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NEGATIVE RICCI CURVATURE ON SOME NON-SOLVABLE LIE

GROUPS II

CYNTHIA WILL

Abstract. We construct many examples of Lie groups G with compact Levi factor,
admitting a left-invariant metric with negative Ricci curvature. We start with a Lie
algebra which is a semidirect product g = (h ⊕ a) ⋉ n and we obtain examples where
h = su(n) and so(n), a is one dimensional and n is a representation of h in the space
of homogeneous polynomials. In the case h = su(2) we get a more general construction
where n can be any nilpotent Lie algebra where su(2) acts. We also prove a general result
in the case when h is a semisimple Lie algebra of non-compact type.

1. Introduction

In this paper we are interested in homogeneous negative Ricci curvature, as a con-
tinuation of the work started in [15]. It is proved there that if V is a non-trivial real
representation of su(2) extended to u(2) by letting the center act as multiples of the iden-
tity, then the Lie algebra u(2)⋉V admits an inner product with negative Ricci curvature.
Before that, the only Lie groups in the literature that were known to admit a left-invariant
metric with negative Ricci curvature were either semisimple (see [2], [3]) or solvable (see
[1], [12], [13]). We refer to [12] or [15] for a more detailed summary of the known results
on negative Ricci curvature in the homogenous case.

Another question that arises naturally in this context is whether the existence of a left-
invariant metric with negative Ricci curvature impose topological obstructions on a Lie
group. First recall that if K is a maximal compact subgroup of a Lie group G, then all
the nontrivial topology of G is in K, in the sense that as a differentiable manifold, G is
the product of K by a euclidean space. Therefore, from the semisimple examples in [3], it
follows that it is possible to get the topologies of almost all the compact simple Lie groups
with the following exceptions:

SU(2), SU(3), SO(5), SO(7), Sp(3), Sp(4), Sp(5), G2.

See the remark after [3, Theorem 2.1]. Recall that In [15] we obtained the topology of
SU(2).

In this work, we extend the results in [15] in many ways finding families of examples of
Lie groups admitting a metric with negative Ricci curvature. We construct Lie algebras
as semidirect products g = (a ⊕ k) ⋉ n where k is a compact semisimple Lie algebra, a
is abelian and n is a nilpotent Lie algebra. Note that if G is the simply connected Lie
group with Lie algebra g then the topology of G is in the subgroup K with Lie algebra
k. We obtain examples where k is su(n), n ≥ 3 and so(m) for m ≥ 3 and therefore we
get, in particular, the topologies of SU(3), SO(5) and SO(7) that does not follow from the
semisimple examples.

First, we consider the representations of su(m) on the space of complex-valued polyno-
mials on Cm.

This research was partially supported by grants from CONICET, FONCYT and SeCyT (Universidad
Nacional de Córdoba).
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2 CYNTHIA WILL

Theorem 1.1. Let V = Pm,n(C), be the usual real representation of su(m) on the space of
complex homogeneous polynomials of degree n in m variables extended to u(m) by letting
the center act as multiples of the identity. Hence the Lie algebra u(m)⋉V admits a inner
product with negative Ricci curvature for all n,m ≥ 2.

Using the same methods, we also consider the case of so(m) with the standard repre-
sentation on the space of polynomials.

Theorem 1.2. Let V be the standard real representation of so(m) on the space of complex-
valued homogeneous polynomials of degree n on R

m. If g = (RZ ⊕ so(m)) ⋉ V is the Lie
algebra such that [Z, so(m)] = 0 and Z acts as the identity on V , then g admits an inner
product with negative Ricci curvatures for any n,m ≥ 3.

On the other hand, we consider any algebra with Levi factor su(2) and show that under
some condition, g admits an inner product with negative Ricci curvature.

Theorem 1.3. Let g = (RZ ⊕ su(2)) ⋉ n be a Lie algebra where n is any nilpotent Lie
algebra and [Z, su(2)] = 0. If [su(2), n] 6= 0 and adZ is a positive multiple of the identity
on each su(2)-irreducible subspace of n, then g admits an inner product with negative Ricci
curvature.

Another case where we can apply our method is when one starts with the non-compact
dual of su(m), sl(m,R). In this way, by the Weyl’s unitary trick, for each representation of
su(m) one gets a representation of sl(m,R). We then show that (RZ⊕sl(m,R))⋉V admits
an inner product with negative Ricci curvature for m ≥ 2, where V is the representation
on the complex homogeneous polynomials in m variables viewed as real. Although this
comes from a continuous argument, in each case one can actually have explicitly the inner
product.

As a generalization of this we consider Lie algebras (a ⊕ h) ⋉ n where n is nilpotent,
a is abelian and h is semisimple of non-compact type, and obtain the following existence
result.

Theorem 1.4. Let g = (a ⊕ h) ⋉ n be a Lie algebra where h is a semisimple Lie algebra
with no compact factors, n is nilpotent and [a, a ⊕ h] = 0. If in addition

• n admits an inner product such that adA|n are semisimple operators (over C) for
any A ∈ a,

• no adA|n has all its eigenvalues purely imaginary,
• there exists an element A in a such that all the eigenvalues of adA|n have positive
real parts,

• h admits an inner product with Ric < 0 such that there exists a Cartan decompo-
sition h = k⊕ p with k orthogonal to p,

then g admits an inner product with negative Ricci curvature.

Acknowledgements. I wish to thank M. Jablonski for many useful coments and to J.
Lauret for very fruitful conversations on the topic of the paper.

2. Preliminaries and notation

2.1. Lie algebras. We recall some background from [15] we will need along the paper.
Let g = (Rm, [·, ·]) be a Lie algebra of dimension m, that is, the underlying linear space of
g is (identified with) Rm and [·, ·] belongs to the space of Lie brackets Lm ⊂ Λ2(Rm)∗⊗Rm,
defined as

Lm := {µ : Rm × R
m → R

m : µ bilinear, skew-symmetric and satisfies Jacobi}.
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Lm is also called the variety of Lie algebras of dimension m. We consider the following
action of GLm(R) on Lm :

(g · µ)(X,Y ) = gµ(g−1X, g−1Y ), g ∈ GLm(R), µ ∈ Lm, X, Y ∈ g.

Note that (Rm, µ) is isomorphic to (Rm, g · µ) for any g ∈ GLm(R), though, (Rm, µ)
is not isomorphic to (Rm, µo) for µo in the boundary of the orbit GLm(R) · µ. Since
Lm ⊂ Λ2Rm⋆ ⊗ Rm is defined by polynomials equations, any µ0 in the closure is also a
Lie bracket. We will say that µo is a degeneration of µ or that µ degenerates to µo if
µo ∈ GLm(R) · µ. Note that by continuity, many of the properties of µo are shared by
µ. In particular if (Rm, µo) admits a metric with negative (or positive) sectional or Ricci
curvature, so does (Rm, µ) (see [14, Remark 6.2] or [12, Proposition 1]).

