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Abstract We consider the quantum symmetric pair (Uq(su(3)),B) where B is a right
coideal subalgebra. We prove that all finite-dimensional irreducible representations of B
are weight representations and are characterised by their highest weight and dimension. We
show that the restriction of a finite-dimensional irreducible representation of Uq(su(3)) to
B decomposes multiplicity free into irreducible representations of B. Furthermore we give
explicit expressions for the highest weight vectors in this decomposition in terms of dual
q-Krawtchouk polynomials.

Keywords Quantum groups · Coideal subalgebras · Quantum symmetric pairs ·
Branching rules

1 Introduction

The theory of quantum symmetric pairs of Lie groups has been developed by Koornwinder,
Dijkhuizen, Noumi and Sugitani and others [4, 5, 23–25, 28] for classical Lie groups and
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by G. Letzter [16, 18–21] for all semisimple Lie algebras, see also [13]. The motivat-
ing example for the development for this theory was given by Koornwinder [15], who
studied scalar-valued spherical functions on the quantum analogue of (SU(2),U(1)) consid-
ering twisted primitive elements in the quantised universal enveloping algebra of Uq(sl(2)).
Koornwinder identified all scalar-valued spherical functions with Askey-Wilson polynomi-
als in two free parameters. Dijkhuizen and Noumi [4] extended the work of Koornwinder
to quantum analogues of (SU(n + 1),U(n)) considering two-sided coideals of the quan-
tised universal enveloping algebra of Uq(gl(n + 1)). More generally, Letzter considered the
quantised universal enveloping algrebra Uq(g) with a right coideal subalgebra B, which is
the quantum analogue of U(k) for a Cartan decomposition g = k ⊕ p. In [20] all scalar-
valued spherical functions for quantum symmetric pairs with reduced restricted root systems
are identified with Macdonald polynomials. However, the requirement of having a reduced
restricted root system excludes the quantum analogue of (SU(3),U(2)).

One recent extension of this situation [1], where higher-dimensional representations
of the coideal subalgebra B are involved, arises with the study of matrix-valued spheri-
cal functions of the quantum analogue of (SU(2) × SU(2),SU(2)) where the subgroup
is diagonally embedded. The quantum symmetric pair is given by the quantised universal
enveloping algebra of Uq(g), where g = su(2) ⊕ su(2), and a right coideal subalgebra
B that can be identified with Uq(su(2)). As in the Lie group setting [8, 11, 12, 27], the
explicit knowledge of the branching rules plays a fundamental role in the explicit deter-
mination of the matrix-valued spherical functions. In this first case, the branching rules
for the irreducible representations of Uq(g) with respect to B follow using the standard
Clebsch-Gordan decomposition.

One of the first technical difficulties that one runs into in order to extend the results of
[1] to more general quantum symmetric pairs is the lack of the explicit branching rules for
finite-dimensional Uq(g)-representations with respect to a right coideal subalgebra. In this
paper we deal with this problem for the quantised universal enveloping algebra Uq(su(3))
with a right coideal subalgebra B as in Kolb [13]. We study the problem of describing all
irreducible representations that occur in the restriction toB of finite-dimensional irreducible
representations of Uq(su(3)). In general, information about branching rules for quantum
symmetric pairs (Uq(g),B) as in Kolb [13] and Letzter [16, 18] is relatively scarce in par-
ticular in case the coideal subalgebra depends on an additional parameter as in this paper.
However see Oblomkov and Stokman [26] for partial information on the branching rules
for the quantum analogue of (gl(2n), gl(n) ⊕ gl(n)). It would be of interest to see whether
the results of Mudrov [22] can be used as well in the setting of Oblomkov and Stokman
[26] to find precise information on the branching rule for this quantum symmetric pair, or
more generally for quantum symmetric pairs involving the quantised universal enveloping
algebra of type A.

There are various other instances where quantum symmetric pairs play an important
role apart from the relation to special functions and matrix-valued orthogonal polynomials
alluded to above. In the works of Ehrig and Stroppel, see e.g. [6] and Bao, see e.g. [2], it
is indicated how modern representation theory for quantum groups, such as Schur-Jimbo
duality, canonical bases, Kazhdan-Lusztig theory, categorification, etc., can be extended
to quantum symmetric pairs. Moreover, the role of quantum symmetric pairs in integrable
systems in mathematical physics is explained in [3] in conjuction with other types of bound-
ary conditions. Then they are known as boundary quantum groups and they are related to
explicit solutions of the reflection equation.

This paper is organised as follows. In Section 2 we review the construction of the
quantised universal enveloping algebra Uq(su(3)) and its finite dimensional irreducible
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representations. Then we collect a series of commutation identities for the generators
of Uq(su(3)) and we introduce an orthogonal basis for finite-dimensional Uq(su(3))-
representations which is an analogue of Mudrov [22]. We also describe the action of the
generators of Uq(su(3)) on this basis. In Section 3 we fix a right coideal subalgebra B of the
quantised universal enveloping algebra which depends on two complex parameters c1, c2.
We describe the generators of the Cartan subalgebra of B and we use them to classify all
finite-dimensional irreducible representations of B under a mild genericity condition on the
parameters. More precisely we prove that every finite-dimensional irreducible representa-
tion of B is completely characterised by its highest weight and its dimension. In Section 4
we prove the main theorem of the paper. We show that any irreducible finite-dimensional
representation of Uq(su(3)) decomposes multiplicity free into irreducible representations
of B and we characterise the representations that occur in the decomposition by their
highest weight and dimension. The highest weight vectors of the coideal subalgebra B-
representations are obtained by diagonalising an element of the Cartan subalgebra of B
restricted to a certain subspace where it acts tridiagonally. The eigenvectors can be then
identified explicitly in terms of dual q-Krawtchouk polynomials.

2 The Quantised Universal Enveloping Algebra Uq(su(3))

Let g = sl(3) = {X ∈ gl(3,C) : tr(X) = 0}. We fix the Cartan subalgebra h of diagonal
matrices. Let A = (ai,j )i,j be the Cartan matrix for g, i.e. ai,i = 2, i = 1, 2, and ai,j = −1
for i �= j . Let R ⊂ h denote the root system of g. We denote by R+ the subset of positive
roots, so that we have the decomposition g = n− ⊕h⊕n+. We denote by (·, ·) the canonical
inner product on h and by � = {α1, α2} the simple roots so that (αi, αj ) = ai,j . The
fundamental weights are given by �1 = 2

3α1 + 1
3α2 and �2 = 1

3α1 + 2
3α2.

The quantised universal enveloping algebra Uq(sl(3)) is the unital associative algebra
over C generated by Ei , Fi and K±1

i , where i = 1, 2, subject to the relations

K±1
i K±1

j = K±1
j K±1

i , K±1
i K∓1

j = K∓1
j K±1

i , KiK
−1
i = 1 = K−1

i Ki,

KiEj = q(αi ,αj )EjKi, KiFj = q−(αi ,αj )FjKi,
[
Ei, Fj

] = Ki−K−1
i

q−q−1 δi,j ,
(2.1)

for i, j = 1, 2 and, for i �= j , the quantum Serre’s relations

E2
i Ej − (q + q−1)EiEjEi + EjE

2
i = 0 = F 2

i Fj − (q + q−1)FiFjFi + FjF
2
i . (2.2)

We assume that q ∈ (0, 1). The quantised universal enveloping algebra Uq(sl(3)) has a
Hopf algebra structure with comultiplication �, counit ε and antipode S defined by

�(Ei) = Ei ⊗ 1 + Ki ⊗ Ei, �(Fi) = Fi ⊗ K−1
i + 1 ⊗ Fi, �(K±1

i ) = K±1
i ⊗ K±1

i ,

ε(Ei) = 0, ε(Fi) = 0, ε(K±1
i ) = 1,

S(Ei) = −K−1
i Ei, S(Fi) = −FiKi, S(K±1

i ) = K∓1
i ,

with i = 1, 2. With the ∗-structure given by
E∗

i = KiFi, F ∗
i = EiK

−1
i , (K±1

i )∗ = K±1
i , i = 1, 2, (2.3)
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Uq(sl(3)) becomes a Hopf ∗-algebra which we denote by Uq(su(3)). Following Mudrov
[22] we define for a ∈ R

F3 = [F1, F2]q = F1F2 − qF2F1, E3 = [E2, E1]q = E2E1 − qE1E2,

F̂3[a] = F1F2

(
qa+1K2−q−a−1K−1

2
q−q−1

)
− F2F1

(
qaK2−q−aK−1

2
q−q−1

)
,

Ê3[a] =
(

qa+1K2−q−a−1K−1
2

q−q−1

)
E2E1 −

(
qaK2−q−aK−1

2
q−q−1

)
E1E2,

and F̂3 = F̂3[0], Ê3 = Ê3[0].

