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Abstract

The study of neutron rich matter, present in neutron star, proto-neutron stars and core-collapse super-
novae, can lead to further understanding of the behavior of nuclear matter in highly asymmetric nuclei. 
Heterogeneous structures are expected to exist in these systems, often referred to as nuclear pasta. We have 
carried out a systematic study of neutrino opacity for different thermodynamic conditions in order to assess 
the impact that the structure has on it. We studied the dynamics of the neutrino opacity of the heterogeneous 
matter at different thermodynamic conditions with semiclassical molecular dynamics model already used 
to study nuclear multifragmentation. For different densities, proton fractions and temperature, we calculate 
the very long range opacity and the cluster distribution. The neutrino opacity is of crucial importance for 
the evolution of the core-collapse supernovae and the neutrino scattering.
© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

Most neutron stars are supernovae remnants, that happen when the hot and dense iron core of 
a dying massive star collapses. This gives rise to a system known as proto-neutron star, which 
eventually ends up in a neutron star. During the collapse, several nuclear processes take place 
in the inner core of the star – electron capture, photodisintegration, Urca, etc. Neutrinos are 
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copiously produced in core collapse supernovae, proto-neutron star and, to a lesser extent, in 
the core of neutron stars. These neutrinos flow outwards, and their emission is the main mean 
by which the proto-neutron stars cool down. Therefore, the interaction between the neutrinos 
and heterogeneous neutron rich matter is key to comprehend the dynamics of the systems under 
study.

Several models have been developed to study nuclear pasta, and they have shown that these 
structures arise due to the interplay between nuclear and Coulomb forces in an infinite medium. 
Nevertheless, the dependence of the observables in different thermodynamic conditions has not 
been studied in depth. The original works of Ravenhall et al. [1] and Hashimoto et al. [2] used 
a compressible liquid drop model, and have shown that the now known as the pasta phases – 
lasagna, spaghetti and gnocchi – are solutions to the ground state of neutron star matter. From 
then on, different approaches have been taken, that we roughly classify in two categories: mean 
field or microscopic.

Mean field works include the Liquid Drop Model, by Lattimer et al. [3], Thomas–Fermi, by 
Williams and Koonin [4], among others [5–10]. Microscopic models include Quantum Molecular 
Dynamics, used by Maruyama et al. [11,12] and by Watanabe et al. [13], Simple Semiclassi-
cal Potential, by Horowitz et al. [14] and Classical Molecular Dynamics, used in our previous 
works [15].

In some recent studies, phases different from the typical nuclear pasta were found. The work 
by Nakazato et al. [10], inspired by polymer systems, found also gyroid and double-diamond 
structures, with a compressible liquid drop model. Dorso et al. [15] obtained pasta phases 
different from those already mentioned with molecular dynamics, studying mostly their char-
acterization at very low temperatures. In our previous work [16] we have shown that these new 
pasta phases had an opacity peak (i.e., a local maximum in the opacity) in the characteristic 
wavelength of the Urca neutrinos for symmetrical neutron star matter. We will refer to all these 
different non homogeneous phases as Generalized Nuclear Pasta (GNP).

Among the advantages of classical or semiclassical models are the accessibility to position and 
momentum of all particles at all times, which allows the calculation of correlations of all orders. 
Moreover, no specific structure is hardcoded in the model, as it happens with most mean field 
models. This enables the study of the structure of the nuclear medium from a particle-wise point 
of view. Many models exist with this goal, including quantum molecular dynamics [11], simple-
semiclassical potential [14] and classical molecular dynamics [17]. In these models the Pauli 
repulsion between nucleons of equal isospin is hard-coded in the interaction. On the other hand, 
a specific Pauli potential developed in [18] was used in the QCNM [19] and later in Ref. [20].

In the works done by Horowitz et al. [21,14], the neutrino opacity and mean free path was 
calculated for a specific temperature and proton fraction. With these results they showed that a 
very long range structure (nuclear pasta) emerges in calculations using models with long-range 
Debye-like repulsion and short-range nuclear-like interaction. For the studied system, this very 
long range structure has an opacity peak in the energy region of Urca neutrinos for the very 
diluted gnocchi phase.