Proposition 2.1. Suppose µ, λ ∈ Lm and that λ is in the closure of the orbit GLm(R) ·µ.
If the Lie algebra (Rm, λ) admits an inner product of negative Ricci curvature, then so
does the Lie algebra (Rm, µ).

Moreover, if we fix an inner product on g = (Rm, µ), or equivalently, an orthonormal
basis, then the orbit GL(g) · µ parameterizes, from a different point of view, the set of all
inner products on g. Indeed,

(1) (g, g · µ, 〈·, ·〉) is isometric to (g, µ, 〈g·, g·〉) for any g ∈ GL(g).

Let (g, [·, ·], 〈·, ·〉) be a metric Lie algebra andH ∈ g the only element such that 〈H,X〉 =
tr adX for any X ∈ g, usually called the mean curvature vector, and let B denotes the
symmetric map defined by the Killing form of (g, [·, ·]) (i.e. 〈BX,X〉 = tr (adX)2). The
Ricci operator of (g, [·, ·], 〈·, ·〉) is given by (see for instance [11, Appendix]):

(2) Ric =M − 1
2B − S(adH),

where, S(adH) = 1
2(adH+(adH)t) is the symmetric part of adH andM is the symmetric

operator defined by

(3) 〈MX,X〉 = −1
2

∑

〈[X,Xi],Xj〉
2 + 1

4

∑

〈[Xi,Xj ],X〉2, ∀X ∈ g,

where {Xi} is any orthonormal basis of (g, 〈·, ·〉). Note that if g is nilpotent, then Ric =M .
If g is a solvable Lie algebra and we consider an orthogonal decomposition

(4) g = a⊕ n,

where n is the nilradical of g (i.e. maximal nilpotent ideal), the expression of Ric is much
simpler when a is abelian (see [10]). Indeed, we get

(5)

〈RicA,A〉 = − trS(adA|n)
2,

〈RicA,X〉 = −1
2 tr (adA|n)

t adX|n

〈RicX,X〉 = −1
2

∑

〈[X,Xi],Xj〉
2 + 1

4

∑

〈[Xi,Xj ],X〉2

+1
2

∑

〈[adAi|n, (adAi|n)
t]X,X〉 − 〈[H,X],X〉,

for all A ∈ a and X ∈ n, where {Ai}, {Xi}, are any orthonormal basis of a and n,
respectively. If in addition adA are normal operators for all A ∈ a, then we get that
tr (adA|n)

t adX|n = 0 (see [10, (25) and Prop. 4.3]) and therefore

(6)
〈RicA,A〉 = − trS(adA|n)

2, 〈RicA,X〉 = 0

〈RicX,X〉 = −1
2

∑

〈[X,Xi],Xj〉
2 + 1

4

∑

〈[Xi,Xj ],X〉2 − 〈[H,X],X〉.
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2.2. Some representations of u(m). For each n ≥ 2 let (πn, Vn) be the representation
of SU(m) where Vn = Pm,n(C) is the space of homogeneous polynomials in m variables of
degree n seen as a real vector space and the action is given by

(πn(g)P )(z1, . . . , zn) = P (g−1

[ z1
...
zn

]

).

This gives us, by differentiation, a representation of its Lie algebra su(m) that will also
be denoted by (πn, Vn). Moreover, since u(m) = su(m) ⊕ RZ, Z = ı Id, all the above
representations can be extended to u(m) by letting Z act as the identity map on Vn. We
will denote these representations of u(m) also by (Vn, πn). Note that these representations
are not irreducible in general.

Consider g = su(m) as a Lie subalgebra of gl(m) with basis

β = {H1, . . . Hm−1, Xi,j, Yi,j, 1 ≤ i < j ≤ m}.

Here,

(7)

Hl = ı(Ei,i − Ei+1,i+1), l = 1, . . . m− 1,

Xi,j = Ei,j − Ej,i, 1 ≤ i < j ≤ m,

Yi,j = ı(Ei,j + Ej,i), 1 ≤ i < j ≤ m,

where, as usual, Ei,j is the m×m matrix with zero entries except for the i, j which is 1.
We note that this basis is constructed using the root vectors as in [5, Chap. III, Theorem
6.3 (2)], or in [7] pp. 353. In fact, the complexification of g, sl(m,C) is type Am−1, has
roots

(8) αi,j(H) = ei(H)− ej(H), 1 ≤ i 6= j ≤ m,

where ek(

m
∑

l=1

hlEl,l) = hk and the corresponding roots vectors are Ei,j (see [5] pp. 187).

Hence su(m) decomposes as k ⊕ ıp where k = Span{
∑

Xi,j}, p = Span{
∑

ıHl ⊕
∑

ıYi,j}
and sl(m,R) = k⊕p is a Cartan decomposition of the non-compact dual of su(m), sl(m,R)
(see [5] V, §2).

Let us fix a basis of Vn,

(9) β1 = {pj1,...,jm , ıpj1,...,jm, ji ∈ N0, j1 + · · · + jm = n}.

where pj1,...,jm = zj11 . . . zjmm ∈ Pm,n(C). Note that dimension of Vn is d = 2
(

n+m−1
m−1

)

.
Concerning the action, to get explicit formulas we use the fact that the algebra is acting
by derivations and

Hl · zk =







−ızk, k = l,
ızk k = l + 1,
0, k 6= l, l + 1,

Xi,j · zk =







−zj, k = i,
zi, k = j,
0, k 6= i, j,

Yi,j · zk =







−ızj, k = i,
−ızi, k = j,
0, k 6= i, j.

In this way, we get for example that for s = 1, ı

Xi,j · sz
n
k =







−n szn−1
i zj , k = i,

n szn−1
j zi, k = j,

0, k 6= i, j.

Note that the subset

(10) S = {znk , ız
n
k , k = 1, . . . m} ⊂ β1,

has the property that for every p ∈ S, Hl · p ∈ Span(S) and when they are non zero
Xi,j · p /∈ Span(S) and Yi,j · p /∈ Span(S). It is easy to see that for n = 1, S = β1.
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3. Ricci negative inner product on u(m)⋉ Vn

Using the same ideas as in [15] we will show in the following that u(m)⋉Vn degenerates
into a solvable Lie algebra that admits a inner product with negatively defined Ricci
operator and hence so does the starting algebra. Note that since the case of m = 2 have
already been consider in [15], we may assume that m ≥ 3.

Let g = u(m)⋉ Vn and for each t > 0 define φt ∈ gl(g) such that

(11)

φt(Z) = Z, φt(Hl) = Hl, l = 1, . . . m− 1,

φt(Xi,j) = tXi,j, 1 ≤ i < j ≤ m, φt(Yi,j) = tYi,j, 1 ≤ i < j ≤ m,

φt(spj1,...,jm) =

{

t spj1,...,jm, if jl = n for some l, s = 1, ı,
t2 spj1,...,jm, if jl 6= n ∀ l, s = 1, ı.

