p ≡ gh ∈ M and all α, p (Z) /pα (Z) ∈ L2 ( pα) where
pα ≡ ghα . Then {Tk (β, τ ,α) : k ∈ [K]} is a set of nuisance multiply robust estimating functions
for β(g).

The right-hand side of (27), with specific choices of dk that possibly depend also on α and τ ,
recovers the functions Tk (k = 1, 2) of Examples 1 and 2.
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4. FACTORIZED LIKELIHOOD MODELS

4·1. Main results

In this section we exhibit conditions, more general than those of § 3, under which it is possible
to extend several of the results of that section. Our goal is to derive a theory that explains, for
instance, the existence of doubly and multiply robust estimators in settings with nonmonotone,
i.e., intermittent, missing-at-random data. In such settings the density of the observed data can
be factorized as p = gh where only g depends on the distribution of the full, i.e., intended, data.
Consequently, inference about parameters of the full data distribution is tantamount to inference
about parameters β(g) that, as in § 3, depend on p only through g. However, unlike § 3, with
nonmonotone missing-at-random data, neither g nor h are marginal or conditional densities of
the observed data. Thus, the theory of § 3 does not apply. In the Supplementary Material we
provide a motivating example.

Suppose that Z is a random element taking values in some set Z whose density p belongs to a
specified set M, and that all the densities in M are strictly positive on Z . Assume also that there
exist functionals H1, . . . , HK and G on M such that for any p ∈ M,

p = G ( p)× H1 ( p)× · · · × HK ( p),

where g ≡ G ( p) and hk ≡ Hk ( p) (k ∈ [K]) are real-valued, positive functions on the sample
space of Z which vary independently on M, i.e., for any set of densities p0, p1, . . . , pK in M,
the product G ( p0)× H1 ( p1)× · · · × HK ( pK ) is also in M. As in § 3, in the following p = gh
stands for p = g × h1 × · · · × hK .

For given k ∈ [K], g and
{
hj

}
j:j |=k consider the submodel of M in which g and

{
hj

}
j:j |=k are

fixed, i.e.,

Mk ≡ {
p∗ ∈ M : G

(
p∗) = g, Hj

(
p∗) = hj, j |= k

}
.

Given p ∈ Mk we now let 
k ( p) denote the maximal tangent space of submodel Mk at p, i.e.,

k ( p) is the L2 ( p)-closed linear span of scores at t = 0 for regular one-dimensional parametric
submodels

Mk ,par ≡ {
pk (·; t) ≡ g (·) h1 (·) · · · hk−1 (·) hk+1 (·) · · · hK (·) hk (·; t) : t ∈ [0, ε)

}
, (28)

with p (z) = pk (z; 0) (van der Vaart 2000, §25.3). In addition, for any W ≡ w (Z) ∈ L2 (p)
we let �k [W ; p] denote the L2 (p)-projection of W into 
k ( p). Also, �k [W ; p] stands for
(�k [W1; p] , . . . ,�k [Wr; p])T if W = (W1, . . . , Wr)

T.
The setting of §3 is a special case of the present one, with

G(p) ≡ G1(p)× · · · × GK+1(p), (29)

where Gk(p) (z) ≡ p
(

lk | lk−1, ak−1

)
and Hk(p) (z) ≡ p

(
ak | lk , ak−1

)
. In the setting of §3, for

each k the tangent space 
k (p) is equal to the set of square-integrable measurable real-valued
functions of

(
Ak , Lk

)
with conditional mean zero given

(
Ak−1, Lk

)
under hk , i.e., precisely the

set defined in (11). In addition, the projection �k [D; p] is given by (10).
Let us now discuss an extension of Theorem 1 to the present framework. Inspection of its proof

reveals that the following condition suffices to arrive at the identity (12) .
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Condition 2. The densities p = gh and p∗ = gh∗ are in M and satisfy: (i) p (Z) /p∗ (Z) ∈
L2 ( p∗) and (ii) there exist s∗

k (k ∈ [K]) satisfying:

(C·0) p/p∗ − 1 =
∑K

k=1
s∗

k , (30)

(C·1) S∗
k ≡ s∗

k (Z) ∈ 
k ( p∗) and (C·2) S∗
k is uncorrelated under p∗ with all the elements of


j ( p∗) (j |= k).

