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We consider a method to solve constrained system of nonlinear equations based on a modifi-
cation of the Linear-Programming-Newton method and replacing the first order information
with a quasi-Newton secant update, providing a computationally simple method. The pro-
posed strategy combines good properties of two methods: the least change secant update
for unconstrained system of nonlinear equations with isolated solutions and the Linear-
Programming-Newton for constrained nonlinear system of equations with possible noniso-
lated solutions. We analyze the local convergence of the proposed method under a standard
error bound condition proving its linear convergence for nonisolated solutions. Numerical
experiments were done in order to show the proposed convergence rate.

Keywords: constrained nonlinear system of equations; nonisolated solutions; quasi-Newton
method; local convergence.

AMS Subject Classification: 90C30; 65K05

1. Introduction

The aim of this work is to present a quasi-Newton type method for the solution of con-
strained system of equations and analyze its local convergence properties. The proposed
method will help us to solve the problem of finding z such that

F(z)=0, zeQ (1)

where 2 C R” is a nonempty and closed set and F' : R™ — R™ is a continuously
differentiable function with F’ locally Lipschitz continuous.
In order to solve the problem (1) we propose the following iterative procedure.

Algorithm 1
Step 0: choose k > 0, 20 € Q, My € R™*" and set k = 0.
Step 1: define zF*1 = 2% 4 @ where (d*, ;) is a solution of

minimize 7y

d,y
subject to || F(2%) + Mpd| < k7,
ldll <,
F4deq.
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Step 2: if F(2**1) = 0, stop. Else, compute My, € R™*",
Step 3: set k =k + 1 and go to Step 1.

This Algorithm is an adaptation of the Linear-Programming-Newton method proposed
in [6], where quadratic convergence was proved for nonisolated solutions and for relaxed
smoothness assumptions on F. In [6], M}, is a suitable substitute of the Jacobian of F
at z¥. However, the calculation of this replacement of the Jacobian (or the exact one)
may be error-prone and expensive. This kind of issue is well-known in the literature of
unconstrained nonlinear system of equations and can be managed by using quasi-Newton
methods [1, 4]. Thus we proposed an adaptation in the spirit of quasi-Newton methods,
by replacing the computation of the exact Jacobian by a computationally less expensive
approximation with a convenient updating rule.

On the other hand, for unconstrained system of equations quasi-Newton methods are
used to link the advantage of the local behavior of the standard Newton method with a
consistent globalization strategy. In [12] it was shown that a globally convergent method
can be formulated for F' continuously differentiable or F' in certain class of piecewise con-
tinuously differentiable mappings. Also, subproblem [12, problem (5.9)] was introduced
to have a better scaled Linear-Programming subproblem. We shall stress that the sub-
problem in Step 1 of Algorithm 1 is an adaptation of [12, problem (5.9)]. This adaptation
consists in taking a fixed parameter  instead of a variable parameter ||F(z*)||, change
that was made to obtain a suitable feasible point of the subproblem in order to guarantee
the fulfillment of a uniform error bound.

It is well-known that problem (1) can be reformulated as a nonlinear least squares
minimization problem. But in this case minimization algorithms can achieve stationary
points that do not necessarily solve problem (1). Moreover, for nonconvex objective
functions, the local isolatedness of the stationary point is a standard hypothesis. However,
we should mention the work [18] that studies gradient projection methods and where
R-linear convergence was proved for noninsolated stationary points. In contrast, the
proposed method does not require the calculation of the exact Jacobian and a Q-linear
convergence is obtained for a noninsolated solution set.

In order to solve the nonlinear least squares minimization problem, it is known from
the literature that the Levenberg-Marquardt method is one of the best options. Under
mild assumptions it generates a sequence that converges quadratically to a possible
noninsolated solution [8, 10, 22]. However, this method requires the computation of the
exact Jacobian.

