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Abstract

This article reports on the use of mathematical programming techniques to optimize
the routes of a recyclable waste collection system servicing Morón, a large municipality
outside Buenos Aires, Argentina. The truck routing problem posed by the system is a
particular case of the generalized directed open rural postman problem. An integer pro-
gramming model is developed with a solving procedure built around a subtour-merging
algorithm and the addition of subtour elimination constraints. The route solutions gener-
ated by the proposed methodology perform significantly better than the previously-used
manually-designed routes, the main improvement being that coverage of blocks within the
municipality with the model solutions is 100% by construction whereas with the manual
routes as much as 16% of the blocks went unserviced. The model-generated routes were
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adopted by the municipality in 2014 and the national government is planning to introduce
the methodology elsewhere in the country.

Keywords: rural postman problem, recyclable waste collection, vehicle routing.

1 Introduction

This study presents an integer programming approach for improving the vehicle routing of the
recyclable waste collection system in the municipality of Morón, a suburb outside of the City
of Buenos Aires, Argentina. Home to 320,000 inhabitants (according to the 2010 Census [13])
and covering an area of 55.6 km2, the municipality is divided in five administrative districts
(Castelar, Morón City, Haedo, Palomar and Villa Sarmiento). For purposes of the recyclable
waste collection system every district is subdivided into as many as seven sectors, each serviced
by a single recycling truck. All collections within each of the five districts are made on a single
different weekday for each one, which is called the “green day” for that district. This is part
of a successful initiative carried out by the municipality, which involved a strong campaign in
order to get the citizens involved (see Figure 1 and reference [16]).

Prior to this study, the collection routes were improvised by the drivers themselves with
no tools other than basic unannotated sector maps. The inevitable result was that in some
sectors a considerable number of street segments were often left unserviced. The root cause
of the failure to cover certain segments was the sheer difficulty of improvising a route that
would pass through all the street segments, but other factors also contributed to the problem.
The drivers set out in their trucks from the municipal depot at 2pm, made their assigned
rounds and dumped the collected waste at the recycling centre, finishing up 5 hours later at
about 7pm. Since the same vehicles were then used for the regular evening garbage collection,
this schedule had to be strictly complied with. This meant that a driver realizing some
segments were skipped would often not have time to return to them. Furthermore, since the
trucks do not have automatic tracking devices, just determining which segments had been
skipped was not an easy task. It was the growing complaints from local residents about this
uncollected waste that prompted the municipal authorities to launch the initiative leading to
the implementation of the methodology proposed here.

In this vehicle routing problem for recyclable waste collection, every street must be visited
by a truck. The task is further complicated by two constraints needed to incorporate condi-
tions peculiar to this case: (a) some segments of two-way streets are narrow enough for both
sides to be serviced on a single trip in either direction, meaning no second trip is necessary;
and (b) certain vehicle traffic restrictions from which trucks are not exempt. More specifically,
these restrictions are the Argentinean road traffic regulations prohibiting left turns at signal-
controlled intersections as well as U-turns, and will be the main concern here in modelling a
solvable problem for the waste collection system.

The resulting combinatorial optimization problem is a particular case of the generalized
directed open rural postman problem, which is NP-hard. Given a directed graph G = (V,A),
a set of mandatory arcs AM ⊆ A, and a set of groups of nodes/arcs, the generalized directed
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Figure 1: One of the “green day” initiative advertisements in the printed press.

rural postman problem consists in finding a minimum-cost cycle traversing all the mandatory
arcs and at least one element from each group. This NP-hard problem is a generalization
of the well-known Chinese postman problem, which asks to identify a minimum-cost cycle
traversing each arc at least once. The generalized directed open rural postman problem is to
find a path with the same properties, i.e., one that traverses at least one element from each
pre-specified group of nodes/arcs.

When there are no node/arc groups the problem is called the directed rural postman prob-
lem, which has received considerable attention in the combinatorial optimization community
as regards both directed graphs [5, 11, 17, 18] and mixed graphs [6–9]. Recent works on the
generalized directed rural postman problem include both integer programming and heuristic
procedures [2,10]. In this study we propose a simpler approach that is particularly amenable
to the layouts of Latin American cities, and is quite straightforward to implement.

