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This paper presents a mathematical model for bacterial growth, mutations, horizontal
transfer and development of antibiotic resistance. The model is based on the so-called
kinetic theory for active particles that is able to capture the main complexity features of
the system. Bacterial and immune cells are viewed as active particles whose microscopic
state is described by a scalar variable. Particles interact among them and the temporal
evolution of the system is described by a generalized distribution function over the
microscopic state. The model is derived and tested in a couple of case studies in order to
confirm its ability to describe one of the most fundamental problems of modern medicine,
namely bacterial resistance to antibiotics.
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1. Introduction

The discovery of penicillin by Alexander Fleming in 1928 constituted one of the
greatest steps in the development of medicine and biology. It finally made possible
to battle against bacterial infections caused by staphylococci and streptococci that
had caused thousands of deaths over the years.

However, in the last several years, it has become apparent that bacteria have
acquired more and more resistance to antibiotics. This fact was first observed exper-
imentally by Joshua and Esther Lederberg [20], who concluded that resistant bacte-
ria were generated by simple and random genetic variants in the original population

1750051-1

In
t. 

J.
 B

io
m

at
h.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 F
U

D
A

N
 U

N
IV

E
R

SI
T

Y
 o

n 
03

/1
4/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.

http://dx.doi.org/10.1142/S1793524517500516


2nd Reading

January 24, 2017 14:20 WSPC S1793-5245 242-IJB 1750051

D. A. Knopoff & J. M. Sánchez Sansó

and then naturally selected. It is now known that bacterial genes for drug resis-
tance are carried on plasmids, small DNA molecules that can be transferred from
one cell to another [35]. Consequently, the spread of mutations in a bacterial popu-
lation that confer resistance is much faster than would occur as a result of natural
selection only.

Then, the main problem is given by the indiscriminate use of antibiotics that
expose groups of bacteria to repeated treatments. Antibiotic resistance occurs when
an antibiotic has lost its ability to effectively control or kill bacterial growth; in
other words, the bacteria are “resistant” and continue to multiply in the presence
of therapeutic levels of antibiotic. This creates a natural selection in which those
which are resistant survive. If these bacteria are exposed to chronic treatment,
the result is that more and more bacteria are resistant to most antibiotics. Let
us stress that antibiotic resistance is a natural phenomenon: when an antibiotic is
used, bacteria that are resistant to that antibiotic have a greater chance of survival
than those that are susceptible. Susceptible bacteria are killed or inhibited by the
antibiotic, resulting in a selective pressure for the survival of resistant strains of
bacteria.

Some bacteria are naturally resistant to certain types of antibiotics. However,
bacteria may also become resistant in two ways: (1) by a genetic mutation, or (2) by
acquiring resistance from another bacterium.

So, on the one hand, bacteria can spread to their offspring the genetic material
that will confer on them some resistance to antibiotics. This resistance could be
acquired or transferred from other surrounding bacteria. A bacterium divides by
binary fission and each daughter cell should be an identical copy of it. However,
a mutation might occur during a bacterium replication by an erroneous copy of
genetic material, and this mutation can encode a protein that confers resistance
to a given antibiotic. In terms of the genetic basis of resistance acquisition, this is
known as chromosomal resistance.

As stated by Nowak [31], the term mutation is used to refer to any genetic
modification such as point mutations, insertions, deletions, chromosome rearrange-
ments, mitotic recombination, or loss or gain of whole chromosomes or arms of
chromosomes. Some useful references on mutation rates and experimental methods
to determine them are [18, 32, 33].

On the other hand, another way to become resistant is that in which the bac-
terium copies a segment of its genetic material and transfers it to other bacteria
(extrachromosomal acquisition). In this case, transmission requires contact between
cells carrying that genetic material and cells free of it through the processes known
as conjugation and horizontal transfer [37], as illustrated in Fig. 1. Actually, sev-
eral different proteins can be acquired with action against different antibiotics (some
attack beta-lactamases, others avoid the income of antibiotic to the nucleus, others
avoid ribosomes being attacked by the antibiotic, etc.). That is the reason that
explains the fact that there are bacteria which can collect multiple resistance mech-
anisms over time, becoming resistant to many different families of antibiotics [9].

1750051-2

In
t. 

J.
 B

io
m

at
h.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 F
U

D
A

N
 U

N
IV

E
R

SI
T

Y
 o

n 
03

/1
4/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.



2nd Reading

January 24, 2017 14:20 WSPC S1793-5245 242-IJB 1750051

A kinetic model for bacterial antibiotic resistance

Donor bacterium Recipient bacterium

Chromosomal
 DNA

Antibiotic-
resistance
gene

Chromosomal
 DNA

(a)

Donor bacterium Recipient bacterium

Chromosomal
 DNAPilus

Chromosomal
 DNA

Antibiotic-
resistance
gene

(b)

Former recipient/new donor bacterium

Chromosomal
 DNA

Donor bacterium

Chromosomal
 DNA

Antibiotic-
resistance
gene

Antibiotic-
resistance
gene

(c)

Fig. 1. Schematic representation of horizontal gene transfer. (a) A donor bacterium meets a
recipient one; (b) Bacterial conjugation consists in the formation of a pilus, through which genetic
material can be transferred; (c) Both bacteria contain an antibiotic-resistant gene.