Lemma 2.1 The following relations hold in Uq(su(3)):

(i) F1F̂3[a] = F̂3[a]F1,

(ii) E2F̂3[a] = F̂3[a − 2]E2 − E2F̂3[a] = F̂3[a − 2]E2 − (qa−q−a)

(q−q−1)
F1,

(iii) KiF̂3[a] = q−1F̂3[a]Ki , KiÊ3[a] = qÊ3[a]Ki , i = 1, 2.

Proof Straightforward verifications using (2.1) and (2.3).

Lemma 2.2 For i = 1, 2:

(i)

EiF
k
i = Fk

i Ei + qk − q−k

q − q−1
Fk−1

i

q1−kKi − qk−1K−1
i

q − q−1

(ii)

Ek
i F k

i = qk (q2;q2)k
(1−q2)2k

(q2−2kK2
i ; q2)kK

−k
i + X Ei

= (q2;q2)k
(1−q2)2k

(−1)kq−k(k−2)(K−2
i ; q2)kK

k
i + X Ei,

for some X ∈ Uq(su(3)).

Proof Straightforward verifications using (2.1) and (2.3) and induction.

2.1 The Finite-Dimensional Representations of Uq(su(3))

Finite-dimensional representations of Uq(su(3)) are weight representations and are
uniquely determined, up to equivalence, by their highest weights. Let (πλ, Vλ) be the
irreducible finite-dimensional representation with highest weight λ = λ1�1 + λ2�2,
λ1, λ2 ∈ N, and vλ a highest weight vector, i.e. a non-zero vector vλ ∈ Vλ such that

Ei vλ = 0, Ki vλ = q(λ,αi )vλ = qλi vλ, i = 1, 2. (2.4)

Then the dimension of Vλ is the same as the dimension of the corresponding irreducible
representation πλ of su(3), namely

dim(Vλ) = 1

2
(λ1 + 1)(λ2 + 1)(λ1 + λ2 + 2).

Furthermore for a weight ν = ν1 �1 + ν2 �2, the dimension of the weight spaces

Vλ(ν) = {v ∈ Vλ : Ki v = q(ν,αi )v, i = 1, 2},
and the dimension of the weight spaces corresponding to the weight ν in the representation
of su(3) coincide, see [9, Ch. 7]. In particular, dim(Vλ(λ)) = 1. The vector space Vλ is
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spanned by the vectors Fi1Fi2 · · ·Fim vλ, ij ∈ {1, 2} and is equipped with an inner product
〈·, ·〉 determined by

〈vλ, vλ〉 = 1, 〈X v, w〉 = 〈v, X∗ w〉, ∀ X ∈ Uq(su(3)), ∀ v, w ∈ Vλ.

Mudrov [22] describes the Shapovalov basis for the Verma modules of Uq(su(3)), and we
have adapted his proof and construction to an orthonormal basis for the finite-dimensional
unitary representations of Uq(su(3)). For completeness, we have sketched the proof in
Appendix A. It is essentially due to Mudrov [22, §8].

Theorem 2.3 The set of vectors

B = {Fk
2 F̂ l

3F
m
1 vλ | 0 ≤ m ≤ λ1, 0 ≤ l ≤ λ2, 0 ≤ k ≤ λ2 + m − l}

forms an orthogonal basis for Vλ. Explicitly,

〈Fk
2 F̂ l

3F
m
1 vλ, F

k′
2 F̂ l′

3 Fm′
1 vλ〉 = δk,k′δl,l′δm,m′Hk,l,m,

where

Hk,l,m = (q2, q−2(λ2−l+m); q2)k(q
2, q−2λ1; q2)m(q2, q−2λ2 , q−2(λ2+1+m),

q−2(λ1+λ2+1); q2)l × (1 − q2)−2(k+2l+m)(−1)k+l+mq3(k+3l+m)q−l(l−2m)q−2lλ2 .

In Theorem 2.3 we use the standard notation in [7] for q-shifted factorials

(qa; q)n = (1 − qa)(1 − qa+1) · · · (1 − qa+n−1),

(qa1 , qa2 , · · · , qaj ; q)n = (qa1; q)n(q
a2; q)n · · · (qaj ; q)n,

switching from base q to base q2. Note that Hk,l,m is indeed positive. In the follow-
ing proposition we calculate the action of the generators of Uq(su(3)) in the basis B of
Theorem 2.3.

Proposition 2.4 In the basis B of Vλ as in Theorem 2.3 we have

(i) K1F
k
2 F̂ l

3F
m
1 vλ = qλ1+k−l−2m Fk

2 F̂ l
3F

m
1 vλ,

(ii) K2F
k
2 F̂ l

3F
m
1 vλ = qλ2−2k−l+m Fk

2 F̂ l
3F

m
1 vλ,

(iii) F1F
k
2 F̂ l

3F
m
1 vλ = ak(l,m) F k

2 F̂ l
3F

m+1
1 vλ + bk(l,m) F k−1

2 F̂ l+1
3 Fm

1 vλ,

(iv) E1F
k
2 F̂ l

3F
m
1 vλ = αk(l,m) F k

2 F̂ l
3F

m−1
1 vλ + βk(l,m) F k+1

2 F̂ l−1
3 Fm

1 vλ,

(v) F2F
k
2 F̂ l

3F
m
1 vλ = Fk+1

2 F̂ l
3F

m
1 vλ,

(vi) E2F
k
2 F̂ l

3F
m
1 vλ = ηk(l,m) F k−1

2 F̂ l
3F

m
1 vλ,

with coefficients

ak(l, m) = (qλ2+m+1−k−l − q−λ2−m−1+k+l )

(qλ2+m+1−l − q−λ2−m−1+l )
, bk(l,m) = (qk − q−k)

(qλ2+m+1−l − q−λ2−m−1+l )
,

ηk(l, m) = qk − q−k

q − q−1

q1−k+λ2−l+m − qk−1−λ2+l−m

q − q−1
,

αk(l, m) = (qm − q−m)(qλ1−m+1 − q−λ1+m−1)(qλ2+m+1 − q−λ2−m−1)

(q − q−1)2(qλ2+m−l+1 − q−λ2−m+l−1)
,

βk(l,m) = (ql − q−l )(qλ2−l+1 − q−λ2+l−1)(qλ1+λ2−l+2 − q−λ1−λ2+l−2)

(q − q−1)2(qλ2+m−l+1 − q−λ2−m+l−1)
.



N. Aldenhoven et al.

Remark 2.5 Note that the denominators in ak(l,m), bk(l, m), ηk(l,m), αk(l, m) and
βk(l, m) are non-zero by the ranges of k, l, m as in Theorem 2.3.

Proof The action of Ki , i = 1, 2, follows from (2.4), (2.1) and Lemma 2.11(iii). The action
of F2 is trivial. The action of E2 follows from Lemma 2.2(i), Lemma 2.1(ii) and (2.4) and
the established actions of K2. This completes the proof of (i), (ii), (v) and (vi).

In order to establish the action of F1, we first show that there exist constants ak and bk

so that

F1F
k
2 F̂ l

3F
m
1 vλ = akF

k
2 F̂ l

3F
m+1
1 vλ + bkF

k−1
2 F̂ l+1

3 Fm
1 vλ

by induction with respect to k. The case k = 0 with a0 = 1, b0 = 0 is immediate from
Lemma 2.1(i). In case k = 1, we write

F1F2F̂
l
3F

m
1 vλ = F1F2

qK2 − q−1K−1
2

q − q−1

q − q−1

q1+λ2−l+m − q−1−λ2+l−m
F̂ l
3F

m
1 vλ

= q − q−1

q1+λ2−l+m − q−1−λ2+l−m

(

F̂3 + F2F1
K2 − K−1

2

q − q−1

)

F̂ l
3F

m
1 vλ

= qλ2−l+m − q−λ2+l−m

q1+λ2−l+m − q−1−λ2+l−m
F2F̂

l
3F

m+1
1 vλ

+ q − q−1

q1+λ2−l+m − q−1−λ2+l−m
F̂ l+1
3 Fm

1 vλ

again using Lemma 2.1(i). So the case k = 1 is proved with

a1 = qλ2−l+m − q−λ2+l−m

q1+λ2−l+m − q−1−λ2+l−m
, b1 = q − q−1

q1+λ2−l+m − q−1−λ2+l−m
.

