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We study the generation of planar quantum squeezed (PQS) states by quantum nondemolition (QND)
measurement of an ensemble of 87Rb atoms with a Poisson distributed atom number. Precise calibration of
the QND measurement allows us to infer the conditional covariance matrix describing the Fy and Fz

components of the PQS states, revealing the dual squeezing characteristic of PQS states. PQS states have
been proposed for single-shot phase estimation without prior knowledge of the likely values of the phase.We
show that for an arbitrary phase, the generated PQS states can give ametrological advantage of at least 3.1 dB
relative to classical states. The PQS state also beats, formost phase angles, single-component-squeezed states
generated by QNDmeasurement with the same resources and atom number statistics. Using spin squeezing
inequalities, we show that spin-spin entanglement is responsible for the metrological advantage.
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Estimation of interferometric phases is at the heart of
precision sensing, and is ultimately limited by quantum
statistical effects [1]. Entangled states can improve sensi-
tivity beyond the “classical limits” that restrict sensing with
independent particles, and a diversity of entangled states
have been demonstrated for this task, including photonic
squeezed states [2,3] and spin-squeezed states [4]. These
give improved sensitivity for a narrow range of phases, but
worsened sensitivity for most phases. Optical “NOON”
states [5] give improved sensitivity over the whole phase
range, but introduce additional phase ambiguity that
increases with the size, and thus sensitivity advantage, of
the NOON state. Recent proposals [6,7] suggest using
planar quantum squeezed (PQS) states to obtain an
entanglement-derived advantage for all phase angles, with
no additional phase ambiguity. A natural application is in
high-bandwidth atomic sensing [8,9], in which the pre-
cession angle may not be predictable in advance. PQS
states may also be valuable for ab initio phase estimation
using feedback [10–16].
Discussion of such states under the name “intelligent

spin states” [17] predates modern squeezing terminology,
and analogous states have been studied with optical
polarization [18,19]. Generation of PQS states in material
systems has been proposed using two-well Bose-Einstein
condensates with tunable and attractive interactions [7], and
using quantum nondemolition (QND) measurements [20].
The latter approach is a well-established technique for
squeezing a single spin component [21–27]. Here we
follow this strategy, using Faraday rotation QND measure-
ments applied to an ensemble of cold atomic spins with
f ¼ 1 and subject to Poissonian number fluctuations. As
the ensemble spin precesses about the x axis in an external
magnetic field, we measure the y and z spin components to
generate measurement-induced squeezing in these two

components, creating a PQS state [28]. The resulting state
has enhanced sensitivity to the precession angle, i.e., to a
Zeeman-shift induced phase. The demonstrated PQS state
beats the best possible classical state at any precession
angle, and beats single-component spin-squeezed states
when averaged over the possible angles. Spin-squeezing
inequalities [7] detect spin entanglement in the PQS state,
showing the sensing advantage requires spin entanglement.
A spin F obeys the Robertson uncertainty relation

ΔFyΔFz ≥
1

2
jh½Fy; Fz�ij ¼

1

2
jhFxij: ð1Þ

Unlike the canonical Heisenberg uncertainly relation, the
rhs of Eq. (1) may vanish, e.g., for hFxi ¼ 0, with the
consequence that two spin components, e.g., Fy and Fz,
may be simultaneously squeezed, with the uncertainty
absorbed by the third component, Fx, as illustrated in
Fig. 1(b). We refer to a state fulfilling this condition as a
PQS state. Following the approach of He et al. [7,29], we
adopt an operational definition planar squeezing. We take
Δ2Fy ¼ Δ2Fz ¼ Fjj=2 as the standard quantum limit,

where Fjj ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hFyi2 þ hFzi2

q
, so that Fjj is the magnitude

of the in-plane spin components. We define the planar
variance Δ2Fjj ≡ Δ2Fy þ Δ2Fz, with standard quantum
limit Δ2Fjj ¼ Fjj, and the planar squeezing parameter
ξ2jj ≡ Δ2Fjj=Fjj. A PQS state has ξ2jj < 1, and has individual
component variances below the standard quantum limit,
i.e., ξ2y < 1, and ξ2z < 1, where ξ2i ≡ 2Δ2Fi=Fjj, so
that ξ2jj ¼ ðξ2y þ ξ2zÞ=2.
A PQS state may be used to measure arbitrary phase

angles with quantum-enhanced precision. Here we consider
an ensemble of atomic spins precessing in the y-z plane in
an external magnetic field Bx. The spin projection onto the
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z axis is given by FzðtÞ ¼ Fz cosϕ − Fy sinϕ, where Fy

and Fz are evaluated at t ¼ 0 and the phase ϕ ¼ ωLt is
proportional to the magnetic field. The uncertainty in
estimating ϕ of the atomic precession is

