
1 23

Algorithmica

ISSN 0178-4617
Volume 77
Number 3

Algorithmica (2017) 77:642-660
DOI 10.1007/s00453-015-0095-6

Exact Algorithms for Minimum Weighted
Dominating Induced Matching

Min Chih Lin, Michel J. Mizrahi & Jayme
L. Szwarcfiter

1 23

Your article is protected by copyright and all

rights are held exclusively by Springer Science

+Business Media New York. This e-offprint is

for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.

Algorithmica (2017) 77:642–660
DOI 10.1007/s00453-015-0095-6

Exact Algorithms for Minimum Weighted Dominating
Induced Matching

Min Chih Lin1,2 · Michel J. Mizrahi1,2 ·
Jayme L. Szwarcfiter3,4

Received: 23 February 2014 / Accepted: 9 November 2015 / Published online: 19 November 2015
© Springer Science+Business Media New York 2015

Abstract Say that an edge of a graph G dominates itself and every other edge sharing
a vertex of it. An edge dominating set of a graph G = (V, E) is a subset of edges
E ′ ⊆ E which dominates all edges of G. In particular, if every edge of G is dominated
by exactly one edge of E ′ then E ′ is a dominating induced matching. It is known
that not every graph admits a dominating induced matching, while the problem to
decide if it does admit it is NP-complete. In this paper we consider the problems
of counting the number of dominating induced matchings and finding a minimum
weighted dominating induced matching, if any, of a graph with weighted edges. We
describe three exact algorithms for general graphs. The first runs in linear time for a
given vertex dominating set of fixed size of the graph. The second runs in polynomial
time if the graph admits a polynomial number of maximal independent sets. The third

M.C. Lin was partially supported by UBACyT Grant 20020120100058, and PICT ANPCyT Grants
2010-1970 and 2013-2205. M.J. Mizrahi was partially supported by PICT ANPCyT Grants 2010-1970 and
2013-2205. J.L. Szwarcfiter was partially supported by CNPq, CAPES and FAPERJ, research agencies.

B Michel J. Mizrahi
michel.mizrahi@gmail.com

Min Chih Lin
oscarlin@dc.uba.ar

Jayme L. Szwarcfiter
jayme@nce.ufrj.br

1 CONICET, Instituto de Cálculo, Buenos Aires, Argentina

2 Departamento de Computación, Universidad de Buenos Aires, Buenos Aires, Argentina

3 I. Mat., COPPE and NCE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil

4 Instituto Nacional de Metrologia, Qualidade e Tecnologia, Rio de Janeiro, Brazil

123

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-015-0095-6&domain=pdf

Algorithmica (2017) 77:642–660 643

one is an O∗(1.1939n) time and polynomial (linear) space, which improves over the
existing algorithms for exactly solving this problem in general graphs.

Keywords Exact algorithms · Graph theory · Dominating induced matchings

1 Introduction

Under the widely accepted assumption that P �= N P there are several problems
with important applications for which no polynomial algorithm exists. The need to
get an exact solution for many of those problems has led to a growing interest in
the area of design and analysis of exact exponential time algorithms for NP-Hard
problems [16,32]. Even a slight improvement of the base of the exponential running
time may increase the size of the instances being tractable. There has been many new
and promising advances in recent years towards this direction [1–3,12].

In this paper we give exact algorithms for the weighted and counting versions
of the problem dominating induced matching (also known as DIM or efficient edge
domination) which has been extensively studied [5,6,8–11,20,24,25]. Further notes
about this problem and some applications related to encoding theory, network routing
and resource allocation can be found in [17,23]. We represent the minimum weight
DIMproblem for a graphG asDIMΩ(G) and the counting ofDIM’s inG asDIMC (G).

The unweighted version of the DIM problem is known to be NP-complete [17],
even for planar bipartite graphs of maximum degree 3 [5] or regular graphs [10]. There
are polynomial time algorithms for some graph classes, such as chordal graphs [24],
generalized series-parallel graphs [24] (both for the weighted problem), claw-free
graphs [9], graphs with bounded clique-width [9], hole-free graphs [5], convex graphs
[20], dually-chordal graphs [6], P7-free graphs [8], bipartite permutation graphs [25],
AT-free graphs [6], interval-filament graphs [6], weakly chordal graphs [6]. See also
[7].

A straightforward brute-force algorithm using an alternative definition of the prob-
lem explained later to solve the weighted DIM has running time O∗(2n) time and
polynomial space.

The DIMΩ(G) problem can be expressed as an instance of the maximum weighted
independent set (MWIS) problem on the square of the line graph L(G) of G, and also
as an instance of the minimum weighted dominating set problem on L(G), by slightly
adjusting the models [6,26] for the unweighted DIM problem. The MWIS problem
can be solved in O∗(1.2377n) time [31] (how one obtains an algorithm forMWIS from
an algorithm for weighted 2-Sat is described in [14]). On the other hand, the minimum
weighted dominating set problem can be solved in time O∗(1.5535n) [15], and the
special case where the weights are polynomially bounded in time O∗(1.5048n) [30].
The unweighted minimum dominating set can be solved in O(1.4864n) [19]. Hence
DIMΩ(G) can be solved by using the L2(G) algorithm in O∗(1.2377m) time applying
the MWIS algorithm and in O∗(1.5048m) time using the minimum weighted domi-
nating set algorithm. The unweighted DIM problem can also be solved in O(1.5849n)

time [18] (Theorem 10) by listing all maximal induced matchings of the graph G, and
can be easily adapted to solve DIMΩ(G) and DIMC (G) within the same complexity.

123

Author's personal copy

644 Algorithmica (2017) 77:642–660

For the counting problem, there exist algorithms such as [13] which can be used to
count the number of MWIS’s in O∗(1.3247n) time, leading an O∗(1.3247m) time
algorithm to count the numbers of DIM’s.

In this paper, we describe three exact (exponential time) algorithms for theweighted
problem. The first runs in linear time for a given vertex dominating set of fixed size
of the graph, for instance, the non-Helly Circular-arc graph class among others. The
second runs in polynomial time if the graph admits a polynomial number of maximal
independent sets, for instance, pK2-free graphs, for any fixed positive integer p.
The third one solves the problems of finding the minimum weighted DIM and that
of counting the DIM’s in O(m2 + m · 1.1939n) ∈ O∗(1.1939n) time and O(m)

space in general graphs, which improves over the existing algorithms. We employ
techniques described in [16] for the analysis of our algorithms, and as such we use
their terminology.

This last proposed algorithm was designed using the branch and reduce paradigm.
More information about this design technique as well as the running time analysis for
this kind of algorithms can be found in [16].

An extended abstract with some partial results described in the present article has
been presented in 24th International Symposium on Algorithms and Computation
(ISAAC’ 2013), Lecture Notes in Computer Science 8283 (2013), 558–567. [22]

After the submission of this work, Xiao and Nagamochi [33] described an
O∗(1.1467n) time algorithm for the dominating induced matching problem. The algo-
rithm [33] is also based on the application of the branching rules, as presented in [22]
and [21]. However, by describing structural properties of dominating induced match-
ings and making an explicit use of partioning the graph into an independent set and an
induced matching, these properties allowed to design an exact algorithm having the
above complexity [33].