For the induction we assume k ≥ 2, so that

F1F
k
2 F̂ l

3F
m
1 vλ = F1F

2
2 Fk−2

2 F̂ l
3F

m
1 vλ = (−F 2

2 F1 + (q + q−1)F2F1F2
)
Fk−2
2 F̂ l

3F
m
1 vλ

by the q-Serre relation (2.2). Using the induction hypothesis, we find

F1F
k
2 F̂ l

3F
m
1 vλ = −F 2

2

(
ak−2F

k−2
2 F̂ l

3F
m+1
1 vλ + bk−2F

k−3
2 F̂ l+1

3 Fm
1 vλ

)

+(q + q−1)F2
(
ak−1F

k−1
2 F̂ l

3F
m+1
1 vλ + bk−1F

k−2
2 F̂ l+1

3 Fm
1 vλ

)

= (−ak−2 + (q + q−1)ak−1)F
k
2 F̂ l

3F
m+1
1 vλ + (−bk−2 + (q + q−1)bk−1)F

k−1
2 F̂ l+1

3 Fm
1 vλ

which proves the induction step as well as the recurrence

ak + ak−2 = (q + q−1)ak−1, bk + bk−2 = (q + q−1)bk−1, k ≥ 2.

This recursion is solved by the Chebyshev polynomials (of the second kind) at 1
2 (q+q−1) as

well as by the associated Chebyshev polynomials. This gives the solution for the recurrences
and proves (iii).

The action of E1 follows from that of F1, considering the adjoint. Note that

〈E1F
k
2 F̂ l

3F
m
1 vλ, F

k′
2 F̂ l′

3 Fm′
1 vλ〉 = 〈Fk

2 F̂ l
3F

m
1 vλ,E

∗
1F

k′
2 F̂ l′

3 Fm′
1 vλ〉

= 〈Fk
2 F̂ l

3F
m
1 vλ,K1F1F

k′
2 F̂ l′

3 Fm′
1 vλ〉,
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equals zero if (k′, l′,m′) �= (k, l, m + 1), (k + 1, l − 1,m). Moreover we have

αk(l,m)Hk,l,m−1 = 〈E1F
k
2 F̂ l

3F
m
1 vλ, F

k
2 F̂ l

3F
m−1
1 vλ〉

= 〈Fk
2 F̂ l

3F
m
1 vλ,K1F1F

k
2 F̂ l

3F
m−1
1 vλ〉

= qk−l−2m+λ1 ak(l,m − 1)Hk,l,m,

and
βk(l,m)Hk+1,l−1,m = 〈E1F

k
2 F̂ l

3F
m
1 vλ, F

k+1
2 F̂ l−1

3 Fm
1 vλ〉

= 〈Fk
2 F̂ l

3F
m
1 vλ,K1F1F

k−1
2 F̂ l−1

3 Fm
1 vλ〉

= qk−l−2m+λ1+2 bk+1(l − 1, m) Hk,l,m.

Now the expressions of αk(l,m) and βk(l,m) follow from the explicit expression of Hk,l,m

Theorem 2.3 by a straightforward computation.

3 The Coideal Subalgebra

In this section we follow Kolb [13] and introduce a right coideal subalgebra B of Uq(su(3))
which is the quantum analogue of U(k) with k = u(2) embedded in g = su(3). Let c1, c2 ∈
C

× and write c = (c1, c2). Following [13, Example 9.4], Bc = B is the right coideal
subalgebra of Uq(su(3)), i.e. �(B) ⊂ B ⊗ Uq(su(3)), generated by

K±1 =
(
K1K

−1
2

)±1
, Bc

1 = B1 = F1−c1E2K
−1
1 , Bc

2 = B2 = F2−c2E1K
−1
2 . (3.1)

Throughout Sections 3 and 4 we omit the subscript and superscript c in Bc and Bc
i since the

coideal subalgebra B will be fixed.
If we assume c1c2 = q3 = c1c2 then it follows that B∗

1 = −c1K
−1B2, B∗

2 = −c2KB1
and K∗ = K , so that B∗ = B. By a straightforward computation we have

�(B1) = B1 ⊗ K−1
1 + 1 ⊗ F1 − c1K

−1 ⊗ E2K
−1
1 ,

�(B2) = B2 ⊗ K−1
2 + 1 ⊗ F2 − c2K ⊗ E1K

−1
2 .

The Serre relations for B follow from from [13, Lemma 7.2, Theorem 7.4] taking Z1 =
−K−1 and Z2 = −K

B2
1B2 − [2]qB1B2B1 + B2B

2
1 = [2]q(qc2K + q−2c1K

−1)B1,

B2
2B1 − [2]qB2B1B2 + B1B

2
2 = [2]q(qc1K

−1 + q−2c2K)B2.
(3.2)

Here we use the notation [j ]q = qj −q−j

q−q−1 . Alternatively (3.2) can be verified directly from
the definitions of B1, B2 and K .

Introduce C1, C2 ∈ B by

C1 = B1B2 − qB2B1 − 1
q−q−1 c2K + q+q−1

q−q−1 c1K
−1,

C2 = B2B1 − qB1B2 − 1
q−q−1 c1K

−1 + q+q−1

q−q−1 c2K,
(3.3)

so that for c1, c2 ∈ R
×, C1 and C2 are self-adjoint. Then the relations [K, Ci] = 0 for

i = 1, 2, [C1, C2] = 0 and

KB1 = q−3B1K, C1B1 = qB1C1, C2B1 = q−1B1C2,

KB2 = q3B2K, C1B2 = q−1B2C1, C2B2 = qB2C2,
(3.4)

hold. We view the commutative algebra generated by K±1, C1, C2 as a Cartan subalgebra.
Note that by [14, Theorem 8.5] the center of B is of rank 2. Hence the center of B is
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generated byK
1
3 C1 andK− 1

3 C2, extendingB by cube roots ofK . Then the central elements
are self-adjoint for c1, c2 ∈ R

×.

3.1 Representation Theory of B

Let (τ,W) be a finite-dimensional representation of B. Since W is a finite-dimensional
complex vector space, there exists a non-zero vector w ∈ W such that τ(K)w = ν w for
some ν ∈ C. Then it follows from (3.4) that

τ(K)τ(B1)
i w = q−3i τ (B1)

iτ (K)w = q−3iντ (B1)
i w, i ∈ N,

so that the vectors (τ (B1)
i w)i are eigenvectors of τ(K) with different eigenvalues. Since

W is finite-dimensional, there exists j ∈ N such that τ(B
j+1
1 )w = 0 and τ(B

j

1 )w �= 0.

Therefore w0 = τ(B
j

1 )w is a highest weight vector, i.e.

τ(B1) w0 = 0, τ (K)w0 = κ w0,

where κ is the weight of w0. Note that κ ∈ C
× since it is the eigenvalue of an invertible

operator.

Proposition 3.1 Let τ be a finite-dimensional irreducible representation of B on the vector
space W . Then τ is determined by the dimension of W and the action of K on a highest
weight vector.

Proof Let κ ∈ C
× be a highest weight of τ and let w0 be a highest weight vector, i.e.

τ(K) w0 = κ w0 and τ(B1)w0 = 0. Since τ(K), τ (C1) and τ(C2) form a commuting
family of operators, preserving the kernel of τ(B1) by (3.4), we can assume that τ(C1) w0 =
η1 w0 and τ(C2)w0 = η2 w0. For every i ∈ N, we define the vector wi = τ(B2)

iw0 ∈ W .
Since W is finite-dimensional, there exists n ∈ N such that wi �= 0 for 0 ≤ i ≤ n and
wn+1 = 0. It follows from (3.4) that τ(K)wi = q3i κ wi , so that (wi)

n
i=0 is a set of linearly

independent vectors since they are eigenvectors of τ(K) for different eigenvalues. Moreover
(3.4) implies

τ(C1) wi = τ(C1)τ (B2)
i w0 = q−i τ (B2)

iτ (C1)w0 = η1q
−i wi,

and similarly τ(C2) wi = η2q
i wi . We will show that it is indeed a basis of W .