Note that in Vn we get φt(p) = t p if p ∈ S and φt(p) = t2 p if p /∈ S.
We have that [·, ·]t = φt.[·, ·] is given by

(12)

[Hl,Xi,j ]t = [Hl,Xi,j], [Hl, Yi,j ]t = [Hl, Yi,j], ∀ i, j, l,

[Xi,j , Yk,l]t = − 1
tǫ
[Xi,j , Yk,l], ǫ = 1 if i, j 6= k, l, ǫ = 2 if i, j = k, l

[Yi,j, Yk,l]t = −1
t
[Yi,j , Yi,j], [Xi,j ,Xk,l]t = −1

t
[Xi,j ,Xk,l], ∀ i, j, l,

[Z, p]t = p, [Hl, p]t = [Hl, p] ∀ p ∈ β1,∀ l,

[Xi,j , p]t = [Xi,j , p], [Yi,j, p]t = [Yi,j, p], ∀ i, j,∀ p ∈ S,

[Xi,j , p]t =
1
t2
[Xi,j , p], [Yi,j, p]t =

1
t2
[Yi,j , p],∀ i, j,∀ p /∈ S,

To see this we can calculate the brackets using the explicit matrix realization (see also [7]
pp. 353) or one can use the relations

[k, k] ⊂ k, [k, ıp] ⊂ ıp, [ıp, ıp] ⊂ k.

Therefore, µ = lim
t→∞

[·, ·]t = lim
t→∞

φt.[·, ·] is well defined and it is given by

(13)

µ(Hl,Xi,j) = [Hl,Xi,j ], µ(Hl, Yi,j) = [Hl, Yi,j ], ∀ i, j, l,

µ(Z, p) = p, µ(Hl, p) = [Hl, p] ∀ p ∈ β1,∀ l,

µ(Xi,j, p) = [Xi,j , p], µ(Yi,j, p) = [Yi,j, p], ∀ i, j,∀ p ∈ S,

As in the n = 2 case, h∞ = (Rr, µ), where r = m2 + d is a solvable Lie algebra with
nilradical

n = Span{Xi,j , Yi,j , β1, 1 ≤ i < j ≤ m}

whose center z is contained in Vn and therefore it satisfies the first condition of [12, Theorem
2] but not the second one.

Note that we have simplify the notation since h, h∞, [·, ·], µt, µ, etc depend on n and m.

Lemma 3.1. If n 6= 1, h∞ admits an inner product with negative Ricci curvature.

Proof. Let 〈·, ·〉 be the inner product that makes

β = {Z,Hl,Xi,j , Yi,j, β1 1 ≤ m− 1, 1 ≤ i < j ≤ m}



6 CYNTHIA WILL

an orthonormal basis. First note that h∞ = a⊕ n as in (4) where a = Span{Z,Hl, 1 ≤ l ≤
m − 1} is abelian and for each 1 ≤ l ≤ m − 1, adµ(Hl)|n is a skew-symmetric operator.
Indeed, if µ(Hl,Xi,j) 6= 0 then l ∈ {i, i − 1, j, j − 1} and in that case we have

µ(Hl,Xi,j) = [Hl,Xi,j ] = ±Yi,j and µ(Hl, Yi,j) = [Hl, Yi,j] = ∓Xi,j.

On the other hand if µ(Hl, spj1,...,jm) 6= 0 for s = 1, ı then jl 6= 0 6= jl+1 and

µ(Hl, pj1,...,jm) = [Hl, pj1,...,jm] = Hl · pj1,...,jm = −(jl − jl+1)ıpj1,...,jm

µ(Hl, ıpj1,...,jm) = [Hl, ıpj1,...,jm] = Hl · ıpj1,...,jm = (jl − jl+1)pj1,...,jm.

It is easy to check that the mean curvature vector is H = (dimVn)Z = dZ and since
a is acting by normal operators on n, 〈Ricµ a, n〉 = 0 (see (5)). Finally, straightforward
calculation shows that β is a basis of eigenvectors of Ricµ and

〈Ricµ Z,Z〉 = −d, 〈RicµHl, Hl〉 = 0

〈RicµXi,j , Xi,j〉 = 〈Ricµ Yi,j , Yi,j〉 = −2n2,

〈Ricµ p, p〉 = −(m− 1)n2 − d, p ∈ S

〈Ricµ p, p〉 = knn
2 − d, p = spj1,...,jm and jl = n− 1 for some l, s = 1, ı,

〈Ricµ p, p〉 = −d, p = spj1,...,jm and jl 6= n, n− 1, ∀ l, s = 1, ı, (n ≥ 3),

where kn = 2 if n = 2 and kn = 1 for n ≥ 3. Note that if n = 2, β is not a nice basis.
To get a negative Ricci operator, we change the basis in Vn by rescaling the elements

in S. Let

(14) β2 = {a znj , b ız
n
j , 1 ≤ j ≤ m} ∪ (β1 r S)

and denote by f the corresponding diagonal element in gl(h∞). Note that for this rescaling
tr(adµ(H)t adµ(X)) = 0 for any X ∈ n, H ∈ a still holds and hence 〈Ricµ a, n〉 = 0. Also,
[adf ·µHl|n, (adf ·µHl|n)

t] is diagonal for any 1 ≤ l ≤ m−1 and moreover it does not vanish
only on Span{znl , ız

n
l , z

n
l+1, ız

n
l+1}. Direct calculation shows that

(15)

〈Ricf ·µ Z,Z〉 = −d, 〈Ricf ·µHl, Hl〉 = −n2( b
a
− a

b
)2,

〈Ricf ·µXi,j , Xi,j〉 = 〈Ricf ·µ Yi,j , Yi,j〉 = −(a2 + b2)n2,

〈Ricf ·µ z
n
j , z

n
j 〉 = −a2n2(m− 1) + cj

(

(

b
a

)2
−
(

a
b

)2
)

− d, 1 ≤ j ≤ m

〈Ricf ·µ ız
n
j , ız

n
j 〉 = −b2n2(m− 1) + cj

(

(

a
b

)2
−
(

b
a

)2
)

− d, 1 ≤ j ≤ m

〈Ricf ·µ p, p〉 = kn(a
2 + b2)n2 − d, p = spj1,...,jm , jl = n− 1 for some l, s = 1, ı

〈Ricf ·µ p, p〉 = −d, p = spj1,...,jm , jl 6= n, n− 1, ∀ l, s = 1, ı

where c1 = cm = n2

2 and cj = n2 for j 6= 1,m.
Therefore, to get negative Ricci curvature it is enough to choose a > b > 0 such that

a2 + b2 <
d

2n2
, −b2n2(m− 1) + n2

(

(

a
b

)2
−

(

b
a

)2
)

< d,

and this can be done as in [15, (16)]. �
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Remark 3.2. Note that

knn
2 − d = knn

2 − 2 (n+m−1)(n+m−2)...(n+1)
(m−1)!

is always negative for m ≥ 3, n ≥ 2 and therefore Ricµ is negative semidefinite. In
particular, Ricµ |n is negative definite. We would like to point out that in [12, Theorem 2]
the authors arrive to a similar situation and they perturb the inner product on n so that
no element of a is acting skew-symmetric and Ricµ |n is still negative definite. The fact
that allows them to do that is that n is abelian so one can still get Ricµ(a, n) = 0, which
is no true in our case.

