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We compute the eta function η(s) and its corresponding η-invariant for the 
Atiyah–Patodi–Singer operator D acting on an orientable compact flat manifold 
of dimension n = 4h − 1, h ≥ 1, and holonomy group F � Z2r , r ∈ N. We show 
that η(s) is a simple entire function times L(s, χ4), the L-function associated to 
the primitive Dirichlet character modulo 4. The η-invariant is 0 or equals ±2k for 
some k ≥ 0 depending on r and n. Furthermore, we construct an infinite family 
F of orientable Z2r -manifolds with F ⊂ SO(n, Z). For the manifolds M ∈ F we 
have η(M) = − 1

2 |T |, where T is the torsion subgroup of H1(M, Z), and that η(M)
determines the whole eta function η(s, M).

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Eta series and η-invariant. Let M be an oriented compact Riemannian manifold of dimension n = 4h − 1, 
h ≥ 1, and consider the Atiyah–Patodi–Singer operator D (APS-operator for short) defined on the space of 
smooth even forms Ωev(M) =

⊕2h−1
p=0 Ω2p(M) by

Dφ = (−1)h+p−1(∗d− d∗)φ

with φ ∈ Ω2p(M), where Ω2p(M) denotes the set of degree 2p forms. This operator is closely related to the 
signature operator. In fact, D is the tangential boundary operator of the signature operator S acting on a 
4h-dimensional manifold M̃ having M as its boundary.

By compactness of M , D has a discrete spectrum, SpecD(M), of real eigenvalues λ with finite multiplicity 
dλ which accumulate only at infinity. The eta series
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η(s) =
∑

0�=λ∈SpecD(M)

sign(λ) |λ|−s, Re(s) > n, (1.1)

defines a holomorphic function having a meromorphic continuation to C, also denoted by η(s), having 
(possibly) simple poles in the set {n − k : k ∈ N0}. Remarkably, η(s) is holomorphic at s = 0 and the value 
η = η(0) is called the eta invariant of D.

Both D and η(s) were first introduced and studied by Atiyah, Patodi and Singer in a sequel of 3 classical 
papers [1], where they also proved the regularity of η(s) at the origin in the case of odd dimension. The 
finiteness of η in any dimension is due to P.B. Gilkey [9]. Actually, the results in [1] and [9] are valid for 
arbitrary elliptic differential operators.

Eta series and η-invariants have been an active area of research since their appearance in [1]. A lot of 
progress have been made mainly by Peter Gilkey, Werner Müller, Xianzhe Dai, Weiping Zhang, Robert 
Meyerhoff, Mingquing Ouyang and Sebastian Goette among some others. Eta series and η-invariants 
have been studied in several contexts. For instance, in equivariant settings (Donelly ’76, Zhang ’90 and 
Goette ’99, ’00, ’09), in relation to connective K-theory (Gilkey ’84 and Barrera-Yañez–Gilkey ’99, ’03), 
manifolds with boundary (Müller ’93, ’94, Bunke ’95, ’15 and Dai ’02, ’06) and cobordism (Bahri–
Gilkey ’87, Gilkey ’88, ’88, ’97, Gilkey–Botvinnik ’95, ’96 and Dai ’05), flat vector bundles (Zhang ’04 
and Ma–Zhang ’06, ’06, ’08), even dimensions (Gilkey ’85, Dai ’12 and Dai–Zhang ’15), determinant lines 
(Dai–Freed ’94, ’95), adiabatic limits (Zhang ’94 and Dai ’06), Rokhlin congruences (Zhang ’92, ’94), rela-
tions with L-functions and modular forms (Atiyah–Donnelly–Singer ’83, ’84, Müller ’90, Bismut–Cheeger ’92 
and Han–Zhang ’04, ’15), etc.

They were also studied, and in some cases computed, for certain classes of manifolds. Namely, compact 
flat manifolds [15,23–26,32,34,35], spherical space forms [10–14], hyperbolic manifolds [18,20,21,28–30] and 
orbifolds [8].

Compact flat manifolds. Any orientable compact flat manifold (in what follows cfm for short) is isometric 
to MΓ = Γ\Rn, with Γ an orientable Bieberbach group, i.e. a discrete, cocompact, torsion-free subgroup 
of the orientation preserving isometry group I+(Rn) = SO(n) � Rn of Rn. Thus, Γ = 〈γ = BLb, LΛ〉, with 
LΛ = {Lλ : λ ∈ Λ}, where B ∈ SO(n), Lb denotes translation by b ∈ Rn, γk �= Id for every k ∈ N and Λ is a 
B-stable lattice in Rn. We will usually identify the point group with the holonomy group, that is F � Λ\Γ.

Since BLλB
−1 = LBλ ∈ LΛ for any B ∈ SO(n), λ ∈ Λ, conjugation by F in Λ � Zn defines the integral 

holonomy representation ρ of Γ (which does not determine MΓ uniquely, in general). A G-manifold is a cfm 
with holonomy group F � G. In this paper we will be concerned with the case F � Z2r , for r ∈ N.

In [25], we give a general expression for η(s) and η for D acting on an arbitrary orientable cfm MΓ (see 
Theorems 3.3, 3.5 and 4.2). Also, simpler expressions can be found in its sequel [26] in the case of cyclic 
holonomy group (see Proposition 3.1). There, it is shown that the computation of η(s) can be reduced to 
the case when F is cyclic [26, Proposition 5.1]. This enabled us to compute the η-invariant of some nice 
families of cfm’s, such as F -manifolds with F � Zp, Zp × Zq, Zk

2 and Zk
p, with p, q odd primes and k ≥ 2; 

or even with non-abelian holonomy group F , where F is of order 8 or F is metacyclic (dihedral and of odd 
order). Expressions for η(s) and η on cfm’s for the spin Dirac operator D were studied in [23] (the general 
case and Zk

2-manifolds), in [32] (Z4-manifolds) and in [24] and [15] (Zp-manifolds, p odd prime).

Motivation and results. As we have already mentioned, in [26, Section 5], a method to reduce the computa-
tion of the η function for a manifold with arbitrary holonomy group F to the case of cyclic holonomy group 
is presented. Hence, for a general cyclic holonomy group F � ZN = Zp

r1
1
×· · ·×Zp

rt
t

, with p1, . . . , pt different 
primes, and thus one is basically led to the study of the contributions of each Zp

ri
i

to the computation of 
η(Γ). As a step in this direction, it is the goal of this paper to cover the case of the even prime 2. We are thus 
interested in the computation of η(s) and η for the operator D on arbitrary orientable Z2r -manifolds of odd 
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dimension n = 2m + 1, m odd. In this way, the present paper can be considered as a natural continuation 
of [25] and [26]. We remark here that Z2r -manifolds are not classified (as it is the case for Zp manifolds, 
p prime).

A brief outline of the paper is as follows. In Section 2, we study the rotation angles of a matrix B ∈ GL(n)
of order 2r and its characteristic polynomial. Some trigonometric identities involving sines and cotangents 
at special angles of the form k�π2r , with k, � odd integers, play a key role in the computation of η(s) and η, 
allowing great simplifications in the steps of the proofs, which lead to the final expressions in the statements. 
For clarity, they are presented at the end in Appendix A.

Sections 3 and 4 are devoted to the computation of the η-function and η-invariant, respectively, for 
arbitrary Z2r -manifolds in all dimensions n = 2m + 1, m odd. Let MΓ be a Z2r -manifold with γ = BLb the 
generator of Λ\Γ. In Theorem 3.2 we show that, in the non-trivial cases,

η(s) = 2η
(2r−1−νπλB)sL(s, χ4),

where ν ∈ [0, r − 2] ∈ Z and λB ∈ R are certain constants depending on the metric, and L(s, χ4) is 
the L-function associated to the primitive Dirichlet character mod 4. Here, the η-invariant has the simple 
expression (see Proposition 4.1)

η = ± 2f(B)−2,

where ± is a sign depending subtly on γ and f(B) is the number of irreducible factors of the characteristic 
polynomial of B on Z[x] (see (2.3)). This gives an easy and direct way of computing the invariant. We give 
some examples to illustrate the method.

Next, in Section 5, we introduce an infinite family F of orientable Z2r -manifolds of dimn = 4h −1, h ≥ 1, 
each having integral holonomy representation. In Proposition 5.3 we compute the first (co)homology groups 
over Z and Z2 of M ∈ F . This allows us to get the η-invariant of M (and hence η(s), by (3.6) and (4.1)) in 
topological terms; namely

η(M) = −1
2 |Tor(H1(M,Z))|.

We also posed some queries, see Questions 5.5, 5.9 and 5.10.
In Section 6, we show that for any Z2r -manifold M , there is some Mk(r) ∈ F such that η(M) = η(Mk(r)). 

This allows us to prove that the set of possible values of η(M), with M ranging over all Z2r -manifolds, 
r ≥ 1, is 0 or a non-negative power of 2. Then, we show that there are infinite families of Z2r-manifolds 
with η = 2k, for each k (with growing dimensions). Moreover, there is a number nr,k such that for every 
n ≥ nr,k there is a Z2r -manifold of dimension n with η = 2k. As a result, varying r in the natural numbers 
we have

η(Z2r -manifolds) = {0} ∪ {±2k : k ∈ N0}.

Finally, in the last section, we compare expression (3.4) for the η-invariant of any Z2r -manifold, with 
Donnelly’s expression (7.3), valid only for those Z2r -manifolds having holonomy group F ⊂ SO(n, Z) (see 
Proposition 7.2). In this case, we have η = ±2f(B)−2 = ±2c(B)−2, where c(B) is the number of orbits of the 
action of B on the canonical basis vectors, thus giving an alternative way of computing the invariant.

2. Rotation angles for order 2r matrices

As we shall later see, the results in this section are crucial for the determination of η(s) in Theorem 3.2. 
Here, we will study the rotation angles of a matrix in GL(n, Z) of order 2r. In Appendix A (for clarity), we 
will compute some trigonometric identities related to them.
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For any d ∈ N, let Ud = {ω ∈ C : ωd = 1} be the group of complex d-th roots of unity and denote by 
U∗
d = {ω ∈ Ud : ord(ω) = d} the subgroup of primitive roots in Ud. Then, for any N ∈ N, we clearly have 

UN =
⋃

d|N U∗
d . The cyclotomic polynomial of order d is defined by Φd(x) =

∏
ω∈U∗

d
(x − ω) ∈ C[x]. It is 

known that Φd(x) ∈ Z[x] is irreducible over Q of degree ϕ(d), where ϕ is the Euler totient function. We 
have the relation

xn − 1 =
∏
d|n

Φd(x). (2.1)

Lemma 2.1. Let B ∈ GL(n, Z) of order N ∈ N. Then, the characteristic polynomial pB(x) of B has the 
prime factorization

pB(x) =
∏
d|N

Φd(x)cd (2.2)

in Z[x], with cd ≥ 0 for any d | N and cN ≥ 1. Also, deg pB =
∑

d|N cd · ϕ(d).

Proof. We know that pB(x) is a monic polynomial in Z[x], all of whose roots are in UN . Since Z[x] is a 
unique factorization domain, pB(x) =

∏
j pj(x), with pj(x) ∈ Z[x] monic irreducible for each j. We will show 

that the only monic irreducible polynomial in Z[x], with roots in Uh is Φh(x), h | N . Let α be a root of pB(x)
and let σ ∈ Gal(Q(α)/Q) with σ(α) = αk for (k, h) = 1. We have pB(αk) = pB(σ(α)) = σ(pB(α)) = 0, 
for any (k, h) = 1. Thus, Φh(x) | pB(x) in Q[x], hence in Z[x], and, by irreducibility, it must be one of the 
pj(x)’s. Thus, we get (2.2) with cd ≥ 0 for each d | N . Clearly, we must have cN ≥ 1 for B to have order N . 
The assertion on the degree is obvious. �

For B ∈ GL(n, Z) we define f(B) to be the number of irreducible factors in the prime decomposition of 
the characteristic polynomial pB(x) of B in Z[x]. Thus, by (2.2),

1 ≤ f(B) =
∑

d | o(B)

cd (2.3)

where o(B) is the order of B. If B = (B′

1 ), then f(B′) = f(B) − 1 is the number of irreducible factors in 
the prime decomposition of pB′(x) = pB(x)/(x − 1).