Another quasi-Newton strategy to solve problem (1) was proposed in [21]. This work
deals with a nonlinear least squares minimization reformulation of problem (1) and at-
tempt to solve it by using a trust-region method. Convergence of the proposed algorithm
was shown assuming that points in F~1(0) are isolated and that F; are continuously dif-
ferentiable outside F; '(0) and semismooth on F; *(0). Also, we should mention methods
developed for particular nonlinear systems given by a reformulation of a Karush-Kuhn-
Tucker (KKT) system [7, 20] and a reformulation of a mixed complementarity problem
[17].

In order to simplify the convergence analysis, we consider a least change secant quasi-
Newton update matrix (see [5]). Also the lines of the convergence analysis follows [2]. We
stress that the Broyden’s update [3] and the Powell-symmetric-Broyden (PSB) update
[19] are particular cases of this general scheme. In those cases were the approximation
matrix must be symmetric positive definite, a slight modification can be done in order
to incorporate the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update (see [9, 13, 14]).
In contrast to standard quasi-Newton results, where local Q-superlinear convergence is
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showed, we can prove only local Q-linear convergence. This result is still meaningful since
we can solve problems with nonisolated solutions and without convexity/monotonicity
assumptions by solving simple subproblems and without computing the Jacobian.

Some words about our notation. We use || - || for a norm on R™, R™ and for its induced
norm on R"™*™ We define B,(z) = {w | ||z — w|| < r} and dist(w, Z) = inf,cz ||z — w|.
In the sequel, we will use || - ||x for a norm on R™*™ associated to an inner product and

B} (z) for the ball in this norm.

2. Local convergence
For a given k > 0, w € Q and M € R™*"™ we consider the following optimization problem,

minimize -y

dyy
subject to ||F(w) + Md| < k7, (2)
el <,
w+de Q.

Some simple but useful properties of this problem can be summarized as follows.

PROPOSITION 2.1 Let w € Q. Then,

(i) the pair (0, | F(w)]||) is feasible for problem (2),
(ii) the optimization problem (2) has a solution with v < 1| F(w)|, and
(i1i) the optimal value of problem (2) is zero if and only if w is a solution of (1).

Proof. If d = 0 then ||[F(w) + Md|| = |[F(w)| = s1|F(w)|, ||d]| = 0 < 1| F(w)| and
w+d=w e Q. So, (i) follows.

Now, if we add to problem (2) the restriction v < 1||F(w)]|, the solution set does not
change. Since this new problem has a nonempty and compact feasible set with continuous
objective function, we can guarantee the existence of solution. Thus (ii) is valid.

The proof of (iii) is trivial. If v = 0, then ||F'(w)+ Md| =0, ||d|| = 0 and w+d € Q, so
|F(w)|| =0 and w € Q, i.e., w is a solution for (1). On the other hand, if w is a solution
of (1) then (d,v) = (0,0) is a solution of (2).

]

In order to define a quasi-Newton algorithm, we shall provide a rule to generate a
suitable matrix M. So, let us consider a closed convex set X C R™*™ such that

F'llw)e X, VYweQ.
Then for z,w € R™ and M € R™*" consider the following problem

min}gnize |N — M|?

subject to  N(z —w) = F(z) — F(w), 3)
N e X.

Since this is a (strongly) convex optimization problem, we have that M is the (unique)
solution if and only if

(My —M,N—DMy)>0, VNst N(z—w)=F(z)—F(w), Ne X,
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where (-, -) is the inner product associated to || - ||«. Hence, it can be seen that
1M = M7 < ||M = N|? = | My - N|Z, (4)

for all N such that N(z — w) = F(z) — F(w) and N € X. Note that if || - ||, is the
Frobenius norm we recover the Boyden’s update when X = R"™*" and the PSB update
when X is the space of symmetric matrices.

In order to analyze local convergence properties of Algorithm (1), first we state some
assumptions. We assume that problem (1) has a nonempty solution set

Z={2eQ|F(z) =0}.

Let z* € Z denote an arbitrary but fixed solution of (1). We will assume the existence
of a local error bound around z*.

Assumption 1 There exist eg > 0, £ > 0 such that

dist(w, Z) < (| F(w)||, Vw € B, (2*) N Q.

We shall stress that this error bound condition can be obtained with suitable assump-
tions depending on the structure of F', see for example [11] for complementarity systems
and [16] for generalized Nash equilibrium problems.

