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ABSTRACT
In this paper, we propose a new procedure to estimate the distribution
of a variable y when there are missing data. To compensate the
presence of missing responses, it is assumed that a covariate vector x
is observed and that y and x are related by means of a semi-parametric
regression model. Observed residuals are combined with predicted val-
ues to estimate the missing response distribution. Once the responses
distribution is consistently estimated, we can estimate any parameter
defined through a continuous functional T using a plug in procedure.
We prove that the proposed estimators have high breakdown point.

1. Introduction

Missing data arise in many situations across different fields, from natural sciences to human-
ities. Survey methods have already faced this problem from their very beginning, and
considerable efforts have been invested since the early 1970s up to these days to develop data
analysis procedures for missing data.

Another problem that should be faced is the presence of outliers in the sample. Many of
themost popularmethods, asmaximum likelihood estimators, are very sensitive to the occur-
rence of atypical observations. Estimatorswhich are notmuch influenced by outliers are called
robust estimators. The main purpose of this article is to provide robust estimators that can be
used when there are missing values in the sample.

The estimation of the mean of a given random variable y, based on a sample with missing
observations, has acquired a remarkable place in modern statistics. To deal with this problem
it is often assumed that for each subject i in the sample, a vector xi of p covariates is always
observed, even in the case that the corresponding scalar response yi is missing. The missing
at random (MAR) assumption (Rubin 1976) allows to identify the parameter of interest in
terms of the distribution of the observed data. It states that the distribution of the missing
mechanism does not depend on the variable of interest, once the covariates are available. To
bemore precise, let ai be the indicator of whether yi is observed. Namely, ai = 1 whenever the
response yi is observed in subject i. The MAR hypothesis establishes that

P(a = 1|x, y) = P(a = 1|x) = π(x) (1)
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2 F. STATTI ET AL.

where (xt, a, y) is a random vector distributed as (xti, ai, yi). Condition (1) implies that y is
independent of a given x and therefore, E[y] = E[E[y|x, a = 1]]. This representation of E[y]
suggests to postulate a parametric model g(x, β0) for the regression function E[y|x, a = 1]
and estimate E[y] by the so-called outcome regression estimator (OR), defined as the mean
value of the predicted responses under the model: n−1∑ g(xi, ̂βn), where ̂βn is a consistent
estimator of β0 based on those individuals with ai = 1.

There exist other methods for estimating the mean of y in presence of missing data. For
instance, we can mentioned the inverse probability weighted (IPW) procedures which are
based on the estimation of the propensity π(x), defined in Equation (1). There exist also the
so-called doubly protected estimators that remain consistent when either (but not necessarily
both) the considered model for the propensity score P(a = 1|x) or the model postulated for
the regression E[y|x, a = 1] is correctly specified. See, for instance, Bang and Robins (2005)
and Rotnitzky et al. (2012). These estimators seems to be difficult to robustify and for this
reason we will focus on outcome regression estimators.

Causal inference has necessary to deal with missing data. The potential outcomes model,
popularized by Rubin (1974), can be used to quantify the effect of two different treatments, say
t0 and t1, on some response of interest. In this model, two potential outcomes (or counterfac-
tual variables) y(0) and y(1) are defined as the response of a participant in the case she/he were
exposed to t0 or t1, respectively. The average treatment effect is defined as E[y(1)] − E[y(0)] and
so, the estimation of each mean E[y( j)], j = 0, 1 is required. However, we never observe both
potential outcomes in the same subject of the sample. We only observe the outcome corre-
sponding to the assigned treatment while the other one (counterfactual) remains missing. In
this way, the estimation of E[y( j)], j = 0, 1 requires to usemissing data techniques, since y( j) is
only available for those individuals with treatment level T = t j, and is missing for those with
T �= t j. Westreich et al. (2015) present an interesting discussion on the connections between
causal inference and missing data.

It is well known that, even when all observations are available, the mean is very sensitive
to the presence of outliers in the sample. Just one outlying observation can take this estimator
beyond any limit. Robust procedures have been developed to overcome this limitation. For
instance, the median, which is probably one of the most famous robust location parameter,
does not suffer the instability phenomenon described for the mean. We can consider many
other robust location estimators. We can mentioned, for examples, M-, L- and R -estimators
which have different degrees of robustness. This suggests that instead of estimating the mean
we can attempt to estimate other location parameters defined as μ0 = T (F0), where T is a
continuous location functional and F0 is the distribution of y. Several authors have deal with
this problem in presence ofmissing data. Bianco et al. (2010) obtained consistent estimators of
M-location functionals assuming a partially linearmodel to describe the relationship between
y and x. This approach requires that both the distribution of the response y and that of the
regression error under the true model, to be symmetric.

Going back to the causal inference framework, Zhang et al. (2012), focused on the esti-
mation of the median or, more generally, on the estimation of any quantile associated with
the distribution of counterfactual variables. They presented an outcome regression estimator
using a parametric model for the conditional distribution of y given x and an IPW estimator,
which assumes a parametric model for the propensity score π(x), defined in Equation (1).
They have also considered a doubly protected estimator.

Sued and Yohai (2013), SY in the remainder of the paper, proposed a consistent estimator
of F0 under a semi-parametric regression model y = g(x, β0) + u, where the distribution of
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COMMUNICATIONS IN STATISTICS—THEORY ANDMETHODS 3

the error term u is completely unspecified. This approach allows for the consistent estimation
of any parameter defined by a weakly continuous functional at F0. Particular emphasis is
dedicated in SY to location functionals such as the median (and any quantile), α-trimmed
means (and any L-location functional) as well as M-location functionals. The consistency of
these procedures neither requires the symmetry assumptions used by Bianco et al. (2010), nor
the parametric model postulated by Zhang et al. (2012) for constructing outcome regression
estimators.