2 Preliminaries

Given an edge e ∈ E , say that e dominates itself and every edge sharing a vertex with
e. A subset E ′ ⊆ E is an induced matching of G if each edge of G is dominated by
at most one edge in E ′. A dominating induced matching (DIM) of G is a subset of
edges which is both dominating and an induced matching. Not every graph admits
a DIM, and the problem of determining whether a graph admits it is also known in
the literature as efficient edge domination problem. The weighted version of the DIM
problem is to find a DIM such that the sum of weights of its edges is minimum among
all DIMs, if any.

We will use an alternative definition [11] for the problem of finding a dominating
induced matching. It asks to determine if the vertex set of a graph G admits a partition
into two subsets such that the vertices of the first subset are called white and induce
an independent set of the graph, while those of the second subset are named black and
induce a 1-regular graph.

We consider only graphs without isolated vertices, because isolated vertices must
be white in any black-white partition. So, we can delete them and solve the problem
in the residual graph.

123

Author's personal copy

Algorithmica (2017) 77:642–660 645

Assigning one of the two possible colors to vertices of G is called a coloring of
G. A coloring is partial if only part of the vertices of G have been assigned colors,
otherwise it is total. A partial coloring is valid if no two white vertices are adjacent
and no black vertex has more than one black neighbor. A black vertex is single if it has
no black neighbors, otherwise, it is paired. A total coloring is valid if no two white
vertices are adjacent and every black vertex is paired. Clearly, G admits a DIM if and
only if it admits a total valid coloring. In fact, a total valid coloring defines exactly
one DIM, given by the set of black vertices.

3 Colorings and Extensions

Each coloring C of a graph G, partial or total, can be valid or invalid. We describe the
natural conditions for determining if a coloring is valid or invalid.

Definition 1 Validation rules:
A partial coloring is valid whenever:

(V1) No two white vertices are adjacent, and
(V2) Each black vertex is either single or paired. Each single vertex has some uncol-

ored neighbor.

A total coloring is valid whenever:

(V3) No two white vertices are adjacent, and
(V4) Each black vertex is paired.

Lemma 1 There is a one-to-one correspondence between total valid colorings and
dominating induced matchings of a graph.

Proof It follows from the definitions. ��
For a coloring C of the vertices of G, denote by C−1(white) and C−1(black),

the subsets of vertices colored white and black. A coloring C ′ is an extension of a C
if C−1(black) ⊆ (C ′)−1(black) and C−1(white) ⊆ (C ′)−1(white). For V ′, V ′′ ⊂
V (G) ifC ′ is obtained fromC by adding to it the vertices of V ′ with the color black and
those of V ′′ with the color white then write C = C ′ ∪ BL AC K (V ′)∪ W H I T E(V ′′).
Denote with U the set of still uncolored vertices, and NU (v), the uncolored vertices
from the neighborhood of vertex v.

Given a partial coloring C , the basic idea of the algorithm is to iteratively find
extensions C ′ of C , until eventually a total valid coloring is reached. It follows from
the validation rules that ifC is invalid, so isC ′, since the colored vertices aremaintained
in C ′ and thus, the cause of the break of the validation rules. Therefore, the algorithm
keeps checking for validation, and would discard an extension whenever it becomes
invalid.

Basically, there are two different ways of possibly extending a coloring, using
propagation rules and branching rules. At the beginning, there are partial colorings C
which force the colors of some of the so far uncolored vertices, leading to an extension
C ′ of C . In this case, say that C ′ has been obtained from C by propagation. Therefore,

123

Author's personal copy

646 Algorithmica (2017) 77:642–660

at each step, every propagation rule that can be applied is executed, until no one can be
used. If the coloring is still partial and valid, then one branching rule is used to obtain
new colorings into which the algorithm tries again the propagation rules, and so on.

The following is a convenient set of rules, whose application may extend C , in the
above described way.

Lemma 2 Rules for propagating colors:
The following are forced colorings for the extensions of a partial coloring of G.

(P1) The degree-3 vertices of a diamond must be black and the remaining ones must
be white

(P2) The neighbor of a pendant vertex must be black
(P3) Each neighbor of a white vertex must be black
(P4) Except for its pair, the neighbors of a paired (black) vertex must be white
(P5) Each vertex with two black neighbors must be white
(P6) If a single black vertex has exactly one uncolored neighbor then this neighbor

must be black
(P7) In an induced paw, the two odd-degree vertices must have different colors
(P8) In an induced C4, adjacent vertices must have different colors
(P9) If ∀v ∈ NU (s), N [v] ⊆ N [s] where s is a single (black vertex) then an uncolored

neighbor v of s minimizing weight(sv) must be black. Break ties arbitrarily. We
require rules (P1) and (P8) to be applied before (P9).

Proof The rules (P1), (P7), (P8) follows from [5](using observations 1 and 3). while
rules (P3), (P4), (P5), (P6) follows from [11]. The rule (P2) follows from the coloring
definition since each black vertex must be paired in order for the coloring to be valid.
Finally, for (P9), let s be a single vertex. Suppose the neighborhood of all uncolored
neighbors of s lies within the neighborhood of s. Then the choice of the vertex to
become the pair of s is independent of the choices for the remaining single vertices of
the graph. Therefore, to obtain a minimum weighted dominating induced matching of
G, the neighbor v of s minimizing weight (sv) must be black. ��
Observe that rules (P1) and (P2) should be applied once at the beginning of the algo-
rithm, and note that as long as rule (P8) is executed before rule (P9), the order of the
application does not matter.

Say that a coloring C is empty if all vertices are uncolored. Let C be a valid
coloring and C ′ an extension of it, obtained by the application of the propagation
rules. If C = C ′ then C is called stable. On the other hand, if C �= C ′ then C ′ is not
necessarily valid. Therefore, after applying iteratively the propagation rules, we reach
an extension which is either invalid or stable.

Lemma 3 [5] If G contains a K4 then G has no DIM.

3.1 An Algorithm Based on Vertex Domination

Next, wewill propose an exact algorithm for solving the weighted dominating induced
matching problem, for general graphs, based on vertex dominations. The only rules
to be used will be some of the propagation ones.

123

Author's personal copy

Algorithmica (2017) 77:642–660 647

Let C be a partial valid coloring of G = (V, E). Such as in [11], this coloring can
be further propagated according to the previous defined propagation rules.

Let C be a partial valid coloring of G, and C ′ be a stable coloring obtained from
C , by the applications of rules (P3)–(P6), above. Denote by D and D′, respectively
the subsets of vertices of G which are colored in C and C ′. Clearly, D′ ⊇ D. For our
purposes, assume that the initial set D of colored vertices is a vertex dominating set
of G.

Lemma 4 Let C be a stable coloring and D a dominating set with its vertices colored.
Then

1. If there are no single (black) vertices then C ′ is a total coloring,
2. Any uncolored vertex has exactly one black neighbor, and such a neighbor must

be single.