By the smoothness assumptions on F', there exist Ly > 0, L1 > 0 such that

IF(2) = F(w)|| < Lollz = wll,  [[F'(2) = F'(w) ]l < Lallz — wl],

for all z,w € B.,(z*). Thus, shrinking ¢q if necessary, it holds that

|F(w)|| < Lodist(w, Z), Yw e B, (z%). (5)

Also, let 8 > 0 satisfies || M| < B||M ||, for all M € R™*™.

PROPOSITION 2.2 Given k > 0, there exist &1 > 0 and m > 0 such that for any
w € B, (2*) and M € By (F'(2*)), if (d,7) is a solution of problem (2) then

|F(w) + Md]
I

< rkdist(w, Z), (6)
< dist(w, 2). (7)

Proof. If w € Z, by Proposition 2.1(iii) and the second inequality constraint in (2), we

have (d,%) = (0,0). Then (6) and (7) hold.
Define

c . €0 R K
= min-< — = —.
1 2’361;1 y 283

For w € B, (2*) \ Z let w € Z be so that ||w — w| = dist(w, Z). Then, for d = w —w
we have

]l = dist(w, Z) < [lw —2*|| < e1.
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On the other hand, since || — 2*|| < 2||w — 2*|| < g9 and M € By, (F'(2*)),

|1F(w) + Md|| < ||[F(w) + F'(w)d — F(@)|| + [[(M — F'(w))d]|
L 10
< P+ (1)~ Pl + 102 — FEL)
< <ﬂ2L161 + BLier + 5771> ]
< k|ld|| = kdist(w, Z).

Since (d, dist(w, Z)) is feasible for problem (2), then 5 < dist(w, Z). Hence d satisfies
(6) and (7).
|

LEMMA 2.3  Suppose that Assumption 1 holds. Then for k > 0 there exist o > 0 and

n2 > 0 such that if w € B, (2*), M € B}, (F'(2*)) and (d,%) is a solution of problem (2)
then

dist(w + d, Z) < 2kl dist(w, Z). (8)
Proof. If w € Z then (d,5) = (0,0), as previously shown. Then (8) holds.
Since F' is continuously differentiable, there exists r > 0 such that if w,w+d € B, (z*)
the following holds
K
1F(w + d) = F(w) = F'(z")d|| < 5 1d].

Define

. {80 T} . K (9)
= —_— — = min —_—
€2 min 475172 12 771725 )

where €1, 11 are given by Proposition 2.2.
Let w € B, (2*)\ Z and M € By (F'(z*)). By (7) we have

lw+d — 2| < |lw — 2*|| + dist(w, Z) < 2||jw — || < min{%o,r} :

Then,
1P Dl < P +d) = Fu) = ()] + BIF (") = M. |d
+||F(w) + Md]
< Sd|| + Bne||d|| + rdist(w, Z)
< 2kdist(w, Z).

Hence, by Assumption 1,

dist(w + d, Z) < l||F(w + d)|| < 2kl dist(w, Z).
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PROPOSITION 2.4 Suppose that Assumption 1 holds and let e3 > 0, 72 > 0 be given
by Lemma 2.8 for some k > 0. If w € B, (2*), M € B}, (F'(2*)), (d,%) is a solution
of problem (2) and M, is the solution of problem (8) for = = w + d, then for ¢ =
2Ly (3 4+ max{1,2k(}) it holds that

1My — P2 < 1M = F(@)] + edist(w, 2),

where Z,w € Z satisfy |2 — z|| = dist(z, Z) and ||w — w|| = dist(w, Z).
Proof. Let us define N € R™*™ such that

1
Ni/FW+@ﬁ
0

It can be seen that N is feasible for problem (3). Then, by (4) we obtain
[My = Nl < [[M = N, (10)

On the other hand, using (7) and (9) we have

Il — 2| < [l — wl| + [lw — 2| < 2fjw — 2*|| < 3e0,
12 =2 < N12 = 2l + [lz = 27| < 2]z = z*|| < 4flw = 2*[| < eo.