In this paper we propose a new estimator F̂n of F0. Once consistently estimated F0, we can
robustly estimate any parameter θ0 = T (F0), where T is a functional weakly continuous at F0,
by means of a plug in procedure. Note that, from now on, μ0 indicates location parameters
while θ0 denotes a generic one. We prove that the estimator θ̂n = T (F̂n) of θ0 has a larger
breakdown point than that of the estimator T (F̃n), where F̃n is the estimator of F0 proposed in
SY. Breakdown point (BP) is an important measure of robustness. Roughly speaking, the BP
is the smallest amount of contamination that may cause an estimator to take on arbitrarily large
aberrant values, as mentioned in Donoho and Huber (1983).

High BP estimates are desirable, even if the proportion of outliers is not expected to be
large, because they typically over perform the behavior of estimators with smaller BP. For
instance, the median which has a BP equal to 0.5, is the estimator with the least asymptotic
bias for any level of contamination, see Huber (1964).

When all observations yi, 1 ≤ i ≤ n are available, θ0 is typically estimated with T (Fn),
where Fn is the empirical distribution of yi. A remarkable property of the estimator presented
in this work is that its BP can be as high as that of T (Fn) when the fraction of missing data is
close to 0. In the later case, for instance, the BP for estimating themedian converges to 0.5. On
the other hand, when the fraction of missing data goes to 1 the BP converges to that obtained
in SY, which does not depend on the fraction of missing responses.

This paper is organized as follows. In Sec. 2, we introduce the new estimator of the distribu-
tion of ywhich is used to estimate any parameter defined bymeans of a continuous functional
through a plug in procedure. We establish the consistency and the asymptotic normality of
the proposed procedure for regular functionals. We also consider estimators of the quantiles
of the distribution of y and establish their asymptotic properties. In Sec. 4, we obtain a lower
bound for the breakdown point of the estimators presented here. In Sec. 5.1, we report the
results of a Monte Carlo simulation both for location and dispersion parameters. This last
problem has not been considered by any of the aforementioned works. In Sec. 5.2, the result
of a real data study are presented. In Sec. 6, we compare the asymptotic variance of the new
procedure with that of SY. Some conclusions are drawn in Sec. 7. The Supplementary Mate-
rial (SM), available on line, contains all the proofs, and the tables and figures corresponding
to Sec. 5. A code for the computation of the estimators presented here and in SY, used in the
Monte Carlo Study, is also included in the SM.

2. Estimating the distribution of y

Let (xti, ai, yi), 1 ≤ i ≤ n, be independent identically distributed (i.i.d) vectors, and consider
(xt, a, y) with the same distribution as (xti, ai, yi). Recall that F0 denotes the marginal distri-
bution of the outcome y. Let T be a weakly continuous functional at F0 and suppose that we
are interested in estimating the parameter θ0 = T (F0). As it was already mentioned, when all
the responses yi, 1 ≤ i ≤ n, are available, θ0 can be estimated by T (Fn),where Fn is the empir-
ical distribution given by Fn = n−1∑n

i=1 δyi , while δw denotes the distribution function of a
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4 F. STATTI ET AL.

mass point concentrated at w. When some responses are missing, the empirical distribution
of the observed responses,

F̂0,1 = 1∑n
j=1 a j

n∑
j=1

a jδy j (2)

converges to F0,1, the conditional distribution of y given a = 1. In general, F0,1 is different
from the distribution of y, except when a is independent of y (missing completely at random).
To overcome this problem, F̂0,1 should be combined with a consistent estimator of F0,0, the
conditional distribution of y given a = 0. At this point, let us assume a a semi-parametric
regressionmodel similar to the one consider in the Introduction for the OR estimator of E[y].
That is, we assume that

y = g(x, β0) + u (3)

with y, u ∈ R, x ∈ R
p, u independent of x, β0 ∈ B ⊂ R

q, g : Rp × B → R. We further assume
that u is independent of (x, a). Note that this last assumption implies the MAR condition.
All the presented assumptions imply that F0,0 = R0 ∗ K0, where R0 and K0 denote the condi-
tional distribution of g(x, β0) given a = 0 and the distribution of u, respectively. Then, we
can estimate F0,0 by F̂0,0 = R̂n ∗ K̂n, where R̂n and K̂n are consistent estimators of R0 and K0,
respectively, while ∗ denotes the convolution of distributions. Let ηn = ∑n

j=1 a j/n, then we
can estimate F0 by

F̂n = ηnF̂0,1 + (1 − ηn)R̂n ∗ K̂n (4)

R0 and K0 have to be estimated so that T (F̂n) turns out to be a robust estimator of θ0. For
this purpose, we need a robust strongly consistent estimator of β0, which will be denoted by
̂βn. This estimator may be, for example, an S-estimator (see Rousseeuw and Yohai 1984) or
an MM-estimator. MM-estimators where introduced for linear models by Yohai (1987) and
Fasano et al. (2012) extended them for non linear regression. Since u is independent of a, ̂βn
may be obtained by a robust fit of model (3) using the observations (xi, yi) with ai = 1. Let
A = {i : ai = 1} andm = #A. Consider the residuals ûi = yi − g(xi, ̂βn), i ∈ A. We will show
that we can take R̂n as the empirical distribution of g(x j, ̂βn), j �∈ A, and K̂n as the empirical
distribution of ûi, i ∈ A. Note that we can write