We then have the following extension of Theorem 1.

THEOREM 2. Suppose that p and p∗ satisfy Condition 2. Then, for any random variable D =
d (Z) such that Ep∗

(
D2

)
< ∞, equality (12) holds.

The preceding theorem raises the question of when Condition 2 will hold. Now, p (z) /p∗ (z)−1
is the derivative at t = 0 of

t → log
{
tp (z)+ (1 − t) p∗ (z)

}
, (31)

which maps each t ∈ [0, 1] to the logarithm of the mixture of p and p∗ with mixing probability t.
This suggests that Condition 2 would hold whenever the submodel of M that keeps g fixed is
convex, i.e., whenever for any p = gh and p∗ = gh∗ as in the assumptions of Lemma 1 and any
t ∈ [0, 1], there exists hk (·; t) in the range of Hk (k ∈ [K]) such that

tp (z)+ (1 − t) p∗ (z) = g (z)
∏K

k=1
hk (z; t). (32)

An informal justification for this is as follows. Differentiating the map (31) with respect to t at
t = 0, we should obtain from the identity (32) that requirement (C·0) of Condition 2 holds with
s∗

k (z) = d log hk (z; t) /dt|t=0. Next, assuming that s∗
k is the score of the parametric submodel

M∗
k ,par ≡ {

p∗
k (·; t) : t ∈ [0, ε)

}
defined as in (28) but with hj replaced by h∗

j for j ∈ [K]−{k} and
hk (·; t) as in (32), we would conclude that s∗

k (k ∈ [K]) satisfies requirement (C·1) of Condition 2.
Finally, since scores corresponding to models that parameterize separate factors of the likelihood
are often orthogonal, we would arrive at the conclusion that s∗

k (k ∈ [K]) satisfies requirement
(C·2) of Condition 2.

The preceding informal justification is not rigorous for the following reasons. The condition
p (Z) /p∗ (Z) ∈ L2 ( p∗) suffices to ensure that the model {tp + (1 − t) p∗ : t ∈ [0, ε)} is regular
and its score at t = 0 is p/p∗ − 1, as proved in Lemma 2 of the Supplementary Material.
However, these conditions do not ensure that for k ∈ [K] the model M∗

k ,par is regular; even if this
model were regular, the conditions would not ensure that its score at t = 0 would be computed
with the derivative of the logarithm of p∗

k (z; t). Observe, for instance, that these conditions do
not even imply the differentiability of the map t → log hk (z; t). Lemma 7·6 of van der Vaart
(2000) gives conditions for the model M∗

k ,par to be regular with score s∗
k (z) at t = 0 equal to

d log hk (z; t) /dt|t=0.
In § 4·4 we define the property of sequentially strong convexity of a model that implies, but is

not implied by, the submodel convexity as defined in (32). We prove that under this property, the
conditions of Lemma 7.6 of van der Vaart (2000) are satisfied and thus the decomposition (30)
holds with s∗

k fulfilling (C·1) of Condition 2. Furthermore, we provide regularity conditions that
additionally ensure (C·2), thus implying Condition 2. In § 4·4 we also establish that the model of
§ 3 is sequentially strongly convex.
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Next, suppose that there exists M (β, h) ≡ m (Z ;β, h), a known R
r-valued function of (Z ;β, h)

with β ∈ R
r and each hk in the range of Hk on M, such that for all p = gh in M the equation (7)

has a unique solution β(g) that depends on p only through g. We now wish to extend Proposition
1, which, as indicated in § 3·2, follows immediately from Theorem 1 and the assertion in (13).
Having extended Theorem 1, in order to extend Proposition 1 we now consider the following
condition which ensures that (13) holds.