Δ2ϕ ¼ Δ2FzðϕÞ
jdhFzðϕÞi=dϕj2

¼ Δ2FzðϕÞ
ðhFyi cosϕþ hFzi sinϕÞ2

;

ð2Þ

where Δ2FzðϕÞ≡Δ2Fysin2ϕþΔ2Fzcos2ϕþ covðFy;FzÞ
sin2ϕ, and covðA;BÞ≡ 1

2
hABþ BAi − hAihBi is the

covariance. The standard quantum limit is Δ2ϕSQL ¼
1=2Fjj. We note that PQS states reduce the planar variance
for arbitrary angles on a finite interval, except where the
denominator in Eq. (2) is equal to zero. In contrast, squeezing
a single spin component is only beneficial to refine the
estimate of a phaseover a limited range of angles, and requires
prior knowledge of the phase, or adaptive procedures to
determine the phase during the measurement [29,30].
In our experiment, we measure the FzðtÞ spin projection

of the precessing atomic spins via off-resonant paramag-
netic Faraday rotation using a train of μs-duration optical
probe pulses. We assume the probe duration is short
compared to the Larmor precession period. The effective
atom-light interaction is given by the Hamiltonian

Heff ¼ gSzFzðtÞ: ð3Þ
Here, the atoms are described by the collective spin operators
F≡P

if
ðiÞ, with fðiÞ the spin orientation of individual atoms.

The optical polarization of the probe pulses is described by
the Stokes operators Sk ¼ 1

2
ða†L; a†RÞσkðaL; aRÞT , with Pauli

matrices σk. The coupling constant g depends on thedetuning
from the resonance of the probe beam, the atomic structure,
and the geometry of the atomic ensemble and probe beam
[31–33].
Equation (3) describes a QNDmeasurement ofFzðtÞ [34]:

an inputSx-polarized optical pulse interactingwith the atoms
experiences a rotation by an angle θ ¼ gFzðtÞ; measurement
of θ projects the atoms onto a statewithΔ2FzðtÞ reduced by a
factor 1=ð1þ g2NAnlÞ, where nl is the number of photons in
a single probe pulse,Δ2FxðtÞ increased by a factor 1þ g2nl,
and Δ2FyðtÞ increased by a negligible factor of order 1.
Repeated QND measurements of FzðtÞ during multiple
Larmor precession cycles are used to produce a PQS state.
We work with up to 1.75 × 106 laser-cooled 87Rb atoms

held in a single beam optical dipole trap [31], as illustrated
in Fig. 1(a). The atoms are initially polarized via high
efficiency (∼98%) stroboscopic optical pumping, in the
presence of a small magnetic field applied along the x axis,
such that hFyi≃ hNAi. NA is subject to Poissonian fluc-
tuations because accumulation of independent atoms into
the ensemble is a stochastic process limited by Poisson
statistics Δ2NA ¼ hNAi. We refer to this kind of state as a

Poissonian coherent spin (PCS) state, with variances
Δ2Fx ¼ Δ2Fz ¼ hNAi=2 and Δ2Fy ¼ hNAi. Generating
sub-Poissonian atom number statistics, either via strong
interaction among the atoms during accumulation [35–38],
or as here, via precise nondestructive measurement [39,40],
remains a significant experimental challenge.
We probe the atoms using a train of τ ¼ 0.6 μs duration

pulses of linearly polarized light,with a detuningof 700MHz
to the red of the 87RbD2 line, sent through the atomic cloud at
3 μs intervals. The probe pulses are V polarized, with on
average nl ¼ 2.74 × 106 photons. Between the probe
pulses, we send H-polarized compensation pulses with on

average nðHÞ
l ¼ 1.49 × 106 photons through the atomic

cloud to compensate for tensor light shifts [41]. During
the measurement, an external magnetic field Bx coherently
rotates the atoms in the y-z plane at theLarmor frequencyωL.
The time taken to complete a single-pulse measurement is
small compared to the Larmor precession period, i.e.,
τ ≪ TL. Off-resonant scattering of probe photons during
the measurement leads to decay of the atomic coherence at a
rate η ¼ 3 × 10−10 per photon. The transformation produced
by Eq. (3) is S0y ¼ Sy cos θ þ Sx sin θ. In our experiment, we
measureSx at the input by picking off a fraction of the optical