Proof Recall that D is the initial colored vertices and is a dominating set of the graph
G. C ′ is not a total coloring if and only if there is some uncolored vertex v. Clearly,
v /∈ D and N (v)∩ D �= ∅. Letw be some neighbor of v in D. If the color ofw is white
then v must be colored black by rule (P3) which is a contradiction. Hence w is a black
vertex. Again, if w is a paired black vertex or v has another black neighbor w′ �= w, v
must get color white by rules (P4) and (P5) and this is a contradiction. Consequently,
v has exactly one black neighbor and which is single black vertex. Therefore, if there
are no single black vertices then there are not uncolored vertices and C ′ is a total
coloring. ��

Let D′ be the colored vertices of the stable coloring C ′, let S = {s1, . . . , sp} be the
set of single vertices, and recall that U represents the set of still uncolored vertices
of G, that is, U = V \D′. The above lemma implies that U admits a partition into
(disjoint) parts:

U = (N (s1) ∩ U) ∪ · · · ∪ (
N (sp) ∩ U

)

Theorem 1 Let C be a coloring of the vertices of G, C ′ a stable extension of it, and
D = C−1(black) ∪ C−1(white) a dominating set of G. Then (i) S ⊆ C−1(black);
and (ii) if C extends to a valid total coloring C ′′ then C ′′ is an extension of C ′.

Proof Suppose that S � C−1(black) which means that exists a vertex si ∈ S and
si /∈ C−1(black). By definition of S, si is a single black vertex. If si ∈ D then
si ∈ C−1(black), contradiction. Therefore si /∈ D.

Since D is a dominating set, then ∃v ∈ D such that si ∈ N (v). If v is black then si

is not a single black vertex, again a contradiction. Hence v must be white.

– If si has no uncolored neighbors then C is not extensible to a total valid coloring
because si can not become a paired vertex, contrary to the hypothesis.

– Otherwise, let y be an uncolored neighbor of si . Clearly, y /∈ D. Since y is
uncolored then it has exactly one neighbor in D′. That is, si is the unique neighbor
of y in D′. Since D ⊆ D′ and si ∈ D′\D, it follows that D is not a dominating
set, contradiction.

123

Author's personal copy

648 Algorithmica (2017) 77:642–660

On the other hand, C ′ and C ′′ are extensions of C . Then the vertices of D have the
same color in these colorings. Any colored vertex v /∈ D of C ′ was obtained by
some propagation rule base on previous colored vertices. The rules are correct and
deterministic. Hence, v must have the same color in C ′′ and C ′′ is an extension of C ′.

��
Clearly, given a partial valid coloring C , we can compute efficiently a stable exten-

sion C ′ of it. In addition, if D is a dominating set then we can try to obtain a total valid
coloring from the stable coloring C ′ by appropiately choosing exactly one vertex from
each subset NU (si), to be black, that is, to be the pair of the so far single vertex si .

Lemma 5 Let U and S, respectively be the sets of uncolored and single vertices,
relative to some stable coloring C ′ of graph G. If C ′ extends to a total valid coloring
then, for each si ∈ S, G[NU (si)] is a union of a star and an independent set, any of
them possibly empty. Moreover, the pair of si must be a maximum degree vertex in
G[NU (si)].
Proof Suppose by contrary that G[NU (si)] is not a union of a star and an independent
set. Then G[NU (si)] contains either two non-adjacent edges, or a K3.

– Let {(u1, u1), (v1, v2)} be two disjoint edges inG[NU (si)]. Since nowhite vertices
can be adjacent, let u′ be the black vertex from {u1, u2} and v the black vertex
from {v1, v2}. Then {u, si , v} is a black P3 or K3 and therefore can not be extended
to a valid coloring.

– Let {(u1, u2, u3)} be a K3 in G[NU (si)]. Therefore {si , u1, u2, u3} is a K4 and
therefore G has no valid coloring.

Consequently, G[NU (si)] must be a union of a star and an independent set. Now,
suppose by contrary that the pair of si is a vertex v ∈ NU (si) and v has not maximum
degree in G[NU (si)]. Clearly, the rest of vertices in NU (si) are white vertices. In
particular, a maximum degree vertex u in G[NU (si)] is white. But, there is some
neighbor z �= v of u in NU (si) and z is not adjacent to v. Hence, z and u are white
adjacent vertices, which is a contradiction. ��

We can repeatedly execute the procedure below described for choosing the vertices
to be paired to the single vertices si of the partial colorings. The procedure is repeated
until all parts of the partition U = NU (s1) ∪ · · · ∪ NU (sp) have selected their paired
black vertices or the coloring becomes invalid.
Let si ∈ S be a single vertex. Case 1: NU (si) = ∅: then stop, it will not lead to a
valid one. Case 2: There is exactly one maximum degree vertex in G[NU (si)]: then
clearly, the only alternative is to choose this vertex. Case 3: There is no edge vw,
where v ∈ NU (si) and w ∈ NU (s j), for any j �= i : then the choice of the neighbor of
si to become black is independent on the choices of the others parts of the partition.
Choose the vertex w of maximum degree in G[NU (si)] that minimizes the weight of
the edge wsi . Case 4: There is an edge vw, where v ∈ NU (si) and w ∈ NU (s j), for
some j �= i : then v may become white if and only if w may become black. Each of
these two choices may led to valid or invalid total colorings. So, we proceed with both
alternatives (denoted by P4-alternatives).

123

Author's personal copy

Algorithmica (2017) 77:642–660 649

After applying any of the above Cases 2, 3 or 4, perform the propagation rules again
and validate the coloring so far obtained. Proceed so until eventually the coloring
becomes invalid, or a valid solution is obtained. At the end, choose the minimum
weight solution obtained throughout the process.

As for the complexity, it is clear that it depends on the cardinality of the dominating
set D and on the number of P4-alternatives iterations, considered sequentially. Next,
we describe bounds for these parameters.

Lemma 6 There are at most 2q P4-alternative computations where q ≤ p = |S| ≤
|D|, and q ≤ n

3 .

Proof By Theorem 1, it follows that p ≤ |D|. On the other hand, we can apply the
above Cases 1–4, in such an ordering that we keep applying Cases 1 and 2, with
propagation until all remaining single vertices si satisfy |N (si) ∩ U | ≥ 2. Let S′ ⊂ S
denote the set of remaining single vertices, and q = |S′|. Consequently, q ≤ n

3 .
Next, examine the P4-alternative computations. They are generated by Case 4. Let

vw be an edge of G, where v ∈ N (si) ∩ U and w ∈ N (s j) ∩ U , i �= j . In one of
the instances, v is black, meaning that si becomes paired, while in the other one w is
black, implying that s j becomes paired. This means that the size of the set S′ of single
vertices always decreases by at least one unit in all computations. Hence there are at
most 2q P4-alternative computations. ��

Considering that the remaining operations involved in each parallel thread of the
algorithm can be performed in linear time, it is not hard to conclude that there there is
an O(2qm) time algorithm to obtain a minimumDIM, if any, extensible from a partial
valid coloring C of a weighted graph G = (V, E) such that D = C−1(black) ∪
C−1(white) is a dominating set of G.

The complexity of the algorithm depends on the size of the dominating set D
employed. We remark that if G = (V, E) has no isolated vertices then we can easily
find in linear time a dominating set with at most half the vertices. Just determine a
maximal independent set I . Clearly, I and V \I are both dominating sets of G and one
of them has at most n

2 vertices.
Finally, in order to obtain the minimum weighted DIM of the graph G, we have

to apply the described algorithm for all possible bi-colorings of D. There are exactly
2|D| such colorings.