To make matters even worse, it is worth stressing that genetic material is not
only transmitted between bacteria from the same species but also between different
families of bacteria that share certain compatibility conjugation features with each
other. Thus, different bacteria that are responsible for different diseases are getting
more and more difficult to attack. To give an idea of the problem we are dealing with,
according to the most recent annual report on global risks, the World Economic
Forum (WEF) [36] estimates “that in the United States at least two million people
acquire serious infections with bacteria that are resistant to one or more of the
antibiotics designed to treat them, and at least 23,000 people die each year as a
direct result of these antibiotic-resistant infections”, while the burden in low- and
middle-income countries is much higher. An interesting reference that tackles the
environmental framework of antibiotic resistance is [6], where the main harmful
human habits that worsen the problem are explored and some remedial solutions
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are proposed. Also, some recent developments on experimental efforts in this aspect
are addressed in [10, 16].

If we had to compare the relative frequencies of both mechanisms, horizontal
transfers are much more frequent than mutations. Mutations, rare spontaneous
changes of the bacteria’s genetic material, are thought to occur in about one in
one million to one in 10 million cells. Different genetic mutations yield different
types of resistance. Some mutations enable the bacteria to produce potent chemi-
cals (enzymes) that inactivate antibiotics, while other mutations eliminate the cell
target that the antibiotic attacks. Still others close up the entry ports that allow
antibiotics into the cell, and others manufacture pumping mechanisms that export
the antibiotic back outside so it never reaches its target. On the other hand, there
is about one conjugation and transfer event at every 10,000 receptor cells [35].

Finally, let us mention that resistant cells can also lose this capability: this could
happen as a consequence of another mutation or, more frequently, because of the
segregation of the genetic material that confers resistance [30].

There exist a few mathematical models dealing with the matter of horizontal
transfer of plasmids and treatment protocols to prevent antibiotic resistance, like
[7, 23–25, 29, 34, 35], though there are not many references in the literature about
mathematical models for antibiotic resistance. Some valuable contributions on hori-
zontal gene transfer are [27], where authors introduce a model based on population
dynamics for natural transformation and study its dynamic characteristics with
nonlinear tools and simulations; while paper [19] proposes a model of horizontal
gene transfer using genetic trees tools. In this paper, we propose a model that takes
into account — in addition to horizontal transfer and antibiotic resistance issues —
the presence of the immune system that also tries to contrast the development of
a disease. Our mathematical approach is based on the kinetic theory for active
particles (KTAP) that considers the complexity features of the system under con-
sideration. This theory has so far been successfully applied to model complex living
systems constituted by a large number of particles interacting according to rules
modeled by theoretical game theory [3], among which we can mention the modeling
of social systems [1, 21], opinion formation with dynamics over networks [15, 22],
molecular genetics [14], selective mutations in epidemiology [12, 13] and Darwinian
mutation and selection on cancer phenomena contrasted by immune cells [4]. We
refer to [2] and references therein for an interesting critical analysis on the deriva-
tion of mathematical structures developed to capture the complexity of biological
systems, in particular with Darwinian-type dynamics. An important recent contri-
bution of the KTAP that is applied in our framework refers to collective learning
[8], since it is a major complexity feature of the biological system under consid-
eration. Mayr introduced the concept of population thinking [28] that, linked to
the concept of mutations and selection, can explain many aspects of the theory of
evolution and motivated the development of evolutionary game theory [31].

In our approach we consider a system constituted by a large number of interact-
ing cells that are divided into three subpopulations: resistant bacteria, non-resistant
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bacteria and immune cells. Interactions are modeled at the microscopic state that
is described by a scalar variable and the system is thus described by a generalized
distribution function depending on time and on the microscopic state. The overall
dynamics is obtained as a result of these interactions: immune cells try to fight
against bacteria, while bacteria can conjugate among them and horizontally trans-
fer the ability to resist against an antibiotic, that is supplied and interpreted as an
external action.

This paper is organized as follows: Sec. 2 describes the system under consider-
ation and introduces the general mathematical framework for the derivation of the
model. Section 3 introduces the mathematical model and the modeling of interac-
tions among cells. In Sec. 4, we perform a computational analysis of the proposed
model and report some simulations addressed to show emerging behaviors. Finally,
Sec. 5 contains conclusions and highlights some research perspectives.