Hence w, z,W, 2 € Be,(2*). Then

dt

*

1 _
IN - F')l. < A\wme@—Fw>

1
gm/uw+ﬂ—wﬁ
0
1 —
< L1/ ([lw+td — 2| + ||z — 2||) dt
0
1 -
s.m/u_mww+m%wmwm
0

< Iy (% + 2/@'6) dist(w, Z),
where we use that z = w + d, (7) and (8). In a similar form, we obtain
|IN — F'(@)|« < L1 (5 +1) dist(w, Z).
Then, using (10) and the inequalities above, we conclude that

My = F'(2)]]. My = N+ [N = F'(2)]«

| — F'(@)]ls + |[F'(@) = N + [N — F'(2)].
|M — F' (@)}, + e dist(w, Z),

VANVANVAN

where ¢ = 2L; (3 + max{1,2x(}).
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THEOREM 2.5 Suppose that Assumption 1 is satisfied. Let {zF}, {d*} and {M}} be
generated by Algorithm 1 choosing Myyq in step 2 as the solution of problem (3) with
2= w="2F and M =My, If k < ﬁ, there exist € > 0 and n > 0 such that if

e B.(z"), Mye By (F'(2")),

then

(i) the sequence {z*} converges to some z € Z, and {dist(z*, Z)} converges to zero,
(i1) the sequence {||My — F'(Z)||+} converges.

Proof. Let €9, 12 be given by Lemma 2.3. We will show by induction that for all j > 0

127 — 2*|| < ea, (11)
1M = F'(2") ||« < n2. (12)
Define
. €2 T2 2
€ mm{?)’QSLl}’ n= (13)

Let 2% € B.(z*) and My € Bj(F'(z*)). Then (11) and (12) hold for j = 0.
Now, suppose that (11) and (12) hold for all j < k. Then, by Proposition 2.2 we have
that

1F(=7) + M;d |
1]

rdist (27, Z), (14)
dist(z7, Z), (15)

for all j < k. Hence,

254 =2 < =20 4 (120 - 2|
k
< ) NI =AY+ (120 - 2|
§=0
k .
< ) dist(2f, 2) + [|12° — 27|
§=0
k .
< Z(2/@€)Jdist(z0, Z) + [12° = ¥
=0
US|
0 *
< Zg—H 120 — 2*||
§=0
< 3120 — 2| € 35 < e,

where we use (15), (8), the fact that 2x¢ < 3 and (13). On the other hand, by Proposition
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2.4 and the fact that 2xf < 1, we obtain

1Mi1 = F'EF I < (Mg — F/(29) | + 3L dist (2%, Z)

k
< |[Mo— F'(2%)|. + 3Ly > dist(z7, 2)
§=0
"1
< ||Mo — F' (29|, + 3Ly Z; gdist(zo, Z)
]:
< |IMy — F'(5%)|)x + 6Ly dist(2°, Z).

Thus,

[Mpy1 — F'(27)]lx [ My — F'(ZFFD e+ | F/ MY = F (29|

1Mo — F'(2°)[|s + 6L1[|2° — 2*|| + 2L |25 — 2|
Mo — F'(z*) [« + [|1F'(z") = F'(2°) | + 12L1|2° — =¥
Mo — F'(2) ||y + 2L4]|2° — 2*|| + 12L1e

1+ 14Lie < 1o,

VAN VAN VAN VAR VAN

where we use that [|2 — 2*|| < ||2 — z|| + ||z — 2*|| < 2|z — 2*||. Hence (11) and (12) hold
for j =k+ 1.
Now, since (11) and (12) hold for all £ > 0, by (7) and Lemma 2.3 we have

ktj—1
1254 =2 < Y lE =
i=
ktj—1
< Z dist(2", Z)
i=j
H
i J
< Z 2i_jdlst(z A
i=j
< 2dist(27, 2)