Theorem 2 There is an algorithm of complexity O(min{22|D|, 2 5n
6 } · m) ≈ O∗

(min{4|D|, 1.7818n}) to compute a minimum weighted DIM of a weighted graph,
if existing.

Proof The complexity is O(2|D| · 2q · m) = O(2|D| · 2min{|D|, n
3 } · m) = O(2|D| ·

min{2|D|, 2 n
3 } · m) = O(min{22|D|, 2|D|+ n

3 } · m) = O(min{22|D|, 2 n
2+ n

3 } · m) =
O(min{22|D|, 2 5n

6 } · m). ��
The upper bound depends heavily on the size of the dominating set. There are many

sharp bounds over the size of a dominating set regarding the minimum degree of the
graph. Ore proved that given minimum degree δ(G) ≥ 1, then γ (G) ≤ n

2 [27]. Blank

123

Author's personal copy

650 Algorithmica (2017) 77:642–660

[4] proved that γ (G) ≤ 2n
5 for every n-vertex graph with δ(G) ≥ 2 if n ≥ 8, and

Reed [28] prove that γ (G) ≤ 3n
8 if δ(G) ≥ 3.

Corollary 1 If the dominating set size is c lg n, where c is a constant, the above
algorithm solves the minimum weighted DIM problem in polynomial time.

Proof Given |D| = c lg n, the running time is O(22(c lg n)·m) = O(2lg n·2c) = O(n2c),
where c is a constant, hence O(n2c) is polynomial. ��
Corollary 2 The above algorithm solves the minimum weighted DIM problem in
O(m) time given a dominating set of fixed size.

3.2 An Algorithm Based on Maximal Independent Sets

In this section, we describe an exact algorithm for finding a minimal weighted DIM
of a graph, based on enumerating maximal independent sets. We consider a weighted
graph G = (V, E).

Any maximal independent set I ⊆ V induces a partial bi-coloring in G as follows:

– color as black all vertices of V \I
– color as white the vertices of I except those having exactly one single neighbor.

Observation If all vertices of G have degree �= 1 then the above partial coloring is
total.

The algorithm is then based on the following lemma.

Lemma 7 Let G be a graph, I a maximal independent set of it and C the partial
bi-coloring induced by I . Then C is extensible to a DIM if and only if C is a valid
coloring and each single vertex, if existing, has at least one uncolored neighbor in C.

Proof ⇒) It is easy to see that if C is not a valid coloring, then it is not extensible
to a DIM. Besides, if C has a single vertex v with no uncolored neighbors then all
neighbors of v are white in C and in any extension of C . Also, C is not extensible to
a DIM because v can not ever get its pair.
⇐) LetC be a valid coloring where each single black vertex has at least one uncolored
neighbor. Then for each single black vertex v, choose any uncolored neighbor w to be
its pair (w has exactly one single neighbor) and the remaining of uncolored vertices
get color white. In this total coloring, the black vertices induce an 1-regular subgraph
and the white vertex set induce an independent set because it is part of I . Hence, the
total coloring is valid and hence a DIM. ��

Thealgorithmcan thenbe formulated as follows.Generate themaximal independent
sets I of G. For each I , find its induced coloring C . If C is invalid or some single
vertex has no uncolored neighbor then do nothing. Otherwise, for each single vertex
v in C , if any, choose the minimum weight vw, among the uncolored neighbors of
v; then color w as black and the remaining neighbors of v as white. The set of black
vertices then forms a DIM of G. At the end select the minimum weight among all
DIMs obtained in the process, if any.

123

Author's personal copy

Algorithmica (2017) 77:642–660 651

Clearly, this algorithm determines the minimum weight DIM of a weighted graph
G = (V, E) because given any DIM E ′ ⊆ E of G, the vertex set formed by those
vertices not incident to any of the edges of E ′ is an independent set and as such, is
clearly a subset of some maximal independent set of G. So, any DIM E ′ is considered
in the algorithm.

All the operations performed by the algorithm relative to a fixed maximal inde-
pendent set can be performed in linear time O(m). If G has μ maximal independent
sets, we can generate them all in time O(nmμ) time [29]. Therefore the complexity
of the entire algorithm is O(nm2μ). On the other hand, μ ≤ O(3

n
3), leading to a

worst case of O(3
n
3 nm2) ≈ O∗(1.44225n) time. In particular, if G is a bipartite graph

then μ ≤ 2
n
2 and the complexity reduces to O∗(1.41421n). In any case, if G has a

polynomial number of maximal independent sets then the algorithm terminates within
polynomial time.

Finally, we observe the following additional relation betweenmaximal independent
sets and DIM’s.

Lemma 8 Let G(V, E) be a graph with no isolated edges, E ′ ⊆ E a DIM of G, and
I ⊆ V the independent set formed by those vertices not incident to any of the edges
of E ′. Then I is contained in exactly one maximal independent set of G.

Proof If I is a maximal independent set there is nothing to prove. Otherwise, suppose
the lemma is false and let I1, I2 be two distinct maximal independent sets properly
containing I . Let V1 = I1\I , and V2 = I2\I . Choose any v2 ∈ V2. Clearly, {v2} ∪ I
is an indepedent set, and we know that I1 = V1 ∪ I is a maximal one. Consequently,
there must be some vertex v1 ∈ V1 adjacent to v2. However, both v1 and v2 are vertices
incident to edges of the DIM E ′. Consequently, v1v2 ∈ E ′. In this case, v1v2 must
form an isolated edge of G, a contradiction. Therefore the lemma holds. ��
Theorem 3 The minimum weighted DIM along with the counting version of the prob-
lem can be solved in O∗(1.44225n)

Proof Based on the above lemma and the fact that every isolated edge must be part of
any DIM, it is simple to extend the exact algorithm proposed in this section, so as to
count the number of distinct DIM’s (unweighted or minimum weighted) of G, in the
same complexity as deciding whether G admits a DIM. ��

Observe that G may contain an exponential number of DIM’s.

3.3 An O∗(1.1939n) Algorithm for DIMΩ(G) and DIMC(G)

In order to possibly extend a stable coloringC , we apply branching rules. Any coloring
directly obtained by these rules is not forced. Instead, in each of the these rules, there
are two possibly conflicting alternatives leading to distinct extensions C ′

1, C ′
2 of C .

Each of C ′
1 or C ′

2 may be independently valid or invalid. The next lemma describes the
branching rules. We remark that there exist simpler branching rules. However, using
the rules below we obtain a sufficient number of vertices that get forced colorings,

123

Author's personal copy

652 Algorithmica (2017) 77:642–660

s s'

v w

(B2)

s s'

v w

s s'

v w

C'1

C'2

The uncolored vertices are represented with grey

Fig. 1 The grey (uncolored) vertices are painted with white or black leading to C ′
1 and C ′

2

through the propagation which follow the application of any branching rule, so as
to guarantee a decrease of the overall complexity of the algorithm. The complexity
obtained relies heavily on this fact.

In general, we adopt the following notation. If C is a stable coloring then S denotes
the set of single vertices of it,U is the set of uncoloredvertices andT = U\∪s∈S NU (s).

Lemma 9 Branching rules
Let C be a partial (valid) stable coloring of a graph G. At least one of the following
alternatives can be applied to define extensions C ′

1, C ′
2 of C.

