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 Background: Accurate risk/outcome prediction, in which molecular signatures (MS) are playing an increasingly important 
role, is crucial for personalized therapy. Patients require an accurate diagnosis and an appropriate therapy as-
signment as soon as they arrive at the clinic. However, most MS require gene-based standardization through 
parameters estimated from an available population sample. Thus, the estimation of gene standardization pa-
rameters (SP) turns out to be crucial to avoid misdiagnoses. Although dependency on SP has been recognized, 
the effect of different sample sizes on estimation of and impact on therapy management has not been report-
ed. Because this is key for clinical application, in the present study we evaluated the impact of SP on outcome 
prediction error due to sample size. For this, 2 well-known breast cancer (BC) subtype/risk predictors were used 
on real data under different recruitment scenarios.

 Material/Methods: The PAM50 and Gene70 MS were fed with standardized gene expression profiles using SP estimated from dif-
ferent sample sizes to predict BC intrinsic subtypes and progression, respectively. Error sensitivity analysis was 
based on estimation of outcome prediction error rates against those obtained using SP estimated with all the 
patients in the cohort (our criterion standard). Seven BC cohorts including TCGA data (2014 subjects in total) 
were used.

 Results: We found that BC outcome prediction is very sensitive to the sample size used to estimate the MS standard-
ization parameters. More than 20% of predicted classes can change when using small sample sizes to com-
pute SP, and more than 20% of subjects can have their predicted outcome changed.

 Conclusions: Patients might receive inappropriate therapy if the SP are not carefully dealt with. A pilot study to provide SP 
that yield a stable prediction is necessary. A method to evaluate the sufficiency of the size of the available sam-
ple for parameter estimation is proposed to guide prior pilot study development.
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Background

In the last 15 years, several gene-expression-based classifiers, 
known as molecular signatures, have been developed for can-
cer stratification with the aim to pursue personalized therapy. 
These are multi-gene predictors of some outcome that were 
reported to be potentially useful in predicting prognosis and 
guiding therapy and in the evaluation of preoperative chemo-
therapy response [1]. In breast cancer, since the definition of 
the intrinsic molecular BC subtypes by Perou et al. [2], increased 
attention has been paid to the design and evaluation of these 
multi-gene assays of class predictors for several different tar-
gets [3–7]. Moreover, several studies have been conducted to 
validate the intrinsic BC subtypes (Basal-like, HER2-Enriched, 
Luminal A, Luminal B, and Normal-like) in many existing data-
sets [7–11], as well as to provide statistical sense to their pre-
diction [12]. Nevertheless, there is still much controversy on 
their clinical utility, which could be based on the recognized 
heterogeneity of the BC disease with both clinical and mole-
cular representation, as well as the methodology used to de-
rive these MS. In this context, both similar performance and a 
strong disagreement among the MS have been reported [8–17].

In a daily clinical setting, a single sample predictor (SSP) should 
be used, which is an algorithm capable of immediately clas-
sifying a subject using SP previously obtained from a training 
dataset. New cases should be standardized and immediate-
ly diagnosed, and this standardization should not depend on 
other cases [8,15]. Therefore, as mentioned by Sorlie et al. [16], 
gene-centering procedures are essential before classification 
since new data should be adjusted to resemble the character-
istics of the original dataset. Nevertheless, a broad spectrum of 
different standardization methodologies are applied, ranging 
from no gene correction at all [10] to full gene homogeniza-
tion through the distance-weighted discrimination method [7]. 
However, the latter is not clinically useful because either not 
all of the subjects are simultaneously recruited or the method 
is applied over different populations. On the  other hand, per-
forming no standardization at all is also inappropriate in this 
kind of MS for both research and clinical applications since any 
classifier is built upon the basic assumption that the training 
set is a representative sample of the working population that 
holds all distributional characteristics.

A robust classification rule remains elusive at present and none 
of the available prediction models provide the standardiza-
tion parameters. Thus, SP need to be estimated from the ac-
tual “working population” in which the prediction models will 
be used to guide therapy. This is a very important issue since, 
as reported by Lusa et al. [8], one condition to be met by these 
diag nostic tools is that they must unambiguously classify a 
new sample into a specific subtype or risk score, independent 
of any other samples being considered for classification at that 

time. To meet this requirement, some issues remain unresolved, 
such as the number of patients that must be recruited in or-
der to obtain an SP estimate that would lead to an unambig-
uous classification. This step is critical since, in a clinical envi-
ronment, subjects arrive one at the time, and they should be 
diagnosed as soon as possible through on-demand gene expres-
sion measures (e.g., through microarray technology or qt-PCR).