2. Representation of the Cellular System and Formulation
of the Mathematical Model

2.1. Description of the system and mathematical representation

Let us consider a system composed of a large number of cells. On the one hand, we
have pathogenic bacterial cells, all of them belonging to the same species, which are
spatially homogeneously distributed in a given tissue or culture. These cells can be
essentially divided into two groups of strains, namely those that are susceptible to
be killed by a certain antibiotic A and those that have acquired resistance to it. This
can be explained by the presence or absence of a given genetic material (for instance
a plasmid) inside its cytoplasm. This material is responsible for conferring to the
bacterium resistance to A. Consequently, bacteria containing P share a common
strategy that let them resist to antibiotic supply. On the other hand, we have
immune cells, whose major action is that of recognizing and destroying foreign
substances in the body, in this case bacteria.

Thus, our system is made up of a large number of interacting cells, called active
particles in the context of the KTAP, whose physical microscopic state is described
by a variable called activity, that represents the individual ability to express a
specific biological function. The system can be divided into functional subsystems
according to the following criteria:

• i = 1 labels bacteria that are susceptible to be killed by a certain antibiotic A;
• i = 2 refers to those bacteria that have acquired resistance to A;
• i = 3 denotes cells of the immune system that can acquire, by a learning process,

the ability to contrast the spread of bacterial cells.

Remark 2.1. The mathematical and numerical analysis of the model can be also
performed by considering no immune reaction, for instance in the case in which
only resistance to antibiotics is studied in in vitro experiments.
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Within each group of bacteria, it is assumed that — if not contrasted by the
immune system or by antibiotic supply — cells can evolve toward more aggressive
states, leading to an increase of its activity. Analogously, immune cells can also
evolve toward stronger states as they acquire the ability to recognize more aggressive
bacteria.

The activity variable describes these progression states, taking values in the
discrete set

Iu = {0 = u1, . . . , um = 1 : u1 < · · · < um}.
The activity is heterogeneously distributed and is such that increasing values of the
variable represent an increasing ability of cells to express their biological function:
more aggressive states (for functional subsystems 1 and 2) or stronger immune
reaction (for functional subsystem 3).

In order to describe the overall state of the system, let us now introduce the
discrete generalized distribution functions

fij = fij(t), i = 1, 2, 3, j = 1, . . . , m,

which denote the number of active particles from functional subsystem i that have,
at time t, the state uj . Consequently, the zeroth-order moment

ni[f ](t) =
m∑

j=1

fij(t), i = 1, 2, 3, (2.1)

gives the number of particles that, at time t, belong to the ith-functional subsystem.
Therefore, N(t) = n1(t)+n2(t) represents the total number of living bacteria, where
n1(t) is the number of those non-resistant to A, while n2(t) is the number of resistant
ones. It is worth remarking at this point that increasing values of n2 constitute one
of the main concerns of medicine nowadays [36].

Finally, as it was previously stated, we want to study the action of antibiotic
supply. Within the present framework, this is introduced as an external action
given by a function c(t) that refers to the concentration of A. The drug attacks
bacteria from the first functional subsystem, but has no effect against those from the
second one. The form of c(t) depends on a drug administration protocol previously
established and supposed to be known.

Now, we are able to obtain the general mathematical structure that describes
the temporal evolution of distribution functions fij . Following the ideas exposed in
[4, 13], we can identify two main sources of transitions in the microscopic state of
cells:

• A self-evolution not mediated by binary interactions that depends only on the
current state of particles. This approach constitutes realistic scenario to model
cell proliferation and mutations.

• Binary interactions between particles from the same or different functional sub-
systems.
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Accordingly, the evolution in time of the distribution function fij is obtained
by performing a balance of particles in the state uj of functional subsystem i, and
the balance equation can be summarized as

dfij

dt
= Cij [f , f ](t) + Pij [f ](t) − Dij [f , f ](t) − Lij [f ](t) + Qij [f ](t), (2.2)

for i = 1, 2, 3 and j = 1, . . . , m, where f denotes the set of all distribution functions
and square brackets represent the dependence on f .

Specifically:

• Cij [f , f ](t) is the net flux, at time t, into the state uj of the functional subsystem
i, due to conservative interactions.

• Pij [f ](t) is the gain, at time t, into the state uj of the functional subsystem i,
due to proliferative events, through a self-mediated process.

• Dij [f , f ](t) is the loss, at time t, in the state uj of the functional subsystem i,
due to destructive events.

• Lij [f ](t) is the natural self-relaxation of the immune system, at time t and in the
state uj of the functional subsystem i, to a given healthy state.

• Qij [f ](t) refers to the external action of the antibiotic A that is administered in
such a dose that its concentration is c(t).

Remark 2.2. Since a cellular system is characterized by a rapid replication (even-
tually exhibiting mutation phenomena) and immune action and drug treatment are
able to deplete bacterial cells, the above-described system is not conservative, as [4].
This constitutes a major difference with the model proposed in [13]. In that model,
authors took as active particles those individuals (people) carriers of the infectious
agent. In this present model, however, active particles are cells.