(B1) If C is an empty coloring: choose an arbitrary vertex v then C ′
1 := C ∪

BL AC K ({v}) and C ′
2 := C ∪ W H I T E({v})

(B2) If ∃ edge vw s.t. v ∈ NU (s) and w ∈ NU (s′), for some s, s′ ∈ S, s �= s′ then
C ′
1 := C ∪ BL AC K ({v}) and C ′

2 := C ∪ W H I T E({v}). See Fig. 1
(B3) For some s ∈ S, if ∃v ∈ NU (s) s.t. ∃w ∈ NT (v):

B3(a) If |NU (s)| �= 3∨d(w) �= 3∨|NT (v)| ≥ 2 then C ′
1 := C ∪ BL AC K ({v})

and C ′
2 := C ∪ W H I T E({v}).

B3(b) If |NU (s)| = 3 ∧ d(w) = 3 ∧ NT (v) = {w}, let NU (s) = {v, v′, v′′}.
B3(b).i If NU (v′) = NU (v′′) = ∅ then C ′

1 := C ∪ BL AC K ({v}) and
C ′
2 := C ∪ W H I T E({v})

B3(b).ii If NU (v′) �= ∅, let w′ ∈ NT (v′), with w′ �= w. If |N (w) ∪
N (w′)| > 5 or ww′ /∈ E(G) then C ′

1 := C ∪ BL AC K ({v}) and
C ′
2 := C ∪ W H I T E({v})

B3(b).iii If NU (v′) �= ∅, let w′ ∈ NT (v′), with w′ �= w. If ww′ ∈ E(G)

and z ∈ N (w) ∩ N (w′) then C ′
1 := C ∪ BL AC K ({v′′}), while if

weight (sv) + weight (w′z) ≤ weight (sv′) + weight (wz) then
C ′
2 := C ∪ BL AC K ({v}), otherwise C ′

2 := C ∪ BL AC K ({v′})
See Fig. 2.

Lemma 10 The branching rules are correct

123

Author's personal copy

Algorithmica (2017) 77:642–660 653

s

v w

B3(b).iii

v'

v''

w'

z

s

v w

v'

v''

w'

z

s

v w

v'

v''

w'

z

C'2

C'2

s

v w

v'

v''

w'

z

C'1

weight(sv) + weight(w'z) weight(sv) + weight(w'z)

weight(sv) + weight(w'z) weight(sv) + weight(w'z)

≤

>

Fig. 2 In this case there are two colorings C ′
2

Proof We assume that no propagation rule can be applied, hence branching rules are
executed. If C is an empty coloring then rule (B1) applies. Otherwise, if C is not an
empty coloring and C is not a total coloring then S �= ∅. Since C is not total and the
graph is connected, there is at least one edge sv where v is uncolored. If s is white
then v must be black (P3), else if s is a paired vertex then v must be white (P4).
Therefore s must be a single black vertex, hence S �= ∅. Let s ∈ S. Since C is valid
then NU (s) �= ∅ by validation rule (V2) and since is stable |NU (s)| �= 1 by (P6).
Therefore |NU (s)| ≥ 2. Moreover rule (P9) can not be applied, therefore ∃v ∈ NU (s)
s.t. |NU (v)\N (s)| > 0, let w ∈ NU (v)\N (s). If ∃s′ ∈ S, s �= s′ s.t. w ∈ NU (s′)
then rule (B2) is applied. Otherwise, suppose rule (P2) can not be applied. Then
w ∈ NT (v)(|NT (v)| ≥ 1). Clearly, d(w) �= 1, otherwise, rule (P2) must be applied
and v must get color black.

In case |NU (s)| �= 3 or d(w) �= 3 or |NT (v)| ≥ 2 we apply rule B3(a). Otherwise:
|NU (s)| = 3, d(w) = 3, |NT (v)| = 1.Note that inB3(b), v′w′ behaves symmetrically
in respect to vw since otherwise v′w′ were found in step B3(a) replacing vw.
The first subcase of B3(a) corresponds to NU (v′) = NU (v′′) = ∅, while in the second
and third subcases, v′ or v′′ has uncolored neighbors.
Suppose w.l.o.g. NU (v′) �= ∅ where w′ ∈ NT (v′). It is easy to see that w �= w′ since
otherwise svwv′ is a C4 and therefore w cannot be uncolored by rule (P8).
Now there are three cases which lead to two possible outcomes from the algorithm:
In case ww′ ∈ E(G) or |NU (v) ∪ NU (w)| > 5 then the result of the algorithm
is given by the second subcase (ii), else it is given by the third subcase (iii). Note
that {v, v′, v′′} ∈ NU (s) while {w,w′} ∈ T , hence these vertices are different since

123

Author's personal copy

654 Algorithmica (2017) 77:642–660

they belong to disjoint sets. Also note that ∃ z ∈ N (w) ∩ N (w′) since otherwise the
connected component has 7 vertices and can be trivially solved. ��

Note that branching rules are applied in the order given: (B1), (B2), B3(a), B3(b).i,
B3(b).ii, B3(b).iii.

We propose an algorithm for solving the problems of finding theminimumweighted
DIM and that of counting the DIM’s in O(m2 + m · 1.1939n) ∈ O∗(1.1939n) time
and O(m) space in general graphs, which improves over the existing algorithms. We
employ techniques described in [16] for the analysis of our algorithm, and as such
we use their terminology. The proposed algorithm was designed using the branch and
reduce paradigm. More information about this design technique as well as the running
time analysis for this kind of algorithms can be found in [16].

The lemmas described in the coloring Sect. 3 lead to an exact algorithm for finding
a minimum weight DIM of a graph G, if any.

In the initial step of the algorithm, we find the set K4 containing the K4’s of G
in O(m2) time. If K4 �= ∅, by Lemma 3, G does not have DIM’s, and terminate the
algorithm. Otherwise, define the set COLORINGS to contain through the process the
candidates colorings to be examined and eventually extended.

Next, include inCOLORINGSan empty coloring. In the general step,we choose any
coloring C from i and remove it from this set. Then iteratively propagate the coloring
by Lemma 2 into an extension C ′ of it, and validate the extension by Definition 1.

The iterations are repeated until one of the following situations is reached: C ′
is invalid, C ′ is a total valid coloring, or a partial stable (valid) coloring. In the first
alternative,C ′ is discarded and a new coloring fromCOLORINGS is chosen. IfC ′ is a a
total valid coloring, find its weight and if smaller than the least weight so far obtained,
it becomes the current candidate for the minimum weight of a DIM of G. Finally,
when C ′ is stable we extended it by branching rules: choose the first rule of Lemma 9
satisfying C ′, compute the extensions C ′ and C ′′, insert them in COLORINGS, select
a new coloring from COLORINGS and repeat the process.

Note that only once, at the beginning, the rules (P1) and (P2) are executed. Regard-
ing (P7) and (P8), it is also convenient to collect at the beginning of the algorithm the
information of the induced paw’s and induced C4’s of the graph which is useful for
efficient propagation of rules (P7) and (P8). For each induced paw, let v and w be the
vertices of odd degree, then the vertex v is stored in the list black_ f orce_white(w)

and w is stored in the list black_ f orce_white(v). Those lists represents vertices that
should be colored with white color in case the representing vertex of the list is colored
with black color. A similar approach is used for the induced C4’s of the graph. For
each induced C4 = {v0, v1, v2, v3}, the list black_ f orce_white(vi) should append
the vertices v(i−1) mod 4, v(i+1) mod 4. This is done for each i ∈ {0, 1, 2, 3}.