We prove by induction in i that there exist bi ∈ C such that τ(B1)wi = biwi−1 for
i = 0, . . . , n. The statement holds for i = 0 taking b0 = 0 since w0 is a highest weight
vector. Let i > 0 and assume that τ(B1)wj = bjwj−1 for for all j < i. Using (3.3) we find
the recurrence relation

τ(B1)wi = τ(B1)τ (B2)
iw0 = τ(B1B2)wi−1

= τ
(
C1 + qB2B1 + c2

(q−q−1)
K − (q+q−1)

(q−q−1)
c1K

−1
)

wi−1

= qτ(B2B1)wi−1 + τ
(
C1 + c2

(q−q−1)
K − (q+q−1)

(q−q−1)
c1K

−1
)

wi−1.

By the inductive hypothesis, τ(B2B1)wi−1 = bi−1τ(B2)wi−2 = bi−1wi−1, so that

τ(B1)wi =
(
qbi−1 + q1−iη1 + q3i−3κ c2

(q−q−1)
− (q+q−1)

(q−q−1)
q3−3iκ−1 c1

)
wi−1. (3.5)

Hence τ(B1)wi = biwi−1. Since τ is an irreducible representation we have that W =
τ(B)w0 = 〈{w0, w1, . . . , wn}〉, and therefore (wi)

n
i=0 is a basis of W . This completes the

proof of the proposition.
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Remark 3.2 Since we assume (τ,W) irreducible, the coefficients bi in the proof of Propo-
sition 3.1 are non-zero for i = 1, . . . , n. This follows from the fact that if bi0 = 0 for some
1 ≤ i0 ≤ n, then 〈{wi0 , wi0+1, . . . , wn}〉 is an invariant subspace and this contradicts the
irreducibility of τ .

Corollary 3.3 Let (τ,W) be a finite-dimensional irreducible representation of B of dimen-
sion n+1 and highest weight κ . let w0 be a highest weight vector and let wi = (B2)

iw0 for
i = 1, . . . , n. Then (wi)

n
i=0 is a basis of W . The action of the generators of B on this basis

is given by

τ(K)wj = q3j κ wj , τ (B2)wj = wj+1, τ (B1)wj = bjwj−1

where

b0 = 0, bj = c1 κ−1 q−2n−1 [j ]q (1 − q2n−2j+2)(1 + c2c
−1
1 κ2q2j+2n−1)

(q − q−1)
.

Moreover, τ(C1)wj = q−j η1 wj and τ(C2) wj = qj η2 wj , where

η1 = c1 κ−1 q(1 + q−2n−2) − c2 κ q2n

q − q−1
, η2 = c2 κ q−1(1 + q2n+2) − c1 κ−1 q−2n

q − q−1
.

Proof The fact that (wi)
n
i=0 is a basis of W and the action of τ(K) on wj follow directly

from the proof of Proposition 3.1. It is clear that b0 = 0. We now show that

bj = [j ]q
(

η1 + c2 κ q2j−2 − c1 κ−1 q1−2j (1 + q2j )

(q − q−1)

)

, (3.6)

for all j = 1, . . . , n. We proceed by induction on i. If i = 1, then the statement follows
directly from (3.5). Now we assume that (3.6) is true for some j , 1 < j ≤ n. Then it follows
from (3.5) and the inductive hypothesis that

bj = q [j − 1]q
(

η1 + c2 κ q2j−4 − c1 κ−1 q3−2j (1 + q2j−2)

(q − q−1)

)

+q1−j η1 + q3j−3κ c2

(q − q−1)
− (q + q−1)

(q − q−1)
q3−3j κ−1 c1.

Now (3.6) follows by a straightforward computation.
It follows from the proof of Proposition 3.1 that τ(C1) wj = q−j η1 wj where η1 is

the eigenvalue for the highest weight vector w0. From the construction of the vectors wi in
Proposition (3.1), it follows that τ(B2) wn = 0. Hence (3.3) and (3.6) yield

q−nη1 wn = τ(C1) wn = qτ(B2B1) wn − 1

q − q−1
c2 τ(K)wn + q + q−1

q − q−1
c1 τ(K−1)wn

= −qn+1 − q−n+1

q − q−1
η1 − qn+1 − q−n+1

q − q−1

(
c2 κ q2n−2− c2 κ−1 q1−2n(1+ q2n)

q − q−1

)

− c2 κ q3n

q − q−1
+ (q + q−1) c1 κ−1 q−3n

q − q−1
.

Now the expression of η1 follows by a straightforward computation. The expression of η2
can be obtained similarly from the action of C2 on wn.
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Remark 3.4 If τ is an irreducible representation with highest weight κ and dimension n+1,
it follows from Remark 3.2 and the explicit expression of the coefficient bi in Corollary 3.3
that c2c

−1
1 κ2 �= −q−2j−2n+1 for all j = 1, . . . , n.

Remark 3.5 It follows from Proposition 3.1 and Corollary 3.3 that a finite-dimensional
irreducible representation (τ,W) of B is completely determined by the highest weight κ

and the eigenvalue of η1 of the highest weight vector as eigenvector of τ(C1).

Corollary 3.6 Every irreducible finite-dimensional representation of B is determined by a
pair (κ, n) where κ is the highest weight and the dimension is n + 1. Conversely, to each
pair (κ, n) with κ ∈ C

×, n ∈ N and κ2 /∈ −c1c
−1
2 q1−N, there corresponds an irreducible

representation (τ(κ,n),W(κ,n)) with highest weight κ and dimension n + 1.

Proof It follows directly from Proposition 3.1, Corollary 3.3 and Remark 3.4.

Proposition 3.7 Assume that κ ∈ R
× and c1c2 = q3. Let (τ,W) be an irreducible finite-

dimensional representation of B. Then τ is unitarizable.

Proof Since c1c2 = q3, we have that B∗ = B. More precisely B∗
1 = −c1K

−1B2, B∗
2 =

−c2KB1 and K∗ = K . Let (wi)
n
i=0 be the basis of W given in Corollary 3.3 and let 〈·, ·〉

be the hermitian bilinear form defined on the basis elements by 〈w0, w0〉 = 1,

〈wk,wk〉 = 〈τ(((B2)
k)∗(B2)

k)w0, w0〉, 〈wi, wj 〉 = 0, i �= j.

Observe that

〈wk, wk〉= 〈τ(((B2)
k)∗(B2)

k)w0, w0〉

= (−1)kc2
kq3(k

2)〈τ(Kk(B1)
k(B2)

k)w0, w0〉=(−1)kc2
kq3(k

2)〈τ(Kk)w0, w0〉
k∏

i=1

bi

= q3(k
2)−k(2n−1)

(1 − q2)k
[k]q ! (q2n; q−2)k (−c2c

−1
1 κ2 q2n−1; q2)k 〈w0, w0〉. (3.7)

Since q3c2c
−1
1 = c1c2c2c

−1
1 = |c2|2 > 0, it follows that c2c

−1
1 > 0 and thus (3.7)

is positive. Therefore 〈·, ·〉 is a positive definite bilinear form. Moreover, 〈τ(X)wi, wj 〉 =
〈wi, τ (X∗) wj 〉 for all X ∈ B. This follows from a straightforward verification on the
generators of B.

Remark 3.8 Let κ ∈ R
× and n ∈ N. Let (wi)

n
i=0 be the orthogonal basis for W(μ,n) as in

Corollary 3.3. We define an orthonormal basis (w̃i)
n
i=0 by w̃i = wi/||wi ||. The actions of

C1, C2 and K on the orthonormal basis are the same. For B1 and B2 we have

τ(κ,n)(B1)w̃i = −c1 κ−1 q−2i−n+1

√
(1−q2i )

(1−q2)

(1−q2n−2i+2)

(1−q2)
(q + c2c

−1
1 κ2 q2n+2i )w̃i−1,

τ(κ,n)(B2)w̃i = qi−n+1

√
(1−q2i+2)

(1−q2)

(1−q2n−2i )

(1−q2)
(q + c2c

−1
1 κ2 q2n+2i+2)w̃i+1.
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4 The Branching Rule

In this section we prove the main theorem of the paper. We fix a coideal subalgebra B
and show that any finite-dimensional representation of Uq(su(3)) restricted to B decom-
poses multiplicity free as finite-dimensional representations of B and we characterise
the B-representations that occur in this decomposition. In case B is ∗-invariant, every
finite-dimensional irreducible representation of Uq(su(3)) restricted to B obviously decom-
poses into finite-dimensional irreducible representations. This fact is also noted by Letzter
[17, Theorem 3.3].