2.2. Description of self- and binary-mediated terms

Let us now specify each of the terms in Eq. (2.2) in order to model the above-
described cellular system.

• The term Cij [f , f ](t) describing conservative interactions between cells considers
interactions between particles. A candidate particle belonging to functional sub-
system h with microstate up (hp-particle from now on) can undergo a transition
into the state of the test particle ij after an interaction with a field kq-particle.
In addition, the test particle can lose its state as a consequence of an interaction
with a field particle. Binary interactions are described by the following interaction
terms:

— ηkq
hp ≥ 0 denotes the encounter rate between the candidate hp and the field

kq-particles.
— The discrete probability transition functions Bpq

hk(ij) denote the probability
that a candidate hp-particle falls into the state ij of the test particle after
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an interaction with a field kq-particle. These transition functions satisfy:

Bpq
hk(ij) ≥ 0, ∀ i, h, k = 1, 2, 3, ∀ j, p, q = 1, . . . , m,

3∑
i=1

m∑
j=1

Bkq
hp(ij) = 1, ∀h, k = 1, 2, 3, ∀ p, q = 1, . . . , m.

Then, the balance of particles due to conservative interactions reads

Cij [f , f ](t) =
3∑

h,k=1

m∑
p,q=1

ηkq
hpBkq

hp(ij)fhp(t)fkq(t) − fij(t)
3∑

k=1

m∑
q=1

ηkq
ij fkq(t). (2.3)

• Regarding to the modeling of the term Pij [f ](t) for bacterial strains i = 1, 2,
we introduce the proliferation rate µhp(ij) that denotes the rate at which hp-cells
divide, giving a daughter ij-cell. Let us stress that if i = h and j = p, then
daughter cells are identical to the mother cell. However, if one of these variables
changes during replication, then a mutation has occurred. Consequently, we have

Pij [f ](t) =
3∑

h=1

m∑
p=1

µhp(ij)fhp(t), i = 1, 2. (2.4)

Notice that, in this case, we indeed have a self-mediated process. This is inspired
in the fact that it is well known that the rate of change in cell population due to
replication is proportional to its instantaneous size [31]. The proliferation rate may
depend, for instance, on the cell type and nutrient availability.

• The term P3j [f ](t) describing the proliferation of immune cells is quite different,
since immune system is indeed able to acquire immunity in the presence of fo-
reign agents (in this case bacteria). Consequently, this term must consider binary
interactions with bacteria in the sense that their presence stimulates immune cells
proliferation. Thus, we have

P3j [f ](t) =
2∑

k=1

m∑
q=1

ηkq
3pκkq

3p(3j)f3pfkq(t), (2.5)

where κkq
3p(3j) is the proliferation rate of immune cells with state p into state j

induced by interactions with bacterial kq-cells.

• The term Dij [f , f ](t) models cell death due to binary interactions. Basically, it
refers to the action of the immune system over bacterial cells. Introducing the net
destruction rate of ij-cells νkq

ij due to binary interactions, occurring with a frequency
ηkq

ij with field kq-particles, we have

Dij [f , f ](t) = fij(t)
3∑

k=1

m∑
q=1

ηkq
ij νkq

ij fkq(t). (2.6)

• For the term Lij [f ](t) that represents the relaxation of the immune system, we
introduce the parameter λ, that refers to the natural tendency of the immune system
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to relax to a given healthy state [4, 11], that is defined as a given distribution of
immune cells in a healthy individual. In general, it is a good choice for the healthy
state to take the initial value of the distribution functions f0

ij , so that

Lij [f ](t) = λ
(
fij(t) − f0

ij(t)
)
. (2.7)

• Finally, the antibiotic efficiency is described by the parameter ϕA that may depend
on the provided drug A. Thus, its action over bacteria is given by

Qij [f ](t) = −ϕAg(c(t))fij(t), (2.8)

where g is an increasing non-negative function, meaning that A is a concentration-
dependent antibiotic that achieves an increasing bacterial killing ability with
increasing levels of drug (e.g. azithromycin, quinolones).

In the next section, all the above-introduced terms will be specified in order to
obtain the general expression that models the interaction among bacteria, immune
cells and antibiotic system.

3. Derivation of the General Model

Let us recall that our system is constituted by three functional subsystems, labeled
by i = 1, 2, 3, where the first two are composed of bacterial cells (non-resistant and
resistant to antibiotic A, respectively), while the last one is formed by immune cells.
Each population is characterized by the discrete activity variable uj , j = 1, . . . , m,
that represents the aggressivity for the populations of bacteria, and the acquired
capability to contrast them for immune cells.

The main features to be considered in the model are:

• Immune evasion: If not contrasted by the immune system or by the action of
the antibiotic, bacterial cells evolve toward more aggressive states, leading to an
increase of their state within the same population. Indeed, bacteria have deve-
loped complex and efficient methods to overcome innate and adaptive immune
mechanisms [17].