Condition 3. For any p and p∗ such that p (Z) /p∗ (Z) ∈ L2 ( p∗), the elements of 
k ( p∗)
have mean zero under p whenever hk = h∗

k .

The validity of Condition 3 under the present general formulation holds, for instance, if p/p∗
is bounded; see the Supplementary Material, Corollary 1.

An argument identical to that preceding Proposition 1 provides a proof of the following
extension of that proposition to the present general setting.

PROPOSITION 3. Let p∗∗ = g∗h∗, p∗ = gh∗ and p = gh lie in M. Suppose that conditions (i)
and (ii) of Proposition 1 hold for some C ⊆ [K]. Suppose also that p and p∗ satisfy Condition 2
and p and p∗∗ satisfy Condition 3 with p∗∗ in the role of p∗. Then (14) holds.

Remark 1. When Proposition 3 is combined with Corollary 2 stated in the next section, it
yields a result that generalizes Lemma 1 of Robins et al. (2000) from K = 1 to K > 1.

Given a representation of the projection of the form (21), we now follow the reasoning of §3·3.
Specifically, we postulate parametric models Hk for hk indexed by αk and models Rk indexed
by τk for functionals ρk (g) defined as in (22), with G being the range of G on M and Gk either
equal to G or a properly defined set larger than G. The function U (β, τ ,α) defined in (24) now
satisfies the following extension of Lemma 1. Its proof is identical to the proof of Lemma 1.

LEMMA 3. Assume that Condition 1 holds and that for any α, p = gh and pα ≡ ghα satisfy
Conditions 2 and 3 with pα in the role of p∗. Then U (β, τ ,α) defined as in (24) is a multiply
robust estimating function for β(g) in model

⋂K
k=1 (Hk ∪ Rk).

Unfortunately, under the present level of generality, we cannot extend Lemma 3 to provide
conditions for the construction of multiply robust nuisance estimating functions. In fact, it may
well happen that for the chosen models Rk (k ∈ [K]), such estimating functions do not exist as
consistent estimation of τk (g)may require the estimation of high-dimensional functionals other
than those in

{
ρj (g) : j ∈ [K]

}
. We can nevertheless exploit Lemma 3 to come up with doubly

and (K + 1)-multiply robust estimators of β(g), as discussed in the following two subsections.

4·2. Double robustness

Suppose K = 1. In the decomposition (21) we can always take η1 (g) = g. In such a case,
we can define ρ1 (g) = g and consider a parametric model R for g. Next, we can compute ĝ,
the maximum likelihood estimator of g under R, and ĥ, the maximum likelihood estimator of h
under a parametric model H for h. Under the assumptions of Lemma 3 and regularity conditions,

the equation Pn

{
Q

(
β, ĥ, ĝ

)}
= 0, where Q (β, h, g) is as defined in (9) with K = 1, has a

solution β that converges in probability to β(g) so long as one of the following holds: p ∈ R or
p ∈ H. This result, for instance, recovers the double robustness of locally efficient estimators in
models for nonmonotone missing data discussed in Chapter 10 of Tsiatis (2006). Such models
are an instance in which g is not a marginal density. For constructing the doubly robust locally
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efficient estimators with nonmonotone missing data, there does not exist a closed-form analytic
expression for�1 [M (β, h) ; p]. However, in that case, one can use a successive approximations
algorithm to obtain a surrogate �̃1 [M (β, h) ; p] close to �1 [M (β, h) ; p] in L2 ( p) (see, e.g.,
Lemma 10·5 of van der Laan & Robins, 2003).

4·3. (K + 1)-multiple robustness

Inspection of the argument leading to Proposition 2 reveals that under the present general
setting the proposition remains valid if, in addition to Conditions 2 and 3, the following condition
holds.

Condition 4. G satisfies (29). In addition,�k [W ; p] depends on p only though h and gk+1 ≡
(gk+1, . . . , gK+1) where gk ≡ Gk(p) for k ∈ [K + 1].

We therefore have the following extension of Proposition 2 to the present setting.