R̂n = 1
n − m

n∑
j=1

(1 − a j)δg(x j,̂βn)
, K̂n = 1

m

n∑
i=1

aiδûi

and so R̂n ∗ K̂n is the empirical distribution of the pseudo-observations ŷi j = g(x j, ̂βn) + ûi
defined, in principle, for j �∈ A and i ∈ A. Then, according to (4), we propose here to estimate
F0 by

F̂n = 1
n

n∑
j=1

δy j a j + 1
nm

n∑
i=1

n∑
j=1

δŷi j ai(1 − a j) = 1
nm

n∑
i=1

n∑
j=1

(δy j aia j + δŷi j ai(1 − a j)) (5)

Namely, F̂n assigns mass 1/(nm) to each of the nm points ŷi j, 1 ≤ j ≤ n and i ∈ A, defined
by

ŷi j =
{

y j if j ∈ A, i ∈ A
g(x j, ̂βn) + ûi if j �∈ A, i ∈ A

(6)
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COMMUNICATIONS IN STATISTICS—THEORY ANDMETHODS 5

Finally, we estimate θ0 by

θ̂n = T (F̂n) (7)

We recall that in SY F0 is estimated by

F̃n = 1
nm

n∑
i=1

n∑
j=1

aiδỹi j (8)

where ỹi j = g(x j, ̂βn) + ûi, 1 ≤ j ≤ n, i ∈ A. Note that F̂n and F̃n are both empirical distri-
butions corresponding to the samples S1 = {̂yi j, i ∈ A, 1 ≤ j ≤ n} and S2 = {̃yi j, i ∈ A, 1 ≤
j ≤ n}, respectively. Then, if the regression coefficients are estimated using a robust proce-
dure, S2 contains in general more outliers than S1. In fact, given j so that aj = 1 and y j is
not an outlier, then none of the values ŷi j, i ∈ A is an outlier. Instead, for the same j, all the
values ỹi j, where i ∈ A and xi is an outlier, are outliers. This heuristic argument explains why
θ̂n = T (F̂n) is plausible more robust than θ̃n = T (F̃n). A formal statement of this fact can be
found in Lemma 1.

Observe also that F̂0,1 does not depend on the regression model (3), while both estimators
of F0,0 and F0,1 in SY depend on g. As a consequence, the new estimator is less sensitive to
misspecification of the function g(x, β) chosen for the regression model (3).

To finish this sectionwewant to emphasize on the semi-parametric nature of the regression
model (3), where no parametric family is postulated for the distribution of the error term u.

3. Asymptotic properties

Sued and Yohai (2013) proved that to identify β0, it is sufficient to assume that

P
(
g(x, β0) = g(x, β) + α|a = 1

)
< 1 (9)

for all β �= β0 and for all α. No further conditions on K0 are imposed: we require neither that
(i) K0 is symmetric around 0 nor that (ii) K0 satisfies a centering condition ( e.g., EK0 [u] = 0).
To satisfy condition (9) it is required that, in case there is an intercept, it should be included
in the error term u and should not be included as one of the components of β0. For a linear
regressionmodel, where g(x, β) = βtx, condition (9)means that the distribution of the vector
x given a = 1 is not concentrated on any hyperplane.

The following assumptions on the function g(x, β), the estimator ̂βn and the functional
T , all of them already considered in SY, are required to prove the consistency and asymptotic
distribution of the estimator θ̂n defined in (7).
A0. The function g(x, β) is continuously differentiable with respect to β and there exists

δ > 0 such that

E

[
sup

‖β−β0‖≤δ

∥∥ġ(x1, β)
∥∥2] < ∞, (10)

where ġ(x, β) denotes the vector of first derivatives of g with respect to β.
A1. {̂βn} is strongly consistent for β0.
A2. The regression estimator ̂βn satisfies

√
n(̂βn − β0) = n−1/2∑n

i=1 aiIR(xi, yi) + oP(1)
for some function IR(x, y) with E[aIR(x, y)] = 0 and finite covariance matrix.

A3. T is weakly continuous at F0.
A4. The following expansion holds:

√
n(T (F̂n) − T (F0)) = √

nEF̂n[IT,F0 (y)] + oP(1),
where IT,F0 is the influence function, seeHampel (1974), ofT at F0.We assume also that
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6 F. STATTI ET AL.

EF0 [IT,F0 (y)] = 0, EF0 [I2T,F0 (y)] < ∞ and IT,F0 is differentiable with bounded derivative
I′T,F0 (·).

Remarks 1 and 2 in the Supplementary Material briefly discuss on the validity of A1–
A4. The following theorems establish the consistency and the asymptotic normality of
θ̂n = T (F̂n), defined in (7).

Theorem1. Let F̂n be defined as in (5) and assume that A0 andA1 hold. Then (a) {F̂n} converges
weakly to F0 almost sure (a.s.); that is, P(F̂n →w F0) = 1. (b) Assume also that A3 holds; then
θ̂n = T (F̂n) converges a.s. to θ0 = T (F0).