Most of the evaluations and comparisons reported in the lit-
erature for MS address concordance, prediction strength, and 
accuracy, with samples being normalized by means of whole-
population-based estimates, an approach unlikely to be used 
in a clinical setting. In this paper, we evaluate the effect of 
sample size on SP estimation and its impact on outcome pre-
diction. The robustness of the class membership prediction is 
evaluated using different sample sizes to estimate MS SP. We 
show that the MS classifiers that use standardizations can pro-
vide ambiguous classification results when SP are estimated 
with an inappropriate sample size. Thus, a patient could be, for 
example, mistakenly assigned to a good outcome class or to a 
subtype with evidence of no chemotherapy response, with im-
portant consequences for therapeutic behavior, as implied by 
the recommendations proposed by international committees 
[18]. Using whole-dataset SP estimates as the criterion stan-
dard, we calculated the outcome prediction error as a func-
tion of the sample size used to estimate the SP. Finally, we 
suggest a method to evaluate whether the current number of 
recruited subjects provides a stable and consistent prediction.

Material and Methods

To evaluate the effect of sample size on MS SP estimation and its 
impact on outcome prediction, 2 well-known prediction mo dels 
were used, the PAM50 algorithm [15] and the Gene70 MS [3]; 
these algorithms are commercially available at Prosigna(r) 
(Nanostring Technologies, Seattle, USA) and MammaPrint(r) 
(Agendia, Amsterdam, The Netherlands), respectively. Different 
sample sizes were simulated by random sampling from these 
datasets. SP were estimated from each artificial dataset and 
MS was used to predict outcome over 6 freely available BC 
cohorts. The algorithms presented in the genefu R library [4] 
from Bioconductor website ( www.bioconductor.org) were used.

The PAM50 single subject predictor

The PAM50 classification algorithm is fed with the subject ex-
pression level of 50 genes. Spearman correlation coefficients are 
calculated against the centroids of each defined subtype: Basal-
like, HER2-enriched, Luminal A, Luminal B, and normal groups. 
Then, the subject is assigned to one of the subtypes according 
to the maximum achieved Spearman correlation. Since PAM50 
algorithm was designed based on deviation from centered 
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genes, the gene set should be preprocessed before calculating 
correlation by centering. We use the genefu [4] implementa-
tion of the PAM50 algorithm (intrinsic.cluster.predict function).

The Gene70 prognosis signature (70 GS)

The Gene70 prognosis signature [3] is implemented in gene-
fu through the gene70 function. It provides low- and high-risk 
scores related to metastasis development. The risk score is also 
based on Spearman correlation. In genefu implementation, be-
fore the risk score calculation, data may be standardized to 
have zero mean and unit standard deviation (SD), known as 
z-score scaling. Then, the subject is classified as low- or high-
risk if (risk score) <–0.3 or >–0.3, respectively.

Prediction and standardization parameters

As already stated, to predict the subtype of a subject, its ex-
pression vector has to be standardized. Let us denote the ex-
pression matrix of K genes across n subjects of a sample by 
G (gkj) with k=1,…,K and j=1,…,n. The K rows of the matrix G 
contain the expression of each of the K genes across the sam-
ple, and we will denote the vectors for the k-th gene by gk. The 
columns correspond to the expression vector for each subject 
and for simplicity we will denote the vector for subject j by xj.

The first step of the procedure is to estimate the distribution 
parameters that need to be used for the standardization. For 
this, we compute the corresponding sample parameters. We 
will denote the vector of parameters for gene gk by , where 

, is a two-dimensional vector containing a position and a 
dispersion parameter, by . In the case of PAM50,  
corresponds to the median of gk over the considered sample 
of n subjects and =1, whereas for Gene70,  is the mean 
value of gk over the considered sample and  is its standard 
deviation. The standardization is performed by each model, 
using the usual standardization function, obtaining the stan-
dardized expression value of gene k for subject j by, .

To predict the subtype of a certain sample, the models need 
the parameters for all the genes, so let Qn denote the matrix 
for which k-th’s row corresponds to .

Once the SP are computed, the model is used to predict the sub-
jects subtype. We will denote this by ) ) the predi-
cted class of the j-th subject, using SP Qn. Whether we are consi-
dering the PAM50 or GENE70 model will be clear from the text.

Datasets

The datasets (Table 1) used in this study are freely available 
from the Bioconductor website (www.bioconductor.org). In to-
tal, they involve 2014 BC patients.