We build the present work upon this result, for a different microscopic model with the same 
qualitative characteristics, also extending the studied thermodynamic region for different proton 
fractions, temperatures and densities. We calculate i) the opacity for long wavelengths compared 
to the interparticle distance of nuclear matter (rnn ≈ 1.8 fm) and ii) the cluster mass distribu-
tion. This later quantity allows us to determine whether the pasta phase is finite or infinite, the 
characteristics of each phase and insight into the neutron rich gas in equilibrium with it.
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In Section 2 we introduce the model used along this work, that includes the potential 
parametrization (2.1), the Coulomb interaction (2.2) and magnitudes of interest (2.3): cluster 
distribution and neutrino opacity. Section 3.1 shows the cluster distribution for different configu-
rations, and in Section 3.2 we study in greater detail the opacity of the pasta to long wavelength 
neutrinos, for different thermodynamic parameters. Finally, we draw conclusions in Section 4. In 
Appendix A, a detailed analysis of the static structure factor calculation is performed.

2. The model

2.1. Classical molecular dynamics

In this work, we study GNP with the classical molecular dynamics model CMD. It has been 
used in several heavy-ion reaction studies to: help understand experimental data [22]; identify 
phase-transition signals and other critical phenomena [23–27]; and explore the caloric curve [28]
and isoscaling [29,30]. CMD uses two two-body potentials to describe the interaction of nucle-
ons, which are a combination of Yukawa potentials:

V CMD
np (r) = vr exp(−μrr)/r − va exp(−μar)/r (1)

V CMD
nn (r) = v0 exp(−μ0r)/r (2)

where Vnp is the potential between a neutron and a proton, and Vnn is the repulsive interaction 
between either nn or pp. The cutoff radius is rc = 5.4 fm and for r > rc both potentials are set to 
zero. The Yukawa parameters μr , μa and μ0 were determined to yield an equilibrium density of 
ρ0 = 0.16 fm−3, a binding energy E(ρ0) = 16 MeV/nucleon and a compressibility of 250 MeV.

To simulate an infinite medium, we used this potential with N = 5500 particles under peri-
odic boundary conditions, with different proton fraction (i.e. with x = Z/A = 0.1 < x < 0.5) in 
cubical boxes with sizes adjusted to have densities between ρ = 0.001 fm−3 ≤ ρ ≤ 0.08 fm−3. 
This simulations have been done with LAMMPS [31], using its GPU package [32].

2.2. Coulomb interaction in the model

Since a neutralizing electron gas embeds the nucleons in the neutron star crust, the Coulomb 
forces among protons are screened. We model this screening effect with the Thomas–Fermi ap-
proximation, used with various nuclear models [11,15,21]. According to this approximation, 
protons interact via a Yukawa-like potential, with a screening length λ:

VT F (r) = q2 e−r/λ

r
. (3)

Theoretical estimates for the screening length λ are λ ∼ 100 fm [33], but we set the screening 
length to λ = 20 fm. This choice was based on previous studies [34], where we have shown that 
this value is enough to adequately reproduce the expected length scale of density fluctuations for 
this model, while larger screening lengths would be a computational difficulty. We analyze the 
opacity to neutrinos of the structures for different proton fractions and densities.

2.3. Magnitudes of interest

2.3.1. Neutrino opacity
Neutron rich matter is a neutral system composed of a neutron enriched mixture of neutrons 

and protons embedded in a degenerate electron gas. This kind of matter can develop heteroge-
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neous structures usually referred to as nuclear pasta. As seen in Ref. [14,21], the neutron–neutron 
static structure factor S(q) of the nuclear pasta describes coherent neutrino scattering. This phe-
nomenon is expected to dominate the neutrino opacity for certain wavelengths. The scattering 
cross section is related to the static structure factor through

σtotal = σfree neutron × S(q) (4)

The neutrino scattering cross section of a free neutron is given by:

σfree neutron = G2
F E2

ν

6π
(5)

with GF the Fermi coupling and Eν the energy of the neutrino. With this in mind, the cross 
section is:

σtotal = G2
F E2

ν

6π
S(q) (6)

Since the neutrino mass (mν ≈ 10−2 eV) is negligible for energies in the MeV range, the relation 
between the energy and the wave number is Eν = h̄q .