(a)

(b) (c)

FIG. 1. (a) Experimental setup. A cloud of laser-cooled 87Rb
atoms is held in a singe-beam optical dipole trap. The atoms
precess in the y-z plane due to an external magnetic field Bx.
Optical probe pulses experience Faraday rotation by an angle
θ ∝ FzðtÞ, detected via measurement of the output Stokes
parameter S0y using a balanced polarimeter that consists in a
wave plate (WP), a polarizing beam splitter (PBS), and
photodiodes PD2 and PD3. The input Sx polarization is recorded
with a reference photodetector (PD1). (b) Illustration of a PCS
state (green) with Δ2Fz ¼ hNAi=2 andΔ2Fy ¼ hNAi; a PSS state
(red) with reduced Δ2Fz and increased Δ2Fy; and a PQS state
(blue) with both Δ2Fy and Δ2Fz reduced. Additional spin noise
due to measurement back-action is directed into the Fx spin
component, i.e., out of the plane, and does not enter into the
measurement record. (c) Recorded measurements of the Faraday
rotation angle from a precessing PCS state. We use the meas-
urement record to predict the Fz and Fy components at a time
t ¼ te using two sequential measurements M1 and M2 of
duration Δt.

PRL 118, 233603 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
9 JUNE 2017

233603-2



pulse and sending it to a reference detector, andS0y using a fast
home-built balanced polarimeter [42]. Both signals are
recorded on a digital oscilloscope, from which we calculate
θ̂ ¼ arcsin ðS0y=SxÞ, the estimator for θ. We correct for slow
drifts in the polarimeter signal by subtracting a baseline from
each pulse, estimated by repeating the measurement without
atoms in the trap.
The measurable signal is described by the free induction

decay model [43]

θðtÞ ¼ gðFzðteÞ cosϕ − FyðteÞ sinϕÞe−tr=T2 þ θ0; ð4Þ

where tr ≡ t − te and the phase ϕ ¼ ωLtr is proportional to
the magnetic field. We record a set of measurements θðtkÞ,
and detect the PQS state at time te. A typical free induction
decay signal is illustrated in Fig. 1(c). An independent
measurement is used to calibrate g, while ωL, T2, and θ0 are
found by fitting the measured θðtkÞ over all the data points.
The model described in Eq. (4) allows a simultaneous

estimation of F1 ¼ ðFð1Þ
y ; Fð1Þ

z Þ at a time t ¼ te by fitting
the data using the measurements from an interval Δt prior
to te (labeled M1 in Fig. 1), producing a conditional PQS
state at time te. We detect the PQS state by comparing

the first measurement outcome to a second estimate F2 ¼
ðFð2Þ

y ; Fð2Þ
z Þ using the measurements from an interval Δt

after to te (labeledM2 in Fig. 1). The classical parameters g,
ωL, T2, and θ0 are fixed beforehand. As a result, these are
two linear, least-squares estimates of the vector F obtained
from disjoint data sets [28].
From the measurement record, we compute the condi-

tional covariance matrix ΓF2jF1
¼ ΓF2

− ΓF2F1
Γ−1
F1
ΓF1F2

which quantifies the error in the best linear prediction of
F2 based on F1 [44]. Γv indicates the covariance matrix for

vector v, and Γuv indicates the cross-covariance matrix for
vectors u and v. The difference between the best linear
prediction of F using F1 and the confirming estimate F2

is visualized using the vector F ¼ fF y;F zg ¼ ~F2−
ΓF2F1

Γ−1
F1

~F1, where ~Fi ¼ Fi − hFii. Statistics are gathered
over 453 repetitions of the experiment. The atomic quan-
tum noise contribution is calibrated via independent
measurements, taking into account the inhomogeneous
atom-light coupling [28]. Standard errors in the estimated
conditional covariance matrix are calculated from the
statistics of fFg.
The estimate of the state from the two independent

measurements is subject to technical noise due to amplitude
and phase fluctuations of the input state, and shot-to-shot
variations of the magnetic field. In Fig. 2(a), we plot the
estimate of F1 at time te for an input state with hNAi ¼
1.75 × 106 atoms. In contrast, the conditional uncertainty
of F2 given F1 is limited mainly by the measurement read-
out noise, as shown in Figs. 2(b) and 2(c). Empirically, we
find Δt ¼ 270 μs minimizes the total variance TrðΓF2jF1