Theorem 3.3. Let (Vn, πn) be the usual real representation of su(m) on the space of
complex homogeneous polynomials of degree n in m variables Pm,n(C) extended to u(m)
by letting the center act as multiples of the identity. Hence the Lie algebra u(m) ⋉ Vn
admits a inner product with negative Ricci curvatures for all n,m ≥ 2.

Remark 3.4. As for m = 2, the case when su(m) acts on C
n i.e. the case when n = 1,

must be study separately since the representation is different and the general defined
degeneration given in (11) leads to a solvable Lie algebra with an abelian nilradical. For
m = 2 it is shown in [15] Lemma 3.4 that this problem can be solved.

4. Examples starting with so(n)

The same procedure can be applied to get inner products with negative Ricci curvature
on g = (RZ ⊕ u) ⋉ V where u = so(m) and V is the real representation of u in some
polynomial space. Summarizing the procedure, we will start by using [5, (2) Theorem
6.3 Ch. III] to get a decomposition of u as in (7), then we will choose a basis of the
representation V with a special subset S. Using this basis we define a degeneration
φt ∈ gl(g) where g is the Lie algebra g = (RZ⊕u)⋉V such that [Z, u] = 0 and adZ|V = Id,
so that the limit (g∞, µ) is a solvable Lie algebra and the action of u on V is the same
on S and vanish elsewhere. Finally, by rescaling the basis of g∞ in S we get a negative
Ricci operator on the limit and therefore by Lemma 2.1, g admits an inner product with
negative Ricci operator.

Let (V, π) be the standard representation of so(m) on the space of complex-valued
homogeneous polynomials of degree n on R

m derived from the standard action of the
group SO(m). That is,

X · p (a1, . . . , am) = d
dt
|t=0 p

(

exp(tX)−1

[ a1
...

am

])

= −p

(

X

[ a1
...

am

])

for any X ∈ so(m), p ∈ V . In [8, Chap. IV,§5, Examples 1,2] it is shown that if
(x1, . . . , xm) ∈ Rm, it is convenient to see this polynomials as powers of

(16)
z1 = x1 + ıx2, z2 = x1 − ıx2, . . . , zm−1 = xm−1 + ıxm, zm = xm−1 − ıxm, m is even

z1 = x1 + ıx2, z2 = x1 − ıx2, . . . , zm−1 = xm−2 − ıxm−1, zm = xm, m is odd

since the weight vectors are

(x1 + ıx2)
k1(x1 − ıx2)

r1 . . . (x2l−1 − ıx2l)
rl ,

∑

ki +
∑

ri = n, for m=2l

(x1 + ıx2)
k1(x1 − ıx2)

r1 . . . (x2l−1 − ıx2l)
rlxk0

2l+1,
∑

ki +
∑

ri = n, for m=2l+1

Recall that to get a real representation we have to consider powers of z1, ız1, . . . , zm, ızm and
hence d = dimV = 2

(

n+m−1
n

)

.
Note that if m = 2l+1, so(m) is a real form of the Bl-type complex Lie algebra so(2l+1,C) and

form = 2l the corresponding type isDl. Therefore, we will study these cases separately. Also recall
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that we have the following isomorphism so(3) ≃ su(2), so(4) ≃ su(2) ⊕ su(2) and so(6) ≃ su(4)
and therefore we may assume that l ≥ 2.

Let m = 2l+ 1 and for X ∈ so(2l + 1) we will use the following notation:

(17) X =











A1,1 . . . A1,l A1,l+1

. . .
...

Al,1 . . . Al,l Al,l+1

Al+1,1 . . . Al+1,l 0











where Ai,j is a 2 × 2 matrix if i, j ≤ l and Ai,l+1 is a column matrix with 2 rows. Clearly,
Aj,i = −At

i,j . Using [5, (2) Theorem 6.3 Ch. III] and [8, Example 2, pp. 63] we obtain that a basis

of so(m) is given by

βo = {Hi, X
±

kj , Xr, Y
±

kj , Yr, i, r ≤ l, k < j ≤ l}.

where all this matrices have only two non zero blocks as follows:

Hi =









. . .
Ai,i

−Ai+1,i+1

. . .









, i ≤ l− 1, Hl =

[

. . .
Al,l

0

]

, where Ar,r =
[

−1
1

]

X±

kj =











. . .
A

±

k,j

A
±

j,k

. . .











, −(A−

j,k)
t = A−

k,j = [ 2 2 ] , −(A+
j,k)

t = A+
k,j =

[

2
−2

]

, k < j 6= l+ 1

Y ±

kj =











. . .
A

±

k,j

A
±

j,k

. . .











, −(A−

j,k)
t = A−

k,j =
[

−2
2

]

, −(A+
j,k)

t = A+
k,j = [ 2

2 ] , k < j 6= l + 1

Xr =









. . .
...

Ar,l+1

...
... Al+1,r









, Ar,l+1 = [ 20 ] , Yr =









. . .
...

Ar,l+1

...
... Al+1,r









, Ar,l+1 = [ 02 ] , 1 ≤ r ≤ l.

We note that if

ei(

















0 ıh1

−ıh1 0
0 ıh2

−ıh2 0

. . .
0 ıhl

−ıhl 0
0

















) = hi

then

Hi = ıHei−ei+1
, i < l, Hl = ıHel

X±
kj = Eek±ej + E−(ek±ej), k < j ≤ l, Xr = Eer + E−er , 1 ≤ r ≤ l

Y ±

kj = ı(Eek±ej − E−(ek±ej)) k < j ≤ l, Yr = ı(Eer − E−er ), 1 ≤ r ≤ l

where Eα are the root vectors given in [8, Example 2, pp. 63] (see (7)). Also note that if
ıp = Span{Hi, Yk,j , Yr, i, r ≤ l, k < j ≤ l} and k = Span{Xk,j , Xr, k < j ≤ l, r ≤ l} then go = k+ p

is a Cartan decomposition of the non-compact dual of so(2l+ 1).
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Straightforward calculation shows that the non trivial action of so(2l+1) on V can be obtained
form

Hi · zr =

{

−ızr, r = 2i− 1, 2i+ 2,
ızr r = 2i, 2i+ 1,

i < l, Hl · zr =

{

−ızr, r = 2l− 1,
ızr r = 2l,

X+
kj · zr =















−2z2j, r = 2k − 1,
−2z2j−1, r = 2k,
2z2k, r = 2j − 1,
2z2k−1, r = 2j,

X−

kj · zr =























−2z2j−1, r = 2k − 1,
−2z2j, r = 2k,
2z2k−1, r = 2j − 1,
2z2k, r = 2j,

Y +
kj · zr =















−2ız2j, r = 2k − 1,
2ız2j−1, r = 2k,
2ız2k, r = 2j − 1,
−2ız2k−1, r = 2j,

Y −

kj · zr =























−2ız2j−1, r = 2k − 1,
2ız2j, r = 2k,
−2ız2k−1, r = 2j − 1,
2ız2k, r = 2j,

Xi · zr =

{

−2zm, r = 2i− 1, 2i,
z2i−1 + z2i, r = 2l+ 1,

Yi · zr =







−2ızm, r = 2i− 1,
2ızm, r = 2i,
−ız2i−1 + ız2i, r = 2l+ 1.