Theorem 4.1 Let λ = λ1�1 + λ2�2 ∈ P + and fix the finite-dimensional irreducible
unitary representation πλ of Uq(su(3)) on the vector space Vλ. Let B be a coideal sub-
algebra with c2c

−1
1 /∈ −q2λ1+2λ2+1−N. The representation πλ restricted to B decomposes

multiplicity free into irreducible representations;

πλ|B �
⊕

(κ,n)

τ(κ,n), Vλ =
⊕

(κ,n)

W(κ,n),

where the sum is taken over (κ, n) = (qλ1−λ2−3i , i + x), with 0 ≤ i ≤ λ1 and 0 ≤ x ≤ λ2.

The proof of Theorem 4.1 will be carried out in the next subsections. If (τ(κ,n), W(κ,n))

is a representation of B that occurs in the representation πλ upon restriction to B then,
up to a scalar, a highest weight vector w

(κ,n)
0 for τ(κ,n) is completely determined by the

highest weight κ and the eigenvalue η1, see Remark 3.5. Hence, highest weight vectors for
B-representations in Vλ are eigenvectors of πλ(C1) belonging to the kernel of πλ(B1). In
Section 4.1 we determine the kernel of πλ(B1).

Remark 4.2 Observe that the Serre relations (3.2) for B imply that the kernel of πλ(B1) is
invariant under the action of B1B2 and thus under the action of C1.

In Section 4.2 we diagonalize the restriction of πλ(C1) to ker(πλ(B1)). In most of the
proofs we denote πλ(X), X ∈ Uq(su(3)), with X.

Remark 4.3 The restriction on c1 and c2 in Theorem 4.1 is assumed in order to ensure the
complete reducibility of πλ upon restriction to B. This is not always true for the excluded
values of c1 and c2. For example let λ = �1. Then Vλ is a three dimensional vector space.
Mudrov’s basis in Theorem 2.3 is given by

B = {vλ, F1 vλ, F2F1 vλ}.
In this basis, the operator C1 is given by the 3 × 3 matrix

C1 =

⎛

⎜
⎜
⎝

c1q
2+c1−qc2)

q(q2−1)
0 −c1c2

0 x1q
4+c1−qc2
q2−1

0

−q 0 c1q
4+c1−q3c2
q(q2−1)

⎞

⎟
⎟
⎠ .

The eigenvectors of C1 are (multiples of) the vectors

ρ1 =
⎛

⎝
c1
0
1

⎞

⎠ , ρ2 =
⎛

⎝
0
1
0

⎞

⎠ , ρ3 =
⎛

⎝
−c2/q

0
1

⎞

⎠ .
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If c1 �= −c2/q, then Vλ decomposes as a sum of a two-dimensional and a one-dimensional
irreducible representations of W :

Vλ = W(q,0) ⊕ W(q−2,1),

where W(q,0) = 〈{ρ1}〉 and W(q−2,1) = 〈{ρ2, ρ3}〉. Moreover, the highest weight vectors
of W(q,0) and W(q−2,1) are ρ1 and ρ2 respectively. If we let c1 = −c2/q then the matrix
C1 degenerates into a non-diagonalizable matrix. The only eigenvectors are the multiples
of ρ2 and ρ3 and therefore, although W(q−2,1) is a B-invariant subspace of Vλ, there is no
one-dimensional B-invariant subspace in Vλ.

4.1 The Kernel of B1

The goal of this subsection is to describe the structure of the kernel of πλ(B1) by introducing
a particular basis. For each i = 0, . . . , λ1, we introduce the following subspaces of Vλ:

Ui = 〈Bi〉, Bi = {Fk
2 F̂ l

3F
i+k
1 vλ : 0 ≤ l ≤ λ2, 0 ≤ k ≤ λ1 − i}. (4.1)

Note Ui = ker(K − qλ1−λ2+3i ), so that the Ui are mutually orthogonal subspaces of Vλ.
By (3.4) we have B1 : Ui → Ui+1, B2 : Ui → Ui−1 and by Proposition 2.4 we have

Fig. 1 Weight diagram for the weight λ = 2�1 + 5�2. The multiplicities are as in the Lie algebra case. In
particular, dimVλ(ν) = 1 for ν in the outer hexagon, dimVλ(ν) = 2 in the inner hexagon and dimVλ(ν) = 3
in the remaining weight spaces. The subspaces Ui defined in (4.1) are spanned by the basis vectors in the
weight spaces indicated in the gray lines. Each vector in the weight space Vλ(ν) is an eigenvector for K ,
where the eigenvalue is constant along the line parallel to α1 + α2. In particular the Ui ’s are the eigenspaces
for K for the eigenvalue qλ1−λ2+3i



Branching rules

F1, E2 : Ui → Ui+1 and F2, E1 : Ui+1 → Ui . This is shown in Fig. 1 for the highest
weight λ = 2�1 + 5�2.

Remark 4.4 For each i = 0, . . . , λ1, the basis Bi consists on λ1 − i + 1 layers of λ2 + 1
vectors. More precisely, for k = 0, . . . , λ1 − i, the k-th layer is given by the vectors

Fk
2 F̂ l

3F
k+i
1 vλ, l = 0, . . . , λ2.

This structure is indicated in the Fig. 2 for the representation λ = 2�1 + 5�2. The layers
appear as circled numbers.

Remark 4.5 The dimension of Ui is (λ2 + 1)(λ1 − i + 1). Therefore, the dimension of
ker(B1)|Ui

is, at least, λ2 + 1. In particular, Uλ1 ⊂ ker(B1).

Proposition 4.6 The kernel of πλ(B1)|Ui
has dimension λ2 + 1. Moreover, a basis of

kerπλ(B1)|Ui
is given by (ui

n)
λ2
n=0, where

ui
n =

λ1−i∑

k=0

λ2∑

l=0

γ n
k,l F

k
2 F̂ l

3F
k+i
1 vλ,

and the coefficients γ n
k,l are given by the recurrence relation

ak(l, k + i) γ n
k,l + bk+1(l − 1, k + i + 1) γ n

k+1,l−1

−c1 ql+2i+k+1−λ1 ηk+1(l, k + i + 1) γ n
k+1,l = 0,

for k = 1, . . . , λ1 − i − 1, l = 0, . . . , λ2, with initial values γ n
λ1−i,l = δn,l .

Proof Let u = ∑λ1−i
k=0

∑λ2
l=0 γk,l F

k
2 F̂ l

3F
k+i
1 vλ be a vector in the kernel of B1. Then

B1u=
λ1−i∑

k=0

λ2∑

l=0

γk,l (F1F
k
2 F̂ l

3F
k+i
1 vλ − c1E2K

−1
1 Fk

2 F̂ l
3F

k+i
1 vλ)

=
λ1−i∑

k=0

λ2∑

l=0

γk,l (ak(l, k + i) F k
2 F̂ l

3F
k+i+1
1 vλ + bk(l, k + i) F k−1

2 F̂ l+1
3 Fk+i

1 vλ

−c1q
l+2i+k−λ1ηk(l, k + i) F k−1

2 F̂ l
3F

k+i
1 vλ)

=
λ1−i∑

k=0

λ2∑

l=0

(ak(l, k + i) γk,l + bk+1(l − 1, k + i + 1) γk+1,l−1

−c1 ql+2i+k+1−λ1 ηk+1(l, k + i + 1)γk+1,l) F k
2 F̂ l

3F
k+i+1
1 vλ.