Our proposed approach uses an algorithm based on an integer programming formulation
of the problem to find good-quality routes for the recycling trucks. The main theoretical
contribution of this work is the introduction of a subtour-merging procedure that reduces
computation times within an integer programming-based algorithm. Although this approach
cannot be applied to general instances of the generalized rural postman problem since we
assume zero-cost auxiliary arcs and groups formed by pairs of arcs only, it proved useful for
the particular case considered here.

A valuable survey of vehicle routing problems in waste collection may be found in [14].
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Applications of mathematical programming techniques to real-world waste collection systems
appear in the literature for various cities around the world. Some examples are Chicago,
USA [12], Kaoshiung, Taiwan [4], Lisbon, Portugal [15], Hamilton, Canada [19], Santiago,
Chile [1], and Buenos Aires, Argentina [3]. Is it worth noting that the optimization problem
in [3] has a different structure from that of the municipality of Morón, since the former has
containers located in the collection areas.

The remainder of this article is organized in four sections. Section 2 describes the recycling
truck routing problem to be solved and Section 3 formally models it as a generalized directed
open rural postman problem in a suitable graph. Section 4 develops our proposed integer
programming approach to solve the problem. Section 5 sets out and analyzes the results
of the experiments performed using the proposed approach. Finally, Section 6 presents our
conclusions.

2 Description of the problem

The Morón recyclable waste collection system divides the municipality into various sectors,
each one serviced by a single truck that follows a single route and is assumed to have sufficient
capacity to collect all waste in one trip. Each sector is represented by a mixed graph H whose
nodes represent the sector’s street corners. For each node, whether or not it has a traffic
signal and the geographic coordinates of its corresponding corner are known. Two nodes
bound the opposite ends of a street segment, defined for present purposes as a length of street
running between two consecutive intersections and bordered on each side by adjacent city
blocks. One-way traffic segments are represented in the graph by arcs while relatively narrow
two-way traffic segments serviceable on both sides by a single truck trip are represented by
the edges of the graph. In the case of broad two-way streets whose sides must be serviced
separately, the segments are represented by two arcs, one in each direction. Each arc and
edge is associated with a distance calculated as a straight line between two corners.

To incorporate the two traffic regulation constraints we construct a directed graph G
from H. In the case of the U-turn prohibition, the graph is expanded by dividing each node
into various new nodes representing all of the possibilities for arriving and departing at the
corresponding corner. Auxiliary arcs are then added that connect up these nodes in such a
way as to represent the legally permitted transitions from one corner to another.

A simple example of a node expansion is illustrated in Figure 2. In panel (a) of the
figure the node is shown before expansion in the original graph H and represents a crossing
between a one-way street (the horizontal arcs) and a two-way street (the vertical edges). In
panel (b) the node has been expanded into six new nodes representing each possible arrival and
departure alternative at the intersection, and the edges have been replaced by two parallel and
opposing arcs. The new nodes are connected by auxiliary arcs (the dashed lines) indicating
the permitted transitions between them.

According to the municipal authorities, the recycling trucks have no difficulties negotiating
turns at the intersections. This implies that the auxiliary arcs do not add appreciably to the
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cost and are therefore considered to have null distance. Note that the particular construction
applied in this setting does not generate cycles composed of auxiliary arcs only, hence no
zero-cost cycles appear in the resulting graph.

Figure 2: Expansion of a graph node.

The traffic regulations make a necessary exception to the U-turn prohibition for cul-de-
sacs. To incorporate this exemption, our graph as developed so far is modified slightly by
adding auxiliary arcs to dead-end nodes.

In addition to U-turns, the traffic regulations prohibit left turns from a two-way street at
signal-controlled intersections save for the rare occasions where they are explicitly permitted.
The graph expansion discussed above readily accommodates this constraint by simply elim-
inating the auxiliary arcs representing the illegal turns. An example of how this is done for
an intersection of two two-way streets with traffic lights is shown in Figure 3.