• Immune recognition and action: When immune cells are able to recognize bacte-
ria, they act destroying them. In general, new strains of immune cells are gener-
ated — via a learning process — in order to contrast the action of more evolved
bacteria.

• Extrachromosomal resistance acquisition: Interactions between resistant (contain-
ing a specific genetic material) and non-resistant (not containing it) bacteria can
induce, with a certain probability, the formation of a conjugation channel join-
ing them. Then, the antibiotic-resistance gene (usually a plasmid) is horizontally
transferred from one cell to the other, giving as a result two resistant bacteria.

• Proliferation and chromosomal resistance acquisition: Bacteria divide at a given
rate in a self-regulated process. In general, daughters are identical to mother
cells but in some cases, even with a small probability, replication can produce a
mutation from a non-resistant to a resistant bacterium.
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• Antibiotic action: If antibiotic is supplied, it is only able to kill non-resistant
bacteria. This action depends on its efficiency and on the dose.

In the following subsections, the above-mentioned features are taken into ac-
count in order to model those terms introduced in Sec. 2.

3.1. Modeling conservative interactions

Encounter rate: Only the modeling of non-trivial encounters is taken into account. In
other words, those encounters between cells that do not produce state transitions
are not necessary to be introduced. In this sense, we need to model encounter
rates between resistant and non-resistant bacteria that can conjugate for horizontal
transfer, and between bacterial and immune cells. In particular, we assume constant
interaction rates η0, η̃0 ≥ 0 such that:

η2q
1p = η1p

2q = η0, ∀ p, q = 1, . . . , m, (3.1)

η3q
hp = ηhp

3q = η̃0, h = 1, 2, ∀ p, q = 1, . . . , m. (3.2)

An alternative modeling approach for these terms could be referred to a certain
notion of distance between functional subsystems and states, see [3].

Transition probability density: Let us now consider those interactions that undergo
a conservative transition. More in details, we have:

• Interactions between functional subsystems 1 and 2. These interactions are
responsible of the horizontal transfer of genetic material from a field bacterium
belonging to functional subsystem k = 2 to a candidate one belonging to func-
tional subsystem h = 1. If this transfer effectively occurs — with probability α —
then candidate bacterium acquires antibiotic resistance, undergoing a transition
into subsystem 2:

B2q
1p(ij) =




α, i = 2, j = p, 0 ≤ α ≤ 1,

1 − α, i = 1, j = p,

0, otherwise.

(3.3)

Recall that Fig. 1 illustrates this phenomenon biologically, while Fig. 2(a)
exemplifies the dynamics modeled in Eq. (3.3).

• Interactions between functional subsystems h = 3 and k = 1, 2. Immune cells
progressively acquire the ability to identify bacterial cells. Consequently, they
may increase their activity state with probability β in order to contrast more
aggressive bacteria, as modeled in Eqs. (3.4)–(3.5):

Bkq
3p(ij) =




β, i = 3, j = p + 1, p < q, 0 ≤ β ≤ 1,

1 − β, i = 3, j = p,

0, otherwise,

(3.4)
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p

q

i=1

i=2
p

p

q>p

i=3

i=1 or 2 

p+1

(a) (b)

Fig. 2. Dynamics of conservative interactions. (a) A candidate p-bacterium from subsystem 1
(black bullet) interacts with a field q-bacterium from subsystem 2 (white bullet). As a result,
genetic material that confers antibiotic resistance can be transferred (with probability α) through
conjugation and horizontal transfer. In this way, the candidate bacterium undergoes a transition
into functional subsystem 2, with the same activity state (grey bullet). (b) A candidate p-immune
cell (black bullet) interacts and recognizes a field q-bacterium (with q > p). Then, the immune
response consists in a transition (with probability β) to the next activity state p +1 (grey bullet).

for k = 1, 2, and

Bkq
3p(3p) = 1 if p ≥ q, (3.5)

for k = 1, 2.
This dynamics is illustrated in Fig. 2(b).

3.2. Modeling proliferative and destructive events

Proliferative events and mutations: As already stated, these events are regarded as
self-mediated, since cells can divide by themselves under suitable conditions (e.g.
nutrient, oxygen and space availability).

Proliferation occurs within the same functional subsystem giving identical
daughter cells. It is assumed that this occurs at a rate µ0 for bacteria and κ for
immune cells. In the case of the latter, proliferation of immune cells with acti-
vity uj is stimulated by the presence of bacterial cells with the same activity, see
Eqs. (3.6)–(3.8).

On the other hand, bacterial replication can give mutant daughters; these are
rare but extremely important events that can drastically change the overall dyna-
mics. For the sake of simplicity, we divide these events in two main categories:

• Type I mutations that refer to the ability of bacteria to become more aggressive
and to acquire stronger strategies to avoid immune response. These mutations
occur at a rate µ1.

• Type II mutations that refer to the ability of bacteria to acquire resistance to
antibiotic A. These occur at a rate µ2.