Þ.
This reflects a trade-off of photon shot noise versus
scattering-induced decoherence and magnetic-field techni-
cal noise. At this point, NL ¼ 2.47 × 108 photons have
been used in the measurement and the atomic state
coherence has decayed by a factor χsc ¼ 0.89 due to off-
resonant scattering, and a factor χdec ¼ 0.93 due to dephas-
ing induced by magnetic field gradients [45]. The resulting
spin coherence of the PQS state is Fjj ¼ χdecχscNA ¼
1.45 × 106 spins. The conditional covariance (in units of
spins2) is

ΓF2jF1
¼

��
2.32 0.64

0.64 3.00

�
�
�
0.21 0.16

0.16 0.28

��
× 105: ð5Þ

(a) (b) (c)

FIG. 2. (a) Spin state F1 (red dots) estimated at time te for an input state with hNAi ¼ 1.75 × 106 atoms from the 453 repetitions of the
experiment. For comparison, we illustrate the corresponding measurement made without atoms in the trap, used to quantify the read-out
noise (yellow dot). (b) Error in the best linear predictor,F, of F2 given F1 (blue dots). The blue ellipse shows the measured 2σ radii of the
distribution. The yellow ellipse shows the standard quantum limit Δ2Fy ¼ Δ2Fz ¼ Fjj=2 with 2σ radii, where σ2 ¼ ðFjj=2Þ2 þ Δ2θ0
and Δ2θ0 is the measured read-out noise. (c) Linear predictor F estimated from repeating the experiment without atoms in the trap,
allowing quantification of the measurement read-out noise. The dashed ellipse shows the measured 2σ radii of the distribution.
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For comparison, the estimated read-out noise is

Γ0 ¼
��

1.02 0.14

0.14 1.03

�
�
�
0.07 0.05

0.05 0.07

��
× 105: ð6Þ

We note that ΓF2jF1
allows for accurate characterization of

the atomic state given accurate knowledge of the classical
parameters g, ωL, T2, and θ0. With better control of the
magnetic field environment [46,47], these parameters could
also be calibrated via independent measurements.
From ΓF2jF1

we estimate the planar squeezing parameter
ξ2jj ¼ Trð ~ΓF2jF1

Þ=Fjj, where ~ΓF2jF1
¼ ΓF2jF1

− Γ0 and Fjj is
estimated at te. Γ0 is the read-out noise, quantified by
repeating the measurement without atoms in the trap. In
Fig. 3(a) we show ξ2jj as a function of the in-plane coherence
Fjj of the atomic ensemble, which we vary by changing the
number of atoms in the optical dipole trap. We detect a PQS
state for Fjj ≥ 4 × 105 spins. With the maximum coherence
Fjj ¼ 1.45 × 106 spins, we observe ξ2jj ¼ 0.37� 0.03 < 1,

detecting a PQS state with > 20σ significance, with ξ2y ¼
0.32� 0.03 and ξ2z ¼ 0.42� 0.04.
Entanglement is detected using the witness ξ2e ≡ Δ2Fjj=

h ~NAi, derived in Ref. [7]; for an ensemble of atoms with
individual spin f ¼ 1, entanglement is detected if
ξ2e < 7=16. Here ~NA ≡ ½χsc þ pð1 − χscÞ�NA is the number
of atoms remaining in the f ¼ 1 state after probing, χsc ≡
1 − expðηNLÞ accounts for off-resonant scattering of atoms
at a rate η, and p is the fraction of scattered atoms that return
to f ¼ 1 [45]. We measure ξ2e ¼ 0.32� 0.02 < 7=16,
detecting entanglement among the atomic spins with > 5σ
significance [7].