Theorem 2. Assume A0–A4. Then, n1/2(θ̂n − θ0) →d N(0, τ 2), where

τ 2 = 1
η2 E[{e(x1, u1, a1) + f (x1, a1) + a1c′IR(x1, u1)}2], η = E[a1] (11)

c = E
[
a1(1 − a2)I′T,F0 (y1 − g(x1, β0) + g(x2, β0))

{
ġ(x2, β0) − ġ(x1, β0)

}]
e(xi, ui, ai) = aiIT,F0 (yi)E[a j] + aiE[(1 − a j)IT,F0 (g(x j, β0) + ui)|ui]

f (xi, ai) = aiE[a jIT,F0 (y j)] + (1 − ai)E[a j]E[IT,F0 (g(xi, β0) + uj)|xi] (12)

In many situations, as discussed by Zhang et al. (2012), the parameter of interest is the
median, ormore generally, any quantile of the distribution F0. The p-quantile of a distribution
F can be defined through the functional Tp(F ) = F−1(p) = inf{x : F(x) ≥ p}. Tp is contin-
uous at F0 if, for instance, F0 has a positive density f0 in a neighborhood of Tp(F0). In such
a case, we obtain that μ̂n = Tp(F̂n) converges to μ0 = Tp(F0), with F̂n defined by (5). Never-
theless, the influence function of Tp does not satisfy the regularity assumptions regarding its
influence function. When p = 0.5, μ0 = T0.5(F0) is the median. SY proposed to estimate it
by T0.5(F̃n), for F̃n defined in (8) and give a rigorous proof of the asymptotic behavior of the
estimator. We adapt the arguments of this proof to obtain the asymptotic distribution of the
new estimator μ̂n = Tp(F̂n). Then we can state the following theorem.

Theorem 3. Suppose that F0 has a positive density f0 in a neighborhood ofμ0 = Tp(F0). Besides
assume that A0–A1 holds. Then (a) μ̂n = Tp(F̂n) → μ0 a.s. (b) Assume also that A2 holds,
that F0 and K0 have continuous and bounded densities f0 and k0 respectively. Then n1/2(μ̂n −
μ0) →d N(0, τ 2) where τ 2 is as in Theorem 2, with c replaced by

c∗ = E
[
a1(1 − a2)k0(−g(x2, β0) + μ0)(ġ(x2, β0) − ġ(x1, β0))

]
f0(μ0)

(13)

and ITp,F0 (y) replaced by ITp,F0 (y) = −signp(y − μ0) f −1
0 (μ0), where signp(y) = 1 − p, 0 or−p

according to y < 0, y = 0 or y > 0, respectively.

4. Breakdown point

SY extended the notion of Finite Sample Breakdown Point (FSBP) of an estimator, intro-
duced by Donoho and Huber (1983), to the case where there are missing observations as
follows. Let W = {(x1, y1, a1), . . . (xn, yn, an)} be the set of all observations and missing-
ness indicators. Recall that A = {i : 1 ≤ i ≤ n, ai = 1} and m = #A. Denote by Wts the set
of all samples obtained from W where at most t points are replaced by outliers, with at
most s of these replacements corresponding to the non missing observations. Then W∗ =
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COMMUNICATIONS IN STATISTICS—THEORY ANDMETHODS 7

{(x∗
1, y∗

1, a1), . . . , (x∗
n, y∗

n, an)} belongs toWts if∑
i∈A

I{(x∗
i ,y∗i )�=(xi,yi )} +

∑
i∈AC

I{x∗
i �=xi} ≤ t and

∑
i∈A

I{(x∗
i ,y∗i )�=(xi,yi )} ≤ s (14)

Given an estimator θ̂n of θ0, we define

Mts = sup
W∗∈Wts

∣∣θ̂n(W∗)
∣∣ and κ(t, s) = max

(
t
n
,
s
m

)
The finite sample breakdown point (FSBP) of an estimator θ̂n at W is given by ε∗ =
min{κ(t, s) : Mts = ∞}. Then, ε∗ is the minimum fraction of outliers in the complete sample
or in the set of non missing observations required to take the estimator beyond any bound.

In order to obtain a lower bound for the FSBP of the estimator θ̂n introduced in (7), let us
recall the definition of uniform asymptotic breakdown point (UABP) ε∗

U of the functional T ,
introduced in SY. The UABP is defined as the supremum of all ε > 0 satisfying the follow-
ing property: for allM > 0 there exists K > 0 depending onM so that PF (|y| ≤ M) > 1 − ε

implies |T (F )| < K.
Lower bounds for the UABP of L- and M-location functionals are presented in SY. In par-

ticular, in Theorem 8 it is shown that it is possible to define locationM-estimators with UABP
equal 0.5. This result can also be extended to the dispersion functional defined in Equation
(18). The following theorem gives a lower bound for the FSBP of θ̂n, defined in (7).

Theorem 4. Given W = {(x1, y1, a1), . . . .(xn, yn, an)}, let Z = {(xi, yi) : i ∈ A}. Suppose
that ̂βn = ˜βm(Z), where ˜βm is a regression estimator for samples of size m. Let ε1 > 0 be a
lower bound of the FSBP at Z of ˜βm and let ε2 > 0 be a lower bound of the UABP of T. Then
the FSBP ε∗ of the estimator θ̂n atW, satisfies the following inequality:

ε∗ ≥ εNEW
3 = min

(
ε1, 1 −

√
η2
n + 4(1 − ηn)(1 − ε2) − ηn

2(1 − ηn)

)
(15)

where ηn = m
n .

Next, we analyze the behavior of εSY
3 and εNEW

3 , the lower bound for the FSBP of θ̃n and θ̂n,
respectively. Besides, it is shown the behavior of εNEW

3 when the fraction of missing data frac-
tion converges to 0 and 1.To express the following results in terms of the fraction of missing
data in the sample, let δn = 1 − ηn and let εSY

3 (δn) be defined as in (15) with ηn = 1 − δn

Lemma 1. Under the assumptions of Theorem 4, we have that
(a) εSY3 ≤ εNEW3 (δn), for all δn, ε1 and ε2.
(b) limδn→1 εNEW3 (δn) = εSY3 , for all ε1 and ε2.
(c) limδn→0 εNEW3 (δn) = min(ε1, ε2), for all ε1 and ε2.