The starting point for the route of a given sector must be located on the sector border
closest to the recycling truck depot. Any node satisfying this condition may be chosen as
the starting node. The choice of ending node does not have a major impact on the overall
performance given that the trucks go directly back to the recycling depot once they have
completed their routes. Since sectors are not very large, this additional cost can be ignored.
An alternative approach would have been to add a vertex representing the depot and link it
to the starting nodes, thus incorporating the cost from the depot to the sector in the objective
function, but since doing so would not have significantly modified either the computations or
the generated solutions, this consideration was not adopted.

In certain cases, particularly in sectors with many one-way streets, the recycling trucks
may have to make wide detours to access certain corners. To reduce the size and therefore
the distance costs of such detours, the drivers will sometimes cross briefly into a neighbouring
sector. To incorporate such cases into the model, the street segments immediately beyond
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(a) (b)

Figure 3: Permitted turns at an intersection (a) without traffic lights and (b) with traffic
lights.

the borders of a sector are tagged, thus forming a perimeter band of segments in the adjacent
sectors the drivers do not service but can use for detour reduction. Including this option
requires no changes to the model since the segments so tagged are treated in the same fashion
as auxiliary arcs.

An example of such a perimeter detour band is given in Figure 4 for a typical sector in
the municipality. The street segments making up the band are shown in dark lines. Note in
this case that there are no tagged segments along the north (top) or south (bottom) of the
sector. This is because the north side is closed off by a highway while the south side borders
on a different municipality for which up-to-date information on street directionality was not
available.

3 Integer programming model

Let G = (V,A) be the directed graph in which the nodes V correspond to all possible al-
ternatives for arriving at the intersections’ corners and A is composed of arcs that can be
traversed only in one specified direction. Also, let E ⊆ {{i, j} : i ∈ V, j ∈ V, i 6= j} represent
two-way street segments that may be travelled in either direction. The input data include a
set AM ⊆ A of mandatory arcs representing one-way segments that must be travelled in the
specified direction. A weight function w : A → R associates a weight with each arc, and we
assume that the auxiliary arcs between nodes representing street corners all have zero weight.
Finally, the input data also include a set I ⊆ V of initial nodes specifying the allowed starting
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Figure 4: Typical sector in Morón with a perimeter detour band of street segments in adjacent
sectors shown in dark lines.

points for the route.

This routing problem is a particular version of the generalized directed open rural postman
problem since each edge ij ∈ E determines the group of arcs Lij = {ij, ji} such that at least
one of them is traversed in the final solution. Moreover, this problem corresponds to the open
rural postman problem given that we are looking for a path whose starting and ending nodes
are not specified.

A solution to this problem can be generated by a straightforward integer programming
model. For each arc ij ∈ A, let the integer variable xij represent the total number of times
ij is traversed. For each node i ∈ I, let the binary variable si specify whether i is the first
node in the route. For each node j ∈ V , let the binary variable tj specify whether j is the
last node on the route. If S ⊆ V , we define δ+(S) = {ij ∈ A : i ∈ S, j 6∈ S} to be the set of
arcs going from nodes in S to nodes in V \S. We also define A(S) = {ij ∈ A : i, j ∈ S} to
be the set of arcs with both endpoints in S. With these definitions, we can now specify the
integer program as follows.
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min
∑
ij∈A

wijxij (1)

xij ≥ 1 ∀ij ∈ AM (2)

xij + xji ≥ 1 ∀ij ∈ E (3)

si +
∑
j:ji∈A

xji =
∑
j:ij∈A

xij + ti ∀i ∈ I (4)

∑
j:ji∈A

xji =
∑
j:ij∈A

xij + ti ∀i ∈ V \I (5)

∑
i∈I

si = 1 (6)∑
i∈V

ti = 1 (7)∑
ij∈δ+(S)

xij ≥ 1−
∑

ij∈Le∩A(V \S)

xij ∀S ⊆ V,∀e ∈ E (8)

xij ∈ Z+ ∀ij ∈ A (9)

si ∈ {0, 1} ∀i ∈ I (10)

ti ∈ {0, 1} ∀i ∈ V (11)