Let n = 2m + 1. Since SO(n) is a compact connected Lie group, it contains a maximal torus Tn =
{x(t1, . . . , tm) : t1, . . . , tm ∈ R}, where

x(t1, . . . , tm) := diag(x(t1), . . . , x(tm), 1)

with x(t) = ( cos t − sin t
sin t cos t ), t ∈ R. Also, Tn−1 = {x(t1, . . . , tm) : t1, . . . , tm ∈ R}, where now x(t1, . . . , tm) =

diag(x(t1), . . . , x(tm)).
Let Γ ⊂ I+(Rn) be a Bieberbach group and for any BLb ∈ Γ put

nB := dim(Rn)B .

Note that n±B is the multiplicity of the (±1)-eigenvalues of B. Since B ∈ SO(n), B is conjugate to 
some element xB ∈ Tn. Thus, there is C ∈ GL(n) such that CBC−1 = xB. Since xB fixes en, B fixes 
u = C−1en and hence nxB

= nB ≥ 1 (this is known by other methods, see for instance [27]). Also, note 
that pB(x) = pxB

(x) and therefore f(B) = f(xB).
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Proposition 2.2. Suppose Γ is an orientable Bieberbach group of dimension n = 2m + 1. Let BLb ∈ Γ with 
B of order N . Then, B is conjugate in T2m to xB = x(t1, t2 . . . , tm) or to x′

B = x(−t1, t2, . . . , tm) with

xB = x(js,1 2π
ds
, . . . , js,fs

2π
ds︸ ︷︷ ︸

cds≥1

, . . . , j1,1
2π
d1
, . . . , j1,f1

2π
d1︸ ︷︷ ︸

cd2

, 0︸︷︷︸
c1−1

),

where 1 = d1 < d2 < · · · < ds = N are all the divisors of N and each cdj
is the exponent of Φdj

(x) in the 
prime factorization of pxB

(x) in (2.2), such that

(ji,k, di) = 1, 1 ≤ ji,k ≤ �di

2 
, 1 ≤ k ≤ fi = ϕ(di)
2 ,

for each 2 ≤ i ≤ s.

Proof. Since B′ ∈ SO(n −1), B′ is conjugate to some element xB in Tn−1. There are two conjugacy classes in 
SO(n −1), and hence B is conjugate to xB = x(t1, t2, . . . , tm) or to x′

B = x(−t1, t2, . . . , tm) with 0 ≤ ti < 2π
for i = 1, . . . , m (see the comments in between (3.8)–(3.10) in [25]).

Since B is of order N > 1, it is clear that the rotation angles must be of the form 2jπ
N , for certain 

1 ≤ j ≤ [N−1
2 ]. Also, o(B) = N implies cN ≥ 1. Thus, if ω ∈ U∗

N , all the ϕ(N) primitive N -th roots of 
unity {ωj : (j, N) = 1} are roots of pB(x). Since complex roots appear in conjugate pairs, it suffices to 
consider the angles in [0, π]. Hence, the rotation angles corresponding to U∗

N are the ϕ(N)
2 angles 2jπ

N with 
(j, N) = 1, 1 ≤ j ≤ [N2 ], each with multiplicity cN . Similar arguments apply for every ζ ∈ U∗

d with d | N
and cd ≥ 1. �

As a result, in the case N = 2r we can be more precise.

Corollary 2.3. Let MΓ be a Z2r -manifold of dimension n, with F = 〈B〉. Then, we have

pB(x) = (x− 1)c1
r∏

k=1

(x2k−1
+ 1)c2k

with n = deg pB = c1 +
∑r

k=1 2k−1c2k and c1, c2r ≥ 1. Also,

xB = x( π
2r−1 ,

3π
2r−1 , . . . ,

(2r−1−1)π
2r−1︸ ︷︷ ︸

c2r

, . . . , π
4 ,

3π
4︸ ︷︷ ︸

c8

, π
2︸︷︷︸
c4

, π︸︷︷︸
c2

, 0︸︷︷︸
c1−1

). (2.4)

Proof. First we note that we can assume that B ∈ O(n, Z). In fact, B ∈ O(n) and since Λ � Zn we have 
ρ(B) ∈ GL(Λ) � GL(Zn) � GL(n, Z) and hence det(ρ(B)) = det(B) and pB(x) = pρ(B)(x). By (2.1) and 

x2k − 1 = (x2k−1 − 1)(x2k−1 + 1) we have that Φ2k(x) = x2k−1 + 1, k ≥ 1. Since the divisors of 2r are 
1, 2, 22, . . . , 2r, by Lemma 2.1 with N = 2r we have that pB(x) equals (x − 1)c1(x + 1)c2(x2 + 1)c4(x4 +
1)c8 · · · (x2r−1 + 1)c2r with c2r ≥ 1, as we wanted.

Relative to the angles, all the ji,k’s in Proposition 2.2 are odd, and hence B is conjugate in T2m to 
xB = x(t1, t2, . . . , tm) or to x′

B = x(−t1, t2, . . . , tm) with xB as in (2.4). Clearly, we have n = 2r−1c2r +
· · ·+4c8 +2c4 + c2 +(c1 − 1) +1 = deg pB. Since nB is the multiplicity of 1 as eigenvalue of B, and nB ≥ 1, 
we have c1 ≥ 1. �
3. The eta function

Let Γ be an n-dimensional Bieberbach group with translation lattice Λ and point group F and let 
γ = BLb ∈ Γ. If xB = x(t1, . . . , tm) ∈ Tn−1 is conjugate to B, denote the angles t1, . . . , tm of B by 
t1(xB), . . . , tm(xB) and put
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(Λ\Γ)′ = {BLb ∈ Λ\Γ : B ∈ F ′
1}

where F ′
1 = {B ∈ F1 : ti(xB) /∈ πZ, 1 ≤ i ≤ m} with F1 = {B ∈ F : nB = 1}. If B ∈ F1, choose vB ∈ Λ∗

such that

(Λ∗)B = ZvB and put λB = ‖vB‖. (3.1)

Then, if o(B) denotes the order of B, we have (see [25, Lemma 4.1])

�γ := o(B)〈vB , b〉 ∈ Z. (3.2)

We now recall the expressions of η(s) for ZN -manifolds, that will be our starting point. For α ∈ (0, 1] let 
ζ(s, α) =

∑
n>0(n + α)−1 be the Riemann–Hurwitz zeta function for Re(s) > 1.

Proposition 3.1 ([25, Proposition 2.2]). Let N = 2r and assume that MΓ be an orientable ZN -manifold of 
dimension n = 2m + 1, with m odd, and Γ = 〈γ, LΛ〉 where γ = BLb. If r = 1 or nB > 1 then η(s) = 0. On 
the contrary, if r ≥ 2 and nB = 1 then we have

η(s) = −σvB
2m+1

N(2πλB)s

N−1∑
k=1

γk∈(Λ\Γ)′

1
o(Bk)s

( m∏
j=1

sin(ktj)
) o(Bk)−1∑

j=1
sin
( 2πjk�γ

N

)
ζ(s, j

o(Bk) ) (3.3)

where vB and �γ are as in (3.1) and (3.2) respectively, and

η = −σvB
2m

N

N−1∑
k=1

∑
γk∈(Λ\Γ)′

( m∏
j=1

sin(ktj)
)
cot(πk�γN ), (3.4)

where σvB ∈ {±1} is a sign depending on the conjugacy class of xB in Tn−1.

Note. See [25, (3.10)–(3.11)] for details on the sign σvB .

We now give the eta function of D for an arbitrary Z2r -manifold MΓ. We recall that the class of 
Z2r -manifolds are not classified; as it is indeed the case for Zp-manifolds with p an odd prime [4] or for cfm’s 
in low dimensions (see [16] for dim = 3, [2] for dim = 4 and [5] for dim = 5, 6). However, all the information 
needed to compute η(s) is (roughly) contained in the angles of the rotational part of the elements of Γ.

We will express η(s) in terms of a Dirichlet L-function. We recall that for χ : Z → C∗ a Dirichlet character 
modulo N one has the Dirichlet series L(s, χ) =

∑∞
n=1

χ(n)
ns , absolutely convergent for Re(s) > 1. It has an 

analytic continuation to the whole C given by

L(s, χ) = 1
Ns

N∑
j=1

χ(j) ζ(s, j
N ) . (3.5)

We will be mainly concerned with χ4, the primitive character mod 4, defined by χ4(1) = 1, χ4(3) = −1 and 
χ4(0) = χ4(2) = 0, that is χ4(n) = sin(πn2 ) for n ∈ Z.

The promised result is as follows.

Theorem 3.2. Let MΓ be any orientable n-dimensional Z2r -manifold with r ∈ N, n ≡ 3 mod 4 and Γ = 〈γ =
BLb, LΛ〉. For �γ as in (3.2) put �γ = 2ν� with � odd and ν ≥ 0. If nB > 1 or r = 1, then η(s) = 0. If r ≥ 2
and nB = 1 then SpecD(MΓ) is asymmetric and we have
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η(s) = σγ 2f(B)−1

(2r−1−νπλB)s L(s, χ4) (3.6)

with 0 ≤ ν ≤ r − 2 and σγ = σvB (−1)[ �2 ]+1 ∈ {±1}, where χ4 is the primitive Dirichlet character modulo 4
while f(B) and λB are as in (2.3) and (3.1) respectively.

Proof. We will apply Proposition 3.1. It is known that Z2-manifolds have symmetric spectrum and hence 
trivial η(s) ([25, Proposition 3.11] or §6.1.1 in [26]). Also, η(s) = 0 if nB > 1. Thus, from now on, we assume 
that r ≥ 2 and nB = 1. Let n = 2m + 1, m odd. We now study the ingredients in (3.3). The angles are 
given by (2.4). Also, nB = 1 implies c1 = 1 and γk ∈ (Λ\Γ)′ if and only if k is odd and c2 = 0. Thus,

xB = x( π
2r−1 ,

3π
2r−1 , . . . ,

(2r−1−1)π
2r−1︸ ︷︷ ︸

c2r

, . . . , π
8 ,

3π
8 , 5π

8 , 7π
8︸ ︷︷ ︸

c16

, π
4 ,

3π
4︸ ︷︷ ︸

c8

, π
2︸︷︷︸
c4

). (3.7)

Note that o(Bk) = 2r for every k odd. Relative to the dimension, we have that

m = 2r−2c2r + · · · + 4c16 + 2c8 + c4. (3.8)

By Corollary 2.3, we know that c2r ≥ 1. The condition m odd implies that c4 is also odd, and, in particular, 
c4 ≥ 1.

By putting all this information in (3.3) we get

η(s) = − σvB
2m+1−r

(2r+1π‖vB‖)s
∑
k∈I∗

2r

Pk(xB)
2r−1∑
j=1

sin
(πjk�γ

2r−1

)
ζ(s, j

2r ) , (3.9)

where we have used the notations I∗N = {1 ≤ i ≤ N : i odd} and Pk(xB) =
∏m

j=1 sin(ktj). By (2.4), we 
have

Pk(xB) =
( 2r−1∏

j=1
j odd

sin( jkπ
2r−1 )

)c2r( 2r−2∏
j=1
j odd

sin( jkπ
2r−2 )

)c2r−1

· · ·
( 22∏

j=1
j odd

sin( jkπ22 )
)c8(

sin(kπ2 )
)c4

.