We also define a metrological squeezing parameter
ξ2m ≡ FΔ2Fjj=F2

jj, where F≡ hNAi is the input spin coher-
ence, similar to the Wineland criterion [48,49], in that it
compares noise to themagnitude of the coherenceFjj. A PQS
state with ξ2m < 1 gives enhanced metrological sensitivity to
arbitrary phase shifts. We observe ξ2m ¼ 0.45� 0.03, indi-
cating that entanglement-enhanced phase sensitivity is
achievable.
To estimate the enhancement in phase sensitivity achiev-

able using the observed PQS state, we evaluate Eq. (2)
using the conditional covariance ~ΓF2jF1

and the measured
coherences. The PQS state achieves a maximum achievable
sensitivity Δ2ϕ ¼ ð0.38� 0.02ÞΔ2ϕSQL, or Δϕ ¼ ð3.6�
0.1Þ × 10−4 radians, at a phase ϕ ¼ 0.68π radians. Note
that this phase is determined by the choice of measurement
time te. In Fig. 3(b) we plot the calculated phase sensitivity
Δ2ϕ of the observed PQS state (red solid line). For
comparison purposes, we rotate the PQS state so that the
spin coherence is aligned along the y axis, i.e., F → RðθÞ ·
F and ΓF2jF1

→ RðθÞ · ΓF2jF1
· RðθÞT , where arctan θ≡

Fy=Fz. We compare this with the sensitivity of a PCS
state with input spin coherence hFyi ¼ NA (blue dashed
line), and a Poissonian spin-squeezed (PSS) state, i.e., a
state produced by squeezing the Fz component of the PCS
state via an ideal QND measurement with the same
measurement resources, with Δ2Fy ¼ hNAi, Δ2Fz reduced
by a factor 1=ð1þ g2NLNA=2Þ, and input coherence
hFyi ¼ χscNA (green dot-dashed line).
In Fig. 3(c) we plot the calculated enhancement in phase

sensitivity Δ2ϕ of both the PQS and PSS states relative to
the classical input PCS. The observed PQS state can

(a) (b) (c)

FIG. 3. (a) Semi-log plot of the planar squeezing parameter, ξ2jj, as a function of the in-plane coherence Fjj of the atomic ensemble. We
vary Fjj by changing the number of atoms loaded in the optical dipole trap. A PQS state is detected for ξ2jj < 1 (shaded region).

Entanglement is detected for ξ2e ¼ ðFjj=h ~NAiÞξ2jj < 7=16 (dashed line). Error bars represent �1σ statistical errors. (b) Calculated phase

sensitivity of the PQS state as a function of the measurement phase ϕ (red solid line). The standard quantum limit 2FjjΔ2ϕ ¼ 1 is
indicated by the solid yellow line. We also show the phase sensitivity of the input PCS (blue dotted line), a PSS state produced with the
same resources (green dashed line), and an ideal spin-squeezed state (SSS) not subject to number fluctuations (dark yellow dot-dashed
line). (c) Metrologically significant enhancement in phase sensitivity relative to that of the PCS, Δ2ϕ=Δ2ϕPCS, for the PQS (red solid
line), PSS (green dashed line) and SSS (dark yellow dot-dashed line) states. Shaded bands indicate �1σ confidence intervals.
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provide ≥ 3.1 dB quantum-enhanced, metrologically
significant phase sensitivity with respect to the PCS for
all phases, with a maximum of 4.1 dB, enabling quantum-
enhanced measurement of an arbitrary phase shift.
In contract, the PSS state gives 6.6 dB enhancement relative
to the PCS at ϕ ¼ 0, but performs worse than the PQS state
outside the range −0.09π < ϕ < 0.12π radians.
In contrast to the well-known spin-squeezed states,

planar quantum squeezed states enhance the precision of
phase estimation without requiring a priori information
about the phase. Here we have shown that QND measure-
ment can efficiently produce such states, demonstrating that
more than 3 dB of advantage relative to classical states is
possible over the full range of phase angles. We also detect
spin-spin entanglement, required for the metrological
advantage. Such states are attractive for high-bandwidth
and high-sensitivity optical magnetometers [8,50] and other
atomic sensing applications employing nondestructive spin
detection [16,26,51]. In our experiment, uncertainty in the
spin coherence is dominated by Poissonian number fluc-
tuations. In scenarios where uncertainty from measurement
induced back-action due to curvature of the Bloch sphere is
dominant [27], allocating measurement resources to
squeezing the spin coherence, as in our strategy, may help
to improve phase precision even for small angles, and to
implement adaptive measurement strategies [13].
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