The formulation below describes the details. The propagation and validation of
a coloring C are performed by the procedure P RO P AG AT E − V AL I D AT E(C,

RE SU LT). At the end, the returned coloring corresponds to the extension C ′ of C ,
after iteratively applying propagation. The variable RESULT indicates the outcome
of the validation analysis. If C ′ is invalid then RE SU LT is ‘invalid’; if C ′ is a valid
total coloring then it contains ‘total’, and otherwise RE SU LT equals ‘partial’.

123

Author's personal copy

Algorithmica (2017) 77:642–660 655

Algorithm Minimum Weighted DIM / Counting DIM

1. Find the subset K4
if K4 �= ∅ then terminate the algorithm: G has no DIM

SO LU T I O N := N O DI M
2. C O L O RI N GS := {C}, where C is an empty coloring
3. while C O L O RI N GS �= ∅ do

a. choose C ∈ C O L O RI N GS and remove it from C O L O RI N GS
b. P RO P AG AT E − V AL I D AT E(C, RE SU LT)

c. if RE SU LT = ‘total’ and weight (C) < SO LU T I O N then
SO LU T I O N := weight (C)

else if RE SU LT = ‘partial’ then
Set C ′

1 and C ′
2 according to branching RULES on C

C O L O RI N GS := C O L O RI N GS ∪ {C ′
1, C ′

2}
end if

4. Output SO LU T I O N
procedure P RO P AG AT E − V AL I D AT E(C, RE SU LT)

Comment Phase 1: Propagation
1. C ′ := C
2. repeat

C := C ′
C ′ := extension of C obtained by the PROPAGATION RULES
until C = C ′

Comment Phase 2: Validation
3. Using the VALIDATION RULES 1 do as follows:

if C is an invalid coloring then return (C, ‘invalid’)
else if C is a partial coloring then return (C,‘partial’)
else return (C, ‘total’)

3.3.1 Correctness and Complexity

It is easy to see that our algorithm fits the branch and reduce paradigm [16]. The
propagation rules can be mapped into reduction rules.

Theorem 4 The algorithm described in the previous section correctly computes the
minimum weight of a dominating induced matching of a graph G.

Proof The correctness of the algorithm follows from the fact that the algorithm con-
siders all colorings that represent a DIM that can have minimum weight. Lemmas 2
and 9 are applied to extend partial colorings. Invalid colorings are discarded, while
valid colorings are further extended, except if some other valid coloring representing
a better DIM (with less weight) appeared before.

For proving the worst-case running time upperbound for the algorithm we will use
the following useful definition and theorem. ��

123

Author's personal copy

656 Algorithmica (2017) 77:642–660

Definition 2 [16] Let b a branching rule and n the size of the instance. Suppose rule
b branches the current instance into r ≥ 2 instances of sizes respectively at most
n − t1, n − t2, . . . , n − tr , for all instances of size n ≥ max{ti : i = 1, 2, . . . , r}. Then
we call b = (t1, t2, . . . , tr) the branching vector of branching rule b.

The branching vector b = (t1, t2, . . . , tr) implies the linear recurrence T (n) ≤
T (n − t1) + T (n − t2) + · · · , T (n − tr).

Theorem 5 [16] Let b be a branching rule corresponding to the branching vector
(t1, t2, . . . , tr). Then the running time of the branching algorithm using only branching
rule b is O∗(αn), where α is the unique positive real root of

xn − xn−t1 − xn−t2 − · · · − xn−tr = 0

The unique positive real root α is the branching factor of the branching vector b.
We denote the branching factor of (t1, t2, . . . , tr) by τ(t1, t2, . . . , tr).

Therefore for analyzing the running time of a branching algorithm we can compute
the factor αi for every branch rule bi , and an upper bound of the running time of the
branching algorithm is obtained by taking α = maxiαi and the result is an upper
bound for the running time of O∗(αn).

The upper bound is obtained by counting the leaves of the search tree given by
the algorithm, using the fact that each leaf can be executed in polynomial time. The
complexity of the algorithm without hiding the polynomial factor depends on the time
for the execution of each branch in the search tree.

Further notes on this topic can be found in [16].

Theorem 6 The algorithm above described requires O∗(1.1939n) time and O(n+m)

space for completion.

Proof Using Definition 3.3.1 and Theorem 5 the computation of the upper bound time
is reduced to calculating the branching vector for each branching rule (i.e. branching
rules in our algorithm) and obtaining the associated branching factor for each case.
Then the bound is given by the maximum branching factor. Note that it is required
that the reduction rules (i.e. propagation rules in our algorithm) can be computed in
polynomial time and leads to atmost one valid extension of the considered coloring. So,
the propagation rules do not affect the exponential factor of the algorithm. Moreover,
each branch of the algorithm has cost O(n +m) in time and space. This is easy to note
since from the empty coloring up to any total coloring each vertex v is colored once
and the cost for coloring each vertex is given by the updating of the color of the vertex
and its neighbors, hence O(|N (v)|) time. Therefore, the total cost for each branch is
O(n + m).

We consider as the size of an instance (a coloring) its number of uncolored vertices
after application of propagation (reduction) rules. Let’s analyze each branching rule
to obtain the maximum branching factor:

1. IfC is an empty coloring: choose an arbitrary vertex v thenC ′
1 := C ∪BLACK({v})

and C ′
2 := C ∪ WHITE({v}): It is easy to see that this rule is executed once, after

that, the coloring is never empty again. Since each application of a branching rule

123

Author's personal copy

Algorithmica (2017) 77:642–660 657

originates two branches, we can bound the time of the algorithm by twice the
complexity of for computing an instance of size n − 1. Therefore the asymptotic
behavior of the algorithm is not affected.

2. If ∃ edge vw s.t. v ∈ NU (s) and w ∈ NU (s′), for some s, s′ ∈ S, s �= s′ then
C ′
1 := C ∪ BLACK({v}) and C ′

2 := C ∪ WHITE({v}).
Here we extend the original coloring C ′ to C ′

1 and C ′
2 by coloring the vertex v

with black and white respectively. Recall that there exists an edge vw such that
v ∈ NU (s), w ∈ NU (s′). If v is black then all the vertices of NU (s)\v are white,
whilew is white. On the other hand, if v is white thenw is black and NU (s′)\w are
white. Therefore the size of uncolored vertices is reduced for each branch (i.e. for
each new coloring). The associated branching vector is (1+|NU (s)|, 1+|NU (s′)|).
By rule (P2) |NU (s)| ≥ 2 and |NU (s′)| ≥ 2. The following observation turns out
to be useful:
Let si ∈ S If |NU (si)| = 2 then NU (si) can be totally colored, whether v is
black or white. Therefore the branching vector with largest branching factor is
(3, 5) (τ (3, 5) ≈ 1.1939) and occurs whenever one of {s, s′} has two uncolored
neighbors and the other one has three uncolored neighbors.