For r = 2, we have Pk(xB) = (sin(kπ2 ))c4 = (−1)[
k
2 ], since c4 is odd. For r ≥ 3, by Proposition A.2 in 

Appendix A, we get (this is a first key step)

Pk(xB) = (−1)[
k
2 ]

r−1∏
i=2

( ∏
j∈I∗

2i

sin( jkπ2i )
)c2i+1

= (−1)[
k
2 ]

r−1∏
i=2

( 1
22i−1−1

)c2i+1 = (−1)[
k
2 ] 2−Sr ,

where we have put Sr :=
r−1∑
i=2

(2i−1 − 1) c2i+1 . By (3.8) and (2.3), since c1 = 1, c2 = 0, we have

Sr =
r−1∑
i=2

2i−1c2i+1 −
r−1∑
i=2

c2i+1 = (m− c4) − (f(B′) − c4) = m− f(B) + 1.

Therefore, we get Pk(xB) = (−1)[
k
2 ] 2−m+f(B)−1 and putting this in (3.9) we obtain

η(s) = − σvB
2f(B)−r

(2r+1π‖vB‖)s
∑
k∈I∗

2r

(−1)[
k
2 ]

2r−1∑
j=1

sin
(πjk�γ

2r−1

)
ζ(s, j

2r )

︸ ︷︷ ︸
:=ξ (s)

. (3.10)
k,�γ ,r
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Now, since sin( (2r−j)kπ
2r−1 ) = − sin( jkπ

2r−1 ) for every j, k ∈ N, we can write

ξk,�γ ,r(s) =
2r−1−1∑
j=1

sin
(πjk�γ

2r−1

) {
ζ(s, j

2r ) − ζ(s, 1 − j
2r )}

=
r∑

t=2

∑
j∈I∗

2t−1

sin
(πjk�γ

2t−1

) {
ζ(s, j

2t ) − ζ(s, 1 − j
2t )},

where we have put together the contribution of the angles of the N -th roots of unity, N = 2r, of the same 
order 2t, 1 ≤ t ≤ r − 1.

In this way, the sum in (3.10) becomes

∑
k∈I∗

2r

(−1)[
k
2 ] ξk,�γ ,r(s) =

r∑
t=2

∑
j∈I∗

2t−1

( ∑
k∈I∗

2r

(−1)[
k
2 ] sin

(πjk�γ
2t−1

)){
ζ(s, j

2t ) − ζ(s, 1 − j
2t )
}
.

By Proposition A.3 in Appendix A, the sum between parentheses equals

Sr,t−1(2νj�) = δt−1,ν+1(−1)[
j�
2 ]2r−1

for t ≤ r (where �γ = 2ν� with � odd); i.e. it does not vanish only for t = ν + 2 and hence 0 ≤ ν ≤ r − 2
(this is a second key step).

Thus, since (−1)[
j�
2 ] = (−1)[

j
2 ](−1)[

�
2 ], we get

∑
k∈I∗

2r

(−1)[
k
2 ] ξk,�γ ,r(s) = (−1)[

�
2 ] 2r−1

∑
j∈I∗

2ν+1

(−1)[
j
2 ] {ζ(s, j

2ν+2 ) − ζ(s, 1 − j
2ν+2 )

}
.

Putting this information in (3.10), we get the expression

η(s) = σγ
2f(B)−1

(2r+1πλB)s
∑

j∈I∗
2ν+1

(−1)[
j
2 ](ζ(s, j

2ν+2 ) − ζ(s, 1 − j
2ν+2 )

)
(3.11)

where σγ = −σvB (−1) �
2 .

The last step will be to simplify the above expression. So, denote by Fν(s) the function given by the sum 
in (3.11), i.e.

Fν(s) =
∑

j∈I∗
2ν+1

(−1)[
j
2 ](ζ(s, j

2ν+2 ) − ζ(s, 1 − j
2ν+2 )

)
.

Note that L(s, χ4) = 1
4s

(
ζ(s, 14 ) −ζ(s, 34 )

)
by (3.5). Thus, F0(s) = 4sL(s, χ4) and hence (3.6) holds for ν = 0

(i.e. t = 2).
We now consider the remaining cases, that is ν > 0 (i.e. t ≥ 3). Suppose χ is a Dirichlet character mod k. 

Then, there is some primitive Dirichlet character ψ mod d, with d | k (the conductor), such that χ = ψ ·χ1,k, 
where χ1,k is the principal Dirichlet character mod k, and

L(s, χ) = L(s, ψ)
∏

(1 − χ(p)
ps ). (3.12)
p|k
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Now, for t ≥ 3, let χ2t be the real Dirichlet character mod k = 2t induced by the primitive character χ4, 
that is χ2t = χ4 · χ1,2t . Thus, χ2t(2j) = 0 and χ2t(2j + 1) = (−1)[ j2 ].

On one hand, since k = 2t, by (3.12) we have

L(s, χ2t) = L(s, χ4)(1 − χ4(2)
2s ) = L(s, χ4). (3.13)

On the other hand, by (3.5) we have L(s, χ2t) = 1
2ts

∑
j∈I∗

2t
χ(j)ζ(s, j2t ). Thus, since χ2t(2t − j) =

χ2t(−1)χ2t(j) = −χ2t(j), we have

L(s, χ2t) = 1
(2t)s

∑
j∈I∗

2t−1

(−1)[
j
2 ] (ζ(s, j

2t ) − ζ(s, 1 − j
2t )
)

= 1
(2t)sFt−2(s). (3.14)

From (3.13) and (3.14), we have

Fν(s) = 2νsL(s, χ2ν+2) = 2tsL(s, χ4),

with t = ν + 2 ≤ r. Putting this in (3.11) we get (3.6) for any 0 ≤ ν ≤ r − 2.
Finally, note that by (1.1) we have η(s) =

∑
λ>0(d

+
λ − d−λ )λ−s, where d±λ is the multiplicity of ±λ. 

Therefore, symmetry in the spectrum implies η(s) = 0 for every s, a contradiction. Thus the spectrum is 
asymmetric and the result follows. �

Notice that, by (3.3), the dependence of η(s) on the metric is given by ν ∈ N0 (with �γ = 2ν�, � odd) 
and λB = ‖vB‖ ∈ R where (Λ∗)B = ZvB and γ = BLb is the generator of Λ\Γ.

Remark 3.3. Expression (3.6) for η(s) in Theorem 3.2 is very simple, compare with the general expression 
(3.3). By (3.10), a priori, all the functions ζ(s, 1

2t ), ζ(s, 3
2t ), . . . , ζ(s, 2

t−1
2t ) should appear in η(s), for every 

2 ≤ t ≤ r. However, as the proof of the theorem shows, great cancellations take place and Hurwitz zeta 
functions for only one t, namely ζ(s, j

2ν+2 ) for odd j = 1, 3, 5, . . . , 2ν+2 − 1, contribute to η(s).

Remark 3.4. Let MΓ be an orientable Z2r -manifold, r ≥ 2, of dimension n = 2m + 1, m odd, with Γ =
〈BLb, LΛ〉 and nB = 1. Suppose B = diag(B′, 1) with B′ ∈ SO(n − 1) and Λ = Λ′⊕⊥

Zen with Λ′ a 
B′-stable lattice in Rn−1. In this case, �γ = � is odd, i.e. ν = 0, for if not Γ would have torsion elements 
other than the identity. This is the case, for instance, for the tetracosm M1 (see (4.2)), the Z2r -manifolds 
in family F (see Section 5) and the exceptional Zp-manifolds, p odd prime (see [15, Proposition 2.2]). This 
is not the case in general, as Example 4.5 below shows.

Remark 3.5. By (the proof of) Theorem 3.2 and its previous results, the eta function of an n-dimensional 
Z2r -manifold (n = 4h −1) is non-trivial if and only if r ≥ 2 and c1 = 1, c2 = 0, c2r , c4 ≥ 1 with c4 odd. Hence, 
by (2.2), pB(x) = Φ1(x)Φ4(x)c4Φ2r (x)c2r g(x) where g(x) =

∏r−1
i=3 Φ2i(x)c2i with c2i ≥ 0, i = 3, . . . , r − 1.

Definition 3.6. For any fixed r ≥ 2, let nr be the minimal dimension for a Z2r -manifold having non-trivial 
eta function.

Thus, n2 = 3 for Z4-manifolds and for r ≥ 3 we have

nr = min
B∈G∗

n,r

{deg pB} = 2r−1 + 3, r ≥ 3, (3.15)

where G∗
n,r = {B ∈ GL(n) : o(B) = 2r and B has no (−1)-eigenvalues}, corresponding to the decompo-

sition pB(x) = Φ1(x)Φ4(x)Φ2r (x) = (x − 1)(x2 + 1)(x2r−1 + 1) in the above remark, that is g(x) = 1
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(i.e. c8 = c16 = · · · = c2r−1 = 0). In Section 5 we will show that Z2r -manifolds having non-trivial eta 
function exist for every r ≥ 2 and in every dimension n ≥ nr + 4k, k ≥ 0.

4. Eta invariant and examples

As a direct consequence of Theorem 3.2 we can now obtain the η-invariant of any n-dimensional 
Z2r -manifold. It is, up to a sign, a positive power of 2 which does not depend on n nor on r, but on 
the nature of the integral holonomy representation only.

Proposition 4.1. Let MΓ be a Z2r -manifold of dimn ≡ 3 mod 4 with F = 〈B〉 and put �γ = 2ν� with 
0 ≤ ν ≤ r − 2 and � odd. If nB > 1 or r = 1, then η = 0. If nB = 1 and r ≥ 2, then

η(MΓ) = σγ 2f(B)−2 ∈ Z, (4.1)

where σγ = −σvB (−1)[ �2 ] ∈ {±1} and f(B) is defined in (2.3).

Proof. By (3.6), using that ζ(0, a) = 1
2 − a, we simply get

η(MΓ) = η(0) = σγ 2f(B)−1{(1
2 − 1

4 ) − (1
2 − 3

4 )} = σγ 2f(B)−2.

We have c2r , c4 ≥ 1, by the comments after (3.8), and hence f(B) ≥ 2. Thus, η(MΓ) ∈ Z, and the result 
follows. �
Remark 4.2. (i) Expression (4.1) is very simple (compare with the general formula (3.4)).

(ii) The η-invariant is, up to sign, determined by f(B). To compute this number, one only needs to know 
the integral holonomy representation. However, to determine the sign, one needs to know γ and Λ explicitly.

(iii) Clearly, η(s) determines the η-invariant. The converse is not true in general, because of the depen-
dence on ν and λB in (4.1). However, η(s) = 0 if and only if η = 0.

(iv) By (4.1), the reduced eta invariant η̄ = 1
2 (η + d0) mod Z of any Z2r -manifold is 0 or 1

2 . Also, 
d0 = dim kerD can be computed by using Theorem 3.5 and Proposition 3.7 in [25].

In dimension 3, there are Z2r -manifolds for r = 1, 2 only. Up to diffeomorphism, there are three 
Z2-manifolds and there is only one Z4-manifold, given by

M1 = Γ\R3, Γ = 〈γ = BL e3
4
, LZ3〉, B = diag(J1, 1), J1 =

( −1
1

)
. (4.2)

This manifold, known as the tetracosm after [33], gives a nice example in spectral geometry, being one of 
the ‘spectral twins’, i.e. the only two isospectral-on-functions and non-isometric compact 3-manifolds [7].