1 . 0
< ZEdlst(z AR

So the sequence {z*} is a Cauchy sequence and thus, by the closedness of Z, it converges
to some Z € Z. Since dist(z*, Z) < ||z¥ — Z||, then (i) holds. Also, taking limit for k& — oo
we obtain

|27 — z|| < 2dist(2?, Z), (16)

for all j > 0.
In order to show the convergence of {||My — F'(Z)||.}, note that by Proposition 2.4,
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for k > j
My — PR < M — F/(20)], + 3Ly 3 dist(+', 2)
i=J
‘ E=1oy ‘
< |M; = F'(Z))|, + 3Ly Z 5y dist(</, 2)
i=j
< ||M; — F'(37)||x + 6Ly dist(27, Z).
Since ¥ — z and F” is continuous, then we have

limsup || My, — F'(2)|l« < [|M; — F'(3%) | + 6Lydist (27, Z).

k—o0

Now, taking limit for j — oo in the right-hand side we obtain
limsup || Mg — F'(2)|lx < liminf | M; — F'(2)]]
k—so0 J—r0

Hence (ii) holds. [ |

COROLLARY 2.6 Under the hypotheses of Theorem 2.5, it holds that {dist(z*, Z)} con-
verges linearly to 0 and {zF} converges linearly to z.

Proof. Let us define for any k
1
Np :/ F'(2F +td¥)at.
0

Then, by (4) for w = 2¥, z = 2**1, M = M, and using that Ny is feasible for this
problem, we obtain

1My — Mg |7 < || My — Nill2 = | M1 — Nig||?

By definition of Ny and continuity of F’ we have that N — F’(Z), concluding by
Theorem 2.5(ii) that

Mk+1 — Mk — 0.

Also, since My 1d* = F(2**1) — F(2*), by Proposition 2.2 we have

[P = [P + Mypad®|
< wdist(2F, Z) + || (Myg1 — My)d"||
< (K4 [ My — My |)dist(2*, Z).
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Then,

dist(41,2) _ OFE)
dist(zk,Z) = dist(zF, 2)

IN

E(E + ”Mk—i-l — Mk”) — Uk <

| =

Thus, by (16) and the fact that dist(z*, Z) < ||2¥F — 2|,

|28t — 2| 2dist(2F, 2)
|2k —z|| — dist(z*, 2)

N =

— 22Uk <

3. Computational results

In the previous section we analyzed the convergence of our algorithm under certain
hypotheses, in this section we are going to show the performance of the algorithm not
only for problems which satisfy the hypotheses mentioned above but also for others which
do not satisfy them.

The first example that we present satisfies all the required hypotheses, the second one
is given by a nonlinear complementarity problem that does not satisfy Assumption 1,
and they both were taken from [6]. Since problem (1) includes a broad range of problems
and not only KKT reformulations, the rest of the examples are feasible point problems
taken from the Hock-Schittkowski Collection [15] where we reformulated the feasible sets
by considering it as in (1), despite possible violation of Assumption 1.

We wrote an Octave implementation of Algorithm 1, using the Simplex method im-
plemented in the built-in function glpk for solving subproblem (2) and taking matrices
defined by the Broyden’s update with My = F’(z°). The stopping criteria used were

(1) [|F(2%)]|eo < 1e-10 (residual error),
(2) ||2F*Ht — 2F|| < 1e-16 and,
(3) itmax = 1500 (maximum number of iterations).

Most of times Algorithm 1 stopped for the first criterion. We marked with an asterisk
those cases where it stopped for the second one. We present below tables where final
residuals and numbers of iterations for different values of x are shown.

Ezample 3.1 Consider the following system of two inequalities

24+22-1 < 0,
(71 —1)24+22-1 < 0.

Taking 2 = R? x Ri, this can be written as

22422 — 1423

F<Z>‘<<zl—1>2+z§—1+24>:°’ 2€9,

with slack variables z3 and z4.

10
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Since the system of inequalities satisfies the Mangasarian-Fromovitz constraint quali-
fication at any feasible point, then it can be shown that F' satisfies Assumption 1 at any
z* € Z. Furthermore, F' is differentiable and its derivate is locally Lipschitz continuous,
so all the previous conditions are satisfied. Then, we illustrate our convergence result

with this example.

In Table 1 numerical results are shown.

Table 1. Numerical results taking

29 =(2,0,0,1).