3. For some s ∈ S, if ∃v ∈ NU (s) s.t. ∃w ∈ NT (v):
Note that if �w ∈ NT (v) for any v ∈ NU (s) then either the propagating rule (P9)
or (P5) can be applied to get an extension of the coloring.
(a) If |NU (s)| �= 3 ∨ d(w) �= 3 ∨ |NT (v)| ≥ 2 then C ′

1 := C ∪ BLACK({v}) and
C ′
2 := C ∪ WHITE({v}).

Since v is uncolored then w is not a pendant vertex, d(w) > 1. Since w is
uncolored then it has neither a white nor a paired black neighbor. Moreover, if
w has a single black neighbor then this is the case analyzed above. Therefore
w has uncolored neighbors and let x be one of them.

(a.1) |NT (v)| ≥ 2: Let v′ ∈ NT (v). Using the same reasoning, we claim:
∃x ′ ∈ NU (v′). In C ′

1, {v, x} will be black, while {x, v′, w} will be white
In C ′

2, {v} will be white while {v′, w} will be black. This leads to the
branching vector (3, 5).

(a.2) d(w) �= 3. If d(w) = 2 then in C ′
1 the vertices NU (s) ∪ {w, x} will be

colored and inC ′
2 the vertices {v, x}will be black, while {w}will be white.

Therefore the branching vector with largest branching factor is (3, 5).
Else if d(w) > 3 then in C ′

1 the vertices NU (s) ∪ NU [w] will be colored
and in C ′

2 the vertices {v,w} will be colored. In case |NU (s)| = 2 then
v1 will be colored too. Therefore the branching vectors are either (2, 7)
(τ (2, 7) = 1.1908) or (3,6) (τ (3, 6) = 1.1739).

(a.3) |NU (s)| = 2: Let NU (s) = {v, v1} and N (w) = {v, x, x ′}. In C ′
1 after

applying propagation rules the vertices {v, x, x ′} will be black, while
{v1, w} will be white. In C ′

2 after applying propagation rules the vertices
{v1, w} will be black, while {v} will be white. The result is the branching
vector (3, 5).

(a.4) |NU (s)| > 3: Let {v1, v2, v3} ⊆ NU (s) and N (w) = {v, x, x ′}. In C ′
1

after applying propagation rules the vertices {v, x, x ′}will be black, while
{v1, v2, v3, w} will be white. In C ′

2 after applying propagation rules the

123

Author's personal copy

658 Algorithmica (2017) 77:642–660

vertices {w}will be black, while {v}will bewhite. The result is the branch-
ing vector (2, 7).

(b) If |NU (s)| = 3 ∧ d(w) = 3 where NU (w) = {v, x, x ′}, NU (s) = {v, v′, v′′}
Note that {x, x ′} ∩ {v, v′, v′′} = ∅ since otherwise at least one of them must
be colored by rule (P8).

(b.1) If NU (v′) = NU (v′′) = ∅ then
C ′
1 := C ∪ BLACK({v}) and C ′

2 := C ∪ WHITE({v}) :
Suppose w.l.o.g. weight(sv′) ≤ weight(sv′′), then:
In C ′

1, after applying the propagation rules the vertices {v, x, x ′} will be
black, while, {v′, v′′, w} will be white.
In C ′

2, after applying propagation rules the vertices {v′, w} will be black,
while {v, v′′} will be white. The result is the branching vector (4,6)
(τ (4, 6) = 1.1510).

(b.2) If NU (v′) �= ∅, let w′ ∈ NT (v′), with w′ �= w:
If |NT [w] ∪ NT [w′]| > 5 then
C ′
1 := C ∪ BLACK({v}) and C ′

2 := C ∪ WHITE({v})
Note that if d(w′) �= 3 then v′w′ satisfies the properties of an already
analized case, henceC ′

1 := C∪BLACK({v′}) andC ′
2 := C∪WHITE({v′}).

Since d(w) = d(w′) = 3 and |NT [w] ∪ NT [w′]| > 5, then ∃x, y s.t.
x ∈ NT (w), x /∈ NT (w′) and y ∈ NT (w′), y /∈ NT (w). In C ′

1 after
applying propagation rules the vertices {v, x, x ′, w′} will be black, while
{v′, v′′, w} will be white. If x ′ = w′ then y must be black by rule (P6). In
C ′
2 the vertex {w} will be black, while the vertex {v} will be white. The

result is the branching vector (2, 7).
(b.3) If NU (v′) �= ∅, let w′ ∈ NT (v′), w′ �= w

If |NT [w] ∪ NT [w′]| ≤ 3 and z ∈ N (w) ∩ N (w′) then
C ′
1 := C ∪ BLACK({v′′}),

if weight(sv) + weight(w′z) ≤ weight(sv′) + weight(wz) then
C ′
2 := C ∪ BLACK({v})

otherwise C ′
2 := C ∪ BLACK({v′})

Since d(w) = d(w′) = 3 then ww′ ∈ E(G) and ∃z ∈ NT (v) ∩ NT (w),
otherwise the case is one of the above.
In both colorings, C ′

1 and C ′
2 the vertices {v, v′, v′′, w,w′, z} will be col-

ored. The branching vector is (6,6) (τ (6, 6) = 1.1225).

The worst branching factor is τ(3, 5) ≈ 1.1939. In consequence, the time com-
plexity of this algorithm is O∗(1.1939n). To achieve linear space complexity, we use
a stack to store the coloring sequence of the current branch. ��

3.3.2 Counting the Number of DIM’s

The previous algorithm can be easily adapted to count the number of DIM’s. Given a
coloring C we define TVC(C) the number of total valid colorings that can be extended
from C . If we apply any propagation rule to coloring C we obtain a coloring C ′.
Clearly TVC(C) = TVC(C ′), except for rule (P9). In the latter case TVC(C) =
TVC(C ′) · |NU (s)| where s is the single vertex chosen to apply the rule.

123

Author's personal copy

Algorithmica (2017) 77:642–660 659

Note that by swapping s for any vertex v ∈ NU (s) we get another valid DIM, since
it satisfy Definition 1 from valid coloring. Thus, each vertex v ∈ NU (s) defines a
different DIM.

If we apply any branching rule to coloring C we obtain two extended colorings
C ′
1 and C ′

2. Clearly TVC(C) = TVC(C ′
1) + TVC(C ′

2), except for rule B3(b).iii. In the
latter case TVC(C) = TVC(C ′

1) + 2 · TVC(C ′
2).

Note that since C ′
1 and C ′

2 have a different color for at least one vertex, therefore
the colorings from TVC(C ′

1) are disjoint from the colorings of TVC(C ′
2) and we must

count each one separately. On the other hand, the colorings from TVC(C ′
2) can have

either v black or v′ black, each one leading to a different DIM. Thus, each coloring of
those vertices gives a different coloring to be counted. Therefore there are 2 ·TVC(C ′

2)

different DIM’s.
Using the above facts it is trivial to modify the algorithm to solve the counting

problem.