Since the elements Fk
2 F̂ l

3F
k+i+1
1 , 0 ≤ k ≤ λ1 − i, 0 ≤ l ≤ λ2, are linearly independent it

follows that the coefficients γk,l satisfy the following recurrence relation.

ak(l, k+i) γk,l+bk+1(l−1, k+i+1) γk+1,l−1−c1 ql+2i+k+1−λ1 ηk+1(l, k+i+1) γk+1,l = 0.
(4.2)

For each n = 0, 1, . . . , λ2, if we set γ n
λ1−i,l = δn,l , then (4.2) determines uniquely a vector

un in the kernel of B1. The vectors un are clearly linearly independent and span the kernel
of B1 restricted to Ui . This completes the proof of the proposition.
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Fig. 2 Structure of the basis of U0 for the representation πλ with λ = 2�1 + 5�2 as in Fig. 1. The circled
numbers indicate the layers of the basis. Note that vertically aligned basis elements span the weight space
Vλ(λ − r(α1 + α2)) for r = 0 (left) to r = λ1 + λ2 = 7 (right)

Remark 4.7 According to the layer structure of Bi described in Remark 4.4, the vector
ui

n has a single non-zero contribution from the vectors of the upper layer, namely from

F
λ1−i
2 F̂ n

3 F
λ1
1 , and two contributions from the one but upper layer. Therefore, we have

ui
n =F

λ1−i
2

ˆFn
3 F

λ1
1 vλ+γ n

λ1−i−1,nF
λ1−i−1
2

ˆFn
3 F

λ1−1
1 vλ+γ n

λ1−i−1,n+1 F
λ1−i−1
2 F̂ n−1

3 F
λ1−1
1 vλ

+
λ1−i−2∑

k=0

λ2∑

l=0

γ n
k,lF

k
2 F̂ l

3F
i+k
1 vλ. (4.3)

The coefficients γ n
λ1−i−1,n and γ n

λ1−i−1,n+1 corresponding to the vectors of the one but
last layer are given by

γ n
λ1−i−1,n = c1 qn+i (qλ1−i−q−λ1+i )(qλ2+λ1−n−q−λ2−λ1+n)

(q−q−1)2
,

γ n
λ1−i−1,n+1 = − (qλ1−i−q−λ1+i )(qλ2+λ1−n−1−q−λ2−λ1+n+1)

(qλ2+λ1+1−n−q−λ2−λ1−1+n)(qλ2+i−n−q−λ2−i+n)
.

(4.4)

The structure of the vectors ui
n for Uλ1−2 is depicted in Fig. 3.

Remark 4.8 The basis {ui
n}in of the kernel of πλ(B1) is not an orthogonal basis. In fact, it

follows from Remark 4.7 that

u
λ1−1
0 = F

λ1−1
2 F

λ1
1 vλ + γ 0

λ1−2,0 F
λ1−2
2 F

λ1−1
1 vλ,

u
λ1−1
1 = F

λ1−1
2 F̂3F

λ1
1 vλ + γ 1

λ1−2,1 F
λ1−2
2 F̂3F

λ1−1
1 vλ + γ 1

λ1−2,2 F
λ1−2
2 F

λ1−1
1 vλ,

and therefore

〈uλ1−1
0 , u

λ1−1
1 〉 = γ 0

λ1−2,0γ
1
λ1−2,2Hλ1−2,0,λ1−1 �= 0,

using the explicit expressions (4.4).

Fig. 3 Structure of the basis (u0n)n of ker(B1|U0 ) for the representation λ = 2�1 + 5�2 as in Fig. 1. The
black circles indicate the terms that contribute to the expression of the element u01 = F 2

2 F̂3F
2
1 vλ + · · ·
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4.2 The Action of C1

In Remark 4.2 we observed that the kernel of B1 is stable under the action of C1. Further-
more for each i = 0, . . . , λ1,Ui is stable underC1. The goal of this subsection is to compute
the action of C1 in the basis of kerπλ(B1) given in Proposition 4.6.

Lemma 4.9 In the basis B of Theorem 2.3 we have

F1F2F
k
2 F̂ l

3F
k+i
1 vλ = ak+1(l, k + i) F k+1

2 F̂ l
3F

k+i+1 vλ+ bk+1(l, k + i) F k
2 F̂ l+1

3 Fk+i
1 vλ,

E2F2F
k
2 F̂ l

3F
k+i
1 vλ = ηk+1(l, k + i) F k

2 F̂ l
3 Fk+i

1 vλ,

F1E1F
k
2 F̂ l

3F
k+i
1 vλ = αk(l, k + i) ak(l, k + i − 1) F k

2 F̂ l
3F

k+i
1 vλ

+αk(l, k + i) bk(l, k + i − 1) F k−1
2 F̂ l+1

3 Fk+i−1
1 vλ

+βk(l, k + i) ak+1(l − 1, k + i)F k+1
2 F̂ l−1

3 Fk+i+1
1 vλ

+βk(l, k + i) bk+1(l − 1, k + i)F k
2 F̂ l

3F
k+i
1 vλ,

E2E1F
k
2 F̂ l

3F
k+i
1 = αk(l, k + i) ηk(l, k + i − 1) F k−1

2 F̂ l
3F

k+i−1
1 vλ

+βk(l, k + i) ηk+1(l − 1, k + i) F k
2 F̂ l−1

3 Fk+i
1 vλ,

KF
λ1−i
2 F̂ l

3F
λ1
1 vλ = qλ1−λ2−3i F

λ1−i
2 F̂ l

3F
λ1
1 vλ,

K−1F
λ1−i
2 F̂ l

3F
λ1
1 vλ = qλ2−λ1+3i F

λ1−i
2 F̂ l

3F
λ1
1 vλ.

Proof The lemma is a direct consequence of Proposition 2.4.

Since K acts as a multiple of the identity on each Ui , it suffices to determine the action
of B1B2 on Ui .

Lemma 4.10 For i ∈ 0, . . . , λ1, in the basis (ui
n)n of ker(B1), we have

B1B2 ui
n = A(n)ui

n+1 + B(n)ui
n + C(n)ui

n−1, n = 0, . . . , λ2,

where

A(n) = qλ2+i−n(1 − q2)(1 − q2λ1+2λ2−2n)

(1 − q2λ2+2λ1−2n+2)(1 − q2λ2+2i−2n)
,

B(n) = −c1
q2n+i−λ1−λ2 (1 − q2λ2−2n+2i )

(1 − q2)
+ c2 qλ1−λ2+2n−i+1(1 − q−2n−2i )

(1 − q2)
,

C(n) = c1c2 q3n−3λ2−i−2(1− q2n)(1− q2λ2−2n+2)(1− q2λ1+2λ2−2n+4)(1−q2λ2+2i+2−2n)

(1 − q2)3(1 − q2λ2+2λ1+2−2n)
.

Proof Since Ui is stable under B1B2 and (ui
n)n is a basis of ker(B1|Ui

), we have

B1B2 ui
n =

λ2∑

j=0

νj ui
j ,
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for certain coefficients νj . Since Bi is an orthogonal basis and ui
n has a single contribution

from the vectors in the upper layer of Bi , see Remark 4.7, we obtain that

〈B1B2 ui
n, F

λ1−i
2 F̂ s

3 F
λ1
1 vλ〉 =

λ2∑

j=0

νj 〈ui
j , F

λ1−i
2 F̂ s

3 F
λ1
1 vλ〉 = νsH

2
λ1−i,s,λ1

.

On the other hand, from (3.1) we have

B1B2F
k
2 F̂ l

3F
k+i
1 vλ = F1F2F

k
2 F̂ l

3F
k+i
1 vλ − c1q

l+k+2i−1−λ1E2F2F
k
2 F̂ l

3F
k+i
1 vλ

−c2q
k+l−i−λ2F1E1F

k
2 F̂ l

3F
k+i
1 vλ + c1c2 q2l+2k+i−λ1−λ2−2E2E1F

k
2 F̂ l

3F
k+i
1 vλ. (4.5)

Applying Lemma 4.9 to (4.5), we verify that the action of B1B2 on the vector of the k-th

layer Fk
2 F̂ l

3F
k+i
1 vλ has contributions from the (k − 1)-th, k-th and (k + 1)-th layer. Hence,

Remark 4.7 implies

〈B1B2 ui
n, F

λ1−i
2 F̂ s

3 F
λ1
1 vλ〉 =〈B1B2 F

λ1−i
2 F̂ n

3 F
λ1
1 vλ, F

λ1−i
2 F̂ s

3 F
λ1
1 vλ〉

+γ n
λ1−i−1,n 〈B1B2 F

λ1−i−1
2 F̂ n

3 F
λ1−1
1 vλ, F

λ1−i
2 F̂ s

3 F
λ1
1 vλ〉

+γ n
λ1−i−1,n+1〈B1B2 F

λ1−i−1
2 F̂ n−1

3 F
λ1−1
1 vλ, F

λ1−i
2 F̂ s

3F
λ1
1 vλ〉.
(4.6)

From Lemma 4.9 we obtain that (4.6) is zero unless s = n−1, n, n+1. Moreover, we have