K f Tterations residual
0.1 14 2.7756e-17
le-2 11 2.2204e-16
le-3 10 4.1453e-11
le-4 9 8.4163e-12
le-5 8 3.0211e-11
le-6 8 8.6729e-12

In the following graphics, we show the quotient between ||+ — Z|| and ||2¥ — 2|| (left)
and, log(||z¥+1 — 2¥||) (right) for each iteration k and some values of , where % is the last
iterate. Note that the convergence of the sequence was at least linear for small values of
k. This fact can be observed in Figures 1, 2 and 3.

Quotient Distance
0.6 2 5
*
0.5 U .
*
0.4 . 5 "
*
0.3 -10
0.2 * -15
0.1 -20
*
0 S 25 ‘ ‘ ‘
0 2 4 6 8 10 0 2 4 6 10
Iterations Iterations
k41_ 5
Figure 1. w and log(||z**+1 — 2¥||) for k = 10~
Quotient Distance
0.6 . : 5
*
05t or .
*
04 | N
St
03 r
-10 -
0.2 r *
01t =
*
0 . * * 20 . .
0 2 4 6 8 0 2 4 8

Iterations

Iterations

Rl
Figure 2. w and log(||z**+1 — 2¥||) for k = 1075.

11
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Quotient Distance
0.6 < : 5 ‘
*
0.5
ot e L
0.4 * *
5t
*
0.3
-10
0.2 * *
0.1 A5
*
0 ~ % 20 . . .
0 2 4 6 8 0 2 4 6 8
Iterations Iterations
. k1o
Figure 3. w and log(||z*+1 — 2¥||) for k = 1076.

Example 3.2 As we mentioned at the beginning of the section, this problem was taken
from [6]. Our intention is to show that although this problem does not satisfy Assumption
1, our algorithm can solved it generating a convergent sequence {z*}.

We consider complementarity problem of the form

2>0, T(z) >0, 2IT(z) =0,

where T is assumed to be differentiable with a locally Lipschitz continuous derivate.
For

_ 2122
T(z) = < Z%+22—1>

the problem can be formulated as

21292 — 23
2
2+ 2z90—1—2
F(z) = 17T <2 ], zeq,
Z1%3

2224

with slack variables z3 and z4 and Q = Ri X Ri.
Numerical results are shown in Table 2.

Table 2. Numerical results taking 20 = (1,1,1,1) and 2° = (2,1, 1,0).

K f Iterations residual K f Iterations residual
0.1 1101 3.6278e-10 * 0.1 18 2.2204e-16
le-2 119 3.9433e-12 le-2 16 2.3921e-11
le-3 28 9.9180e-11 le-3 16 7.4402e-12
le-4 41 2.9165e-11 le-4 15 2.9631e-11
le-5 44 1.6547e-11 le-5 14 2.4669e-11
le-6 19 0 le-6 15 3.2511e-12

Next examples were taken from the Hock-Schittkowski Collection.

Ezample 3.3 The feasible set of the problem HS19 can be written as (1) taking

_( —(z1=5)* = (22— 5)*+ 100 + z
F(Z)_<(211—6)2+(2235)2—82'81+Z2>’

12
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with = [13,100] x [0, 100] x R?.
Numerical results are shown in Table 3.

Table 3. Numerical results taking
29 = (20,5,0,0).

K f Iterations residual
0.1 15 2.6512e-13
le-2 13 8.6597e-15
le-3 10 2.8451e-15
le-4 9 1.4140e-11
le-5 8 4.5191e-12
le-6 7 4.8402e-11

Ezample 3.4 The feasible set of the problem HS23 can be written as (1) taking

—z1— 29+ 14 23
—2 -2+ 142
Fz)=| 92 -23+9+2z |,
—Z%+22+ZG
—z§+21+Z7

with =[50, 50] x [—50, 50] x Ri.
Numerical results are shown in Table 4.

Table 4. Numerical results taking

2% =(2,2,0,0).