The criterion standard to validate classification

As the real distributional parameters are unknown, we will 
compare the SP estimated with different sample sizes with 
the SP estimated using all the data. This is, if N is the size of 
the cohort (dataset) being used, the criterion standard is de-
fined as the classification achieved using QN.

Simulating several sample size scenarios

We now describe the simulation procedure for each  dataset. 
Consider n=10,20,…,  ·10. Where [x] denotes the integer 
part of x. For each n, the procedure is the following. We
1.  randomly chose 10% of the total N samples to be a test set. 

Let this number be Ntest.
2.  Randomly chose n subjects from the remaining 90% to use 

as training set.
3. Computed Qn with the training set.
4.  Predicted the subtype for each subject in the test set ob-

taining , for j=1,…, Ntest.
5.  Repeated 1–4 M times to obtain  with m=1,…, M and 

j=1,…, Ntest.

These predictions were compared with the criterion standard 
ones made using QN, as described in the following subsection.

Statistical analysis

Prediction models are usually evaluated in terms of ROC curves 
and or confusion matrices [19]. Here, for each  prediction  model, 
we calculate Average Percentage Prediction Errors (APPE) for 
each Qn as

2. Randomly chose � subjects from the remaining 90% to use as training set. 

3. Computed  Θ� with the training set. 

4. Predicted the subtype for each subject in the test set obtaining ���
�, for � =  1, � , �����. 

5. Repeated M 1–4 times to obtain ���,��  with � =  1, � , � and � =  1, � , �����. 

These predictions were compared with the criterion standard ones made using Θ�, as described 

in the following subsection. 

Statistical analysis. Prediction models are usually evaluated in terms of ROC curves and or 

confusion matrices [19]. Here, for each prediction model, we calculate Average Percentage 

Prediction Errors (APPE) for each Θ� as  

����� = 100 ∙  �
� ∑ ∑ ������ � ���,�

� ������
���

���� ,  

where ������ � ����� is an indicator function yielding 1, if ���� �  ���� , and 0 otherwise. In 

addition, taking into account that predicted subtypes by PAM50 and risk prognosis by Gene70 

have very different implications for patient outcome, we also define a particular APPE called 

Severity Average Percentage Predictive Errors (SAPPE) as follows. In the case of PAM50, it is 

well-known that the intrinsic subtype Luminal A presents a better outcome compared to the 

other subtypes (Basal, Her2, or Luminal B) [12]. Therefore, we evaluate the APPE when 

predicted as a good (bad) subtype (ie, Luminal A or normal) with Θ�, and to a bad (good) 

subtype (ie, Basal, Her2, or Luminal B) when using Θ�. Thus  

������
��,�� = 100 ∙  �

� ∑ ∑ ������ = �1, ���.�
� = ���,�����

���
����   

where ������ = �1, ���� = ��� yields 1 only if ���� = �1 and ���� = ��. 

When the PAM50 model is used, the following pairs were evaluated: 

i) Basal to Luminal A or Normal-like: {X1 = “Basal”, X2= “Luminal A” or “Normal-like”} 

ii) Her2 to Luminal A or Normal-like: {X1 = “Her2”, X2= “Luminal A” or “Normal-like”} 

iii) Luminal B to Luminal A: {X1 = “Luminal B”, X2= “Luminal A” or “Normal-like”} 

,

Bioconductor bame N Technology Ref

BreastCancerNKI 337 Agilent 3

BreastCancerVDX 334 Affymetrix 5

BreastCancerUPP 251 Affymetrix 6

BreastCancerTRANSBIG 200 Affymetrix 17

BreastCancerUNT 137 Affymetrix 19

BreastCancerMAINZ 198 Affymetrix 20

TCGA 466 Agilent 23

Table 1. Datasets used.

None of the datasets were modified (no further array-based 
preprocessing step was applied). Genes with multiple probes 
were averaged to avoid an extra source of variability in the 
results.

Qn
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where   is an indicator function yielding 1, if 
 and 0 otherwise. In addition, taking into account 

that predicted subtypes by PAM50 and risk prognosis by Gene70 
have very different implications for patient outcome, we also 
define a particular APPE called Severity Average Percentage 
Predictive Errors (SAPPE) as follows. In the case of PAM50, it 
is well-known that the intrinsic subtype Luminal A presents a 
better outcome compared to the other subtypes (Basal, Her2, 
or Luminal B) [12]. Therefore, we evaluate the APPE when pre-
dicted as a good (bad) subtype (i.e., Luminal A or normal) with 
QN, and to a bad (good) subtype (i.e., Basal, Her2, or Luminal 
B) when using Qn. Thus

������
����� = 100 ∙  1

� � � ������ = �1� �����
� = ����

�����

���

�

���
 ,

where   yields 1 only if 
 and  .