〈B1B2 ui
n, F

λ1−i
2 F̂ n+1

3 F
λ1
1 vλ〉=[bλ1−i+1(n,λ1)+γ n

λ1−i−1,n+1 aλ1−i (n + 1, λ1 − 1)]H 2
λ1−i,n+1,λ1 ,

〈B1B2 ui
n, F

λ1−i
2 F̂ n

3 F
λ1
1 vλ〉 = [−c1 qn+i−1 ηλ1−i+1(l, λ1)

−c2 qλ1+n−2i−λ2 αλ1−i (n, λ1) aλ1−i (n, λ1 − 1)

−c2 qλ1−2i+n−λ2 βλ1−i (n, λ1) bλ1−i+1(n − 1, λ1) + γ n
λ1−i−1,n aλ1−i (n, λ1 − 1)

−c2 qλ1+n−2i−λ2γ n
λ1−i−1,n+1 βλ1−i−1(n + 1, λ1 − 1) aλ1−i (n, λ1 − 1)]H 2

λ1−i,n,λ1
,

〈B1B2 ui
n, F

λ1−i
2 F̂ n−1

3 F
λ1
1 vλ〉 = [c1c2 qλ1−λ2+2n−i−2 βλ1−i (n, λ1) ηλ1−i+1(n − 1, λ1)

−c2q
λ1−λ2+n−2i−1 γ n

λ1−i−1,n βλ1−i−1(n, λ1 − 1) aλ1−i (n − 1, λ1 − 1)]H 2
λ1−i,n−1,λ1 .

Now the lemma follows from Proposition 2.4 and (4.4).

Lemma 4.11 For i ∈ 0, . . . , λ1, in the basis (ui
n)n of ker(B1), we have

C1 ui
n =A(n)ui

n+1+(B(n)+D) ui
n+C(n)ui

n−1, D=−c2
qλ1−λ2−3i

q − q−1
+c1

qλ2−λ1+3i (q+q−1)

q − q−1
.

Proof Lemma 4.10, (3.3) and K acting as a multiple of the identity give the result.

We are now ready to find the eigenvectors ofC1 restricted to ker(B1)|Ui
. We will describe

these eigenvectors as a linear combination of the vectors ui
n with explicit coefficients given

in terms of dual q-Krawtchouk polynomials. For N ∈ N and n = 0, 1, . . . , N , the dual
q-Krawtchouk polynomials are given explicitly by

Kn(λ(x); c, N |q) = (qx−N ; q)n

(q−N ; q)nqnx 2φ1

(
q−n, q−x

qN−x−n+1

∣
∣∣∣q, cqx+1

)
,
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where λ(x) = q−x + cqx−N , see [10, (3.17.1)]. We follow the standard notation of [7] for
basic hypergeometric series, namely

2φ1

(
a, b

c

∣
∣
∣
∣q, z

)
=

∞∑

k=0

(a, b; q)k

(c; q)k

zk

(q; q)k
.

The polynomials

rl(λ(x)) = (q−2N ; q)l Kl(λ(x); c,N |q2), (4.7)

satisfy the three term recurrence relation

x rl(x) = rl+1(x) + (1+ c)q2l−2N rl(x) + c q−2N(1− q2l )(1− q2l−2N−2) rl−1(x). (4.8)

Proposition 4.12 For i = 0, . . . , λ1, the set {ψi
x}λ2x=0 where

ψi
x =

λ2∑

l=0

(−1)l c−l
2 q−l(λ1+4)+l(l+1)/2 (1−q2l )(q−2λ2−2λ1; q2)l

(q2, q−2λ2−2λ1−2, q−2λ2−2i; q2)l
Kl(λ(x),−c−1

1 c2q
2λ1−2i+1, λ2, q

2) ui
l ,

is a basis of eigenvectors of C1 restricted to ker(B1)|Ui
. The eigenvalue of ψi

x is

η1 = c1 κ−1 q(1 + q−2n−2) − c2 κ q2n

q − q−1
,

for κ = qλ1−3i−λ2 and n = x + i.

Remark 4.13 As we pointed out in Remark 4.8, the basis (ui
n)n is not orthogonal. Still

the operator C1 acts tridiagonally. Moreover, if B is ∗-invariant then the basis {ψi
x}λ2x=0 in

Proposition 4.12 is orthogonal although, because of the non-orthogonality of (ui
n)n, this

does not follow directly from the orthogonality of the dual q-Krawtchouk polynomials.

Proof Assume there exist polynomials pn(x) such that v = ∑λ2
l=0 pl(x) ui

l is an eigenvector
of C1 with eigenvalue η1, i.e. C1 v = η1 v. From Lemma 4.11 we have

C1 v =
λ2∑

l=0

pl(x)(A(l)ui
l+1 + (B(l) + D) ui

l + C(l)ui
l−1) =

λ2∑

l=0

η1 pl(x) ui
l .

Since (ui
l )l is a basis of ker(B1)|Ui

the vectors ui
l are linearly independent and hence the

polynomials pl satisfy the following three term recurrence relation

η1 pl(x) = C(l + 1)pl+1(x) + (B(l) + D) pl(x) + A(l − 1)pl−1(x).

If kl is the leading coefficient of pl , then Pl = k−1
l pl is a sequence of monic polynomials

satisfying the recurrence relation

η1 Pl(x) = Pl+1(x) + (B(l) + D) Pl(x) + C(l)A(l − 1)Pl−1(x), (4.9)

where

B(l) + D = −c1 q2l+i−λ1−λ2(1 − c−1
1 c2 q2λ1−2i+1)

(1 − q2)
− c1 q3i−λ1+λ2+2

(1 − q2)
,

C(l)A(l − 1) = −c1c2 q (1 − q2l )(1 − q2l−2λ2−2)

(1 − q2)2
,
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using Lemma 4.10 and Lemma 4.11. We will identify the polynomials Pl with the dual
q-Krawtchouk polynomials. If we let

c = −c−1
1 c2 q2λ1−2i+1, N = λ2,

the recurrence relation (4.8) is given by

x rl(x) = rl+1(x) + (1 + c−1
1 c2q

2λ1−2i+1)q2l−2λ2 rl(x)

+c−1
1 c2q

2λ1−2λ2−2i+1(1 − q2l )(1 − q2l−2λ2−2) rl−1(x).

If we let r̃l (x) = a−l rl(ax) with a = −c−1
1 qλ1−λ2−i (1 − q2), by a straightforward

computation we obtain
(

x − c1 q3i−λ1+λ2+2

(1 − q2)

)

r̃l (x) = r̃l+1(x)+(B(l)+D) r̃l(x)+C(l)A(l−1) r̃l−1(x). (4.10)

If we evaluate (4.10) in λ(x)a−1, the eigenvalue is given by

λ(x)

a
− c1 q3i−λ1+λ2+2

(1 − q2)
= c1 q3i−λ1+λ2+2(1 + q−2x−2i−2) + c2 qλ1−λ2−i+2x

q − q−1
.

Therefore the polynomials Pl(x) = r̃(λ(x)a−1) = a−l rl(λ(x)) satisfy the recurrence (4.9)
with eigenvalue

η1 = c1 κ−1 q(1 + q−2n−2) − c2 κ q2n

q − q−1
,

with κ = qλ1−3i−λ2 and n = x + i, for x = 0, . . . , λ2. Finally, pl(x) = kl a
−l rl(λ(x)). The

explicit expression of pl follows from (4.7) and Lemma 4.10.

Proof of Theorem 4.1 From Proposition 4.12 we obtain vectors ψi
x for i = 0, . . . , λ1, x =

0, . . . , λ2 such that

πλ(B1) ψi
x = 0, and C1 ψi

x = c1 κ−1 q(1 + q−2n−2) − c2 κ q2n

q − q−1
ψi

x = η1 ψi
x.

where κ = qλ1−3i−λ2 and n = x + i, so that ψi
x is a highest weight vector. It follows from

Corollary 3.6 that the highest weight vector ψi
x defines an irreducible representation of B

of dimension x + i + 1

Wqλ1−λ2−3i ,x+i = 〈{ ψi
x, πλ(B2) ψi

x, πλ(B2)
2 ψi

x, . . . , πλ(B2)
x+i ψi

x }〉.
Let W = ⊕(κ,n)W(κ,n) where the sum is taken over (κ, n) = (qλ1−3i−λ2 , x + i) for i =
0, . . . , λ1, x = 0, . . . , λ2. We have that W ⊂ Vλ and

dimW =
∑

i,x

dimWqλ1−λ2−3i ,x+i = 1

2
(λ1 + 1)(λ2 + 1)(λ1 + λ2 + 2) = dimVλ.