To find the opacity of heterogeneous matter we calculated the structure factor of the system 
for a broad range of wavelengths of interest related to the pasta structure, and then searched 
for the maximum. To have an idea of the mass distribution of the system we calculate the pair 
distribution function of the neutrons gnn(r), which is related to the average number of neutrons 
at a distance r away from a given neutron, in a shell of thickness dr :

dn = N

V
gnn(r)4πr2dr (7)

The structure factor S(q) is the Fourier transform of the pair distribution function:

Snn(q) = 1 + ρ

∫
V

dr e−i q r
[
gnn(r) − 1

]
(8)

This expression is for an angle averaged S(q), since collapsing cores are polycrystalline, and the 
orientation of each grain of the crystal is random [35].

Since there is a transition from infinite clusters (totally connected structures) to finite clusters 
(usually small spherical clusters of neutron star matter), dependent on the density and the tem-
perature, it is of relevance to relate the neutrino opacity with the cluster structure of the system. 
The finite pasta, gnocchi, exists for densities below a given threshold and, as shown below, it is 
the finite pasta that accounts for the opacity for long wavelengths.

2.3.2. Cluster recognition: identifying pasta phases
In typical configurations we have not only the structure known as nuclear pasta, but also a 

nucleon gas that surrounds the nuclear pasta. In order to properly characterize the pasta phases, 
we must identify which atoms belong to the pasta phases and which belong to this gas. To do so, 
we have to find the clusters that are formed along the simulation.

One of the algorithms to identify cluster formation is Minimum Spanning Tree (MST). In 
MST algorithm, two particles belong to the same cluster {CMST

n } if the relative distance between 
the particles is less than a cutoff distance rcut :

i ∈ CMST ⇔ ∃j ∈ Cn | rij < rcut (9)
n
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Fig. 1. Relative kinetic energy for pairs inside MST clusters. (Color online.)

This cluster definition works correctly for systems in which relative velocities between parti-
cles are not relevant (for example, the asymptotic state of a fragmenting nucleus), and it is based 
on the attractive tail of the nuclear interaction. However, if the system has a high temperature, 
we can have two particles that are closer than the cutoff radius, but with a large relative kinetic 
energy.

To deal with situations of non-zero temperatures, we need to take into account the relative 
momentum among particles. One of the most sophisticated methods to accomplish this is the 
Early Cluster Recognition Algorithm (ECRA) [36]. In this algorithm, the particles are partitioned 
in different disjoint clusters CECRA

n , with the total energy in each cluster:

εn =
∑
i∈Cn

KCM
i +

∑
i,j∈Cn

Vij (10)

where KCM
i is the kinetic energy relative to the center of mass of the cluster and Vij is the 

interaction potential energy between particles i and j . The set of clusters {Cn} then is the one 
that minimizes the sum of all the cluster energies Epartition = ∑

n εn.
ECRA algorithm can be easily used for small systems [37], but being a combinatorial op-

timization, it cannot be used in large systems. While finding ECRA clusters is very expensive 
computationally, using simply MST clusters can lead to results extremely biased in favor of large 
clusters. We have decided to go for a middle ground choice, the Minimum Spanning Tree Energy 
(MSTE) algorithm [15]. This algorithm is a modification of MST, taking into account the kinetic 
energy. According to MSTE, two particles belong to the same cluster {CMSTE

n } if they are energy 
bound:

i ∈ CMSTE
n ⇔ ∃j ∈ Cn : Vij + Kij ≤ 0 (11)

While this algorithm doesn’t yield the same theoretically sound results from ECRA, it still avoids 
the largest pitfall of naïve MST implementations for the temperatures used in this work. To 
illustrate this concept, we show in Fig. 1 the relative kinetic energy of pairs that are bound by 
MST algorithm, with rcut = 5.4 fm, for a system with x = 0.5, ρ = 0.04 fm−3, T = 1.0 MeV. 
We can see that a considerable amount of pairs have a relative energy larger than 5 MeV.