The objective function attempts to minimize the total cost of the waste collection route,
that is, the sum of the individual costs of the segments travelled by the vehicles. Cost is in
principle a function of travel time, which is therefore the real factor we wish to minimize, but
since travel time data per segment are not available, we use distance as a proxy. Constraints
(2) impose that each mandatory arc be travelled at least once while constraints (3) require
that each edge be travelled at least once in any direction. Constraints (4)-(5) ensure that
the solution is truly a path by adding the standard flow conservation condition at each node.
Thus, the number of times the circuit enters a node must equal the number of times the circuit
exits it, except for the initial and final nodes whose respective entries and exits number one
less. Constraints (6) and (7) guarantee the initial and final nodes are unique.

The addition of the auxiliary arcs to reflect traffic regulation restrictions brings with
it certain complications. Since not all the arcs in the graph need to be travelled, requiring
indegree to be equal to outdegree will not by itself guarantee that the model’s feasible solutions
are connected routes. Indeed, constraints (2)-(7) allow subtours to form, an undesirable
occurrence that must be avoided. To address this problem, constraints (8) are added to the
model, thus avoiding this situation [2]. Finally, constraints (9)-(11) specify the possible values
for the model variables. Recall that vehicle capacity is assumed to be sufficient, so capacity
constraints are not required.
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1. Create the relaxed model M := (1)-(7) and (9)-(11).

2. Solve M.

3. If no solution can be found for M, return “infeasible” and stop.

4. If the best solution found for M has no subtours, return this solution and stop.

5. If the subtours can be merged with the path from the starting node to the ending node,
then merge the subtours with this path, return the obtained solution and stop.

6. Otherwise, add toM a standard subtour-eliminating constraint for each subtour in the
solution and go to Step 2.

Table 1: Algorithm pseudocode.

4 The solution procedure

We now propose a procedure for solving the integer programming model presented in the
preceding section. The algorithm is summarized in Table 1. The relaxed model constituted
by the constraints (2)-(7) and (9)-(11) is solved in Steps 1 and 2. If the resulting solution
contains no subtours (Step 4), it is optimal and the algorithm ends; otherwise, a subtour
exists and must be eliminated.

In many cases, subtours can be eliminated by the following straightforward subtour-
merging procedure. Given a subtour S and the main path P (i.e., the path starting (resp. end-
ing) at the unique vertex i ∈ V with si = 1 (resp. ti = 1)), the procedure attempts an
interchange of auxiliary arcs in order to merge S and P . The procedure is summarized in
Table 2. Given the main path and a subtour, the procedure scans all of their arcs for any of
the following configurations and, if found, executes the indicated action:

• Configuration A: If the main path and the subtour meet at some intermediate node,
as in Figure 5a, then they are joined as in Figure 5b.

• Configuration B: If the subtour meets the last node in the main path, as in Figure 5c,
then they are joined as in Figure 5d.

• Configuration C: If the subtour meets the first node in the main path, as in Figure 5e,
then they are joined as in Figure 5f.

This procedure is applied for every subtour in the solution until they have all merged
into the main path or, if they fail to do so, are handled using the constraint technique.
Since the cost of all auxiliary arcs joining street-corner nodes is the same, the modified route
remains optimal, hence the algorithm stops and returns the obtained solution in this case.
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1. If there exist (i1, j1) ∈ P and (i2, j2) ∈ S such that (i1, j2) ∈ A and (i2, j1) ∈ A, return[
(S ∪ P )\{(i1, j1), (i2, j2)}

]
∪ {(i1, j2), (i2, j1)} and finish the procedure.

2. Let t be the last node of P . If there exists (i, j) ∈ S such that (t, j) ∈ A, return[
(S ∪ P )\{(i, j)}

]
∪ {(t, i)} and finish the procedure.

3. Let s be the first node of P . If there exists (i, j) ∈ S such that (i, s) ∈ A and j ∈ I,
return

[
(S ∪ P )\{(i, j)}

]
∪ {(i, s)} and finish the procedure.

4. Otherwise, return “fail”.

Table 2: The subtour-merging procedure given the main path P ⊆ A and a subtour S ⊆ A.