Remark 1. (a) shows that the new estimator is resistant to a larger fraction of outliers and (b)
shows that, choosing a regression estimate with ε1 = 0.5, as in the case of the MM-estimator
used in the simulation study, εNEW

3 approaches to ε2 when themissing fraction tends 0.Observe
that ε2 is the UABP of the functional T , which is the asymptotic breakdown point of T (Fn),
where Fn is the empirical distribution of yi, 1 ≤ i ≤ n. (c) means that when the missing frac-
tion tends to 1, εNEW

3 approaches the lower bound presented in (a), which is εSY
3 . Note that εSY

3
does not depend on the fraction of missing data. These facts are illustrated in Figure 1, where
we plot εSY

3 and εNEW
3 as a function of δn, fixing ε1 = 0.5 and considering three different values

for ε2: 0.1, 0.25, 0.5.
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8 F. STATTI ET AL.

Figure . Breakdown points lower bounds for both procedures as a function of themissing fraction δn when
ε1 = 0.5 and three different values of ε2. Solid lines correspond to ε2 = 0.5, dashed lines for ε2 = 0.25 and
dotted lines are used for ε2 = 0.1. In each case, constant lines represent εSY

3 while the others indicate how
εNEW
3 varies as a function of δn.

5. Simulation study

5.1. Monte Carlo

In this sectionwe present the results of a simulation studywhere we compare the performance
of the estimation procedure introduced in this work with two previous proposals for estima-
tion in presence of missing data: (i) the estimators presented in SY and (ii) those considered
by Bianco et al. (2010) (BBMG, from now on). The simulation contemplates the following
cases, also considered in SY for linear regression models.
Model 1 The response y is generated as y = 5x1 + x2 + x3 + 4v + 9, where (x1, x2, x3, v )

is distributed according to a multivariate standard normal law.
Model 2 The response y is generated as y = 5x1 + x2 + x3 + 4v + 4, where x1, x2 and

x3 are distributed according to a chi-squared distribution with one degree of
freedom, and v has a standard normal distribution and the four variables are
independent.

In both scenarios the errors have symmetric distribution. In the first case, also the response
is symmetric, while in the second model the distribution of y is asymmetric.

Themissingmechanism considered in both cases is the same. The conditional distribution
on x = (x1, x2, x3) of the variable a, which indicates that the response y is observed, satisfies

ln
(

P(a = 1|x)
1 − P(a = 1|x)

)
= 0.15(x1 + x2 + x3) (16)

Themean value of the observed indicator is P(a = 1) = 0.5 forModel 1 and P(a = 1) = 0.606
for Model 2.

As in SY, we compute the estimators in two cases: with and without outliers. To study
the behavior of the estimators under outlier contamination, we consider several scenarios,
combining two amounts of contaminations (ε = 0.1 and ε = 0.2) and different values for
the outliers. The contamination is performed according to the following scheme: [εm] of the
m observations (x, y) (corresponding to a = 1) are replaced by the same value (x∗, y∗), and
in [ε(n − m)] of the remaining n − m observations with a = 0, x is replaced by x∗. Note
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COMMUNICATIONS IN STATISTICS—THEORY ANDMETHODS 9

that we use [·] to denote the integer part of a real number. We consider two values for x∗,
one corresponding to low leverage outliers, with x∗ = (2, 0, 0), and for large leverage outliers
we choose x∗ = (10, 0, 0); y∗ takes values in the intervals [−40, 60] and [−100, 200], when
x∗ = (2, 0, 0) and x∗ = (10, 0, 0), respectively.

For each scenario we performed Nrep = 1000 replications using samples of size n = 100.
We consider estimators for the mean (MEAN), and the parameters defined by four location
and one dispersion continuous functionals. The location functionals are the median (MED),
the 0.1-trimmed mean (TR10), an M-functional based on a Tukey loss function (TU) and an
M-functional based on a Huber loss function (HU). M-location functionals are defined by

T (F ) = argmin
μ∈R

EF

[
ρ

(
y − μ

S(F )

)]
where ρ(u) is a non decreasing function of |u|, and S(F ) is a dispersion functional. A brief
review on M-location functionals can be found in Sec. 7.2 in SY, and a detailed presentation
is included in Maronna, Martin and Yohai (2006) or in Huber and Ronchetti (2009). For TU,
we use a function ρ in the Tukey bisquare family

ρT,k (u) = 1 −
(
1 −

(u
k

)2)3

I(|u| ≤ k) (17)

with k1 = 3.44. Instead, for HU ρ is taken in the Huber family

ρH,k(u) = u2I(|u| ≤ k) + (2k|u| − k2)I(|u| > k)

with k2 = 1.37. In both cases, the dispersion considered is defined through the dispersion
functional S(F ), as follows. For each μ let S∗(F, μ) be the value solving

EF

[
ρ0

(
y − μ

S∗(F, μ)

)]
= δ

Then S(F ) is given by

S(F ) = min
μ

S∗(F, μ) (18)

The function ρ0 is taken in the Tukey bisquare family with k = 1.547 and δ = 0.5. Finally,
the dispersion functional to be estimated is given by S(F0), defined in (18) and we use (SS) to
refer to it.

Note that the distribution F0 of y derived underModel 1 is symmetric and, therefore, all the
location functionals are equal to its center of symmetry, which is 9. Instead, underModel 2 all
the location functionals take different values at F0. More specifically, the values of the MED,
TR10, TU, and HU at F0 are given by 9.53, 10.07, 9.35, and 10.06, respectively. The dispersion
S(F0) is 6.56 in Model 1 and 6.44 in Model 2.