Even further, for systems of density ρ = 0.01 fm−3 and proton fraction x = 0.3 with the 
lowest temperature studied (T = 0.5 MeV), we tallied the binding energy per nucleon EB for the 
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Fig. 2. Binding energy for MST and MSTE clusters. We can see that for every cluster size, MSTE clusters are more 
bound than MST ones. (Color online.)

different cluster mass (this is related to the εn from the ECRA definition: EB = −εn/mn, with m
the mass of the cluster Cn) that appeared along the different snapshots. This was done both for 
MST and MSTE clusters, and the obtained results are in Fig. 2. In this figure we can see that for 
every cluster size, MSTE clusters have a larger binding energy than MST clusters.

3. Results

3.1. Clusters

In Fig. 3 we show four different snapshots for proton fractions of x = 0.4 and x = 0.5 and 
temperature T = 0.5 MeV and T = 1.0 MeV. We clearly see that the structures are no longer 
limited to those originally proposed by Ravenhall et al. [1]. To study them further we can see in 
Fig. 4 the corresponding cluster distribution according to MSTE algorithm. In this figure, we can 
see that for a proton fraction x = 0.2 there are many isolated nucleons that are almost exclusively 
neutrons. These form the previously mentioned neutron gas that embeds the underlying proton 
structure.

Another consequence of the neutron gas is that the proton fraction of the GNP structure is 
slightly higher than the proton fraction in the simulation cell. We can see from Fig. 4 that the 
proton fraction in the large cluster is about x = 0.24, while the macroscopic proton fraction is 
x = 0.2. In Fig. 5 we show the mass fraction of the largest cluster in terms of the temperature and 
the proton fraction, and note that even for very high temperatures (T = 2.0 MeV) a large cluster 
appears for every proton fraction. In particular, the smallest of the largest clusters contains more 
than 50% of the total mass of the system.

3.2. Neutrino opacity

As explained in Section 2.3.1, we calculate the neutrino opacity of the neutron rich matter. 
Fig. 6 shows the pair distribution function, structure factor (see Appendix A for a detailed expla-
nation of its calculation) and opacity for the gnocchi phase. In the pair distribution function we 
can identify (marked with �) the peak that corresponds to the crystalline structure of the nucle-
ons within the pasta – neutron correlation with nearest neighbors –, and also a very long range 



P.N. Alcain, C.O. Dorso / Nuclear Physics A 961 (2017) 183–199 189
Fig. 3. Snapshots of a system with density ρ = 0.04 fm−3 for different values of proton fraction and temperature, gener-
ated with VisIt [38]. Structures obtained at T = 0.5 MeV differ substantially. Nevertheless both show inhomogeneities. 
We can see in panel 3c a green line marking a correlation length of ≈ 15 fm. (Color online.)

order (marked with a dashed line − −); this interaction leads to the peak for low wavenumbers 
in the structure factor, related to the pasta structures. The structure factor displays a pasta peak 
(see Fig. 6) located at qpeak = 0.37 fm−1 (that translates to a neutrino energy of Eν ≈ 70 MeV) 
for this gnocchi phase and with a full width at half maximum of about �qFWHM = 0.08 fm−1

(�EFWHM ≈ 15 MeV), by so defining a range of wavelengths in which the structure is consider-
ably opaque.

We simulated the system for a total of about 1000 different configurations (4 different pro-
ton fractions, 10 different densities and 30 different temperatures). For each configuration of 
given proton fraction, density and temperature, we calculate the structure factor and calculate the 
corresponding opacity, according to equation (6) and extract its maximum value for long wave-
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Fig. 4. Cluster distribution with MSTE algorithm for temperature T = 2.0 MeV, density ρ = 0.04 fm−3 and different 
proton fractions. For the lowest of the studied proton fractions, x = 0.2, the large cluster has a higher proton fraction 
(about 30% higher) and there are many isolated neutrons. Please note that the scales are different for each graph. (Color 
online.)