K f Iterations residual
0.1 48 6.1963e-11
le-2 14 2.8282e-11
le-3 13 5.7998e-13
le-4 11 1.5838e-11
le-5 12 6.5103e-13
le-6 10 1.1697e-11

Ezample 3.5 The feasible set of the problem HS24 can be written as (1) taking

—21/\/§+22+23
F(z) = —21 — V32 + 2 )
Z1+\/§Z2—6+2’5

with Q = Ri.
Numerical results are shown in Table 5.

Ezample 3.6 The feasible set of the problem HS34 can be written as (1) taking

[ —z2+exp(z1)+ 2
F(z) = < —z3 + exp(z2) + 25 > ’

with € = [0,100] x [0,100] x [0,10] x R3.
Numerical results are shown in Table 6.

13
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Table 5. Numerical results taking

2% =(2,1,0,0).

K f Iterations residual
0.1 15 5.7732e-15
le-2 8 1.3323e-15
le-3 6 8.8818e-16
le-4 4 3.1264e-13
le-5 3 4.9195e-11
le-6 2 1.3234e-12

Table 6. Numerical results taking

20 =(0,0,0,0).

K f Iterations residual
0.1 13 4.8242e-12
le-2 10 3.4037e-11
le-3 11 7.5634e-16
le-4 11 5.5511e-17
le-5 10 7.5562e-11
le-6 10 2.0197e-13

Ezample 3.7 The feasible set of the problem HS56 can be written as (1) taking

F(z) = z3 — 8sin”(z4) ’

21 + 229 + 223 — 14sin?(27)
with Q = R.
Numerical results are shown in Table 7.

Table 7. Numerical results taking
29 =(1,0,0,0,0,0,0).

K t Iterations residual
0.1 7 9.4079e-08 *
le-2 4 9.6098¢-09 *
le-3 3 0
le-4 2 9.9980e-09 *
le-5 2 0
le-6 2 2.1176e-22

Ezample 3.8 The feasible set of the problem HS60 can be written as (1) taking
F(z) = 21(1+22) + 23 —4-3V2,

with = [-10, 10] x [—10, 10] x [-10, 10].
Numerical results are shown in Table 8.
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Table 8. Numerical results taking

20 =(1,1,1).

K f Iterations residual
0.1 11 3.5527e-15
le-2 10 1.9540e-14
le-3 8 4.4409e-14
le-4 8 2.8422e-14
le-5 8 6.5725e-14
le-6 9 2.6645e-14

Ezample 3.9 The feasible set of the problem HS74 can be written as (1) taking

—24 + z3 — 0.55 + x5
—23 + z4 — 0.55 + x4
F(z) = 1000 sin(—z3 — 0.25) 4+ 1000 sin(—z4 — 0.25) +894.8 — z; |,
1000sin(z3 — 0.25) 4+ 1000 sin(z3 — z4 — 0.25) + 894.8 — 29
1000 sin(z4 — 0.25) + 1000 sin(z4 — 23 — 0.25) + 1294.8

with = [0,1200] x [0, 1200] x [—0.55,0.55] x [—0.55,0.55] x Ri.
Numerical results are shown in Table 9.

Table 9. Numerical results taking
29 = (800, 900, 0,0, 0,0).

K f Iterations residual
0.1 342 5.9799e-11
le-2 29 5.9711e-11
le-3 16 1.7280e-11
le-4 15 6.1164e-11
le-5 13 2.6603e-11
le-6 11 1.7963e-11

4. Final remarks

In this paper we have developed a quasi-Newton method for solving constrained systems
of equations, based on the previous works [6, 12]. The proposed algorithm does not need
any first order information, providing a computationally simple method that converges
at least linearly. The rate of convergence is guaranteed even for nonisolated solutions.

Numerical examples show that the algorithm works well when all required hypotheses
are satisfied, converging at least linearly as we expected. Nevertheless, if the hypotheses
are not satisfied, our algorithm can still find a solution, as it is reflected in the second
example. In general, for all the numerical experiments we found that the result improved
notably as k decreased. After a brief analysis of the results showed in Section 3, we
conclude that a suitable value for the parameter x may be less than 107%. Also, we
observe that subproblem (2) is numerically stable (as suggested in [12]).
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