PROPOSITION 4. With the definitions of the present section, Proposition 2 is valid if Condi-
tions 2, 3 and 4 hold.

Under the assumptions of Proposition 4 and regularity conditions, mimicking the argument as

in § 3·2, we conclude that β̃ solving Pn

{
Q

(
β, ĥ, ĝ

)}
= 0, where ĝk and ĥk are the maximum

likelihood estimators of gk and hk under parametric models Pk for gk (k ∈ [K + 1]) and Hk for
hk (k ∈ [K]), is (K + 1)-multiply robust. See the Supplementary Material for an example.

4·4. Sequentially strong convexity

In this section we define a notion of convexity under which decomposition (30) with s∗
k (k ∈

[K]) satisfying requirement (C·1) of Condition 2 holds. We also discuss regularity conditions that
ensure requirement (C·2) of that condition.

DEFINITION 3. Model M is said to be sequentially strongly convex according to the order
1, . . . , K if for any p, p∗ ∈ M such that G(p) = G(p∗) and any t ∈ [0, 1] there exists pt ∈ M
such that for all k ∈ [K],

tH1(p)× · · · × Hk(p)+ (1 − t)H1(p
∗)× · · · × Hk(p

∗) = H1(pt)× · · · × Hk(pt). (33)

By definition, a model M that is sequentially strongly convex satisfies the convexity condition
(32). This is seen by taking k = K and multiplying both sides of (33) by g. Additionally, the
submodels of a sequentially strongly convex M that fix g and hk+1, . . . , hK are also convex for
all k ∈ [K]. This follows upon multiplying both sides of (33) by g and hk+1 · · · hK . This is the
reason for the designation sequentially in Definition 3. The convexity of these submodels ensures
that for each k , there exists a pk

t satisfying (33) with Hj (pt) replaced by Hj
(

pk
t

)
. This is not

enough to satisfy the definition of strong sequential convexity because convexity does not ensure
that the pk

t are the same for all k ∈ [K]. The appellative strongly in Definition 3 is a reminder
that the property requires that pt be the same for all k ∈ [K]. In the Supplementary Material we
provide an example of a convex model that is not sequentially strongly convex. Furthermore, we
show that if a model is sequentially strongly convex according to an order 1, . . . , K , it cannot
be sequentially strongly convex according to the order π (1), . . . ,π (K) for any permutation of
(1, . . . , K).
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An instance in which sequential strong convexity holds is precisely the setting of § 3, as the
following lemma establishes. Nevertheless, this is not the only setting where the property holds.
The motivating example of this section, discussed in the Supplementary Material, gives another
instance.

LEMMA 4. The conditional density model M of § 3 is sequentially strongly convex with

Hk(p) (z) ≡ p
(

ak | lk , ak−1

)
.

In the remainder of this section we will derive a number of results that imply that, under
regularity conditions, when model M is sequentially strongly convex, Condition 2 holds. The
rigorous result is established in Corollary 2 at the end of this section. To start, given p and p∗ in
M and pt as in (33), we define for each k the submodel

{
p∗

k (·; t) ≡ g (·) h∗
1 (·) · · · h∗

k−1 (·) h∗
k+1 (·) · · · h∗

K (·)Hk ( pt) (·) : t ∈ [0, ε)
}
. (34)

Next, in Proposition 5 we establish that these submodels are regular and have scores s∗
k at

t = 0 (k ∈ [K]) that satisfy the decomposition (30). Subsequently, we provide two results,
stated in Propositions 6 and 7, from where we deduce that boundedness of the product of ratios∏k

s=1

(
hs/h∗

s

)
(k ∈ [K]) implies requirement (C·2) of Condition 2 so long as bounded scores of

regular parametric submodels are dense in 
j(p∗) for all j ∈ [K].