This construction allows us to efficiently find an optimal solution from an infeasible solution
containing subtours, and proved quite efficient in practice (see Section 5).

Despite its great efficiency, however, this subtour-merging technique does not work with
every subtour that forms. As an example, the solution generated by the model may be such
as the one in Figure 6. In this case, the subtour (around the right block) cannot be merged
with the main path (the path around the left block) by the above method.

In this case, the main algoritm sketched in Table 1 adds a standard subtour-eliminating
constraint to the M, i.e., if S is the set of vertices in the cycle to be eliminated, then the
algorithm adds the following constraint:∑

ij∈δ+(S)

xij ≥ 1. (12)

Note that we do not add the model constraints (8) toM, but we add the simpler constraints
(12) instead. This allows us to use existing, efficient, and quite standard code in our imple-
mentation. The addition of the standard subtour-eliminating constraint (12) is performed
through the well-known technique of finding all the connected components of the obtained
solution. If there is more than one connected component, then the components not containing
the starting and ending nodes are subtours and the corresponding constraints are added to the
model. Note that the addition of the stronger inequalities (12) instead of the original model
constraints (8) may cut off optimal solutions and increase the objective value of the obtained
solution. However, for the instances considered in this work these effects were negligible, as
Section 5 shows.

The definitive strategy, then, is to combine this merging technique with the dynamic
addition of subtour-eliminating constraints. If a solution has no subtours, it is returned
(Step 4). If the solution has one or more subtours but in every case they can be merged
with the main path, this is done and the merged solution is returned (Step 5). Finally, if
the solution has subtours that cannot be merged to the main path, a subtour-eliminating
constraint (12) for each such subtour is added and the procedure is repeated (Step 6).
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Note that subtour-eliminating cuts are always –and only– inserted when the branch-and-
bound enumeration for solving M terminates. Detection of subtours is thus straightforward
since the variables take integer values. An alternative approach would be to try to separate
inequalities (12) dynamically during the branch-and-bound procedure (thus turning Step 2
from the procedure into a branch-and-cut approach), but the detection of violated subtour-
eliminating constraints over fractional solutions is not straightforward. For this reason we
opted to search for subtours only once the model has been solved and an integer solution has
been obtained.

5 Computational results

In this section we present and analyze the results of the experiments conducted to evaluate the
effectiveness of the algorithms described in the previous sections in the municipality of Morón.
The experiments were executed on a PC with a 3Ghz AMD Phenom II x4 945 processor and
4GB of RAM running Linux Ubuntu 12.04 (32 bits). The solver used for solving the integer
programs was SCIP. Although there are commercial solvers that perform better than SCIP
on benchmark instances, for our purposes this choice was adequate.

To solve the integer programming models a maximum of 10 minutes was allowed at each
iteration. This limit was chosen after determining that the majority of the sectors were
solved to optimality within that time while for those that were not, the optimality gap was
very small. Thus, if the solution procedure found a feasible solution before the time limit
was reached, that solution was used in Steps 4 and 5, otherwise, the procedure stopped and
a failure message was returned.

The results of our experiments on the effectiveness of the subtour-merging algorithm are
presented in Table 3. As can be seen in the first column, the data all relate to Castelar district,
which was chosen for this test because of the great diversity of its street patterns. The district’s
eight sectors vary greatly in size, shape (some rectangular, others more irregular) and street
directionality (some mainly one-way, others primarily two-way). Columns 6 and 7 report
the number of required iterations and the solution times for the various sectors without the
subtour-merging algorithm (i.e., with a simple branch-and-cut procedure dynamically adding
the standard subtour elimination constraints (12) for every non-feasible integer solution). The
final three columns show the number of iterations, the solution times and the optimality gap
when the subtour-merging algorithm is employed.

The most important conclusion from these data is that the subtour-merging procedure
allows to get optimal solutions (with respect to the complete formulation (1)-(11)) in most
instances. Indeed, with the exception of Castelar7, the subtour-merging procedure could
construct a feasible solution from the integer solution of the relaxed model defined by (1)-
(7) and (9)-(11). The so-constructed solution has the same objective value than the relaxed
solution, and is optimal for all the instances except Castelar3 and Castelar6, which attained
the time limit and thus are subject to the gaps reported in the last column. On the other hand,
just one subtour-eliminating constraint (12) was added in Castelar7, and the subtour-merging
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procedure could construct a feasible solution from the resulting solution.