Let us fix a basis of V ,

β1 = {spj1,...,jm = szj11 . . . zjmm , s = 1, ı, ji ∈ N0, ji + · · ·+ jm = n}

where zi are defined in (16) (see (9)) and denote by S the following subset of β1

S = {sznj , s = 1, ı, j ≤ 2l}.

Consider the Lie algebra (g, [·, ·]) = (RZ ⊕ so(m)) ⋉ V where adZ|so(m) = 0 and adZ|V = Id.
For each t > 0 define φt ∈ gl(g) such that

(18)

φt(Z) = Z, φt(Hi) = Hi, i ≤ l, φt(X
±

kj) = tX±

kj , φt(Y
±

kj ) = tY ±

kj , k, j ≤ l

φt(Xr) = tXr, φt(Yr) = tYr, r ≤ l, φt(p) =

{

t p, if p ∈ S
t2 p if p /∈ S.

It is not hard to check that the limit g∞ = (g0, µ), µ = lim
t→∞

[·, ·]t = lim
t→∞

φt.[·, ·] is well defined and

moreover it is solvable. Straightforward calculation shows that it is given by

(19)

µ(Hr, X) = [Hr, X ], µ(Hr, Y ) = [Hr, Y ], r ≤ l, X = X±
k,j , Xi, Y = Y ±

k,j , Yi,

µ(Z, p) = p, µ(Hr, p) = [Hr, p] ∀ p ∈ β1, r ≤ l,

µ(X, p) = [X, p], µ(Y, p) = [Y, p], ∀ p ∈ S, X = X±

k,j , Xi, Y = Y ±

k,j , Yi.

Let us fix the inner product 〈·, ·〉 in g∞ such that β2 is an orthonormal basis, where

β2 = {Hi, X
±
kj , Xr, Y

±
kj , Yr, β1, i, r ≤ l, k < j ≤ l} = βo ∪ β1.

Since Hr acts by a skew-symmetric matrix for any r ≤ l we can never get negative Ricci operator
(see (5)) so, as before, we will change the basis by rescaling it in S (see (14)). Let

(20) β3 = {a znj , b ız
n
j , j ≤ 2l} ∪ (β1 r S)
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and denote by f the diagonal element in gl(g∞) corresponding to the change of basis from β2 =
βo ∪ β1 to βo ∪ β3. Direct calculation shows that for n ≥ 3,

(21)

〈Ricf ·µ Z,Z〉 = −d,

〈Ricf ·µHr, Hr〉 = −2n2( b
a
− a

b
)2, 〈Ricf ·µHl, Hl〉 = −n2( b

a
− a

b
)2,

〈Ricf ·µX
±
kj , X

±
kj〉 = 〈Ricf ·µ Y

±
kj , Y

±
kj 〉 = −8n2(a2 + b2), k < j ≤ l,

〈Ricf ·µXr, Xr〉 = 〈Ricf ·µ Yr, Yr〉 = −4n2(a2 + b2), r ≤ l,

〈Ricf ·µ z
n
j , z

n
j 〉 = −2n2a2(4(l − 1) + 2) + n2cj

(

(

b
a

)2
−
(

a
b

)2
)

− d, j ≤ 2l,

〈Ricf ·µ ız
n
j , ız

n
j 〉 = −2n2b2(4(l − 1) + 2) + n2cj

(

(

a
b

)2
−
(

b
a

)2
)

− d, j ≤ 2l,

〈Ricf ·µ p, p〉 = 2n2(a2 + b2)− d, p ∈ S1,

〈Ricf ·µ p, p〉 = −d, p /∈ S or S1,

where cj =
1
2 for j = 1, 2 and cj = 1 for j 6= 1, 2 and S1 ⊂ β1 is defined so that p ∈ S1 iff p = X ·sznr

for some X = X±
k,j , Xr, Y

±
k,j , Yr ∈ βo. Note that for a > b > 0 such that

(22) (a2 + b2) < d
n2 , −2b2(4l − 2) +

(

(

a
b

)2
−
(

b
a

)2
)

< d
n2

all the constants in (21) are negative numbers. To find such a, b we will proceed as in [15, (16)].
Let t > 1 such that t2 − 1

t2
< d

n2 and choose b > 0 so that b2 < d
(1+t2)n2 . It is easy to check that if

a = tb then a, b satisfy (22).

Remark 4.1. We note that the elements of so(m) given in the basis βo are not the ones given by [5,
(2) Theorem 6.3 Ch. III] since there are some constant that we have changed in order to simplify
some calculation and expressions. It is easy to see that this is an equivalent realization

Remark 4.2. Also note that for n = 2, β is not a basis of eigenvectors of Ric.

One can use this proof to study the case of so(2l). First note that the root structure of so(2l)
can be read off from the one we have constructed for so(2l+1) (see ([8, Example 4 pp. 63]). In fact,
one can choose the Cartan subalgebra so that the roots and root vectors of so(2l) correspond to
the ones that can be restricted from so(2l+1). Explicitly, the set of roots is ∆ = {±ek±ej, j ≤ l}
and the corresponding root vectors are obtained from the ones in so(2l + 1) by erasing the last
column and row. Hence in the same way as before we get a basis

β̃o = {H̃i, X̃
±
kj , Ỹ

±
kj , i ≤ l, k < j ≤ l}

where X̃ is the matrix obtained by erasing the last column and row of X for X 6= Hl and H̃l is

the matrix we obtain by erasing the last column and row of









. . .
Al−1,l−1

Al,l

. . .









(see (17)).