Finally, resistant bacteria can eventually lose the genetic material responsible
of conferring antibiotic resistance through segregation. This is a complex process

1750051-11
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p p+1

p p+1

i=1

i=2

Normal
proliferation

Type I
mutation

Type II
mutation

p p+1

p p+1

Segregation

(a) (b)

Fig. 3. Dynamics of proliferative events. (a) A candidate p-bacterium from subsystem 1 can
divide into three ways: giving identical daughters with rate µ0, becoming more aggressive (Type I
mutation) with rate µ1 or becoming resistant, i.e. daughters belong to functional subsystem 2
(Type II mutation) with rate µ2. (b) Offspring of a resistant bacterium can lose the conferring
genetic material through segregation with rate µseg .

that can occur involving several mechanisms [30] and it is assumed a constant low
rate µseg.

Equations (3.6)–(3.8) model the above-described phenomena and Fig. 3 shows
a schematic representation:

µ1p(ij) =




µ0, i = 1, j = p,

µ1, i = 1, j = p + 1, p = 1, . . . , m − 1,

µ2, i = 2, j = p,

(3.6)

µ2p(ij) =




µ0, i = 2, j = p,

µ1, i = 2, j = p + 1, p = 1, . . . , m − 1,

µseg, i = 1, j = p,

(3.7)

κkq
3p(ij) = κ, i = 3, j = p = q, k = 1, 2. (3.8)

Destructive events: Regarding to destructive interactions, immune system is able to
kill those bacteria that it is able to recognize. This is, bacterial cells with activity
p can be contrasted and killed by immune cells with activity q ≥ p:

ν3q
hp = γ, q ≥ p, γ > 0. (3.9)

3.3. External action dynamics

This subsection is devoted to the action of antibiotic A over non-resistant bacteria.
This constitutes not an easy task that is deeply studied by pharmacokinetics and
pharmacodynamics [5, 26].

In a rather simple but also representative approach, as stated in the previous
section, we assume that A is a concentration-dependent antibiotic, which means
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that it achieves an increasing bacterial killing ability with increasing levels of drug.
So, this killing ability of the drug described in Eq. (2.8) is increasing with respect
to its instantaneous concentration c(t) through the increasing function g(c) and to
its efficiency ϕA. In general, we can simply assume that g is the identity function,
meaning that killing rate is proportional to c.

Moreover, for an extravascular administration of antibiotic in an in vivo patient,
Bateman’s equation provides an accurate description of the concentration of drug
in the body:

c(t) = c0

(
e−ket − e−kat

)
, (3.10)

where c0 is the concentration of the supplied drug, ka is the absorption rate and
ke is the elimination rate via renal excretion and hepatic metabolism. Here, we
are considering a monocompartimental model, which assumes that blood plasma
concentrations of the antibiotic are equal to the concentration in other fluids or
tissues. In Fig. 4(a), we show Bateman’s curve for a given choice of parameters.
It can be observed that if drug is supplied at t = 0 there is an absorption period
in which c grows until reaching the maximal concentration, and then c starts to
decay due to excretion. In a clinical situation, however, drug is supplied many
times at every given time interval. The dosage is the amount of drug needed to
be administered to maintain the plasma concentration above the minimum effec-
tive concentration (MEC) and below the minimum toxic concentration (MTC), see
Fig. 4(b) for a repeated dosage of antibiotic satisfying Bateman’s kinetics. The area
between both concentrations MTC and MEC is known as mutant selection window,
and in practice it is desirable that both of them were close in order to prevent
mutations.

Time

A
nt

ib
io

tic
 c

on
ce

nt
ra

tio
n

MCT

MEC

Time

A
nt

ib
io

tic
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on
ce

nt
ra

tio
n

MCT

MEC

(a) (b)

Fig. 4. (a) Antibiotic concentration for a dosage following Bateman’s scheme. Drug is supplied
at t = 0 and after a period of absorption in which maximum concentration is reached its concen-

tration starts to decay due to elimination. Dashed lines correspond to the MEC and the MTC.
(b) Bateman’s scheme for multiple dose of antibiotic.
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It is worth stressing, however, that physicians usually consider a simplified ver-
sion of this curve that consists in a linear interpolation for each interval of increasing
and decreasing concentration.