Sector |V | |E| |AM | |AAUX|
Without Step 5 With Step 5

Iterations Time Iterations Time Gap

Castelar1 1372 658 28 1570 2 5.2 sec 1 2.4 sec 0.00%

Castelar2 650 100 225 559 5 19 sec 1 3 sec 0.00%

Castelar3 852 200 226 782 59 9.7 hrs 1 10 min 0.47%

Castelar4 878 354 85 876 6 52.4 sec 1 5.6 sec 0.00%

Castelar5 1090 508 37 1416 2 5.7 sec 1 3 sec 0.00%

Castelar6 738 166 203 650 22 3.7 hrs 1 10 min 1.05%

Castelar7 1082 524 17 1341 35 5.9 hrs 2 20 min 0.31%

Castelar8 1276 622 46 1574 24 3.7 hrs 1 17.9 sec 0.00%

Table 3: Results of the experiments on subtour-merging algorithm effectiveness for Castelar
District with and without the subtour-merging procedure (Step 5 in Table 1).

To compare the route solutions generated by our methodology with the manually-designed
routes previously used by the truck drivers, we were able to obtain data on the latter from
the municipality for a limited number of sectors, shown here in Table 4. This information
was gathered using GPS devices installed in the trucks. As mentioned in the introduction,
these manual routes had been improvised by the drivers, so the inevitable result was that
in some sectors a considerable number of street segments were often left unserviced. As the
table indicates, the worst case in absolute terms was Castelar4 where 60 street blocks were
skipped, though in some other sectors the situation in percentage terms was worse still.

Sector
Distance
travelled

Street blocks
skipped

Collection
time

% of sector
serviced

Castelar4 46 km 60 4:10hs 88,5%

Castelar7 43,1 km 6 3:40hs 98,6%

Haedo2 17,5 km 20 2:26hs 89,7%

Palomar1 25 km 46 3:38hs 84,5%

Palomar2 24,5 km 35 4:10hs 87,5%

Palomar3 31,2 km 17 3:12hs 94,8%

Palomar4 35,2 km 35 4:46hs 91,0%

VillaSarmiento1 24,6 km 10 3:09hs 96,1%

VillaSarmiento2 23,7 km 9 2:44hs 96,3%

VillaSarmiento3 23,2 km 17 3:13hs 93,2%

Table 4: Available GPS data supplied by the municipality for certain sectors.

This tendency to skip street segments under the manual routes inevitably impacted the
comparisons between them and our model-generated routes for these sectors given that the
latter were defined using constraints ensuring that all street segments be traversed. The effect
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can be seen in the difference between the “Distance” column in Table 5 and the distances
travelled shown in Table 4. In some sectors where the numbers of segments skipped was
high, the model-generated route was longer/more costly than the manual route. On the other
hand, in three sectors where the number of omitted segments was relatively small (Castelar7,
Palomar3 and VillaSarmiento1), the model found a route that was shorter than the manual
one. In most of the remaining sectors (Haedo2, Palomar2, VillaSarmiento2, VillaSarmiento3)
the distance of the model-generated route was slightly higher but the difference never exceeded
2 km. And, of course, whereas the model leaves no segments unserviced, those left out by the
improvised routes added up to as much as 6 km for a single sector.

The added length of certain of the model-optimized routes also raised the technical ques-
tion of whether the 5-hour period allotted for the waste collection rounds was still sufficient.
A simple estimation shows that it was. To take one example, the manually-designed route
for the Castelar4 sector was 46km long and required 4:10 hours to cover whereas the model
defined a 50km route. Though it was impossible to know a priori exactly how long the latter
route (or any other defined by the model) would take to complete, the average speed implied
by the manual route data (approx. 11km/hr) suggests we could safely assume the extra 4km
could be traversed within the aforementioned time window. This and the a priori estimates
for the other cases where the model solution route was longer than the manual route proved
to be reasonable when the former were applied in practice.