Corollary 4.3. Let MΓ be a Z2r -manifold of dimension n ≡ 3 mod 4. If n ≥ 7 then η ∈ 2Z. If n = 3 then 
η = 0 for Z2-manifolds and η = ±1 for Z4-manifolds.

Proof. We know that f(B) ≥ 2 and, by (4.1), η(MΓ) ∈ 2Z if and only if f(B) ≥ 3. By Corollary 2.3 we 
have c2r , c1 ≥ 1. By Remark 3.5, η �= 0 if and only if r ≥ 2 and c1 = 0, c2 = 0, c4, c2r ≥ 1. Thus, in 
dimension 7, if η �= 0, we have c1, c4, c2r ≥ 1 with r > 2, and hence η ∈ 2Z. On the other hand, f(B) = 2 if 
and only if r = 2 and c4 = 1 (i.e. r = 2, m = 1) and thus MΓ is a 3-dimensional Z4-manifold. Thus, MΓ is 
diffeomorphic to the tetracosm M1 defined in (4.2). It is known that η(M1) = −1 (see [26, §3.1]). Since the 
η-invariant is preserved by diffeomorphisms up to sign, and this sign changes with a change of orientation 
(see [1]), the result readily follows. �
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Next, we will illustrate with two examples the method for computing η-invariants given by Proposition 4.1.

Example 4.4 (tetracosm). We now compute the η(s) and η-invariant of M1 (see (4.2)).
(i) Note that pB(x) = (x − 1)(x2 + 1), hence f(B) = 2 and η(M1) = −σB(−1)[�γ/2]. Also, vB = e3 and 

xB = x(π2 ), then σB = 1 and �γ = 1. Thus η(M1) = −1 and

η(s) = −2
(8π)s {ζ(s,

1
4 ) − ζ(s, 3

4 )}.

(ii) Suppose now that we take γ3 = B3L 3
4 e3

as the generator of Γ. Since B3 = diag(−J1, 1), we have 
xB3 = x(−π

2 ), hence σB3 = −σB = −1, and �γ3 = 3. Thus, we also get η(M1) = −1. On the other hand, 
let M ′

1 = Γ′\R3, with Γ′ = 〈γ′ = B3L 1
4 e3

, LZ3〉. We have σB3 = −1 and �γ = 1 and thus η(M ′
1) = 1. Taking 

(γ′)3 = (B3)3L 3
4 e3

= BL 3
4 e3

as the generator of Γ′, we also get η(M ′
1) = 1.

(iii) Any diffeomorphism between cfm’s is given by conjugation of the corresponding Bieberbach 
groups by an element in the affine group. Suppose that C(BLb)C−1 = B′Lb with C ∈ GL(3). Then, 
CBC−1LCb = B3Lb, i.e. CBC−1 = B3 and Cb = b. Then, one can take C = diag(1, −1, 1) and thus 
ϕC(M1) = CΓC−1\R3 = Γ′\R3 = M ′

1. Since detC = −1, ϕC is an orientation reversing diffeomorphism 
between M1 and M ′

1, and M ′
1 = M−

1 , the tetracosm with the opposite orientation. We saw in (i) that 
η(M1) = −η(M−

1 ).

In Section 5 we will define a family of Z2r -manifolds (with η �= 0) having integral holonomy representations 
of a special kind (see (5.1), (5.2)), that we will refer to as regular Z2r -representations. It is difficult, in general, 
to construct non-regular Z2r -representations. One way to do that, is to look up at Z2r -manifolds in the 
classification of low dimensional cfm’s (dim ≤ 7) in carat [3], and assemble some different representations 
together (taking some care with the translation lattices). However, the resulting associated Z2r -manifold 
will have η = 0, in general. In the next example we construct a Z8-manifold having non-regular integral 
representation with η �= 0.

Example 4.5 (Z8-manifold, integral holonomy representation, η �= 0). Consider the matrix B̃ = diag(K,

J1) ∈ SL(5, Z) × SO(2, Z) ⊂ GL(7, Z), where

K =
( 1 0 0 1 0

0 0 1 0 0
0 0 0 −1 0

−1 0 0 0 −1
−1 −1 0 −1 0

)
and J1 =

(
0 −1
1 0

)
.

It is immediate to check that K has order 8, with eigenvalues ±e
πi
4 , ±e

3πi
4 , 1 and that J1 has order 4 

with eigenvalues ±i. Take the lattice Λ = Λ5 ⊕ Λ2 ⊂ R7, where Λ5 = Zf1 ⊕ · · · ⊕ Zf5 is K-stable and 
Λ2 = Ze6 ⊕ Ze7. Also, one checks that nB̃ = nK = 1 with ΛB̃ = ΛK = Z(f1 − f5). We claim that

Γ̃ = 〈γ̃ = B̃L 1
2f1 , LΛ〉

is a discrete cocompact torsion-free subgroup of Aff(R7). In fact, the lattice Λ5 exists, since K appears as a 
subrepresentation of the 6-dimensional Bieberbach group with point group Z8 given by the Z-class labeled
468.1.2 in [3]. Also, by looking at the Bieberbach group with holonomy group Z2 × Z8 given by the Z-class 
labeled 4407.1.3, one deduces that 1

2f1 can be used as translation vector for K (and B̃), hence giving rise 
to a torsion-free group.

Since B̃ is conjugate in GL(7) to B = diag(x(π4 ), x(3π
4 ), x(π2 ), 1) ∈ T7 ⊂ SO(7) (or to B′ =

diag(x(−π
4 ), x(3π

4 ), x(π2 ), 1), hence σvB = 1 or −1, respectively), there exists C ∈ GL(7) such that 
CB̃C−1 = B. In this way, we have that

Γ = CΓ̃C−1 = 〈γ = BL 1Cf , LCΛ〉 ⊂ I+(R7) ,

2 1
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and hence Γ is a 7-dimensional Bieberbach group. It is thus clear that M = Γ\R7 is an orientable Z8-manifold 
having integral holonomy representation given by the matrix B.

Now, one has that f(B) = 3, since

pB(x) = pK(x)pJ1(x) =
(
(x− 1)(x4 + 1)

)
(x2 + 1) = Φ1(x)Φ4(x)Φ8(x),

and thus η(M) = ±2, by (4.1). The sign σγ = ±1 can be determined provided one knows C and Λ5 explicitly.

Remark 4.6. In [35], by using results in [6], the η-invariants of 7-dimensional cfm’s M having cyclic holon-
omy group with a special holonomy representation are computed. The expression for η(M) involves sums 
of products of cotangents at special angles. For such M , Theorem 1 in [35] claims that η(M) ∈ Z. How-
ever, the integrality of η comes out after computations with the software ‘Mathematica’. There are 126 
non-diffeomorphic Z2r -manifolds in this family (roughly 1

3 of the total), involving only r = 1, 2, 3. Our 
Proposition 4.1 assures that indeed η ∈ Z for these Z2r -manifolds, and also allows one to compute the 
η-invariant in all the cases not covered by the mentioned theorem (see the table before Example 2 in [35]).

5. A distinguished family of ZZZ2r -manifolds

5.1. The family F

For any r ∈ N, we will construct an infinite family of orientable Z2r -manifolds in dimensions n = 4h − 1, 
h ≥ 1, each having holonomy group F ⊂ SO(n, Z). For r ∈ N, let Ir be the r × r identity matrix and put

Cr =
(

−1
I2r−1

)
and Jr =

(
Jr−1

I2r

)
(5.1)

where J0 = (−1). Thus, for instance, C1 =
(

−1
I1

)
= J1, J2 =

(
J1

I2

)
and J3 =

(
J1

I2
I4

)
. It is easy to 

check that Cr, Jr ∈ SO(2r, Z). For instance, for r ≤ 3 we have

r Cr Jr Order Size

1
(

−1
1

) (
−1

1

)
4 2

2

⎛
⎝ −1

1
1

1

⎞
⎠

⎛
⎝ −1

1
1

1

⎞
⎠ 8 4

3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1

1

1

1

1

1

1

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1

1

1

1

1

1

1

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

16 8

Since Cr is the companion matrix of the cyclotomic polynomial Φ2r+1(x) = x2r + 1, it has order 
o(Cr) = 2r+1 and its eigenvalues are the primitive 2r+1-th roots of unity. Similarly, one can check that 
Jr has order 2r+1 and is conjugate to Cr in GL(2r, R), hence with the same eigenvalues as Cr. Thus, the 
rotation angles for both Cr and Jr are

π
2r ,

3π
2r ,

5π
2r , . . . ,

(2r−1)π
2r .

Since Cr and Jr do not have ±1-eigenvalues, we have n±Cr
= n±Jr

= 0, for every r ≥ 2.
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For any integer r ≥ 2 and jr−1, . . . , j1 ∈ N0, with jr−1 > 0, we put j(r) = (jr−1, . . . , j2, j1) and define 
the matrices

Bj(r) = diag
(
Cr−1, . . . , Cr−1︸ ︷︷ ︸

jr−1

, . . . , C1, . . . , C1︸ ︷︷ ︸
j1

, 1
)
,

B′
j(r) = diag

(
Jr−1, . . . , Jr−1︸ ︷︷ ︸

jr−1

, . . . , J1, . . . , J1︸ ︷︷ ︸
j1

, 1
)
.

(5.2)

It is clear that Bj(r) and B′
j(r) have order 2r and belong to SO(n, Z), where

n = 2r−1jr−1 + · · · + 4j2 + 2j1 + 1 = 2(2r−2jr−1 + · · · + 2j2 + j1) + 1 . (5.3)

Thus, n = 2m + 1 with m = 2r−2jr−1 + · · · + 2j2 + j1, and m is odd if and only if j1 is odd.
More generally, for each r, n and jr−1, . . . , j1 satisfying (5.3) we can take pairs ki, k′i ∈ N0 such that 

ki + k′i = ji for i = 1, . . . , r − 1 and define

Bk(r) = diag
(
Cr−1, . . . , Cr−1︸ ︷︷ ︸

kr−1

, Jr−1, . . . , Jr−1︸ ︷︷ ︸
k′
r−1

, . . . , C1, . . . , C1︸ ︷︷ ︸
k1

, J1, . . . , J1︸ ︷︷ ︸
k′
1

, 1
)
. (5.4)

Since C1 = J1, for simplicity we will take k1 = j1 and k′1 = 0. In this way, Bk(r) = Bj(r) if k(r) =
(jr−1, 0, . . . , j2, 0, j1) and Bk(r) = B′

j(r) if k(r) = (0, jr−1, . . . , 0, j2, j1). Also, nB = 1 and xB is as given in 
(3.7) with c2i+1 = ji, i = 1, . . . , r − 1, that is

xB = xjr−1,...,j1 = x( π
2r−1 ,

3π
2r−1 , . . . ,

(2r−1−1)π
2r−1︸ ︷︷ ︸

jr−1

, . . . , π
8 ,

3π
8 , 5π

8 , 7π
8︸ ︷︷ ︸

j3

, π
4 ,

3π
4︸ ︷︷ ︸

j2

, π
2︸︷︷︸
j1

). (5.5)

Define the Bieberbach groups

Γk(r) := 〈γ = Bk(r)Lbr , LΛ〉, br = 1
2r en (5.6)

where j1 is odd and Λ = Ze1 ⊕ · · · ⊕ Zen is the canonical lattice in Rn. Since Bk(r) ∈ SO(n) and F =
〈Bk(r)〉 � Z2r , we have the associated orientable Z2r -manifold

Mk(r) := Γk(r)\Rn (5.7)

of dimension n = 2m + 1 ≡ 3 mod 4.