To show that (go, [·, ·]) = (RZ⊕so(2l))⋉V admits an inner product with negative Ricci operator

one can follow the proof of so(2l + 1) using the new H̃l and ignoring z2l+1, Xr or Yr where they
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appear. Note that we can use the same S. We then get that

(23)

〈Ricf ·µ Z,Z〉 = −d,

〈Ricf ·µHr, Hr〉 = −2n2( b
a
− a

b
)2, r ≤ l,

〈Ricf ·µX
±
kj , X

±
kj〉 = 〈Ricf ·µ Y

±
kj , Y

±
kj 〉 = −8n2(a2 + b2), k < j ≤ l,

〈Ricf ·µ z
n
j , z

n
j 〉 = −2n2a24(l − 1) + n2cj

(

(

b
a

)2
−
(

a
b

)2
)

− d, j ≤ 2l,

〈Ricf ·µ ız
n
j , ız

n
j 〉 = −2n2b24(l− 1) + n2cj

(

(

a
b

)2
−
(

b
a

)2
)

− d, j ≤ 2l,

〈Ricf ·µ p, p〉 = 2n2(a2 + b2)− d, p ∈ S1,

〈Ricf ·µ p, p〉 = −d, p /∈ S or S1,

where cj =
1
2 for j = 1, 2, cj = 1 for j 6= 1, 2, 2l− 1 c2l−1 = 3

2 .

Theorem 4.3. Let (V, π) be the standard real representation of so(m) on the space of complex-
valued homogeneous polynomials of degree n on Rm. Let (g, [·, ·]) = (RZ ⊕ so(m)) ⋉ V be the Lie
algebra where [Z, so(m)] = 0 and Z acts as the identity on V . Then g admits a inner product with
negative Ricci curvature for all n,m ≥ 3.

5. More examples using gl

We can follow the same construction using sl(n,R) instead of su(n) or so(m). The calculation
are more involved since the operators adH are no longer skew-symmetric and the basis in the
nilradical is no longer nice but everything works anyway. Let us start by considering sl(m,R) as
the non-compact dual of su(m) considered in 2.2. Recall that when g0 is a semisimple Lie algebra
of complex matrices stable under θ where θ(X) = −X̄t and g0 = k⊕ p is the corresponding Cartan
decomposition such that k∩ ıp = 0, we get that its complexification g = (k⊕ p)C is also semisimple
and u = k⊕ ıp is a compact real form of g. In this case g is usually called the non-compact dual of
u. In particular, any finite-dimensional complex representation of g0 gives rise to a representation
of u and viceversa by using this decomposition (see [7] pp. 443).

Consider then the real representation of sl(m,R) on Pm,n(C) obtained by seeing it as a real
vector space. Extend it to gl(m,R) = RZ ⊕ sl(m,R), where Z = Id acts as the identity operator.
We will denote this representation by (Vn, πn) as before.

Fix a basis of sl(m,R)

β3 = {H1, . . . Hm−1, Xi,j , Yi,j , 1 ≤ i < j ≤ m}.

where,

(24)

Hl = (Ei,i − Ei+1,i+1), l = 1, . . .m− 1,

Xi,j = Ei,j − Ej,i, 1 ≤ i < j ≤ m,

Yi,j = (Ei,j + Ej,i), 1 ≤ i < j ≤ m,

note the missing ı. Hence a basis of the semidirect product s = gl(m,R) ⋉ Vn is given by β =
{Z, β3, β1} (see 9). For s = 1, ı, the action is now given by

Hl · szk =







−szk, k = l,
szk, k = l + 1,
0, k 6= l, l+ 1,

Xi,j · szk =







−szj, k = i,
szi, k = j,
0, k 6= i, j,

Yi,j · szk =







−szj, k = i,
−szi, k = j,
0, k 6= i, j.

Using that the algebra is acting by derivations we get that

πn(Hl)spj1,...,jm = (jl−1 − jl)spj1,...,jm ,
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the action of Xi,j is the same as in the su(m) case and

Yi,k(sp) = −ji s(z
j1
1 . . . zji−1

i . . . zjk+1
k . . . zjmm )− jk s(z

j1
1 . . . zji+1

i . . . zjk−1
k . . . zjmm )

where p = zj11 . . . zjmm .
We apply the same degeneration given in (11) and get the limit s∞ = (Rr, ν), where r = m2+d

and

ν = lim
t→∞

φt.[·, ·],

[·, ·] the Lie bracket of sl(m). Note that we are abusing the notation since everything, Vn, πn, s, s∞, [·, ·],
etc. depends on n and m.

Direct computation as in (12) shows that

(25)

ν(Hl, Xi,j) = [Hl, Xi,j], ν(Hl, Yi,j) = [Hl, Yi,j ], ∀ i, j, l,

ν(Z, p) = p, ν(Hl, p) = [Hl, p] ∀ p ∈ β2, ∀ l,

ν(Xi,j , p) = [Xi,j , p], ν(Yi,j , p) = [Yi,j , p], ∀ i, j, ∀ p ∈ S,

Note that the bracket on the starting point in quite different from the one in su(m) and, in
particular, adν(Hl)|Vn

= ad(Hl)|Vn
are now symmetric operators.

Lemma 5.1. For n 6= 1 the solvable Lie algebra s∞ = s∞(m,n) admits an inner product with
negative Ricci curvature.

By proposition 2.1 we get that s admits a inner product with negative Ricci curvatures. Hence
we have the following proposition.

Proposition 5.2. Let (Vn, πn) be the usual real representation of sl(m,R) on the space of complex
homogeneous polynomials of degree n in m variables, extended to gl(m,R) by letting the center act
as multiples of the identity. Hence the Lie algebra gl(m,R) ⋉ Vn admits an inner product with
negative Ricci curvature for any m and n ≥ 2.

In the next section we will prove a more general result that implies Proposition 5.2 for m ≥ 3
so we are going to omit the proof which follows the same lines as the one for su(m). It worth to
point out that no change of basis is needed for m ≥ 3 since β is a basis of eigenvectors of Ricν
with negative eigenvalues for m ≥ 3, n ≥ 2, though the basis is not nice.

Example 5.3. As an example we will go over the example of gl(2,R) acting on P2,2(C), the space
of homogeneous complex polynomials of degree 2 in 2 variables seen as a real vector space. As in
(24), let

(26) H = H1 =
[

1
−1

]

, X = X1,2 =
[

1
−1

]

, Y = Y1,2 = [ 1
1 ] ,

and Z = Id. We fix the orthonormal basis of s = gl(2,R)⋉ V2 = (R10, ν, 〈·, ·〉)

β = {Z,H,X, Y, v1, v2, v3, v4, v5, v6}

where

v1 = z21 , v2 = ız21 , v3 = z1z2, v4 = ız1z2, v5 = z22 , v6 = ız22 .

We have

π2(Z) =





1

. . .
1



 , π2(H) =







−2

−2

0
0

2
2






,

π2(X) =















1
1

−2 2
−2 2

−1
−1















, π2(Y ) =















−1
−1

−2 −2
−2 −2

−1
−1

















13

In this case S = {v1, v2, v5, v6} (see (10)) so we get that the degeneration is given by φt ∈ GL(s)

φt|g =

[

1
1
t
t

]

, φt|W2
=





t
t
t2

t2

t
t



 ,

and hence, the limit s∞ = (R10, ν, 〈·, ·〉) is a solvable Lie algebra. Its nilradical is n = Span{X,Y, V2}
and the center of n is z = Span{v3, v4}.