Fig. 5. Mass fraction of the largest cluster for ρ = 0.04 fm−3 for different values of x. (Color online.)
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Fig. 6. 6a Pair distribution function; and 6b static structure factor and opacity for a system with proton fraction x = 0.4, 
density ρ = 0.01 fm−3 and temperature T = 0.5 MeV. The first peak in the g(r) due to crystalline structures is marked 
with �, while the very long range order is marked with a dashed line − −. In the structure factor we can see the peak 
located at qpeak = 0.37 fm−1 with a width of about FWHM = 0.08 fm−1. The ripples for low wavenumbers are due to 
finite size effects. (Color online.)

lengths. We will refer to this value as opacity peak. A word of caution must be said about the 
low temperatures. As we have shown in a previous work [16], below a certain temperature (near 
1 MeV) the system might lock in one of many local minima. Because of this, the system cannot 
be directly simulated at low temperatures. Instead, the low temperature limit must be obtained 
coming from high temperatures, carefully lowering the temperature and checking whether the 
system is thermalized or not.

Fig. 7 shows the opacity peak wavelength and opacity peak height for the lowest temperature 
studied in this work (T = 0.5 MeV) as a function of the density. We observe that the opacity 
peak wavelength decreases as the density increases, meaning that the correlation length of the 
structure is lower as the density increases. This is to be expected, since the higher the density, the 
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Fig. 7. Opacity peak 7a wavelength and 7b height for low temperature (T = 0.5 MeV) as a function of density for different 
proton fractions. We can see the wavelength changing rapidly for ρ < 0.02 fm−3 (gnocchi phase) and stabilizing for 
higher densities. (Color online.)

closer the structures are. Nevertheless, we emphasize that the structure changes with the density, 
not only with transition in morphology (e. g. from spaghetti to lasagna) but also, for example, 
gnocchi clusters have different sizes for different densities. This interplay between the structures 
changing internally and also changing their spatial distribution is what results in the Fig. 7a. We 
can see that the opacity peak wavelength changes rapidly for low densities (those of gnocchi), 
but tends to stabilize for the other pasta phases. Consider also that, since the S(q) has a certain 
width near the peak, the structure would scatter neutrinos in a range of wavelengths that are near 
said maximum. Interestingly, the opacity peak height reaches its maximum for ρ = 0.01 fm−3, 
where we still have gnocchi as can be evidenced by the cluster distributions in Fig. 8.

In Fig. 9 we show the opacity peak for the different thermodynamic configurations. We can 
see there that as the proton fraction decreases, the opacity decreases as well. For every proton 
fraction studied, the opacity peak falls rapidly for temperatures higher than T = 0.8 MeV, and it 
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Fig. 8. Cluster distribution with MSTE algorithm for temperature T = 0.5 MeV, density ρ = 0.01 fm−3 and different 
proton fractions. We can see that all of them have gnocchi mass distributions. (Color online.)

is about 1/4 of the opacity peak at T = 0.5 MeV. The system opacity goes down as the proton 
fraction is reduced because the backbone structure is due to the proton long-range Coulomb 
interaction. When there is one neutron for each proton (x = 0.5), the neutron structure follows 
almost identically that of the proton backbone. However, as the neutron proportion rises, the 
neutron structure is smeared out and its long range correlation begins to vanish. This effect can 
be seen in the cluster distribution for x = 0.2, where we have many isolated neutrons, that are the 
embedding neutron gas. These characteristics affect the inhomogeneities that appear in x = 0.5, 
suppressing their long range opacity.