Definition 5.1. For a fixed r, let Fr denote the set of all Z2r -manifolds as in (5.7) and let F =
⋃∞

r=1 Fr. 
Also, put F(n) = {M ∈ F : dimM = n} and Fr(n) = Fr ∩ F(n).

Then, we have that F(n) consists of Z2r -manifolds with 1 ≤ r ≤ t = �log2 n�. In other words, if 
2t−1 < n ≤ 2t − 1,

F(n) = F1(n) ∪ F2(n) ∪ · · · ∪ Ft(n).

Moreover, for any fixed r, the number of Z2r -manifolds in dimension n of the form Mj(r) equals the 
number of partitions of n into the first r-powers of two, i.e., 2t with 0 ≤ t ≤ r− 1. This number is known as 
the binary partition function and is denoted by b(n). Since j1 ≥ 1, we have that #Fr(n) ≥ b(n − 3). Mahler 
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showed that the logarithm of b(n) grows like (logn)2/2 log 2 as n grows to infinity ([19], see also [31]). Thus, 
asymptotically, we have

#Fr(n) ∼ (n− 3)
√

log2(n−3).

On the other hand note that, for a given r, the minimal dimension for M ∈ Fr is n = 2r−1 + 3 for r ≥ 3
(since jr−1, j1 ≥ 1 and ji = 0 for 2 ≤ i ≤ r − 2) and n = 3 for r = 2 (since jr−1 = j1 in this case). Thus, 
min{dimM : M ∈ Fr} = nr (see (3.15)).

Example 5.2. We now describe the manifolds in F in the lowest dimensions. There is only one 3-manifold 
in F , the tetracosm M1 in (4.2). In dimension 7, there are 3 manifolds in F ; two Z8-manifolds M1,0,1, M0,1,1, 
determined by diag(J2, J1, 1), diag(C2, J1, 1), and the Z4-manifold M3 given by diag(J1, J1, J1, 1). In 
dimension 11, we have 8 manifolds in F ; two Z16-manifolds M1,0,0,0,1 and M0,1,0,0,1, given by the 
matrices diag(C3, J1, 1) and diag(J3, J1, 1); five Z8-manifolds M2,0,1, M1,1,1, M0,2,1, M1,0,3 and M0,1,3
given respectively by diag(C2, C2, J1, 1), diag(C2, J2, J1, 1), diag(J2, J2, J1, 1), diag(C2, J1, J1, J1, 1) and 
diag(J2, J1, J1, J1, 1); and the Z4-manifold M5 determined by diag(J1, J1, J1, J1, J1, 1).

5.2. Homology and η-invariants

We will now compute the first integral homology and cohomology groups for all the manifolds in F , 
showing that H1(M, Z) has only 2-torsion.

Proposition 5.3. Let M = Mk(r) ∈ F . Then

H1(M,Z) � Z⊕ Z
jr−1+···+j1
2 (5.8)

with ji = ki + k′i for 1 ≤ i ≤ r − 1, and

H1(M,Z) � Z, H1(M,Z2) � Z
jr−1+···+j1+1
2 . (5.9)

Proof. We will first compute H1(MΓ, Z) = Γ/[Γ, Γ], where Γ = Γk(r) = 〈γ, Le1 , . . . , Len〉. There are 3 kinds
of commutators: [Lλ, Lλ′ ] = I, [γ, Lλ] and [γ, γ′]. Since F is cyclic, every element in Γ is of the form γiLλ and 
thus [γiLλ, γjL′

λ] = [γi, γj ][Lλ, Lλ′ ] = I for every i, j ∈ Z, λ, λ′ ∈ Λ. Also, [γ, Lλ] = BLbLλL−bB
−1L−λ =

LBλ−λ. Therefore,

[Γ,Γ] = 〈[γ, Lλ] : λ ∈ Λ〉 = L(B−I)Λ.

We now study the action of each of the blocks Ci and Ji on Λi ⊆ Λ, with Λi � Z2i . For every 1 ≤ i ≤ r−1, 
let e1, . . . , e2i be any Z-basis of Λi. For Ci, we have

(Ci − I2i)ej = ej+1 − ej , 1 ≤ j ≤ 2i − 1, and (Ci − I2i)e2i = −e1 − e2i .

By putting fj = ej+1 − ej for 1 ≤ j ≤ 2i − 1 and f2i = −e1 − e2i , we have that

(f1 + · · · + fj−1) − (fj + · · · + f2i) = 2ej , 1 ≤ j ≤ 2i,

and thus 2ej ∈ L(Ci−I2i )Λi
for every 1 ≤ j ≤ 2i. Furthermore, since Lej − Lej−1 ∈ [Γ, Γ] for 1 ≤ j ≤ 2i, we 

have that Lej ∼ Lek , 1 ≤ j, k ≤ 2i, in the quotient Γ/[Γ, Γ]. Therefore,
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〈Le1 , . . . , Le2i
〉/〈Lf1 , . . . , Lf2i

〉 � Z2,

and thus, every block Ci gives rise to one Z2 in the quotient Γ/L(B−I)Λ.
On the other hand, for the block Ji, it will be convenient to look up at the ej ’s with j in the intervals 

1 ≤ j ≤ 2i−1, 2i−1 +1 ≤ j ≤ 2i−1 +2i−2, 2i−1 +2i−2 +1 ≤ j ≤ 2i−1 +2i−2 +2i−3, and so on. We then have

(Ji − I2i)ej(l,k) = e2i−l+k − ej(l,k), 1 ≤ k ≤ 2i, 1 ≤ l ≤ r,

where j(l, k) = 2i−1 + 2i−2 + · · · + 2i−(l−1) + k. As before, by putting gj = e2i−l+k − ej(l,k) and looking at 
the sums of the form 

∑
j ±gj one sees that 2ej ∈ L(Ji−I2i )Λi

for every 1 ≤ j ≤ 2i. Also, we again have that 
Lej ∼ Lek ∈ [Γ, Γ] for 1 ≤ j, k ≤ 2i. Thus, every block Ji induces a Z2 in the quotient Γ/L(B−I)Λ.

Moreover, since γ2r = Len , it is clear that 〈γ, Len〉 generates an infinite cyclic group in Γ/L(B−I)Λ. As a 
result of all these observations we get expression (5.8).

Now, it is known that Hn(M, Z) � Fn ⊕ Tn−1, where Fn and Tn are the free and the torsion part of 
Hn(M, Z), respectively. Since H0(M, Z) � Z, by (5.8) we get H1(M, Z) = Z, as desired. Finally, by the 
universal coefficient theorem, we have

H1(M,Z2) � Hom(H1(M,Z),Z2) ⊕ Ext(H0(M,Z),Z2)

� Hom(Z⊕ Zjr−1+···+j2+j1),Z2),

where we have used that Ext(H0(M, Z), Z2) � Ext(Z, Z2) � 0, since Z is projective. Finally, since 
Hom(⊕iGi, G) =

⊕
i Hom(Gi, G) and Hom(Z, Z2) = Hom(Z2, Z2) = Z2 we obtain that H1(M, Z2) �

Z
jr−1+···+j2+j1+1
2 , and the proof is now complete. �
As a result, we can count the number of spin structures of the manifolds in F .

Corollary 5.4. Every M = Mk(r) ∈ F is spin and has 2jr−1+···+j1+1 spin structures.

Proof. By applying the methods used in [22] or [32] (see Theorem 2.1 or Proposition 2.2, respectively, 
and their previous comments), one can prove that M is a spin manifold (and get all the spin structures 
explicitly). The number of spin structures of M is then given by #H1(M, Z2) = 2jr−1+···+j1+1 [17]. �
Question 5.5. Let a(r) = (ar−1, a′r−1, . . . , a2, a′2, j1) and b(r) = (br−1, b′r−1, . . . , b2, b

′
2, j1) be two (2r −

1)-tuples satisfying ai + a′i = bi + b′i = ji for 2 ≤ i ≤ r − 1, but with a(r) �= b(r). Then, Ma(r) and Mb(r)
have, in general, different integral representations. Since they have the same eigenvalues, Cr and Jr are 
conjugate in R. Are they still conjugate in Z? In other words, are Ma(r) and Mb(r) equivalent as cfm’s? 
Proposition 5.3 gives no answer to this question.

Remark 5.6. In [32, (2.1)–(2.3)], we have defined a family Fn = {Mj,k,l} of n-dimensional Z4-manifolds, 
n = 2m +1, and we obtained that H1(Mj,k,l, Z) � Zl ⊕Z

j+k
2 (see Lemma 2.1). If m is odd and Λ = Zn, the 

manifolds Mj,0,1 ∈ Fn are exactly the Z4-manifolds of the form Mj(r) = Mj ∈ F2 in this paper. This is in 
agreement with (5.8). Corollary 5.4 says, for example, that the tetracosm M1 has 21+1 = 4 spin structures. 
This is also in coincidence with Proposition 2.2 and Corollary 2.3 in [32].

Remark 5.7. It is possible to define a bigger family F̃ , using also matrices of order ≤ 2. That is, we can add 
2 × 2 blocks J = ( 1

1 ) and ±I = (±1
±1 ). Thus, consider the matrix

Bκ(r) := diag
(
B′

k(r), J, . . . , J︸ ︷︷ ︸,−I, . . . ,−I︸ ︷︷ ︸
′

, I, . . . , I︸ ︷︷ ︸, 1)

k0 k0 i0
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with k0, k′0 even and where B′
k(r) denotes the matrix Bk(r) in (5.4) with the 1 in the last position removed. 

Similarly as in (5.6)–(5.7) we define the group Γκ(r) and the corresponding Z2r -manifold Mκ(r) of dimension 
n = 2r−1jr−1 + · · · + 4j2 + 2(j1 + j0 + i0) + 1, where j0 = k0 + k′0. Hence, j1 + i0 must be odd for n to be 
congruent to 3 mod 4. For Mκ(r) ∈ F̃ , proceeding similarly as in the proof of Proposition 5.3, one obtains

H1(Mκ(r),Z) = Z
jr−1+···+j1+k′

0
2 ⊕ Zk0+i0+1.

Similar results can be obtained for H1(Mκ(r), Z) and H1(Mκ(r), Z2). However, we have η(Mκ(r)) = 0 unless 
Mκ(r) ∈ F , i.e. j0 = i0 = 0 and Mκ(r) = Mk(r).

As a consequence of our previous results we have that, for manifolds in F , the η-invariant has a strong 
topological meaning. In fact, it is related with the order of the torsion group T (which equals the 2-torsion) 
of the first integral homology group and with the number of spin structures.

Proposition 5.8. If M = Mk(r) ∈ F then

η(M) = −2jr−1+···+j1−1 = −1
2 |T | = 1

4#Spin(M) �= 0, (5.10)

where T is the torsion subgroup of H1(M, Z) and Spin(M) = {spin structures on M}.

Proof. Suppose M = Mk(r) of dimension n = 2m + 1, with m odd, and ki + k′i = ji for 1 ≤ i ≤ r. Then, 
m = 2r−2jr−1 + · · ·+2j2 +j1 with ji = c2i+1 for 1 ≤ i ≤ r−1. Since vB = en we have � = 1, ν = 0 and hence 
�γ = 1; and thus the expression for η(s) follows from (3.6). Since σB = 1 and f(B) = jr−1 + · · · + j1 + 1, 
by (4.1), we have η = −2jr−1+···+j1−1. The result readily follows from (5.8) in Proposition 5.3. �
Question 5.9. For the Z8-manifold M of Example 4.5, Proposition 5.3 and Proposition 5.8 do not apply. 
Proceeding similarly as in (the proof of) Proposition 5.3, we can check that H1(M, Z) = Z ⊕ Z2

2 and, since 
η(M) = ±2, we still have η(M) = ±1

2 |T | as in (5.10). Does this phenomenon hold in general or is there a 
Z2r -manifold M /∈ F with non-trivial η-invariant such that η(M) �= −1

2 |T |?