Therefore W = Vλ and this completes the proof of the theorem.
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Appendix A. Proof of Theorem 2.3

Lemma A.1 The following relations hold in Uq(su(3)):

(i) F2F̂3[a] = F̂3[a + 1]F2,

(ii) E1F̂3[a] = F̂3[a + 1]E1 + F2
(qa+1K1K2−q−a−1(K1K2)

−1)

(q−q−1)
,

(iii) F2F3 = qF3F2,

(iv)
(
F̂3[a])∗ = qÊ3[a](K1K2)

−1, F ∗
3 = qE3(K1K2)

−1,

(v) F̂3 = F3
qK2−q−1K−1

2
q−q−1 + qF2F1K2,

(vi) E1F3 = F3E1 + F2K1,

Proof Straightforward verifications using (2.1) and (2.3).

Corollary A.2 For l ∈ N and a ∈ R we have

E1
(
F̂3[a])l =(

F̂3[a+1])l
E1+ql − q−l

q − q−1
F2

(
F̂3[a])l−1 (qa+2−lK1K2 − q−a−2+l (K1K2)

−1)

(q − q−1)

Proof By induction on l using Lemma A.1(ii) and (i).

Proof of Theorem 2.3 By the PBW-theorem, Fk
2 F̂ l

3F
m
1 vλ for k, l, m ∈ N spans Vλ. By

Proposition 2.4

K1F
k
2 F̂ l

3F
m
1 vλ = qλ1+k−l−2mFk

2 F̂ l
3F

m
1 vλ,

K2F
k
2 F̂ l

3F
m
1 vλ = qλ2−2k−l+mFk

2 F̂ l
3F

m
1 vλ.

(A.1)

Since Ki , i = 1, 2, are self-adjoint, we find that 〈Fk
2 F̂ l

3F
m
1 vλ, F

k′
2 F̂ l′

3 Fm′
1 vλ〉 = 0 in

case k − l − 2m �= k′ − l′ − 2m′ or −2k − l + m �= −2k′ − l′ + m′. For k′ > k we find

〈Fk
2 F̂ l

3F
m
1 vλ, F

k′
2 F̂ l′

3 Fm′
1 vλ〉 = 〈(E2K

−1
2 )k

′
Fk
2 F̂ l

3F
m
1 vλ, F̂

l′
3 Fm′

1 vλ〉
= qk′(k′+1)〈K−k′

2 Ek′
2 Fk

2 F̂ l
3F

m
1 vλ, F̂

l′
3 Fm′

1 vλ〉 = 0, (A.2)

since Ek′
i F k

i ∈ Uq(su(3)) Ek′−k
i for k, k′ ∈ N, k′ > k, using also Lemma 2.1(ii) for a = 0,

(2.1) and (2.4). Because of the symmetry between k and k′, we see that the inner product
(A.2) is 0 for k �= k′. With the above remark, we find

〈Fk
2 F̂ l

3F
m
1 vλ, F

k′
2 F̂ l′

3 Fm′
1 vλ〉 = 0

in case k �= k′ or l �= l′ or m �= m′.

http://creativecommons.org/licenses/by/4.0/
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So it suffices to calculate the norm of the vectors, and see that this is non-zero precisely
for the range mentioned. First, using the case k = k′ of the first part of (A.2) and that K2
acts on Ek

2F
k
2 F̂ l

3F
m
1 vλ by the scalar qλ2−l+m, we find

〈Fk
2 F̂ l

3F
m
1 vλ, F

k
2 F̂ l

3F
m
1 vλ〉 = qk(k+1)−k(λ2−l+m)〈Ek

2F
k
2 F̂ l

3F
m
1 vλ, F̂

l
3F

m
1 vλ〉.

Now use Lemma 2.2(ii) for i = 2 and next the commutation relations of Lemma 2.1(ii) and
(2.1) to see that the Uq(su(3))E2-part of Lemma 2.2(ii) gives zero contribution. Because of
the action of K2 being diagonal, we find

〈Fk
2 F̂ l

3F
m
1 vλ, F

k
2 F̂ l

3F
m
1 vλ〉= (q2; q2)k

(1 − q2)2k
(q−2(λ2−l+m); q2)k(−1)kq3k〈F̂ l

3F
m
1 vλ, F̂

l
3F

m
1 vλ〉.

Next we write

〈F̂ l
3F

m
1 vλ, F̂

l
3F

m
1 vλ〉 = 〈F̂ l

3F
m
1 vλ, F

m
1 F̂ l

3 vλ〉 = qm(m+1)q−m(λ1−l)〈Em
1 F̂ l

3F
m
1 vλ, F̂

l
3 vλ〉

using Lemma 2.1(i), the ∗-structure (2.3), (2.1) and (A.1). Following Mudrov [22, §8] we
replace F̂ l

3 on the left by F l
3. First use Lemma A.1(v)

〈Em
1 F̂ l

3F
m
1 vλ, F̂

l
3 vλ〉 = q2+λ2−l+m − q−2−λ2+l−m

q − q−1
〈Em

1 F3F̂
l−1
3 Fm

1 vλ, F̂
l
3 vλ〉

+q2+λ2−l+m〈Em
1 F2F1F̂

l−1
3 Fm

1 vλ, F̂
l
3 vλ〉.

In the second term, move F2 to the left using (2.1), and then the other side so that is essen-
tially anE2 which we can move through, by Lemma 2.1(ii), to the highest weight vector, and
hence gives zero. This we can repeat, since F2 also q-commutes with F3 by Lemma A.1(iii).
This yields

〈Em
1 F̂ l

3F
m
1 vλ, F̂

l
3 vλ〉 = (−1)lql(2+λ2+m)lq− 1

2 l(l−1)

(1 − q2)l
(q−λ2−2−m; q2)l〈Em

1 F l
3F

m
1 vλ, F̂

l
3 vλ〉.

Using Lemma A.1(vi), and moving F2 to the other side, where F ∗
2 kills F̂ l

3 vλ, we see

〈Em
1 F l

3F
m
1 vλ, F̂

l
3 vλ〉 = (−1)mq−m(m−2)+mλ1

(q2; q2)m

(1 − q2)2m
(q−2λ1; q2)m〈F l

3 vλ, F̂
l
3 vλ〉

by Lemma 2.2(ii). Assume l ≥ 1, so it remains to calculate

〈F l
3 vλ, F̂

l
3 vλ〉 = 〈F l−1

3 vλ, (F3)
∗F̂ l

3 vλ〉 = q1−(λ1+λ2−2l)〈F l−1
3 vλ, (E2E1 − E1E2) F̂ l

3 vλ〉
= q1−(λ1+λ2−2l)〈F l−1

3 vλ, E2E1F̂
l
3 vλ〉

where we use Lemma A.1(iv), the diagonal action of Ki and the fact that the action of E1E2
is zero by Lemma 2.1(ii) and (2.4). By Corollary A.2 for a = 0 and (2.4) we find

E1F̂
l
3 vλ = ql − q−l

q − q−1

q2+λ1+λ2−l − q−2−λ1−λ2+l

q − q−1
F2F̂

l−1
3 vλ

and next applying E2, using (2.1), (2.4) and Lemma 2.1(ii) we find

E2E1F̂
l
3 vλ = ql − q−l

q − q−1

q2+λ1+λ2−l − q−2−λ1−λ2+l

q − q−1

qλ2−l+1 − q−λ2+l−1

q − q−1
F̂ l−1
3 vλ,
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so that

〈F l
3 vλ, F̂

l
3 vλ〉 = q1−(λ1+λ2−2l) q

l − q−l

q − q−1

×q2+λ1+λ2−l − q−2−λ1−λ2+l

q − q−1

qλ2−l+1 − q−λ2+l−1

q − q−1
〈F l−1

3 vλ, F̂
l−1
3 vλ〉.

Iterating, since we normalize 〈vλ, vλ〉 = 1, we find

〈F l
3 vλ, F̂

l
3 vλ〉 = ql(λ2+7)q− 1

2 l(l+1) (q2; q2)l

(1 − q2)3l
(q−2λ2; q2)l(q

−2(λ1+λ2+1); q2)l .

Note that this expression is positive for 0 ≤ l ≤ λ2 and equals zero for l > λ2. Collecting all
the intermediate results gives the explicit expression for the norm of the basis elements.
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