The regression model was fitted with two different estimators using in both cases the sub-
sample where the response variable is observed. When interested in the estimation of the
mean, we take as ̂βn the least squares (LS) regression estimator. Instead, for the estimation of
the parameters defined by continuous functionals, (MED, TR10, BI, HU, and SS), an MM-
regression estimator is used. MM-estimators were introduced by Yohai (1987) to combine
the highest possible breakdown point with an arbitrarily high efficiency for Gaussian errors,
among equivariant estimators. As in the location case, these estimatorsminimize a ρ-function
of the residuals, standardized with anM-estimator of the scale of the residuals based on a pre-
liminary estimator. As we explained in Sec. 3, we have excluded the intercept in model (3).
However, to get consistent estimators of β0 without requiring symmetric errors, it is necessary
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10 F. STATTI ET AL.

to estimate an additional parameter, which can be naturally interpreted as an intercept or a
center of the error distribution. The MM-estimator that we use in the Monte Carlo study is
defined in the following two steps.

Estimation of the error scale. Letm = ∑n
i=1 ai, then given (α, β) ∈ R

p+1, let σ̂ (α, β) be
the solution of the following equation

1
m

n∑
i=1

aiρT,k0

(
yi − α − βtxi

σ̂ (α, β)

)
= 0.5

where ρT,k is the Tukey bisquare family defined in (17) and k0 = 1.547. Then the error scale
is estimated by

σ̂ = min
(α,β)∈Rp+1

σ̂ (α, β)

Estimation of the regression parameters. Consider

(α̂n, ̂βn) = argmin
(α,β)∈Rp+1

∑
i, j

aiρT,k1

(
yi − α − βtxi

σ̂

)
(19)

where k1 = 3.44.
Once the regression coefficients are estimated, we compute the residuals ûi = yi − ̂β

t
nxi,

for i ∈ A.
We consider three estimators for each robust location parameter. The first two are obtained

evaluating the corresponding functional at F̂n, defined in (5), and at F̃n defined in (8). Each
of these procedures will be indicated with the subscript NEW and SY, respectively. The third
estimator corresponds to the proposal of Bianco et al. (2010) and is obtained evaluating now
each functional at the empirical distribution of the predicted response ̂β

t
nxi + α̂n. We will use

BBMG to refer to these last estimators. For estimating S(F0)we use S(F̂n) and S(F̃n) since BBMG
only considers the location case.

Under each scenario, we compute the (empirical) bias and mean square error (MSE) over
the Nrep = 1000 replications, for each estimator applied to samples of size n = 100. Namely,
for each case we computed Bias and MSE according to the following formulas:

Bias = 1
Nrep

Nrep∑
j=1

θ̂∗,n, j − θ0 , MSE = 1
Nrep

Nrep∑
j=1

(θ̂∗,n, j − θ0)
2 (20)

where θ̂∗,n, j, j = 1, . . . ,Nnrep denotes the j replication of the procedure ∗ applied to a sample
of size n = 100, and ∗ should be replaced by BBMG, SY and NEW for the results corresponding to
BBMG, SY, and NEW, respectively. We start presenting the results corresponding to the non
contamination case.

UnderModel 1, the symmetry of both the distribution of the response y and that of the error
term u guarantee the consistency of BBMG estimators. However, in Model 2 the distribution
of the response y is not symmetric and therefore BBMG estimators are not guaranteed to be
consistent. For instance, the asymptotic bias under Model 2 for the MED, TR10, TU, and HU
are given by 0.79, 0.39, 0.93 and 0.61, respectively. This fact precludes its use for this model,
and for this reason BBMG procedures are not included in the simulation study for Model
2. On the other hand, as we already mentioned, there is not an estimator for the dispersion
parameter analogous to BBMG’s proposal, and therefore no BBMG’s procedure is considered
in the simulation for estimating the dispersion S(F0), defined in (18). Note that T (F̂n) and
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COMMUNICATIONS IN STATISTICS—THEORY ANDMETHODS 11

Table . Monte Carlo results without contaminations.

Model  Model 

MSE0 Bias0 MSE0 Bias0

MEAN . . . − .
MEDBBMG . . — —
MEDSY . . . −.
MEDNEW . . . −.
TRBBMG . . — —
TRSY . . . −.
TRNEW . . . −.
TUBBMG . . — —
TUSY . . . −.
TUNEW . . . −.
HUBBMG . . — —
HUSY . . . −.
HUNEW . . . −.
ScaleSY . − . . −.
ScaleNEW . − . . −.

T (F̃n) are consistent in both models for all the functionals studied in this work. In Table 1, we
show the results corresponding to models 1 and 2 without contaminations.

In the first column of Table 1, we observe that, as expected, when both the distribution of y
and the distribution of the regression error u are Gaussian, the classical procedure is the most
efficient. Even so, the efficiency of the robust estimators is quite high. Instead, in the third
column of Table 1 we note that for Model 2 the robust procedures perform better than the
classical one. The reason is that when y is generated as in Model 2, its distribution has heavy
tails. It is also shown that, for all the functionals, the estimators based on the proposal pre-
sented in SY are the ones with the smallest MSE, closely followed by the estimators proposed
here.

Let’s now turn to the results under contaminations. We plot the MSE as a function of the
outlier size y∗ for each (available) estimators under different scenarios. For all the functionals,
the conclusions that can be draw for ε = 0.1 and ε = 0.2 are very similar and so we include
here the figures corresponding to the ε = 0.1 case, while those for ε = 0.2 are shown in
the Supplementary Material. In Figures 2 and 3, we present the MSE curves for the location
functionals under Model 1, with low (x∗ = (2, 0, 0)) and high (x∗ = (10, 0, 0)) leverage,
respectively.