Question 5.10. If M is an arbitrary Z2r -manifold, is η(M) completely determined by H1(M, Z) as it is the 
case for manifolds in F? The best we can say is the statement of Lemma 6.1 below.

Remark 5.11. By definition, every Z2r -manifold M ∈ F has a generator γ = BLb with b = 1
2r en and 

hence �γ = 1. For a given M , we can define M� with b replaced by b� = �
2r en, � odd (these manifolds are 

diffeomorphic but non-isometric to each other). Clearly, we have �γ = � and η(M�) = (−1)[�/2] η(M), for 
every � odd.

Note that, for fixed r, the η-invariant determines the eta function η(s). In fact, by Theorem 3.2 and 
Proposition 4.1, we have

η(s,M) = − 2η(M)
(2r−1−νπλB)sL(s, χ4). (5.11)

Since manifolds in F have ν = 0 (�γ = 1) and λB = 1, it is clear that if M, M ′ ∈ Fr then

η(M) = η(M ′) ⇒ η(s,M) = η(s,M ′).

This may not be the case in general because of the numbers r, ν and λB; since it could well happen that 
2r−1−νλB = 2r′−1−ν′

λ′
B .
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6. The image of η∗

We now consider the following subfamilies of the set M of all Z2r -manifolds: the subset Mr of 
Z2r -manifolds with fixed r (arbitrary dimension), the subset M(n) of n-dimensional Z2r -manifolds (ar-
bitrary r) and the subset Mr(n) = Mr ∩ M(n), with both r and n fixed. Clearly, F ⊂ M, Fr ⊂ Mr, 
F(n) ⊂ M(n) and Fr(n) ⊂ Mr(n).

The aim of this section is to study the image of the map

η∗ : M → Z, M �→ η(M) (6.1)

and its restrictions η∗r to Mr and η∗(n) to M(n). By Proposition 4.1, it is clear that

Im η∗ ⊆ {0,±1} ∪ {±2k : k ∈ N}.

The extreme cases, i.e. Z2-manifolds and 3-dimensional Z2r -manifolds, are trivial ones, since η = 0 if r = 1
and η = 0, ±1 if n = 3; i.e. Im η∗1 = {0} and Im η∗(3) = {0, ±1}.

Since we are considering dimensions n ≡ 3 mod 4, for M ∈ F , n is as given in (5.3) with j1 odd. Out 
of all possible partitions of n into powers of 2, the 2-adic expansion of n is a proper partition with the 
minimum number of parts. Let τ(n) be this number, i.e.

τ(n) = τ if n = 2aτ + · · · + 2a2 + 2a1 , 0 ≤ a1 < a2 < · · · < aτ . (6.2)

Equivalently, if n = bm2m + · · ·+ b323 + b222 + b12 + b0 for some m, with bi ∈ {0, 1}, 1 ≤ i ≤ m, then τ(n)
equals the number of nonzero bi’s. In our case, we have τ(3) = 2 and τ(n) ≥ 3 for n ≥ 7. Furthermore, 
τ(nr) = 3 for any r ≥ 2 and τ(n) ≥ 4 for n �= nr, where we recall that, by (3.15) and (5.3),

nr = min
M∈Fr

{dimM} = min
M∈Mr

{dimM : η(M) �= 0} = 2r−1 + 3. (6.3)

We now show that given a general Z2r -manifold M with η �= 0, the value η(M) can be obtained as the 
eta invariant of some manifold in the family F .

Lemma 6.1. If M ∈ M then η(M) = 0 or η(M) = η(Mk(r)) for some Mk(r) ∈ F .

Proof. Let M be any orientable Z2r -manifold of dimension n, with point group F = 〈B〉. By Proposition 4.1, 
η(M) = 0 if nB > 1 or r = 1, while η(M) = ±2f(B)−2 otherwise. So, assume that nB = 1 and r ≥ 2. Since 
B is conjugate to xB = xjr−1,...,j1 as in (5.5) (or to x′

B, see Proposition 2.2), B is also conjugate in GL(n) to 
the matrix CB = diag(Bj(r), 1) with k(r) = (jr−1, . . . , j1) as in (5.2). Thus, η(M) is determined (up to sign) 
by the number of matrices Ci or Ji, 1 ≤ i ≤ r − 1, in CB . Finally, if η(M) = −η(Mk(r)), then considering 
M−

k(r) (the manifold Mk(r) with the opposite orientation) we get η(M) = η(M−
k(r)). �

We now describe the image of η∗(n) for every dimension n.

Theorem 6.2. Let n = 2m + 1, with m odd, be fixed. Then, Im η∗(n) = {0} for r = 1, Im η∗(n) = {0, ±2m−1}
for r = 2 and

Im η∗(n) = {0,±2τ(n)−2,±2τ(n)−1, . . . ,±2m−1}, r ≥ 3. (6.4)

In particular, Im η∗(nr) = {0, ±2, ±22, . . . , ±22r−2 = ±2nr−3
2 }. Therefore, Im η∗1 = {0}, Im η∗2 = {0, ±4k}k∈N0

and Im η∗r = {0, ±2k}k∈N for r ≥ 3.
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Proof. By Lemma 6.1, we can assume that M ∈ Fr(n) and, without loss of generality, that M = Mj(r) as 
in (5.2)–(5.7). By Proposition 4.1, Im η∗(3) = {0, ±1}, with the values ±1 attained by the tetracosm. From 
now on, suppose that n ≥ 7 and η �= 0. Hence, by (4.1), nB = 1 and r ≥ 2. Fix the dimension

n = 2(2r−2jr−1 + · · · + 2j2 + j1) + 1 jr−1 > 0, j1 odd.

If r = 2, then n = 2j1 + 1 = 2m + 1 and thus f(B) = m + 1. Hence, η(M) = ±2m−1 by (4.1). The 
positive value 2m−1 is attained by the manifold Mm ∈ F determined by Bm = diag(C1, . . . , C1, 1), with C1
repeated m-times.

Let r ≥ 3. If n = nr = 2r−1 + 3, all the values 2, 4, 8, . . . , 2m−1 are attained by the η-invariants on the 
following manifolds. Notice that M (1) = M1,0,...,0,1 ∈ Fr, determined by the matrix diag(Cr−1, C1, 1), has 3 
blocks and hence η(M (1)) = 2. By replacing the block Cr−1 by 2 blocks Cr−2 we get M (2) = M0,2,0,...,0,1 ∈
Fr−1 determined by diag(Cr−2, Cr−2, C1, 1) with 4 blocks, and hence η(M (2)) = 24−2 = 4. Now, by replacing 
one block Cr−2 from the previous matrix by 2 blocks Cr−3 we get M (3) = M0,1,2,0,...,0,1 ∈ Fr−1 determined 
by diag(Cr−2, Cr−3, Cr−3, C1, 1) with 5 blocks, and hence η(M (2)) = 25−3 = 8. It is clear that, by repeating 
this ‘splitting block’ procedure, i.e. by replacing some block Cji of M (i) by 2 blocks Cji−1 (this changes the 
η-invariant keeping the dimension unaltered), we get a finite sequence of Z2t-manifolds

M (1),M (2), . . . ,M (m−1)

(with different t’s, 3 ≤ t ≤ r), determined by diagonal block matrices with 3, 4, . . . , m +1 blocks respectively, 
and hence, with corresponding η-invariants 21, 22, . . . , 2m−1. Since n = 2m + 1, we have m = 2r−2 + 1 and 
hence m −1 = 2r−2 = n3−3

2 . Here, M (m−1) is the Z4-manifold determined by the matrix diag(C1, . . . , C1, 1), 
with C1 repeated m times. The splitting of blocks is not unique, but there is at least one. Also, by dimension 
issues, it is clear that 2m−1 is the maximum possible value for η.

In case n �= nr, we proceed similarly as before. We begin with M (1) = Mjr−1,...,j1 , where jr−1 = j1 = 1
and ji1 , . . . , jiτ−3 ≥ 1 with τ = τ(n) – the other jk’s being 0 – such that

n = 2r−1 + (
τ−3∑
k=1

2ikjik) + 3 = nr +
τ−3∑
k=1

2ikjik .

By replacing some block Cji by 2 blocks Cji−1 and iterating this process, we get a sequence M (1), M (2), . . . ,
M (m−τ+2) of Z2t-manifolds (with different t’s, t ≤ r), respectively determined by diagonal block matrices 
with τ, τ + 1, . . . , m + 1 blocks, and hence with corresponding η-invariants 2τ−2, 2τ−3, . . . , 2m−1.

To get trivial η-invariants for any n and r, just take the previous manifolds and replace one J1 by 
±I = (±1 0

0 ±1 ) (these manifolds will be not in F). To get the negative values, since η(M−) = −η(M), we 
just change the orientation of every M previously used.

The remaining assertions in the statement follow directly from the previous ones. �
As a direct result of the theorem, by taking n and r big enough we get every possible power of 2 as the 

η-invariant of a Z2r -manifold. That is,

η({Z2r -manifolds : r ∈ N}) = 0 ∪ {±2k : k ∈ N0}.

Example 6.3. We illustrate the results in Theorem 6.2. Using (6.4), in Table 1 below, we give the values 
of η(M) for M a Z2r -manifold in the lowest dimensions. For each fixed value of n, we give the 2-adic 
expansion, τ(n), the highest possible r for a Z2r -manifold in this dimension, and all the allowed values of η
(only non-negative values for simplicity).
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Table 1
η-Invariants for Z2r -manifolds, 3 ≤ n ≤ 63.

Dimension n τ(n) max r η-Invariant
3 = 2 + 1 = n2 2 2 0, 1

7 = 4 + 2 + 1 = n3 3 3 0, 2, 22

11 = 8 + 2 + 1 = n4 3 4 0, 2, 22, 23, 24

15 = 8 + 4 + 2 + 1 4 4 0, 22, 23, 24, 25, 26

19 = 16 + 2 + 1 = n5 3 5 0, 2, 22, . . . , 28

23 = 16 + 4 + 2 + 1 4 5 0, 22, 23, . . . , 210

27 = 16 + 8 + 2 + 1 4 5 0, 22, 23, . . . , 212

31 = 16 + 8 + 4 + 2 + 1 5 5 0, 23, 24, . . . , 214

35 = 32 + 2 + 1 = n6 3 6 0, 2, 22, . . . , 216

39 = 32 + 4 + 2 + 1 4 6 0, 22, 23, . . . , 218

43 = 32 + 8 + 2 + 1 4 6 0, 22, 23, . . . , 220

47 = 32 + 8 + 4 + 2 + 1 5 6 0, 23, 24, . . . , 222

51 = 32 + 16 + 2 + 1 4 6 0, 22, 23, . . . , 224

55 = 32 + 16 + 4 + 2 + 1 5 6 0, 23, 24, . . . , 226

59 = 32 + 16 + 8 + 2 + 1 5 6 0, 23, 24, . . . , 228

63 = 32 + 16 + 8 + 4 + 2 + 1 6 6 0, 24, 25, . . . , 230

Our next goal is to show that there exists an infinite number of infinite families of Z2r-manifolds in F
having constant η-invariant, one for every possible positive power of two.