When the PAM50 model is used, the following pairs were 
evaluated: 
i)  Basal to Luminal A or Normal-like: {X1=“Basal”, X2=“Luminal 

A” or “Normal-like”}
ii)  Her2 to Luminal A or Normal-like: {X1=“Her2”, X2=“Luminal 

A” or “Normal-like”}
iii)  Luminal B to Luminal A: {X1=“Luminal B”, X2=“Luminal A” 

or “Normal-like”}
iv)  Luminal A or Normal-like to Basal or Her2 or Luminal B: 

{X1=“Luminal A” or “Normal-like”, X2=“Basal or Her2” or 
“Luminal B”}.

We can define SAPPE for the GENE70 model in an analogue 
manner, using the following pairs: 

v) High to Low risk: {X1=“High”, X2=“Low”}
vi) Low to High risk: {X1=“Low”, X2=“High”}

Results

Figures 1 and 2 show APPE and SAPPE errors for the TCGA da-
taset over PAM50 and Gene70, respectively.

In Figure 1, we can observe that APPE for PAM50 can be up 
to 20% when using Qn with n<50. As a whole, APPE tends to 
stabilize with n>200 and for n»100 APPE tends to be below 
10%. For all the evaluated datasets, the errors depend on the 
sample size used to compute Qn.

For APPE, the Gene70 case (Figure 2), results were similar to 
PAM50, with APPE up to 8% when n<50. Thus, both MS algo-
rithms showed a similar behavior, with their performances de-
pending on the number of subjects used to estimate the SP. 
The same behavior can be observed for the rest of the  datasets 
(see Supplementary Figure 1).

To evaluate error severity for PAM50 subtypes prediction, we 
compared predictions with worse (Basal, Her2, and Luminal B) 
and better (Luminal A and Normal-like) prognoses [8,11–13] 
on the same subjects, standardized with the criterion standard 
QN, against those normalized with Qn for different sample  sizes 
n. These values, SAPPE, are also shown in Figure 1. It is pos-
sible to see that for n<50, SAPPE is close to 15%. The Basal 
subtype was the least sensitive to SP estimation with different 
sample sizes, followed by the Her2 subtype. The Luminal sub-
types were very sensitive. In particular, Luminal B cases were 
the most sensitive ones ( ) . 
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300

20

15
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5
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Error type
APPE
Basal->LumA-normal
Her2->LumA-normal
LumB->LumA-normal
LumA & Normal->others

Figure 1.  PAM50 Average Percentage Predictive Errors (APPE) 
regarding all the prediction errors independent of 
the subtype, and Severity Average Prediction Errors 
(SAPPE) related to subtype prediction errors between 
good (bad) prognosis prediction with QN versus bad 
(good) prognosis prediction achieved with Qn.
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Figure 2.  Gene70 Average Percentage Predictive Errors (APPE) 
regarding all the prediction errors independent of 
the subtype, and Severity Average Prediction Errors 
(SAPPE) related to subtype prediction errors between 
good (bad) prognosis prediction with QNn versus bad 
(good) prognosis prediction achieved with Qn.
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This means that a subject classified as a Luminal B using a 
large sample size for SP estimation could be misclassified as 
a Luminal A (a subtype with good prognosis) when estimating 
the SP with an inappropriate sample size, which would have a 
dangerous effect on therapy. On the contrary, Basal and Her2 
subtypes tend to be less sensitive to SP estimation.

In the case of the Gene70 MS (Figure 2), the estimation of SP 
with an inappropriate sample size has a greater effect on low-
risk subjects than on high-risk ones. Up to 17% of low-risk 
subjects can be wrongly assigned to a high-risk group using 
n<50. To reach a value below 5% for  , n³100 
could be required.