In both cases, BBMGprocedures present the smallestMSE values. These results are not sur-
prising since BBMG’estimators are specifically designed for the case that the response y has a
symmetric distribution, requirement that is satisfied by Model 1. Excepting BBMG, there is
no estimator with uniform best behavior. The largest MSEs are attained when the outliers y∗

are located on the right hand side of the horizontal axis. For these type of outliers, the new
estimators compare favorably with respect to the SY’ones, except for the Tukey M-location
functional. However, in this case, the least favorable situation corresponds to x∗ = (2, 0, 0),
where the MSE of the new estimator is smaller than that of the procedures presented in SY.
Then, if we can not assume that y has a symmetric distribution and we evaluate the perfor-
mance of each procedure through a minimax criterion based on the MSE, the new proposal
is recommended; its advantage is neater for the median.

We observe that TR10 does not behave as good as the other robust estimators. This is also
a result of the outliers propagation. Specifically, even if the regression estimator has a break-
down point ε2 = 0.5 and the UABP of the 0.1-trimmed mean is ε1 = 0.1, the lower bound
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12 F. STATTI ET AL.

Figure . MSEs under outlier contamination for Model , with ε = 0.1 and x∗ = (2, 0, 0). Dotted lines cor-
respond to BBMG, dashed lines are used for SY, and solid lines represent the results corresponding to the
new estimators.

εNEW3 given in (15) for this estimator is 0.068 when ηn = 0.5 and 0.073 when ηn = 0.6. As a
consequence this estimator cannot cope with 10% of outliers.

Figures 4 and 5 present MSEs for location functionals under Model 2, with low (x∗ =
(2, 0, 0)) and high (x∗ = (10, 0, 0)) leverage, respectively. The comments presented for
Model 1 remain valid for Model 2.

In Figure 6, we present the MSE curves for estimating the dispersion S(F0), with ε =
0.1. Model 1 and Model 2 are considered in the top and bottom panels, respectively. The

Figure . MSEs under outlier contamination for Model , with ε = 0.1 and x∗ = (10, 0, 0). Dotted lines cor-
respond to BBMG, dashed lines are used for SY, and solid lines represent the results corresponding to the
new estimators.
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COMMUNICATIONS IN STATISTICS—THEORY ANDMETHODS 13

Figure . MSEs under outlier contamination for Model , with ε = 0.1 and x∗ = (2, 0, 0). Dashed lines are
used for SY and solid lines represent the results corresponding to the new estimators.

results corresponding to x∗ = (2, 0, 0) are in the left panel while those corresponding to
x∗ = (10, 0, 0) are on the right panel. For Model 2 the maximum values of the MSE cor-
respond to x∗ = (10, 0, 0) and y∗ on the right hand side of the horizontal axis. For this case,
the new procedure is much better than the previous one. The MSE curves corresponding to
the new estimators are, practically, uniformly below those of the SY estimator for ε = 0.2 (see
SupplementaryMaterial). This shows that the new procedure is clearly preferable for estimat-
ing the dispersion parameter S(F0), defined in (18).

Figure . MSEs under outlier contamination for Model , with ε = 0.1 and x∗ = (10, 0, 0). Dashed lines are
used for SY and solid lines represent the results corresponding to the new estimators.
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14 F. STATTI ET AL.

Figure . Dispersion: MSEs under outlier contamination for ε = 0.1 and (A) Model  and x∗ = (2, 0, 0), (B)
Model  and x∗ = (10, 0, 0), (C) Model  and x∗ = (2, 0, 0), and (D) Model  and x∗ = (10, 0, 0). Dashed
lines are used for SY and solid lines represent the results corresponding to the new estimators.

Tables 1 and 2 in the Supplementary Material show the maximum mean squared error
(MSEmax) under outliers contamination over all the considered values for y∗. They also contain
the value of y∗ where the maximum mean squared error is achieved (ymax). This is done for
each amount ε of outliers, for each possible contamination x∗, under Model 1 and Model 2,
respectively.

A formal analysis of the computation times required for the different procedures is beyond
the scope of this work.However, in Table 2we present themean time needed by the entire pro-
cedure to estimate theTukeyM-location functional. In this tablewe consider p = 5, 10, 20, 40
and different values of n; the missing proportion in each case is η = 0.5. This study has been
done using our R code available in the Supplementary Material running on an Intel Core i7
(3.60 GHz) processor on Windows 7 operative system. These times can be reduced by com-
puting more efficiently the location estimators, using weights instead of the entire sample of
pseudo observations, given that many of them are repeated.

Table . Times required for computing the estimators.

p = 5 p = 10 p = 20 p = 40

Computer times n = 50 n = 100 n = 100 n = 200 n = 200 n = 400 n = 400 n = 800

tSY . . . . . . . .
tNEW . . . . . . . .
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COMMUNICATIONS IN STATISTICS—THEORY ANDMETHODS 15

Table . Real data analysis.

MED TR BI HU SCALE

yi , 1 ≤ i ≤ 297 . . . . .
MSEOTHER . . . .
MSESY . . . . .
MSENEW . . . . .

MSEbased onNrep = 1000data sets constructed from the original one by artificially removing responses, as indicated inmodel
().

5.2. Real data example

To analyze the performance of our proposal in a real data example, we consider a data set
where there are not missing responses. Then, we generate Nrep = 1000 data sets with artifi-
cially missing responses by removing some of them. Finally, we evaluate the performance of
the different estimators.