Let nr,k denote the minimal dimension for a Z2r -manifold with η = 2k, i.e.

nr,k = min
M∈Mr

{dimM : η(M) = 2k}. (6.5)

By Theorem 6.2, this number is well defined for r ≥ 3, k ≥ 1 and for r = 2, k = 1 or k even. Note that 
nr,1 = nr and for r ≥ 2, k ≥ 1, by (4.1), we have

nr,1 ≤ nr,2 ≤ nr,3 ≤ · · · ≤ nr,k ≤ nr,k+1 ≤ · · ·

n2,k ≤ n3,k ≤ n4,k ≤ · · · ≤ nt,k ≤ nt+1,k ≤ · · ·

We now compute these dimensions.

Lemma 6.4. We have n2,2k = 3 + 2k for k ≥ 0 and for any r ≥ 3, k ≥ 1

nr,k = nr + [k2 ] = 2r−1 + [k2 ] + 3.

Proof. Let M ∈ Mr with r ≥ 2. By Lemma 6.1 we can assume that M = Mj(r) ∈ F . If r = 2, it is clear 
that n2,2k = 2k+3, attained by the manifold M2k+1 determined by the matrix B2k+1 = diag(J1, . . . , J1, 1), 
with J1 repeated 2k + 1 times.

Now consider the case r ≥ 3. It is clear that nr,1 = nr = 2r−1 + 3, attained by the manifold M1,0,...,0,1

determined by the matrix B1,0,...,0,1 = diag(Jr−1, J1, 1). To get η = 22 we need 4 blocks, so the minimum 
dimension where this can be achieved is 7 + 4 = 11 given by the manifold M1,0,...,0,1,1 determined by the 
matrix B1,0,...,0,1,1 = diag(Jr−1, J2, J1, 1). Similarly, for η = 23, the minimum dimension is also 11, attained 
by the manifold M1,0,...,0,3 determined by the matrix B1,0,...,0,3 = diag(Jr−1, J1, J1, J1, 1) (just split one 
block J2 into two J1’s). In general, the minimal dimension needed to get η = 22k or 22k+1 is the same. In 
fact, nr,2k = 2r−1 + 4 + 2(2k − 2) + 3 and nr,2k+1 = 2r−1 + 2((2k + 1) − 1) + 3, that is

nr,2k = nr,2k+1 = 2r−1 + 4k + 3 = nr + 4k,
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Table 2
All Z2r -manifolds in F with η = 8 in dimn ≤ 35.

dim Partition of n J4 J3 J2 J1 J0 r F

11 4 + 2 + 2 + 2 + 1 0 0 1 3 1 3 Z8
15 4 + 4 + 4 + 2 + 1 0 0 3 1 1 3 Z8
15 8 + 2 + 2 + 2 + 1 0 1 0 3 1 4 Z16
19 8 + 4 + 4 + 2 + 1 0 1 2 1 1 4 Z16
23 8 + 8 + 4 + 2 + 1 0 2 1 1 1 4 Z16
23 16 + 2 + 2 + 2 + 1 1 0 0 3 1 5 Z32
27 8 + 8 + 8 + 2 + 1 0 3 0 1 1 4 Z16
27 16 + 4 + 4 + 2 + 1 1 0 2 1 1 5 Z32
31 16 + 8 + 4 + 2 + 1 1 1 1 1 1 5 Z32

from which the expression in the statement directly follows. These dimensions are respectively attained 
by the manifolds M2,2k−1 and M1,2k+1, determined by the matrices B1,0,...,0,1,2k−1 = diag(Jr−1, J2, J1,

. . . , J1, 1), J1 repeated 2k − 1 times, and B1,0,...,0,2k+1 = diag(Jr−1, J1, . . . , J1, 1), J1 repeated 2k + 1
times. �
Example 6.5. (i) Let us construct Z27-manifolds M , M ′ with η(M) = 211, η(M ′) = 210. Since [ 112 ] = 5, the 
minimal dimension for M is given by n7,11 = n7 +4 ·5 = 26 +3 +20 = 87. We need 13 ‘blocks’, so take M =
M1,0,0,0,0,11 given by B = diag(E6, J1, . . . , J1, 1) with J1 repeated 11 times, where E6 = C6 or J6. As before, 
n7,10 = 87. Now, we need 12 blocks, thus we take M ′ = M1,1,0,0,0,10 given by B = diag(E6, E2, J1, . . . , J1, 1), 
J1 repeated 10 times, with Ei = Ci or Ji for i = 2, 6.

(ii) In Table 2, we give all the Z2r -manifolds in family F having η = 23 in dimensions n = 4k + 3 ≤ 35. 
These manifolds are defined by diagonal block matrices Bj(r) with the blocks in the set {J4, J3, J2, J1, J0}, 
as defined in (5.2).

We now show that there are infinite families of Z2r -manifolds with prescribed constant η-invariant and 
growing dimensions.

Corollary 6.6. For every positive integer k there is a family Gk = {Mi}∞i=1 ⊂ F such that η(Mi) = 2k for 
every i and dimMi ↗ ∞. In particular, for every r ≥ 2, one can take each Mr ∈ Gk having holonomy group 
of order 2r and minimal dimension nr,k.

Proof. It is sufficient to prove the second claim in the statement. Let k ≥ 1, r ≥ 2. By (4.1), to get η = 2k, 
we need to take a manifold in F with exactly k + 2 blocks. Consider the matrix

Br = diag(Jr−1, J2, . . . , J2︸ ︷︷ ︸
(k−1)-times

, J1, 1).

The induced manifold Mr in F has holonomy group of order 2r, η = 2k and dimension dimMr = 2r−1 +
4(k−1) +1 = 2r−1+4k−3 ≥ nr,k. To obtain minimal dimensions, just proceed as in the proof of Lemma 6.4, 
taking Br = diag(Jr−1, J2, J1, . . . , J1, 1) or Br = diag(Jr−1, J1, . . . , J1, 1), depending on whether k is even 
or odd. �
7. An alternative expression for η

In [25], we gave an expression for the η-invariant of any cfm (i.e., arbitrary holonomy representations, any 
translation lattice) following a direct approach; i.e., we first computed the multiplicities of the eigenvalues, 
then we found η(s) and finally we obtained η by evaluation at s = 0 (see Theorems 3.3, 3.5 and 4.2 in [25]).
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On the other hand, Donnelly has previously obtained an expression for the η-invariant for more general 
manifolds M (compact oriented Riemannian manifolds with a Lie group acting by isometries on it) in an 
indirect way [6, Theorem 3.4], by first computing the signature of a manifold M̃ with M = ∂M̃ , and then 
using the Atiyah–Patodi–Singer index theorem for manifolds with boundary in [1]. For a very special kind 
of cfm’s, namely those having holonomy group F ⊂ SO(n, Z) and canonical lattice Λ = Zn, the expression 
for η drastically simplifies [6, Proposition 4.12].

Since both methods are quite different, i.e. representation theoretical vs. topological ones, it is the author 
feeling that it is interesting to compare both expressions for the η-invariant, when possible (i.e. in the special 
case considered in [6]).

Donnelly considered cfm’s having holonomy group F ⊂ SO(n, Z) where each B ∈ F is of the form 
B = diag(B′, 1), B′ ∈ SO(n −1, Z). This is a rather restricted family, since if B ∈ SO(n, Z) then necessarily

Bei = ±ej(B,i) 1 ≤ i ≤ n− 1, Ben = en, (7.1)

where {ei} is the canonical basis of Rn. Such B induces a permutation matrix PB given by PBei = ej(B,i). 
Then, we have the decomposition PB = PB,1 · · ·PB,c into disjoint cycles. In other words, c = c(B) is the 
number of orbits of the action of B on the basis vectors. Clearly, c(B) = c(B′) + 1 ≥ 2. Notice that the 
matrices Bk(r) in (5.4) satisfy condition (7.1) and that

c(Bk(r)) = jr−1 + · · · + j1 + 1 = f(Bk(r)). (7.2)

We now recast Donnelly’s expression for the η-invariant in our present notations (with α = 1 the trivial 
representation) and with our sign conventions (σγ as in Theorem 3.2).

Proposition 7.1 ([6, Proposition 4.12]). Let MΓ be a compact flat manifold of dimension n ≡ 3 mod 4
with translation lattice Λ = Zn such that every γ = BLb ∈ Γ is of the form B = diag(B′, 1) where 
B′ ∈ SO(n − 1, Z) and b = aen, with a ∈ R. Then,

η[Do](MΓ) = σγ

|F |

∑
BLb∈(Λ\Γ)′

2c(B
′)
( m∏

j=1
cot
( tj(xB)

2
))

cot(πa). (7.3)

Note that (7.3) is formally very similar to (3.4), which is valid for arbitrary cfm’s. Both expressions 
involve sums of trigonometric products at special angles. The main difference seems to be the factors 2c(B)

for BLb ∈ Γ.
Since Z2r -manifolds in F satisfy the conditions in Proposition 7.1, they are specially suited for comparison, 

since Donnelly’s formula applies in this case. For Z2r -manifolds in F , the expression (7.3) can be explicitly 
computed.

Proposition 7.2. If M = Mk(r) ∈ F then η[Do](M) = 2jr−1+···+j1−1.

Proof. Starting from (7.3), and using that σB = 1, �γ = 1, F = 〈B〉 is cyclic of order N = 2r, with 
B = Bk(r), and that Bk ∈ F ′

1 if and only if k is odd, we get

η[Do](MΓ) = 2c(B
′)−r

∑
k∈I∗

2r

( m∏
j=1

cot
(ktj

2
))

cot(πk2r ) (7.4)

since c(Bk) = c(B) for any k odd. Now, by (5.5), we have
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m∏
j=1

cot
(ktj

2
)

=
( ∏

k∈I∗
2r

cot( jkπ
2r+1 )

)jr−1

· · ·
( ∏

k∈I∗
8

cot( jkπ16 )
)j3( ∏

k∈I∗
4

cot( jkπ8 )
)j2

cot(πk4 )j1

= (−1)[
k
2 ]j1

r−1∏
i=2

( ∏
k∈I∗

2i

cot( jkπ
2i+1 )

)ji

= (−1)[
k
2 ]

where in the last equality we have used that j1 is odd and Proposition A.4 in Appendix A. Hence, by (7.4),

η[Do](MΓ) = 2c(B
′)−r

∑
k∈I∗

2r

(−1)[
k
2 ] cot(πk2r ).

Thus, by Proposition A.5, η[Do](MΓ) = 2c(B′)−r 2r−1 = 2jr−1+···+j1−1, as asserted. �
Remark 7.3. (i) By Propositions 5.8, 7.2 and Lemma 6.1, Proposition 7.1 actually holds for arbitrary 
Z2r -manifolds; that is, for any lattice and any integral holonomy representation.

(ii) By Proposition 5.8 and (i), η[Do](MΓ) = η[MP](MΓ); i.e. Donnelly’s general expression for the 
η-invariant, restricted to Z2r -manifolds, coincides with our expression.

Donnelly’s expression (7.3) works for any cfm whose integral holonomy representation is restricted to 
SO(n, Z). In light of the previous results, one may ask if Proposition 7.1 can be generalized to hold with 
more generality. For Z2r -manifolds we have the previous remark. However, the condition on the holonomy 
representation cannot be removed for F �� Z2r , as the next example shows.

Example 7.4. Up to diffeomorphism, there is only one Z3-manifold in dim 3, the triscosm M3 = Γ3\R3 where 
Γ3 = 〈BL e3

3
, LΛ〉, B = diag(B′, 1), B′ = ( 0 −1

1 −1 ), and Λ = ΛH⊕Ze3, with ΛH = Ze1⊕Zf2, f2 = −1
2e1+

√
3

2 e2, 
the plane hexagonal lattice. It is known that η(M3) = −2

3 ([18], also [26,35]). However, applying (7.3), since 
xBk = x(2kπ

3 ) and c(Bk) = 2, k = 1, 2, one gets

η[Do](M3) = −2
3

∑
k=1,2

cot(kπ3 )2 = −2
3(1

3 + 1
3 ) = −4

9 .