PROPOSITION 5. Let p = gh and p∗ = gh∗ be in M. Then p/p∗ − 1 = ∑K
k=1 s∗

k where

s∗
k ≡

(∏k−1
j=1 hj/h∗

j

) (
hk/h∗

k − 1
)
. If, in addition, s∗

k (Z) ∈ L2 ( p∗) (k ∈ [K]) and for any t ∈ [0, 1]

there exists pt ∈ M such that (33) holds for all k ∈ [K], then model (34) is regular at t = 0 with
score s∗

k (k ∈ [K]). Consequently, s∗
k (Z) ∈ 
k(p∗) (k ∈ [K]).

COROLLARY 1. Assume that the conditions of Proposition 5 hold. Then the decomposition (30)
holds with s∗

k (k ∈ [K]) satisfying requirement (C·1) of Condition 2.

Next, we state two results from which sufficient regularity conditions for the orthogonality of
s∗

k (Z) with
j ( p∗) (j |= k), for s∗
k given by Proposition 5, easily follow. In what follows assume

that given p∗ and p̃t in M (t ∈ [0, 1)) such that p∗ = p̃0, the submodel of M,

{
p̃k ,t ≡ gh∗

1 · · · h∗
k−1h̃k ,th

∗
k+1 · · · h∗

K : t ∈ [0, 1)
}

where h̃k ,t ≡ Hk (p̃t) , g ≡ G ( p∗) and h∗
j ≡ Hj (p∗), is a regular parametric submodel of M

through p̃k ,t=0 = p∗ with score s̃k at t = 0.

PROPOSITION 6. Let j and k be two distinct fixed elements of [K]. Assume that: (i) for each
t ∈ [0, 1), there exists a real-valued constant σt such that h̃k ,t (z) /h∗

k (z) < σt for all z ∈ Z; and
(ii) the elements of 
j(p∗) that are bounded scores of regular parametric submodels are dense
in 
j(p∗). Then s̃k(Z) is uncorrelated under p∗ with the elements of 
j ( p∗).

PROPOSITION 7. Assume that M is sequentially strongly convex. Let p = gh and p∗ = gh∗ be

in M and let pt satisfy (33). Suppose that
∏k

j=1

{
hj (z) /h∗

j (z)
}
< σ for all k ∈ [K] and some

σ > 0.Then, for each t ∈ [0, 1) and each k ∈ [K], there exists σt such that Hk(pt) (z) /h∗
k (z) < σt

for all z ∈ Z .
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Finally, upon combining Propositions 5, 6 and 7 we arrive at the corollary announced earlier that
gives precise regularity conditions under which Condition 2 holds for p and p∗ in a sequentially
strongly convex model.

COROLLARY 2. Let p = gh and p∗ = gh∗ belong to a sequentially strongly convex model M.

Suppose that (i) there exists σ > 0 such that
∏k

j=1

{
hj (z) /h∗

j (z)
}
< σ for all k ∈ [K] and all

z ∈ Z , and (ii) the elements of 
j(p∗) that are bounded scores of regular parametric submodels
are dense in 
j(p∗). Then p and p∗ satisfy Condition 2.

5. CONCLUDING REMARKS

In § 3 we contemplated models defined by restrictions on a set of conditional densities
and considered inference for a parameter that solves a population moment equation and that
depends on the data-generating law solely through these conditional densities. For such a param-
eter we showed that the usual doubly robust estimators are in fact (K + 1)-multiply robust.
We also constructed a set of estimating equations which, under regularity conditions, yield
solutions that are more than (K + 1)-multiply robust. In § 4 we examined the possibility of
extending the theory in § 3 to a general factorized likelihood model and a parameter of inter-
est that solves a population moment equation and that is a function of just some factors of
the likelihood. We defined the notion of a sequentially strongly convex model and showed
that when models satisfy this condition it is generally possible to construct multiply robust
estimating functions for the parameter of interest. The results of our theory, for instance,
explain the existence of the doubly robust estimators of Tsiatis (2006) in models for ignor-
able nonmonotone missing data; further, we obtain (K + 1)-multiply robust estimators in this
setting.