Direct calculation shows that if we change the basis to

{Z,H,X, Y, 12v1,
1
2v2, v3, v4,

1
2v5,

1
2v6}

the corresponding Ricci operator is given by

(27) Ricf ·λ = Diag(−6,−24,−2,−2,−7,−7,−4,−4,−7,−7).

It can be checked that for t ≥ 4, Ricφt·f ·[·,·] is negative defined.

Remark 5.4. As in the su(2) case we can show that s = gl(2,R)⋉C2, that is when sl(2,R) acts on
V1 = C2 seen as a real vector space, also admits an inner product with negative Ricci curvatures.
This is the analogous of [15, Lemma 3.4] so as in that case we only need to consider a slightly
different degeneration and the right change of basis and therefore we will just give very few details.

In the notation of the above Lemma, consider the metric Lie algebra s∞ = (R8, ν, 〈·, ·〉), where
〈·, ·〉 is the inner product that makes β an orthonormal basis and the family φt as in [15, Lemma
3.4]. Direct calculation shows that

Ricν =











−4
−12

−1 1
1 −1

−5
−5

−3
−3











.

By changing the basis to

β = {Z,H,X + Y,X − Y, z1, ız1, z2, ız2},

we get

Ricf ·ν = Diag(−4,−12,−8,−12,−2,−2,−6,−6),

as desire. Then s∞ and therefore s both admits a inner product with negative Ricci curvature.

6. A more general Construction.

In this section, we obtain a generalization of the construction in the previous section in the sense
that we consider a more general semidirect products to find examples of non-solvable Lie groups
with negative Ricci curvature. We construct Lie algebras g = h⊕a⊕n, where h is a semisimple Lie
algebra without compact factors, n is a nilpotent ideal and a is abelian. In [9], the Ricci operator
for homogeneous spaces has been studied. We are going to use some of their ideas and notation
since many of the formulas used there are general.

Definition 6.1. In the following, we will denote by g = g(h, a, n) = (h⊕ a)⋉ n a Lie algebra such
that

• h is semisimple with no compact factors,
• a is abelian,
• n is nilpotent,
• [a, h] = 0.

Fix 〈·, ·〉 any inner product on g that makes h ⊕ a ⊕ n an orthogonal decomposition. We note
that the mean curvature vector H is orthogonal to n and to h so H ∈ a. Since a is abelian, h is a
subalgebra and n is a nilpotent ideal, using formulas from [9, Lemma 4.4], we can show that the
Ricci operator of (g, 〈·, ·〉) is given by
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(28)

〈RicY, Y 〉 = 〈Rich Y, Y 〉 − trS(adY |n)
2,

〈RicA,A〉 = − trS(adA|n)
2,

Ric |n = Ricn −S(adH |n) +
1
2

∑

[adYi|n, (adYi|n)
t] + 1

2

∑

[adAi|n, (adAi|n)
t],

〈RicY,A〉 = − trS(adY |n)S(adA|n),

〈RicY,X〉 = − tr(adY |n)
t(adnX),

〈RicA,X〉 = − tr(adA|n)
t(adnX),

where Y ∈ h, A ∈ a, X ∈ n, {Yi} {Ai} are orthonormal basis of h and a respectively and by Ricl
we denote the Ricci operator of the Lie subalgebra l with the restricted inner product.

Theorem 6.2. Let g = g(h, a, n) be as above. If in addition,

(1) n admits an inner product such that adA|n are semisimple operators for any A ∈ a,
(2) no adA|n has all its eigenvalues purely imaginary,
(3) there exists an element A1 in a such that all the eigenvalues of adA1|n have positive real

parts,
(4) h admits an inner product with Ric < 0 such that there exists a Cartan decomposition

h = k⊕ p with k orthogonal to p,

then g admits an inner product with negative Ricci curvature.

By results of [6], it is know that a semisimple Lie group that admits a negative Ricci curved
metric can not have any compact factors (see (4)). Note that this theorem gives no new topologies
other than the ones obtained in [3].

Also note that if h is a non-compact semisimple Lie algebra with Cartan decomposition h = k⊕p

and 〈·, ·〉 is an inner product on h such that k is orthogonal to p (as in (4)) then Ric(k, p) = 0. In
fact, since there exists an inner product on h such that adX is a symmetric operator for X ∈ p

and adY is skew-symmetric for Y ∈ k, then the Killing form satisfy 〈BX, Y 〉 = 0 for any X ∈ p

and Y ∈ k. Also, from (3) we get that for any orthonormal basis of h {Xi},

(29) 〈MX,Y 〉 = − 1
2

∑

〈[X,Xi], Xj〉〈[Y,Xi], Xj〉+
1
4

∑

〈[Xi, Xj ], X〉〈[Xi, Xj ], Y 〉.

Let us chose an {Xi}, so that the first elements are in k and the last ones are in p. Hence, if X ∈ p

and Y ∈ k, using that

[k, k] ⊂ k, [k, p] ⊂ p, [p, p] ⊂ k,

it is easy to check that all the terms in (29) vanishes and therefore Ric(k, p) = 0.

Proof. We will consider first the case when n is abelian. Let 〈·, ·〉 be an inner product on g such
that the decomposition h ⊕ a ⊕ n is orthogonal, 〈·, ·〉|h is an inner product with negative Ricci
curvature, h = k ⊕ p is the orthogonal Cartan decomposition and 〈·, ·〉|n satisfies that a act by
normal operators on n.

Since [h, a] = 0 we can also assume with no loss of generality, that the elements in k act on n

by skew-symmetric operators and p act by symmetric ones. Indeed, let H be the complex simply
connected Lie group with Lie algebra hC and let H1 be the connected Lie subgroup of H with Lie
algebra h1 = (k+ ıp). Since h1 is compact, for any 〈·, ·〉0 inner product on n we get that

(30) 〈X,X ′〉1 =

∫

H1

〈π(Y )(X), π(Y )(X ′)〉0 dY,

defines an H1-invariant hermitian form on nC, where π is the representation of H on nC such
that dπ = ad |n. Using that H1 is connected and the fact that [h1, a] = 0, if dπ(A) are normal
with respect to 〈·, ·〉0, then they are also normal operators for (nC, 〈·, ·〉1) and therefore semisimple.
Finally, consider the real part of 〈·, ·〉1, 〈·, ·〉 which is an inner product with the desired properties.
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We therefore get form (28)

(31)

〈RicY, Y 〉 = 〈Rich Y, Y 〉 − trS(adY |n)
2

〈RicA,A〉 = − trS(adA|n)
2

Ric |n = −S(adH |n) +
1
2

∑

[adYi|n, (adYi|n)
t]

〈RicY,A〉 = − trS(adY |n)S(adA|n),

〈RicY,X〉 = 0, 〈RicA,X〉 = 0,

for Y ∈ h, A ∈ a, X ∈ n. Chose an orthonormal basis of h, {Y1, . . . , Yr} so that the Yj ∈ k for
j ≤ m and Yj ∈ p for j > m. Therefore, [adYi|n, (adYi|n)

t] = 0.
Let {A1, . . . , Ak} be a basis of a so that A1 is the element as in the statement and tr adAi = 0

for all i ≥ 2 and take the inner product that makes this an orthonormal basis of a. Note that up to
now the inner product on a has no conditions. From this, it is easy to see that H = tr(adA1|n)A1.