Here, B′ /∈ SO(2) and, after conjugation, we get 
( cos(2π/3) − sin(2π/3)

sin(2π/3) cos(2π/3)
)
∈ SO(2) � SO(2, Z).

The Z3-manifold in the example is a particular case of Zp-manifolds, p odd prime (classified by Char-
lap [4]). See [15,23–26] for details on the construction/classification of Zp-manifolds, topological properties 
and computations of η(s) and η for both the spin Dirac and the APS operators.

Remark 7.5. Expression (7.3) cannot be applied to Zp-manifolds, with p an odd prime, because Zp-manifolds 
having non-trivial η-invariant have integral holonomy representations taking values in GL(n, Z) � SO(n)
(see §2 in [24], §4 in [26]). As before, one can show (with a little bit more effort) that by applying expression 
(7.3) anyway, we get a different result for η that when using formula (3.4).
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Appendix A. Trigonometric identities

The rotation angles of order 2r matrices give rise to interesting non-trivial trigonometric identities in-
volving products and alternating sums of sines and cotangents. The following notations will be useful in the 
sequel. For any positive integer N define

IN = {i ∈ N : 1 ≤ i ≤ N} and I∗N = {j ∈ IN : j odd}.

We will need the following technical result.

Lemma A.1. Let k, N ∈ N. If k is odd and N is even then

S∗
N (k) :=

∑
j∈I∗

N−1

[ jkN ] = (k−1)N
4 ∈ Z, (A.1)

where [ · ] is the floor function. In particular, S∗
N (k) ∈ 2Z for N = 2r, r ≥ 2.

Proof. Let SN (k) :=
∑N−1

j=1 [ jkN ] and note that SN (k) =
∑N/2

j=1 [ jkN ] +
∑N/2

j=1
[ (N−j)k

N

]
− [N2

k
N ]. Thus, we have [ (N−j)k

N

]
= [k − jk

N ] = k + [− jk
N ] = k − 1 − [ jkN ], since [x + n] = [x] + n for n ∈ Z and [−x] = −1 − [x] for 

x /∈ Z. Hence,

SN (k) =
∑

1≤j≤N/2

[ jkN ] +
(

(k−1)N
2 −

∑
1≤j≤N/2

[ jkN ]
)

+ [k2 ] = (k−1)N
2 + k−1

2 = (k−1)(N−1)
2 .

Now, SN (k) = S∗
N (k) + S∗

N/2(k) + · · · + S∗
4 (k) + S∗

2 (k) = S∗
N (k) + SN/2(k), by induction, and hence, 

S∗
N (k) = SN (k) − SN/2(k) = (k−1)

2
N
2 , and we are done. �

Sines. We now compute some products and alternating sums of sines at certain integer multiples of π
2r .

Proposition A.2. If r, k are positive integers with r ≥ 2 and k odd then∏
j∈I∗

2r

sin
(
jkπ
2r

)
= 1

22r−1−1 . (A.2)

Proof. Let N = 2r and assume k is odd. We will first prove that the product in (A.2) does not depend 
on k. For any fixed odd k, there are unique integers qj, rj such that jk = qjN + rj with 0 ≤ rj ≤ N − 1. If 
j is odd, then rj must be odd, and hence rj ≥ 1. Thus,

sin( jkπN ) = sin(qjπ + rjπ
N ) = (−1)qj sin( rjπN ). (A.3)

By modularity, for any k odd we have {1, 3, . . . , N − 1} = {k, 3k, . . . , k(N − 1)} mod N and hence 
{1, 3, . . . , N − 1} = {r1, r3, . . . , rN−1} mod N . Therefore, by (A.3)

∏
j∈I∗

2r

sin( jkπN ) = (−1)S
∗
N (k)

∏
j∈I∗

2r

sin( rjπN ) =
∏

j∈I∗
2r

sin( jπN ), (A.4)

where we have used that qj = [ jkN ] and S∗
N (k) as in (A.1) is even by Lemma A.1, since r ≥ 2.

It only remains to compute the last product in (A.4). We will first prove the identity
∏

j∈I∗

sin
(
jπ
2r

)
=

√
2

22r−2 . (A.5)

2r−1
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Assume that r ≥ 2, the case r = 1 being trivial. Let us define Π2r :=
∏2r−1

j=1 sin( jπ2r ) and Π∗
2r :=∏

j∈I∗
2r−1

sin( jπ2r ). We recall the identity 
∏[ d2 ]

j=1 sin( jπd ) =
√
d/2 d−1

2 , with d ∈ N (see [24, Lemma 3.1] for a 

proof). By taking d = 2r we have that Π2r = 2 r
2−

2r−1
2 . By induction, we have Π2r = Π∗

2rΠ∗
2r−1 · · ·Π∗

22Π∗
21 =

Π∗
2rΠ2r−1 for r ≥ 2, and thus

Π∗
2r = Π2r

Π2r−1
= 2 r

2−
2r−1

2

2 r−1
2 − 2r−1−1

2

=
√

2
22r−2 ,

as desired.
By symmetry, sin( (N−j)π

N ) = sin( jπN ), for 0 < j < N
2 . By using this and (A.5) we obtain

∏
j∈I∗

N

sin( jπN ) =
∏

j∈I∗
2r−1

(
sin( jπ2r )

)2 = (Π∗
2r)2 =

( √
2

22r−2

)2 = 1
22r−1−1 ,

and thus the proposition follows. �
Now, for r ∈ N and t, ω ∈ Z we define the sums

Sr,t(ω) :=
∑
k∈I∗

2r

(−1)[
k
2 ] sin(kωπ

2t ) . (A.6)

Proposition A.3. Let r, ν ∈ N and t, � ∈ Z with � odd. If t ≤ r then

Sr,t(2ν�) =

⎧⎨
⎩ (−1)[

�
2 ] 2r−1 if t = ν + 1,

0 if t �= ν + 1.
(A.7)

Proof. For t ≤ 0 the result is trivial, thus assume t ≥ 1. Suppose first that ν = 0. Consider t = 1. Since for 
any k odd, sin(kπ2 ) = (−1)[

k
2 ] and sin(k�π2 ) = (−1)[

k�
2 ] = (−1)[

k
2 ](−1)[

�
2 ], with � odd, then we have

Sr,1(�) =
∑
k∈I∗

2r

(−1)[
k
2 ] sin(k�π2 ) =

∑
k∈I∗

2r

(−1)[
�
2 ] = (−1)[

�
2 ] 2r−1.

Now let t > 1. If t = r, we have the angles π
2r , 3π2r , . . . , 

(2r−1)π
2r in [0, π], and we compare the contributions 

of k�π
2r and (2r−k)�π

2r . Since for any positive odd integer k we have sin( (2r−k)�π
2r ) = (−1)�+1 sin(k�π2r ) and 

(−1)[ 2
r−k
2 ] = (−1)[2r−1− k

2 ] = (−1)[−
k
2 ] = (−1)[

k
2 ]+1, we get

(−1)[
2r−k

2 ] sin( (2r−k)π
2r ) = (−1)�(−1)[ k2 ] sin(k�π2r )

and thus, since � is odd, the contributions of the angles kπ2r and (2r−k)π
2r in (A.7) cancel each other out. If 

t < r, there are more angles to consider. However, by modularity, it is enough to consider the angles

π
2t ,

3π
2t , . . . ,

(2t−1)π
2t , (2t+1)π

2t , (2t+3)π
2t , . . . , (2t+1−1)π

2t

in the interval (0, 2π). In this case, we compare k�π
2t with (2t+k)�π

2t , for any k = 1, 3, 5, . . . , 2t − 1. Since 

sin(θ + π) = − sin(θ) and (−1)[ 2
t+k
2 ] = (−1)[ k2 ], we see again that the contributions of k�π

2t and (2t+k)�π
2t

cancel out. In this way, Sr,t(�) = 0 for t > 1.
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Now, consider the case ν ≥ 1. Clearly, Sr,t(2ν�) = 0 for ν ≥ t. For 1 ≤ ν ≤ t − 1, note that Sr,t(2�) =
Sr,t−1(�). Hence, by induction,

Sr,t(2ν�) = Sr,t−ν(�) = δt,ν+1 (−1)[
�
2 ] 2r−1,

where δ is the Kronecker function, and thus (A.7) holds. �
Cotangents. We now compute some products and alternating sums of cotangents at some integer multiples 
of π

2r .

Proposition A.4. For any r, k ∈ N, with r ≥ 2 and k odd, the following identity holds

∏
j∈I∗

2r−1

cot( jkπ2r ) = 1. (A.8)

Proof. By using sin 2θ = 2 sin θ cos θ and (A.2), for any r ≥ 2, we get

∏
j∈I∗

2r

cos( jπ2r ) =
∏

j∈I∗
2r

sin(2jπ
2r )

22r−2∏
j∈I∗

2r
sin( jπ2r )

=
1

22r−2−1

22r−2
√

2
22r−2

=
√

2
22r−2 . (A.9)

Now, the identities (A.3) and (A.4) also hold for cos( jkπN ) changing every sine by the corresponding cosine. 
Therefore, the product in (A.8) does not depend on k. Thus, we get 

∏
j∈I∗

2r
cot( jkπN ) =

∏
j∈I∗

2r
cot( jπN ) = 1, 

by (A.5) and (A.9). �
Proposition A.5. Let r, � ∈ N with � odd. If N is either 2r or 2r−1, with r ≥ 2, then

∑
j∈I∗

N

(−1)[
k
2 ] cot(k�π2r ) = (−1)[

�
2 ] N

2 . (A.10)

Proof. We will denote by Σ2r and Σ′
2r the sums in (A.10) corresponding to N = 2r and 2r−1, respectively. 

Note that, cot
( (2r−k)�π

2r

)
= − cot

(
k�π
2r

)
, and hence

Σ2r = cot( �π2r ) − cot(3�π
2r ) + · · · + cot( (2r−3)�π

2r ) − cot( (2r−1)�π
2r ) = 2 Σ′

2r .

Thus, it is enough to prove that Σ′
2r = (−1)[

�
2 ]2r−2, which we will do by induction on r. It is immediate to 

check that cot( �π4 ) = (−1)[ �2 ] for any odd � and hence, Σ′
22 = (−1)[ �2 ]2, and the first step in the induction 

holds. For the general step, we have

Σ′
2r =

∑
k∈I∗

2r−1

(−1)[
k
2 ] cot(k�π2r ) =

∑
k∈I∗

2r−2

(−1)[
k
2 ]
(

cot(k�π2r ) − cot
( (2r−1−k)�π

2r

)︸ ︷︷ ︸
Ck,r

)
.

Since cos
( (2r−1−k)�π

2r

)
= (−1)[ �2 ] sin(k�π2r ) and sin

( (2r−1−k)�π
2r

)
= (−1)[ �2 ] cos(k�π2r ), by using cos 2θ = cos2 θ−

sin2 θ and sin 2θ = 2 sin θ cos θ, we have

Ck,r =
cos(k�π2r )

k�π
−

sin(k�π2r )
k�π

=
cos2(k�π2r ) − sin2(k�π2r )

k�π k�π
=

2 cos( k�π
2r−1 )
k�π

= 2 cot( k�π
2r−1 ).
sin( 2r ) cos( 2r ) sin( 2r ) cos( 2r ) sin(2r−1 )
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In this way, by the inductive hypothesis we get

Σ′
2r = 2

∑
k∈I∗

2r−2

(−1)[
k
2 ] cot( k�π

2r−1 ) = 2 Σ′
2r−1 = (−1)[ �2 ]2r−2,

and the result thus follows. �
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