In practice, it may happen that all the working models are incorrect. In that case even multiply
robust estimators will fail to be asymptotically unbiased. In unpublished work we show that the
bias of multiply robust estimators is often less than that of either doubly robust or non-doubly
robust estimators, which further strengthens the case for multiply robust estimators.

Finally, an important open problem is the derivation, under the general framework of § 4,
of sufficient conditions that ensure that estimation of finite-dimensional parameters indexing
semiparametric models for high-dimensional nuisance functionals is possible without the need
for estimating new high-dimensional functionals. The existence of such estimators would likely
enable the construction of multiply robust estimators of the parameter of interest in intersection-
union models that confer even more robustness against model misspecification than doubly or
(K + 1)-multiply robust estimators.
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SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online includes proofs of the theoretical results
and the motivating example of § 4.

REFERENCES

BANG, H. & ROBINS, J. M. (2005). Doubly robust estimation in missing data and causal inference models. Biometrics
61, 962–73.

CAO, W., TSIATIS, A. A. & DAVIDIAN, M. (2009). Improving efficiency and robustness of the doubly robust estimator for
a population mean with incomplete data. Biometrika 96, 723–34.

CHAN, K. C. G. & YAM, S. C. P. (2014). Oracle, multiple robust and multipurpose calibration in a missing response
problem. Statist. Sci. 29, 380–96.

ENGLE, R. F., GRANGER, C. W. J., RICE, J. & WEISS, A. (1986). Semiparametric estimates of the relation between weather
and electricity sales. J. Am. Statist. Assoc. 81, 310–20.

GILL, R. D., VAN DER LAAN, M. J. & ROBINS, J. M. (1997). Coarsening at random: Characterizations, conjectures, counter-
examples. In Proc. 1st Seattle Symp. Biostatistics. D. Y. Lin and T. Fleming, eds. Lecture Notes in Statistics. New
York: Springer, pp. 255–94.

GOETGELUK, S., VANSTEELANDT, S. & GOETGHEBEUR, E. (2008). Estimation of controlled direct effects. J. R. Statist. Soc.
B 70, 1049–66.

HAN, P. (2014). Multiply robust estimation in regression analysis with missing data. J.Am. Statist.Assoc. 109, 1159–73.
HAN, P. (2016). Intrinsic efficiency and multiple robustness in longitudinal studies with drop-out. Biometrika 103,

683–700.
HAN, P. & WANG, L. (2013). Estimation with missing data: Beyond double robustness. Biometrika 100, 417–30.
LUNCEFORD, J. K. & DAVIDIAN, M. (2004). Stratification and weighting via the propensity score in estimation of causal

treatment effects: A comparative study. Statist. Med. 23, 2937–60.
MURPHY, S. A., VAN DER LAAN, M. J. & ROBINS, J. M. (2001). Marginal mean models for dynamic regimes. J. Am.

Statist. Assoc. 96, 1410–23.
ORELLANA, L., ROTNITZKY, A. & ROBINS, J. M. (2010). Dynamic regime marginal structural mean models for estimation

of optimal dynamic treatment regimes, Part I: Main content. Int. J. Biostatist. 6.
ROBINS, J. M., LI, L., TCHETGEN, E. & VAN DER VAART, A. (2008). Higher order influence functions and minimax

estimation of nonlinear functionals. In Probability and Statistics: Essays in Honor of David A. Freedman, vol. 2.
D. Nolan and T. Speed, eds. Beachwood: Institute of Mathematical Statistics Collections, pp. 335–421.

ROBINS, J. M. (2000). Robust estimation in sequentially ignorable missing data and causal inference models. Proc. Am.
Statist. Assoc. 1999, 6–10.

ROBINS, J. M. & RITOV, Y. (1997). Toward a curse of dimensionality appropriate (coda) asymptotic theory for semi-
parametric models. Statist. Med. 16, 285–319.

ROBINS, J. M. & ROTNITZKY,A. (2001). Inference for semiparametric models: some questions and an answer: Comment.
Statist. Sinica 11, 863–85.