Sector |V | |E| AM AAUX

Solution
time Gap Iterations Distance

Castelar4 878 354 85 876 5.6 sec 0.00 % 1 50.45 km

Castelar7 1082 524 17 1341 1200 sec 0.31 % 2 40.45 km

Haedo2 1154 396 181 1256 0.3 sec 0.00 % 1 18.31 km

Palomar1 1046 502 21 1251 30 sec 0.00 % 1 33.51 km

Palomar2 822 316 95 875 512 sec 0.00 % 1 26.90 km

Palomar3 1254 608 19 1596 1200 sec 0.30 % 2 30.53 km

Palomar4 1090 500 45 1353 1200 sec 0.30 % 2 30.53 km

VillaSarmiento1 304 12 140 258 1 sec 0.00 % 1 24.17 km

VillaSarmiento2 600 134 166 494 1 sec 0.00 % 1 24.25 km

VillaSarmiento3 384 76 116 322 1 sec 0.00 % 1 25.08 km

Table 5: Results for routes calculated by model for sectors in Table 4, covering all mandatory
street blocks from each sector.

As for solution times of the Table 4 sectors, the longest was 20 minutes. This is quite
reasonable for the requirements of the recycling system given that once a definitive route has
been established, only occasional changes will later be needed and in such cases an instan-
taneous response is unlikely to be required. The optimality gaps were very small if not zero
within the time limit proposed for model execution.
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6 Conclusions

A methodology was proposed using integer programming techniques to optimize the routes of
recycling waste collection vehicles in Morón, an important suburban Buenos Aires municipal-
ity. A number of conditions peculiar to this case required the inclusion of certain restrictions
and options such that the problem was best formulated as a particular case of the gener-
alized directed open rural postman problem on a directed graph constructed from the city
map. These conditions included the Argentinean traffic regulation prohibitions on left turns
at traffic lights and U-turns, the exception to this rule made for U-turns in cul-de-sacs, the
inclusion of perimeter bands for detours outside the serviced area, and street directionality
(one-way and two-way).

From a theoretical standpoint, the main contribution of this study is the development of
the subtour-merging procedure, that enables running times to be reduced. This is possible
because mandatory arcs are connected by zero-cost auxiliary arcs, hence no additional cost
results from the subtour merging. This hypothesis does not hold in general, however, so
the proposed procedure cannot be applied for solving general instances of the generalized
directed rural postman problem. Since the model is run with a time limit of 10 minutes,
the quality of the obtained routes with and without applying the subtour-merging procedure
cannot be compared if the time limit is attained. Furthermore, the addition of the standard
subtour-eliminating inequalities (12) instead of the model constraints (8) simplifies the code
but may hinder optimality. Nevertheless, the obtained results for the instances coming from
the municipality of Morón allow us to safely assume that the obtained routes are of good
quality for practical purposes.

The recycling vehicle routes generated by the proposed methodology and implemented by
the municipality perform significantly better than the manually defined routes used previously.
The main advance is in the coverage provided by the collection service, which now fully covers
every street within the municipal limits. Before implementation, up to 60 street blocks (or,
equivalently 16% of street blocks) were skipped in certain sectors. This improvement was
achieved while in some cases actually reducing total vehicle distance compared to the old
manual routes. In a few cases distance did increase, but only slightly.

The routes designed by the model were well received by the municipality. Field analy-
ses were conducted before the routes were implemented to validate their feasibility and the
reactions of the municipal authorities were very positive. After several months of testing
the routes defined by the integer programming-based methodology, the municipality began
implementation in mid-2014. The result was better coverage of all streets and the virtual
disappearance of complaints from the public regarding the recyclable waste collection service,
which previous to implementation had been running at about dozens of calls or messages a
week. The success of the project has been such that the authors have been invited by Ar-
gentina’s Ministry of the Interior and Transport to replicate the experience in a number of
other municipalities around the country.
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(a) (b)

(c) (d)

(e) (f)

Figure 5: Possible configurations in the subtour-merging procedure.
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Figure 6: A route with subtours that cannot be merged using the subtour-merging procedure.
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