We note that by the choice of the basis, 〈RicYj , Ak〉 = 0 for any j ≤ m. Also, since {S(adAi|n)}
is a set of symmetric operators that commutes with each other there exists β = {X1, . . . Xn} a basis
of n of common eigenvectors of {S(adAi|n)}. Hence, consider a decomposition n = n1⊕· · ·⊕nr such
that adAi|nj

= aij Idnj
. Now, since [Y,A] = 0, adY |n preserves the subspaces nj and therefore

we obtain that, for any j > m,

〈RicYj , Ak〉 = trS(adYj |n)S(adAk|n) =
∑

tr(adYj |nl
)S(adAk|nl

)

=
∑

tr(adYj |nl
)(akl Idnl

) = 0,

since h is semisimple. Henceforth, form (31)

〈RicY, Y 〉 = 〈Rich Y, Y 〉 − trS(adY |n)
2

〈RicA,A〉 = − trS(adA|n)
2

Ric |n = − tr(adA1|n)S(adA1|n)

〈RicY,A〉 = 0, 〈RicY,X〉 = 0, 〈RicA,X〉 = 0

is negative definite, as we wanted to show.
If n is not abelian, let 〈·, ·〉 be any inner product on g such that (h ⊕ a) ⊕ n is an orthogonal

decomposition. For each t > 0 consider ψt ∈ gl(g) such that

ψt|h⊕a = Id, ψt|n = t Id.

It is easy to check that [·, ·]t = ψt · [·, ·] is given by

(32)

[X1, X2]t = [X1, X2] for Xi ∈ h⊕ a, i = 1, 2,

[X1, X2]t =
1
t
[X1, X2] for Xi ∈ n, i = 1, 2,

[X1, X2]t = [X1, X2] for X1 ∈ h⊕ a, X2 ∈ n.

In the last two equations we have used that n is an ideal. Hence, lim
t→∞

[·, ·]t = µ0 is well defined

and it is given by

µ0(X1, X2) = [X1, X2], X1 ∈ h⊕ a, X2 ∈ g, µ0(X1, X2) = 0, Xi ∈ n.

Therefore, the limit Lie algebra satisfy the same conditions as in the statement and n is now
abelian. Using the previous results, the limit Lie algebra admits an inner product with negative
Ricci curvature and therefore, by Proposition (2.1) so does g. �
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Remark 6.3. In particular, when a = RZ is acting as a multiple of the identity and we consider
one of the inner products on sl(n,R) for n ≥ 3 given in [2] we get the results of the previous section
for any real representation. Recall that in [3] it is shown that most of the simple non-compact Lie
algebras admits an inner product satisfying the properties in Lemma 6.2 and from there we get a
lot of examples.

Remark 6.4. Let g be a Lie algebra with Levi decomposition g = h ⊕ s. The radical s can be
decompose as s = a⊕ n where n is the nilradical of g. It is not hard to see that there always exists
a complement a which satisfies [a, h] = 0, therefore that hypothesis is not so restrictive. In fact,
since s is an ideal and h is non-compact semisimple Lie algebra, there exists an inner product 〈·, ·〉
on s and a basis of h β, such that adY : s → s are symmetric or skew-symmetric operators for
any Y ∈ β (see (30)). Also, for any Y ∈ β, adY is a derivation of s and hence adY (s) ⊂ n (see [4,
Lemma 2.6]). Let a be the orthogonal complement of n and hence, since n is an ideal, adY (n) ⊂ n

and therefore for any A ∈ a, X ∈ n

〈[Y A], X〉 = ±〈A, [Y X ]〉 = 0,

for any Y ∈ β and therefore for any Y ∈ h.

Finally, coming back to the compact case, we can use the same idea as in the previous theorem
to get examples with a non-abelian n. Since we only have a complete description in the case when
g = su(2) we will only state the result for that case.

Theorem 6.5. Let g = (su(2)⊕ZR)⋉ n be a Lie algebra where n is any nilpotent Lie algebra and
[Z, su(2)] = 0. Let π = ad|su(2) acting on n and let n = n1 ⊕ · · · ⊕ nk be the decomposition of n in
irreducible components for π. If π is not trivial and Z acts in each ni as a positive multiple of the
identity, then g admits an inner product with negative Ricci curvature.

Proof. Let (g, [·, ·]) be the Lie algebra as defined above and endow it with the inner product such
that ‖Z‖ = 1 and ZR⊕ h⊕ n is an orthogonal decomposition and let ψt ∈ gl(g) as in (32) where
a = RZ. Hence, as it was shown in the previous theorem, µo = lim

t→∞
ψt · [·, ·] is well defined and it

is given by

µ0(X1, X2) = [X1, X2], X1 ∈ su(2)⊕ RZ,X2 ∈ g, µ0(X1, X2) = 0, Xi ∈ n.

Note that (g, µo) Let π = ad |su(2) acting on n and decompose the linear space n in irreducible
components for the action of π. Note that Z act as a positive multiple of the identity in each
ni. Now we can follow the same proof given in [15] with a few little differences since the mean
curvature vector is different (see [15, Remark 3.13]). �

References

[1] I. Dotti, Ricci curvature of left invariant metrics on solvable unimodular Lie groups, Math. Z.

180 (1982), 257-263.
[2] I. Dotti, M. L. Leite, Metrics of negative Ricci curvature on SL(n,R), n ≥ 3. J. Differential

Geom. 17, no. 4, (1982), 635-641.
[3] I. Dotti, M. L. Leite, R. Miatello, Negative Ricci curvature on complex semisimple Lie grous,

Geom. Dedicata 17 (1984), 207-218.
[4] C. Gordon, E. Wilson, Isometry groups of Riemannian solvmanifolds, Trans. Amer. Math. Soc.

307 (1988), 245-269.
[5] S. Helgason, Differential geometry, Lie groups and symmetric spaces, GSM 34 (1978), AMS.
[6] M. Jablonski, P. Petersen, A step towards the Alekseevskii Conjecture, Math Ann. in press.
[7] A. Knapp, Lie groups beyond an introduction, Prog. Math 140 (2005), Birkhäuser.
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