References

1. Björklund, A.: Determinant sums for undirected hamiltonicity. In: Proceedings of the 2010 IEEE 51st
Annual Symposium on Foundations of Computer Science, pp. 173–182 (Washington, DC, USA),
FOCS ’10, IEEE Computer Society (2010)

2. Björklund, A., Husfeldt, T.: Exact graph coloring using inclusion-exclusion. In: Kao, M.-Y. (ed.)
Encyclopedia of Algorithms. Springer, Berlin (2008)

3. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets mobius: fast subset convolution. In:
Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of Computing (New York, NY,
USA), STOC ’07, ACM, pp. 67–74 (2007)

4. Blank, M.: An estimate of the external stability of a graph without pendant vertices. Prikl. Math.
Programmirovanie 10, 3–11 (1973)

5. Brandstädt, A., Hundt, C., Nevries, R.: Efficient edge domination on hole-free graphs in polynomial
time. In: Proceedings of the 9th Latin American Conference on Theoretical Informatics, pp. 650–661
(Berlin, Heidelberg), LATIN’10, Springer (2010)

6. Brandstädt, A., Leitert, A., Rautenbach, D.: Efficient dominating and edge dominating sets for graphs
and hypergraphs. In: (Chao, K.-M., Hsu, T., Lee, D.-T. (eds.) ISAAC, Lecture Notes in Computer
Science, vol. 7676, pp. 267–277. Springer (2012)

7. Brandstädt, A., Lozin, V.V.: On the linear structure and clique-width of bipartite permutation graphs.
Ars Comb. 67, 273–281 (2003)

8. Brandstädt, A., Mosca, R.: Dominating inducedmatchings for P7-free graphs in linear time. In: Asano,
T., Nakano, S.-I., Okamoto, Y., Watanabe, O. (eds.) ISAAC, Lecture Notes in Computer Science, vol.
7074, pp. 100–109. Springer (2011)

9. Cardoso, D.M., Korpelainen, N., Lozin, V.V.: On the complexity of the dominating induced matching
problem in hereditary classes of graphs. Discrete Appl. Math. 159(7), 521–531 (2011)

10. Cardoso, D.M., Cerdeira, J.O., Delorme, C., Silva, P.C.: Efficient edge domination in regular graphs.
Discrete Appl. Math. 156(15), 3060–3065 (2008)

11. Cardoso,D.M., Lozin,V.V.:Dominating inducedmatchings. In: Lipshteyn,M., Levit, V.E.,McConnell,
R.M. (eds.) Graph Theory, Computational Intelligence and Thought , Lecture Notes in Computer
Science, vol. 5420, pp. 77–86. Springer (2009)

12. Cygan, M., Pilipczuk, M.: Even faster exact bandwidth. ACM Trans. Algorithms 8(1), 8 (2012)
13. Dahllöf, V., Jonsson, P.: An algorithm for counting maximum weighted independent sets and its appli-

cations. In: Eppstein, D. (ed.) SODA, pp. 292–298. ACM/SIAM, Philadelphia (2002)
14. Dahllöf, V., Jonsson, P., Wahlström, M.: Counting models for 2SAT and 3SAT formulae. Theor. Com-

put. Sci. 332(1–3), 265–291 (2005)
15. Fomin, F.V., Gaspers, S., Saurabh, S., Stepanov, A.A.: On two techniques of combining branching and

treewidth. Algorithmica 54(2), 181–207 (2009)

123

Author's personal copy

660 Algorithmica (2017) 77:642–660

16. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Texts in Theoretical Computer Science.
Springer, Berlin (2010)

17. Grinstead, D.L., Slater, P.J., Sherwani, N.A., Holmes, N.D.: Efficient edge domination problems in
graphs. Inf. Process. Lett. 48(5), 221–228 (1993)

18. Gupta, S., Raman, V., Saurabh, S.: Maximum r-regular induced subgraph problem: fast exponential
algorithms and combinatorial bounds. SIAM J. Discrete Math. 26(4), 1758–1780 (2012)

19. Iwata, Y.: A faster algorithm for dominating set analyzed by the potential method. In: Marx, D., Ross-
manith, P. (eds.) Parameterized and Exact Computation—6th International Symposium, IPEC 2011,
Saarbrücken, Germany, September 6–8, 2011. Revised Selected Papers, Lecture Notes in Computer
Science, vol. 7112, pp. 41–54. Springer (2011)

20. Korpelainen, N.: A polynomial-time algorithm for the dominating induced matching problem in the
class of convex graphs. Electron. Notes Discrete Math. 32, 133–140 (2009)

21. Lin,M.C., Mizrahi, M.J., Szwarcfiter, J.L.: Exact algorithms for dominating inducedmatchings. CoRR
abs/1301.7602 (2013)

22. Lin, M.C., Mizrahi, M.J., Szwarcfiter, J.L.: An O*(1.1939 n) time algorithm for minimum weighted
dominating induced matching. In: Cai, L., Cheng, S.-W., Lam, T.W. (eds.) ISAAC, Lecture Notes in
Computer Science, vol. 8283, pp. 558–567. Springer (2013)

23. Livingston, M., Stout, Q.F.: Distributing resources in hypercube computers. In: Proceedings of the
Third Conference on Hypercube Concurrent Computers and Applications: Architecture, Software,
Computer Systems, and General Issues, vol. 1, pp. 222–231 (New York, NY, USA), C3P, ACM (1988)

24. Lu, C.L., Ko, M.-T., Tang, C.Y.: Perfect edge domination and efficient edge domination in graphs.
Discrete Appl. Math. 119(3), 227–250 (2002)

25. Lu, C.L., Tang, C.Y.: Solving the weighted efficient edge domination problem on bipartite permutation
graphs. Discrete Appl. Math. 87(1–3), 203–211 (1998)

26. Milanic, M.: Hereditary efficiently dominatable graphs. J. Graph Theory 73(4), 400–424 (2013)
27. Ore, O.: Theory of graphs. Am. Math. Soc. Colloq. Publ. 38 (1962)
28. Reed, B.A.: Paths, stars and the number three. Comb. Probab. Comput. 5, 277–295 (1996)
29. Tsukiyama, S., Ide, M., Ariyoshi, H., Shirakawa, I.: A new algorithm for generating all the maximal

independent sets. SIAM J. Comput. 6(3), 505–517 (1977)
30. van Rooij, J.M.M., Nederlof, J., van Dijk, T.C.: Inclusion/exclusion meets measure and conquer. In:

Fiat, A., Sanders, P. (eds.) ESA, Lecture Notes in Computer Science, vol. 5757, pp. 554–565. Springer
(2009)

31. Wahlström, M.: A tighter bound for counting max-weight solutions to 2sat instances. In: Proceedings
of the 3rd International Conference on Parameterized and Exact Computation, pp. 202–213 (Berlin,
Heidelberg). IWPEC’08, Springer (2008)

32. Gerhard, J.: Woeginger, Combinatorial optimization–Eureka, You Shrink!. Springer-Verlag New York
Inc., New York (2003)

33. Xiao,M., Nagamochi, H.: Exact algorithms for dominating inducedmatching based on graph partition.
Discrete Appl. Math. 190–191, 147–162 (2015)

123

Author's personal copy

	Exact Algorithms for Minimum Weighted Dominating Induced Matching
	Abstract
	1 Introduction
	2 Preliminaries
	3 Colorings and Extensions
	3.1 An Algorithm Based on Vertex Domination
	3.2 An Algorithm Based on Maximal Independent Sets
	3.3 An O *(1.1939 n) Algorithm for DIM Omega (G) and DIM C(G)
	3.3.1 Correctness and Complexity
	3.3.2 Counting the Number of DIM's

	References