Analysis of population parameters estimates

Figure 3 shows the 10th, 50th (median), and 90th percentiles 
of the distribution of the difference �̅�� � �̅��  for the TCGA 
dataset for all the signature genes in PAM50 and n=10,20,…,

·10 in the TCGA dataset (R code available by request for 
the rest of the datasets). It is shown that the median expres-
sion value of a particular signature gene can change by up to 
1 (±0.5) of a fold change between the whole median popula-
tion and a smaller sample size for the TCGA dataset, as well as 
for the NKI dataset, which also uses Agilent microarray tech-
nology. For Affymetrix® data, differences greater than 2 (±1) 
of a fold change were observed when n<80 (data not shown, 
R code available by request). In general, median differences 
tended to decrease and stabilize when approximately n<80 
subjects were included in the computation of Qn. These devi-
ations around the overall median can explain the errors in the 
subtype and risk predictions, thus emphasizing the need for a 
pilot study to determine the appropriate number of subjects 
for a stable application of the MS in breast cancer.

Proposal for a pilot study to achieve consistent 
standardization parameter estimates

As a consequence of this comprehensive study, a method to 
determine if the number of recruited subjects is sufficient 
for an appropriate SP estimation is proposed. In this regard, 
we propose to recruit subjects in an incremental process and 
 evaluate in each step the prediction error based on a boot-
strap sampling process.

To obtain consistent estimation for SP, the following patient 
recruitment process is proposed:
1. Set Np=10.
2. Recruit Np subjects.
3. Generate B=100 bootstrap samples of size Np.
4. Compute the SP for each sample. This yields ��

�� , …, ��
��  .

5.  Apply the model for each subject to obtain predictions 

  for b=1,…, B and j=1,…, Np.
6. Store prediction results for the specific sample size.
7.  Evaluate APPE (Bootstrap Errors) for current Np over the B 

repetitions.
8.  If APPE is not accepted, increase the sample size Np by 10 

and go to step 2; otherwise, use QNp with current Np and 
use this estimate later for prediction.

R code and application of this guideline over the  evaluated 
 datasets are available in the supplementary material file.

Figure 4 shows the application of the recruitment process al-
gorithm over the TCGA BC dataset. The algorithm was applied 
10 times, randomizing all the subjects to simulate different re-
cruitment processes. It is possible to observe that prediction 
errors (i.e., the number of subjects that change from good/
bad to bad/good PAM50 subtype for each n) tend to dimin-
ish. In this case, prediction made with the PAM50 model and 
N=100 yielded a median Bootstrap Error (APPE) below 20%, 
differing by up to 1.09% from those achieved with n=547 (see 
supplementary material for more details). Similar results were 

5004000 100 200
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Figure 3.  The 10th, 50th (median), and 90th percentiles of the 
distribution of difference=�̅��� � �̅���   for the TCGA 
dataset for all the signature genes in PAM50 and 
n=10,20,…,  ·10 in the TCGA dataset.
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Figure 4.  Simulation of the recruitment process for the TCGA BC 
cohort. BoostErrors=Bootstrapped APPE. Np – number 
of recruited subjects.
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obtained with the other datasets. Choosing n as the number of 
subjects satisfying Bootstrap APPE <20% yields errors below 
3% when compared with predictions made with SP computed 
with all the available population of each dataset.

Discussion

Gene expression profiling studies have modified standards of 
clinical behavior towards BC, with the potential to be used as a 
molecular-based diagnostic tool. Although evaluation in terms 
of concordance, efficacy, and prognosis power has been ex-
tensively addressed in the literature, clinical use still remains 
unclear for most of the gene expression signatures. One of 
the main drawbacks is the lack of standardization of meth-
odological procedures. In this regard, how to preprocess the 
new subjects in order to feed the classification tool and how 
to estimate gene-based standardization parameters, among 
other questions, still require deeper understanding. In addi-
tion, their effect on subject outcome prediction and potential 
misclassification have been vaguely reported.

In the present study, we simulated different sample sizes (re-
sembling a subject recruitment process) to test gene-based 
diagnostic tools in a real clinical scenario in terms of signa-
ture standardization procedures. The aim of this work was to 
evaluate classification performance and its impact on out-
come prediction of well-known MS predictors in BC. For this 
purpose, several available gene expression datasets were eval-
uated. Gene-based signature classification was found to be 
highly sensitive to the sample size used to estimate SP. Our 
results show that more than 20% of subjects can be misclas-
sified or assigned to the wrong progression risk class if their 
MS is standardized with SP estimated with a small number of 
subjects. This suggests that a minimum number of subjects 
should be recruited to estimate appropriate and stable SP be-
fore applying any gene signature for diagnosis that uses popu-
lation-based gene corrections. This is a necessary requirement 
to achieve accurate population estimates for the SP in order 
to make unambiguous predictions for subjects. Hence, once 
a sufficient number of BC subjects is obtained, the predicted 
BC subtype will no longer depend on new subjects. Moreover, 
the minimum number of patients was found not to be univer-
sal and should be estimated at each site, probably taking into 
account different disease type incidences (i.e., different inci-
dence of ER+/–, PR+/–) [8], as well as ensuring quality control 
for technical microarray issues [20].