From Fig. 5 we can see that even for very high temperatures (T = 2.0 MeV) a large cluster 
appears for every proton fraction. This large structure is the Generalized Nuclear Pasta, that is 
responsible for the long range interaction. The reason why the opacity gets drastically depressed 
as the temperature rises therefore is not because the large cluster disappears, but because of 
structural changes.

4. Discussion and concluding remarks

Neutron rich matter develops non-homogeneous structures (usually referred to as nuclear 
pasta) that strongly alter its opacity to neutrinos. By analyzing the behavior of the neutron–
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Fig. 9. Opacity peak height in the very long wavelength for different proton fractions as a function of temperature and 
density. It can be seen that the opacity decreases drastically for T � 0.8 MeV. We also show here that the opacity is 
affected by the proton fraction, as it can be noted from the scales on the color bar. Also note that in the opacity for 
x = 0.2 and x = 0.3, the results are governed by noise. (Color online.)

neutron static structure factor and radial distribution function over a wide range of densities, 
temperatures and proton fractions, we are able to calculate the wavelength at which maximum 
scattering takes place. We have seen that at high densities, where very big clusters are expected 
(spaghetti and lasagna), the wavelength stays relatively constant and the maximum opacity is 
obtained for rather energetic neutrinos (Eν ≈ 80 MeV, typical of a very early stage of the evolu-
tion of proto-neutron stars). As the density goes down, we move into the gnocchi pasta phase, in 
which clusters are of finite size. In this case, the maximum opacity moves to lower energies. As 
seen in Fig. 9 this increase on the opacity not only takes place when heterogeneities are of the 
commonly referred nuclear pasta, but also appears when these structures are quite deformed (the 
generalized nuclear pasta that we can see in Fig. 3).

We expect these results to be qualitatively correct, but quantitatively dependent on the model 
chosen to describe neutron rich matter. The model we are using in this work has been extensively 
studied in collisions and heavy ion physics; that is the reason why we have chosen it to describe 
quantitatively neutron rich matter.

Neutron rich matter hydrodynamic models [39–43] can yield proton fraction, density and tem-
perature for different conditions (supernovae, proto-neutron stars, neutron stars). From this work, 
we are able to find, for this specific model, the neutrino opacity for different thermodynamic 
conditions. Therefore, combining these two results with eventual measurements of the neutrino 
opacity in neutron stars, we can check the validity of different nuclear models and, consequently, 
move a step forward towards finding the nuclear equation of state.
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Appendix A. On the calculation of the structure factor

The structure factor of a system is defined by the sample scattering amplitude [44]
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	(Q) = 1

〈b〉
∑

i

bie
iQ·Ri (A.1)

with Q the diffraction vector or momentum transfer. Ri is the position of the particle i, and 〈b〉
is the average of the scattering amplitude of each particle in the vacuum bi . From this moment 
on, we will consider that all of the atoms are of the same species, bi = b.

From 	(Q) we define the structure factor S(Q) as

S(Q) = 1

N
|	(Q)|2 (A.2)

What follows immediately from this expression is that the structure function must be always 
positive for every value of Q. We can expand the scattering amplitude and use |z| = z · z∗ and, if 
all the atoms are of the same type,

S(Q) = 1

N

(∑
i

eiQ·Ri

)⎛
⎝∑

j

e−iQ·Rj

⎞
⎠ (A.3)

= 1

N

∑
i,j

eiQ·(Ri−Rj ) (A.4)

= 1

N

⎡
⎣N +

∑
i<j

(
eiQ·(Ri−Rj ) + eiQ·(Ri−Rj )

)⎤
⎦ (A.5)

= 1 + 2

N

∑
i<j

cos Q · Rij (A.6)

Usually we are interested in the powder average of the structure factor. This is the structure 
factor averaged for every possible orientation of the diffraction vector – because in a powder we 
have a lot of structures randomly oriented. We calculate therefore

S(q) = 1

4π

∫
dφd(cos θ)S(Q) (A.7)

This integral can be performed easily if we put the z axis along with the direction of Q and 
perform the integration by rotating the distances Rij

S(q) = 1

4π

∫
dφd(cos θ)