ROBINS, J. M., ROTNITZKY, A. & VAN DER LAAN, M. J. (2000). On profile likelihood: Comment. J. Am. Statist. Assoc.
95, 477–82.

ROBINS, J. M., ROTNITZKY, A. & ZHAO, L. P. (1994). Estimation of regression coefficients when some regressors are
not always observed. J. Am. Statist. Assoc. 89, 846–66.

ROBINS, J. M., ROTNITZKY,A. & ZHAO, L. P. (1995).Analysis of semiparametric regression models for repeated outcomes
in the presence of missing data. J. Am. Statist. Assoc. 90, 106–21.

ROTNITZKY, A., LEI, Q., SUED, M. & ROBINS, J. M. (2012). Improved double-robust estimation in missing data and
causal inference models. Biometrika 99, 439–56.

SCHARFSTEIN, D. O., ROTNITZKY, A. & ROBINS, J. M. (1999). Adjusting for nonignorable drop-out using semiparametric
nonresponse models: Rejoinder. J. Am. Statist. Assoc. 94, 1135–46.

TAN, Z. (2006). Regression and weighting methods for causal inference using instrumental variables. J. Am. Statist.
Assoc. 101, 1607–18.

TAN, Z. (2010a). Bounded, efficient and doubly robust estimation with inverse weighting. Biometrika 97, 661–82.
TAN, Z. (2010b). Nonparametric likelihood and doubly robust estimating equations for marginal and nested structural

models. Can. J. Statist. 38, 609–32.
TAN, Z. (2011). Efficient restricted estimators for conditional mean models with missing data. Biometrika 98, 663–84.
TCHETGEN TCHETGEN, E. (2009). A commentary on G. Molenberghs’s review of missing data methods. Drug Info. J.

43, 433–5.
TCHETGEN TCHETGEN, E. & SHPITSER, I. (2012). Semiparametric theory for causal mediation analysis: Efficiency bounds,

multiple robustness, and sensitivity analysis. Ann. Statist. 40, 1816–45.
TSIATIS, A. A. (2006). Semiparametric Theory and Missing Data. New York: Springer.

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article-abstract/104/3/561/3868976 by guest on 17 Septem
ber 2018



Multiple robustness in factorized likelihood models 581

TSIATIS,A.A., DAVIDIAN, M. & CAO,W. (2011). Improved doubly robust estimation when data are monotonely coarsened,
with application to longitudinal studies with dropout. Biometrics 67, 536–45.

VAN DER LAAN, M. J. & GRUBER, S. (2010). Collaborative double robust targeted maximum likelihood estimation. Int.
J. Biostatistics 6.

VAN DER LAAN, M. J. & ROBINS, J. M. (2003). Unified Methods for Censored Longitudinal Data and Causality. New
York: Springer.

VAN DER LAAN, M. J. & RUBIN, D. (2006). Targeted maximum likelihood learning. Int. J. Biostatist. 2.
VAN DER VAART, A. W. (2000). Asymptotic Statistics. Cambridge: Cambridge University Press.
VANSTEELANDT, S., ROTNITZKY, A. & ROBINS, J. M. (2007). Estimation of regression models for the mean of repeated

outcomes under nonignorable nonmonotone nonresponse. Biometrika 94, 841–60.
VANSTEELANDT, S., VANDERWEELE, T. J., TCHETGEN, E. J. & ROBINS, J. M. (2008). Multiply robust inference for statistical

interactions. J. Am. Statist. Assoc. 103, 1693–704.
VERMEULEN, K. &VANSTEELANDT, S. (2015). Bias-reduced doubly robust estimation. J.Am. Statist.Assoc. 110, 1024–36.
ZHANG, Z., CHEN, Z., TROENDLE, J. F. & ZHANG, J. (2012). Causal inference on quantiles with an obstetric application.

Biometrics 68, 697–706.

[Received on 9 December 2015. Editorial decision on 18 March 2017]

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article-abstract/104/3/561/3868976 by guest on 17 Septem
ber 2018