Every molecular signature was originally described in a train-
ing set and validated with a test set. However, when any mo-
lecular signature is intended to be used in clinical application, 
it must be standardized for the studied population by means 
of parameters obtained from a representative sample of that 

population. Our simulations demonstrated that if this stan-
dardization is done “on the go” (e.g., taking all the available 
data on a given day), a subject may be assigned to one class 
(e.g., good prognosis) if the standardization was done with a 
limited number of subjects, or to another class (e.g., bad prog-
nosis) if standardization is performed when more subjects be-
come available. This is unacceptable for clinical purposes and 
demands that a fixed and sufficiently large number of subjects 
is used to determine the population parameters.

In our study, both PAM50 and Gene70 molecular signature al-
gorithms depended strongly on the number of subjects used 
to estimate SP. For PAM50, Luminal subtype subjects were the 
most sensitive, and a wrong estimate of the SP could yield sub-
ject assignments to the wrong outcome, probably leading to 
inappropriate therapy. Among the Luminal cases, the Luminal 
B seems to be the most unstable one, in concordance with a 
previous report [21], where it was found that Luminal B sub-
jects cannot be statistically assigned to any subtype. This par-
ticular subtype was reported to be highly heterogeneous [22] 
and has even been suggested to be more than 1 class [12,23]. 
Thus, Luminal B cases seem to be far from an accurate char-
acterization. On the contrary, Basal-like and HER2-enriched 
subtypes require smaller sample sizes than the other BC sub-
types to reach a consistent classification. This behavior can 
also be observed when comparing different SSP [10], where 
the Basal-like intrinsic subtype was consistently identified in 
the same dataset, even when using different signatures. For 
Gene70 molecular signature, a similar behavior was found, 
were High-risk subjects could be wrongly assigned to the Low-
risk class, with consequent negative effects on therapy and 
patient quality of life.

The observed misclassification for a small number of subjects 
could be due to instability in the estimation of the SP. We 
found that the estimation of median gene value was variable 
among different sample sizes compared with the whole sam-
ple estimate (criterion standard) (Figure 3). We found up to 
2-fold changes of range in the median expression values of 
a signature gene. This variation might bias the subject-spe-
cific gene signature expression, thereby affecting the intrin-
sic subtype prediction. In general, the median estimates tend 
to become stable once the number of subjects used for es-
timation is about n=100. These findings suggest that, when 
building prognosis methods, the sample size should be large 
enough to capture gene population parameters, or the pre-
diction method used should not depend on sample-based es-
timates. In the former case, a pilot study should be conduct-
ed, and here we propose a procedure to recognize when the 
recruited population could yield a stable estimate of the pop-
ulation parameters, which is the sample size required to ob-
tain consistent SP (see R code and evaluation in the supple-
mentary material).

116

González-Montoro A. et al.: 
Sample size effect on breast cancer risk prediction

© Med Sci Tech, 2017; 58: 111-118
RESEARCH PAPER



In the present study, we did not address array normalization 
effects. However, for inter-array normalization, a common-
ly used approach uses normalization parameters estimated 
taking into account all of the available arrays. For instance, in 
one-color chips, robust multi-array average expression mea-
sure is typically used, which is based on sample quantiles for 
chip normalization. For two-color cDNA microarrays, sample 
quantile inter-array normalization is also available, as well as 
median absolute deviation [24,25]. In any case, none of these 
methods are appropriate in a clinical setting, since the arrays 
should be processed on subject arrival (or at least once a small 
number of subjects is available). All these inter-array normal-
ization methods, which depend on sample (arrays) statistics, 
can be affected by the number and quality of arrays includ-
ed in the normalization step. Accordingly, appropriate quality 

control procedures and standard operative protocols should 
be established in the clinical microarray facility for appropri-
ate microarray processing.

Conclusions

In conclusion, our results demonstrate that, if the standard-
ization parameters to be used by the molecular signature al-
gorithm are not appropriately estimated, then subjects might 
receive inappropriate therapy. This suggests that a pilot study 
to provide SP that yield a stable prediction should be conduct-
ed. In addition, a method to evaluate the sufficiency of the 
size of the available sample for parameter estimation is pro-
posed to guide prior pilot study development.
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