3.4. Obtention of the explicit model

We are now able to derive explicitly the system of equations describing the phe-
nomena under consideration. Substitution of Eqs. (3.1)–(3.9) into Eqs. (2.3)–(2.8)
and the general balance equation (2.2) leads to:

df1j

dt
(t) =


−αη0n2 + µ0 − γη̃0

m∑
q=j

f3q(t) − ϕAg(c(t))


 f1j(t)

+ µ1χ{j≥2}(j)f1,j−1(t) + µsegf2j(t), (3.11)

df2j

dt
(t) = (αη0n2(t) + µ2)f1j(t) +


µ0 − γη̃0

m∑
q=j

f3q(t) − µseg


 f2j(t)

+ µ1χ{j≥2}(j)f2,j−1(t), (3.12)

df3j

dt
= βη̃0


χ{j≥2}(j)f3,j−1(t)

m∑
q=j

fkq(t) − f3j(t)
2∑

k=1

m∑
q=j+1

fkq(t)




+ κη̃0f3j(t)(f1j(t) + f2j(t)) − λ(f3j(t) − f0
3j), (3.13)

where χ denotes the indicator function. This system of ODEs must be coupled with
initial conditions fij(0) = f0

ij , i = 1, 2, 3, j = 1, . . . , m. The biological meaning of
the parameters introduced in the model are summarized in Table 1.

Table 1. Model parameters.

Parameter Biological meaning

η0, η̃0 Interaction rates
α Probability of occurrence of horizontal transfer from resistant to

non-resistant bacteria
β Probability of conservative progressions within immune cells
γ Suppression rate
µ0, κ Normal proliferation rate of bacteria and immune cells
µ1 Type I mutation rate: mutation leads to more aggressive bacteria
µ2 Type II mutation rate: mutation leads to antibiotic resistant bacteria
µseg Segregation rate of genetic material responsible for antibiotic resistance
λ Relaxation of the immune system
ϕA Antibiotic efficiency
c0 Maximum attainable antibiotic concentration in Bateman’s scheme
ka, ke Absorption and elimination rates of antibiotic in Bateman’s scheme
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4. Numerical Simulations

In this section, we perform some numerical simulations and computational analysis
of the model proposed in Sec. 3. The analysis is possible since the problems (3.11)–
(3.13) is well-posed and has a unique large-time solution. We refer to [4] for a
detailed proof of this fact that follows from the use of classical fixed point theorems
for ODEs.

The aim of the simulations is to test the predictive ability of the model, to con-
trast the numerical results with empirical evidence and to explore some interesting
emerging behaviors that particularly concern medical applications.

In particular, we consider the following two scenarios, depending on the ability
of the body to produce a normal immune response following an exposure to an
antigen, in this case pathogenic bacteria:

(a) Immunocompetent patient: This case corresponds to a young, healthy indivi-
dual, without associated comorbidities (i.e. nondiabetic, non-hypertensive,
etc.), whose immune system has the ability to detect and attack antigens nor-
mally. It is supposed that the individual is initially exposed to the bacterial
pathogen and we study the temporal evolution of bacterial populations, accord-
ing to the interaction between immune response and antibiotic effectiveness. In
this case, the joint action of the antibiotic and immune system should keep
under control the bacterial population.

(b) Immunodeficient patient: This scenario corresponds to an immunosuppressed
patient, i.e. a patient such that his/her immune system is much weaker than
in the previous case. Here, it is expected that the antibiotic effectiveness is the
crucial factor to reduce the total bacteria count, without having much support
from the immune system. In this case one would expect that if a resistant strain
appears, then its population will grow without being completely depleted.

Simulations have been performed with the parameters in Table 1 taking different
sets of values according to the specific case under consideration. Regarding to the
initial conditions, in all the cases we consider an infection by non-resistant bacteria
with the lowest activity value, while the population of resistant bacteria is set to
zero. Immune system has only an initial sentinel state with cells belonging to the
lowest activity value and it can be activated by more aggressive bacteria. Parameters
have been chosen in such a way that time is measured in minutes, while cellular
populations and antibiotic concentration are normalized with respect to the initial
population and a maximum concentration cmax, respectively.

Case I: Immunocompetence

As already stated, let us consider the case of a strong immune response. Basically,
this feature is described — in the present model — by the probability of progression
β and the relaxation factor λ. So, these are the two parameters that differ in both
case studies. Simulations are developed for the following values of parameters: α =
10−4, β1 = 10−1, γ = 5 × 10−1, µ0 = 10−2, µ1 = 10−4, µ2 = 10−6, κ = 10−2,
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0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

Time

n 1

0 1000 2000 3000 4000 5000
0

0.1

0.2

0.3

Time

n 2
(a) (b)

0 1000 2000 3000 4000 5000

0.5

0.55

0.6

0.65

Time

n 3

(c)

Fig. 5. Temporal evolution of (a) n1(t), (b) n2(t), and (c) n3(t) for an immunocompetent patient.

µseg = 10−4, λ = 10−4, η0 = η̃0 = 10−1 and antibiotic is supplied with a multiple
Bateman’s scheme with c0 = 1 and efficiency ϕA = 10−1 at every 8 h since the
beginning of the infection, with absorption and elimination rates ka = 2.5 h−1 and
ke = 10−1 h−1, respectively, and g is the identity function.

Results are shown in Fig. 5. We can observe that the joint action of the antibi-
otic and the immune system quickly and completely depletes the non-resistant
population of bacteria n1. However, mutations and horizontal transfer let resistant
bacteria grow. In this case, it is the immune strength that acts contrasting them,
accomplishing its task in about two days from the beginning of the infection and
of the treatment. From that moment, immune system begins to slowly relax to its
sentinel state.