The data set is composed of n = 297 individuals and the response y of interest is
the annual salary corresponding to 1978. This data set is part of a study published by
LaLonde (1986), who was interested in evaluating the impact of a training program on
the salaries. We restrict our attention to the trained set. A complete description of this
data set can be found in LaLonde (1986), while data are available at http://users.nber.org/∼
rdehejia/data/nsw_treated.txt.

For each individual a vector x of seven covariates is observed. We consider the same con-
tinuous functionals used in the simulation study: themedian (MED), the 10% trimmedmean
(TR10), the Tukey M-location (TU), the Huber M-location (HU) and the dispersion defined
in (18) (SS). The values of each functional at the empirical distribution of the responses are
shown in the first line of Table 3. To emulate a missing data setting, we generateNrep = 1000
data sets with artificially missing responses. To do so, in each replication, we keep the covari-
ates xi (i = 1, . . . , 297) and remove some of the responses yi. For each of these data sets,
the observed indicator a is generated according to the following mechanism, proposed in
SY:

ln
(

P(a = 1|x)
1 − P(a = 1|x)

)
= 0.001x7 (21)

where x7 represents the earnings corresponding to 1975. At each replication, the responses yi
with ai = 0 are consideredmissing. For each data set we compute all the estimators considered
in theMonte Carlo study: those proposed in SY, the procedures presented in the present work
and also the proposals of Bianco et al. (only for location functionals). Then, we computemean
square errors, as presented in Equation (20), but replacing θ0 by the corresponding functional
evaluated at F̂y (values presented in line 1 of Table 3). Finally, we perform a paired t test to
evaluate the significance of the observed MSE differences between the proposal presented in
SY and the new one (lines 3 and 4). All theMSE are significantly different (p < 0.001), except
for the TR10 functional. The bad behavior of Bianco et al. (2010) can be attributed to the
fact that the response distribution is highly asymmetric (see density plot in Figure 6 of the
Supplementary Material). We should highlight that in the case of the median, which is one
of the most popular location parameters, the new estimator behaves significantly better than
that proposed in SY.
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16 F. STATTI ET AL.

Figure . Efficiency: the ratio τ 2
SY
(ξ )/τ 2

NEW
(ξ ) is plotted as a function of the missing data ratio δ(ξ ).

6. Numerical comparison of asymptotic variances.

The asymptotic variance τ 2 of the estimator θ̂n = T (F̂n), with F̂n defined in (5), is exhibited in
equation (11). Even if η (the proportion of observed responses) is explicitly present in formula
(11), we want to emphasize that τ 2 depends on the joint distribution of the vector (xt , a, y).
This is also the case for the estimators presented in SY. However, for a better understanding
of the proposals, we compute asymptotic variances under scenarios with different ratio of
missing data δ = 1 − η. Namely, we generate (xt , y) as in Model 1, but now the probability of
a = 1 given x = (x1, x2, x3) is given by

ln
(

P(a = 1|x)
1 − P(a = 1|x)

)
= 0.15(x1 + x2 + x3) + ξ (22)

In this way, for each ξ , themissing ratio is δ(ξ ) = 1 − η(ξ ), where η(ξ ) = E[expit{0.15(x1 +
x2 + x3) + ξ}], while expit(u) = eu/(1 + eu). We vary ξ in such a way that the missing ratio
δ(ξ ) takes values between 0.05 and 0.8. LetTTU be the TukeyM-location functional, as defined
in the Monte Carlo study. Consider the estimators TTU(F̃n) and TTU(F̂n) and let τ 2

SY(ξ ) and
τ 2
NEW(ξ ) denote the asymptotic variance of each estimator when (xt, a, y) satisfies bothModel
1 and (22). An explicit formula for τ 2

NEW is presented in equation (11) while in SY we present
a formula for τ 2

SY. The efficiency of TTU(F̃n) with respect to TTU(F̂n) is defined by

EFF(ξ ) = τ 2
SY(ξ )

τ 2
NEW(ξ )

(23)

In Figure 7, we plot (δ(ξ ),EFF(ξ )).
We see that, when the missing ratio δ is small, the variance of the new proposal is slightly

larger than that of the estimator presented in SY. The reason of the larger efficiency in SY can
be attributed to the fact that in this procedure all the responses, even the observed ones, are
predicted using a correct specified model for the regression. As the missing ratio increases,
the difference in efficiency between the two proposals becomes negligible.

7. Conclusions

We have presented a new procedure to estimate the distribution of a variable ywhen there are
missing data, which gives rise to new estimators for parameters defined through continuous
functionals. A simulation study and a real data analysis show that the new procedure is highly
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COMMUNICATIONS IN STATISTICS—THEORY ANDMETHODS 17

robust and efficient, except for the symmetric case, where BBMG’s estimators for location
parameters are preferable.

In particular, we highlight the good performance of the new estimator for the median and
for the dispersion.

Finally, we should mention the possibility of extending the result of this work to the gener-
alized linear model (GLM), where, instead of considering the regression model presented in
(3), we can assume that the distribution of yi given xi follows aGLM. That is, yi|xi ∼ Hg(xtiβ0),σ0

,
1 ≤ i ≤ n, where Hθ,σ is a parametric family of univariate distributions. In this case, we can
estimate F0 by F̂n(y) := n−1∑n

i=1 Hg(xti β̂n),σ̂ (y), where β̂n and σ̂ are consistent estimators for
β0 and σ0, respectively, computed with (xi, yi) such that ai = 1. The analysis of the properties
of these procedures are part of a work in progress.
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