⎡
⎣1 + 2

∑
i<j

cos
(
q rij cos θ

)⎤⎦ (A.8)

= 1 + 1

2N

∫
d(cos θ)2

∑
i<j

cos
(
q rij cos θ

)
(A.9)

= 1 + 1

2N
2
∑
i<j

sin(q rij u)

q rij

∣∣∣∣
u=1

u=−1
(A.10)

= 1 + 2

N

∑
i<j

sin(q rij )

q rij
(A.11)
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Fig. A.10. Comparison of structure factor with and without PBC. It’s evident that the structure factor calculated with 
periodic boundary conditions shows negative values, which should not exist from the definition of the structure factor.

This is the famous Debye formula and, since its the average of an always positive quantity, it 
must be always positive.

One of the most usual problems when we model and study systems in computer simulations is 
that we don’t have actual infinite systems. We do, however, use the periodic boundary conditions 
(PBC) usually to emulate the behavior of infinite systems. With the periodic boundary conditions 
we use the minimum image convention: from all the possible positions through the boundaries 
for particle i and j , we pick whichever pair is closest. By using the above mentioned method for 
a very simple test case (a simple cubic 3D lattice with 4 × 4 × 4 = 64 atoms) we calculated the 
structure factor that can be seen in Fig. A.10.

We can see that the structure factor calculated with PBC attains negative values, even though 
those values ought to be forbidden. The reason for this behavior is the minimum image conven-
tion: the pair distance now isn’t always rij = rj − ri , but depends on whether we use the original 
particles or their images. Therefore, this “new” structure factor isn’t the product of two complex 
conjugate numbers.1 To explore the effect that the minimum image convention has on the struc-
ture factor, we show a comparison of the structure factor with and without boundary conditions 
(i.e., with the 64 atoms in a void) in Fig. A.10.

This shows that the structure factor, when we use its definition without minimum image con-
vention, is (as expected) always positive.

The question then, remains: how can we simulate an infinite medium when calculating struc-
ture factor? The first answer is that it is not that obvious that we would actually need this infinite
medium, since the periodic images of the cell would be aligned in a crystal that might interfere 
with the structure within the cell – the one we actually do want to study. However, a couple 
of replicas should be enough to smear out the finite size effects. One of the possibilities is to 
replicate explicitly the box, creating the particles in the neighboring cells by duplication of the 
original ones. This, though, implies a calculation much harder, since the sum is over N2 particles, 
and replicating only one cell right and left in each direction would imply a computational time of 
(33 · N)

2 ≈ 700 · N2. In general, the complexity O(N2) makes structure factor calculation very 
expensive for large systems.

1 Even further, now the imaginary part of S(Q) is no longer zero.
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There is an alternative to add the boundary conditions. We begin with the definition of the 
sample scattering amplitude as in (A.1), but writing explicitly the periodic boundary images we 
want to consider:

	(Q) =
∑

i

∑
j

eiQ·(Ri+�Lj ) (A.12)

where �Lj is the distance between a particle and its j -th periodic replica. Since the sums are 
independent, we can write:

	(Q) =
(∑

i

eiQ·Ri

)⎛
⎝∑

j

eiQ·�Lj

⎞
⎠ (A.13)

Multiplying by the conjugate gives us the structure factor

S(Q) =
∣∣∣∣∣
∑

i

eiQ·Ri

∣∣∣∣∣
2
∣∣∣∣∣∣
∑
j

eiQ·�Lj

∣∣∣∣∣∣
2

(A.14)

= Scell(Q) SPBC(Q) (A.15)

The advantage of this calculation is that it is linear in the sum of the number of particles N
and the number of replicas M consider, O(N + M), much lower than the previous O(N2M2). 
Consequently, if we want to focus on a region of Q, this new approach will be useful.2 We are 
left with only one detail, respecting the powder average. It is not trivial how to calculate this 
integral, since we need to give proper weights to each angle. In this work we used the Lebedev 
quadrature [45], although other methods like Importance Sampling Montecarlo can be useful in 
this situation.
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