Case II: Immunodepression

This case considers a scenario in which the immune system has a rather weak
capability to contrast the pathology. As already mentioned, this is reflected in the
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fact that it has a reduced ability to learn, cells are prevented to increase their state
toward the acquired immunity and relaxation is faster.

Simulations were performed with the same parameter values as in the previous
case, except from those that weaken the immune response, namely β = 5 × 10−2

and λ = 3 × 10−2. In addition, different antibiotic efficiencies were considered and
antibiotic was supplied with constant concentration c = 0.1.

Figure 6 shows how populations evolve for ϕA = 0.2 and ϕA = 0.02. It can
be observed that in both cases bacteria are able to prosper under this weakened
immune system. If the antibiotic is efficient enough, then it is able to deplete the
non-resistant population, but resistant bacteria are generated and cannot be con-
trasted by the immune action. On the other hand, for a smaller antibiotic efficiency
it is the first population that is the one not completely depleted. This is a really
interesting result that is confirmed in Fig. 7, which shows the asymptotic values of
both bacterial populations for different values of ϕA. An inspection of this figure

0 1000 2000 3000 4000 5000
0

0.5

1

1.5

2

2.5

3

Time

n 1

0 1000 2000 3000 4000 5000
0

0.5

1

1.5

2

2.5

Time

n 2

(a) (b)

0 1000 2000 3000 4000 5000

0.5

0.55

0.6

0.65

Time

n 3

(c)

Fig. 6. Temporal evolution of (a) n1(t), (b) n2(t), and (c) n3(t) for an immunosuppressed patient
for two different values of antibiotic efficiency. Continuous lines correspond to ϕA = 0.2 and dashed
lines to ϕA = 0.02.
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Fig. 7. Asymptotic values of (a) non-resistant and (b) resistant bacterial populations for different
values of antibiotic efficiency ϕA, for an immunosuppressed patient.

allows us to state that growth of resistant strains is a really serious matter, since
immunodepressed patients will actually not be able to fight against the infection.

5. Conclusions and Looking Forward

A mathematical model for bacterial immune competition and antibiotic resistance
has been proposed in this paper. The approach is based on tools of the KTAP that
turns out to be useful in the modeling of complex living system composed of a large
number of interacting particles. In particular, a main contribution of the present
model is the mutations that bacteria undergo, modeled as Darwinian-type pro-
cesses. In addition, horizontal transfer of genetic material between bacteria is con-
sidered, and it is claimed to be one of the most troubling issues in modern medicine.
The numerical simulations performed for two particular case studies confirm the
empirical evidence of this problem. Indeed, they clearly show that a bacterial infec-
tion may not be contrasted by the action of antibiotics only, but it also requires
the immune response. However, if for any reason a patient has her immune system
weakened, then antibiotics will be inefficient if bacteria had developed resistance.

Since the kinetic approach has shown to be accurate enough to take into account
the complexity features of the system, it could eventually be used to model gen-
eral horizontal genetic transfer between cells that is responsible not only for drug
resistance acquisition processes, but is also important in other phenomena like adap-
tation, evolution and cooperation in ecology. Also, in genetic engineering, artificial
horizontal transfer has so far been used to introduce genetic sequences into a wide
variety of animal genomes. Moreover, some interesting problems for further research
activity arise focusing not only on the mathematical but also on the medical fields.
In the first case, much has to be done regarding to model validation, simulations and
analytical aspects; while in the latter, it will be crucial to work on clinical data and
the design of treatment protocols that can be numerically and inexpensively tested
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in silico. Also, moving forward in further developments of this line of research, our
model can be used to design treatment protocols by solving an optimal control
problem: in other words, we ask whether it is possible to find an antibiotic dosing
strategy such that: (i) antibiotic concentration levels remain always within the per-
mitted limits (MCT, MECT) and (ii) maximizes its performance (killing rate) even
when considering the acquired resistance.

In conclusion, the proposed model and simulations essentially support the idea
that even with an efficient treatment, if bacteria acquire resistance, then they are
able to grow in a suitable environment. It is true that some resistance occurs without
human action, as bacteria can produce and use antibiotics against other bacteria,
leading to a low level of natural selection for resistance to antibiotics. However, the
current higher levels of antibiotic resistant bacteria are attributed to the overuse
and abuse of antibiotics. In some countries and over the Internet, antibiotics can
be purchased without a doctor’s prescription. Patients sometimes take antibiotics
unnecessarily, to treat viral illnesses like the common cold. Considering then that
bacteria can spread from one individual to another, we uphold the major prevailing
concern in the field of health, namely antibiotic resistance. From now on, it is of
utmost importance to make renewed efforts to seek for new effective antibiotics
against resistant pathogenic bacteria.
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