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Abstract Programming correct parallel software in a cost-
effective way is a challenging task requiring a high degree
of expertise. As an attempt to overcoming the pitfalls
undermining parallel programming, this paper proposes a
pattern-based, formally grounded tool that eases writing par-
allel code by automatically generating platform-dependent
programs from high-level, platform-independent specifica-
tions. The tool builds on three pillars: (1) a platform-agnostic
parallel programming pattern, calledPCR, (2) a formal trans-
lation of PCRs into a parallel execution model, namely
Concurrent Collections (CnC), and (3) a program rewriting
engine that generates code for a concrete runtime imple-
menting CnC . The experimental evaluation carried out gives
evidence that code produced from PCRs can deliver per-
formance metrics which are comparable with handwritten
code but with assured correctness. The technical contribu-
tion of this paper is threefold. First, it discusses a parallel
programming pattern, called PCR, consisting of producers,
consumers, and reducerswhich operate concurrently on data
sets. To favor correctness, the semantics of PCRs is mathe-
matically defined in terms of the formalism FXML. PCRs are
shown to be composable and to seamlessly subsume other
well-known parallel programming patterns, thus providing
a framework for heterogeneous designs. Second, it formally
shows how the PCR pattern can be correctly implemented in
terms of a more concrete parallel execution model. Third, it
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proposes a platform-agnosticC++ template library to express
PCRs. It presents a prototype source-to-source compilation
tool, based on C++ template rewriting, which automatically
generates parallel implementations relying on the Intel CnC
C++ library.

Keywords Formal methods · Software design patterns ·
Parallel programming · Automated code generation

1 Introduction

Issues related to the physics of processor design have made
hardware industry to shift from improving the speed of a sin-
gle processor to increasing the number processing cores [4].
This paradigm change puts software engineering in front
of the challenging task of providing appropriate tools for
effectively building software that correctly and efficiently
exploits parallel processing power. Indeed, besides the well-
known, inherent pitfalls of concurrent programming, such
as deadlocks and data races, which are the cause of numer-
ous bugs [29], developing software for multicore hardware
demands taking care of different parallel patterns and execu-
tion models [30], and integrating legacy code which cannot
always be easily or simply rewritten from scratch [8]. This
complexity makes engineering correct and efficient parallel
software to require a high degree of expertise.

The aforementioned situation creates a need of techniques
and tools that ease building parallel software in a cost-
effective way. This paper looks forward contributing in that
direction by following a theory-based practical approach.
More precisely, our work relies on two principles. First, par-
allel software should be designed in a platform-independent
way, so as the same piece of software could end up run-
ning either in a many-core server, a cluster of inexpensive
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nodes, or a processor grid. Second, tuning for a concrete
execution model should be done by formally translating
such a platform-independent design into a specific solution.
Platform-specific and environment characteristics are to be
factored in at relevant phases of a formally grounded code
generation process. Relying on sound theoretical bases guar-
antees correctness.

A key aspect is the use of abstract program descriptions.
According to [6], parallel programming methodologies can
be categorized by their level of abstraction as follows. Thread
management and synchronization primitives together with
IPC mechanisms (e.g., MPI [22]) are considered to be low-
level abstractions. Language extensions (e.g., OpenMP [13]
and Cilk [7]) and frameworks (e.g., TBB [31], TPL [28]
and CnC [9]) provide a middle level of abstraction by
relieving part but not all of the coordination and synchro-
nization efforts from the programmer. Similarly, we could
argue that emerging parallel programming languages such as
X10 [32] and Chapel [10] belong to this category.1 Pattern-
based parallel-software design [12,20,30], also known as
structured parallelism or algorithmic skeletons, provides
high-level parallel programming abstractions. They consist
of common constructs that hide from the programmer all low-
level coordination and synchronization mechanisms which
are necessary to perform the actual parallel execution. This
is done by mapping, at compile time and/or at runtime, the
high-level abstractions into middle/low-level libraries and/or
language constructs. It has been shown that resorting to struc-
tured parallelism allows harnessing the computing power of
heterogeneous architectures [19].

Numerous works advocate using pattern-based parallel
programming [20]. Among the most recent and successful
ones, we should cite [1,3,14,16,18,27,40]. Despite their
contribution to the field, it is worth observing that they
have some drawbacks. First, they provide little or no for-
mal foundations. Notable exceptions are [3,17,27], which
give abstract semantics to the patterns, but do not establish
any formal relationship with the concrete underlying execu-
tion model. This decoupling inhibits proving whether runs of
the actual program indeed correspond to behaviors defined
by the high-level abstraction. Second, they provide no easy
means of combining different patterns (or instances of the
same pattern) in a compositional way, a problem which has
been identified and partially addressed in [40].

The main motivation of this paper is to overcome these
issues. To do so, this work starts by defining a parallel
programming pattern, calledPCR, which describes computa-
tions performed concurrently by communicating Producers,
Consumers, and Reducers, each one being either a basic
function (business logic), or a nested PCR. It combines in

1 An in-depth discussion of parallel programming languages is out of
the scope of this paper.

a single and composable pattern several concepts like col-
lectives [22], eureka computations [25], unbounded iteration
and recursion, and stream programming [33]. The semantics
of PCRs is formalized using FXML [5,39], a formal spec-
ification language for expressing parallelism. FXML does
not rely on any concrete execution model of concurrency,
enabling multiple implementations of a program. PCRs are
shown to behave as functions which ensures seamless com-
position. With relevant case studies, we illustrate how PCRs
can ease parallel programming in practice. To enable writing
actual programs, we designed and implemented a platform-
agnosticC++ template library supportingPCRs. As a second
step, we propose a sound and complete formal translation of
PCRs into an executable parallel model, namely Concur-
rent Collections (CnC) [9]. To complete the contribution, we
developed a code generation tool which encompasses a tem-
plate rewriting engine for translating PCRs into CnC-based
implementations.

Outline The paper is structured in two parts. The first
part (Sects. 2–4) is devoted to describing syntax, seman-
tics and applications of PCRs. Section 2 presents the PCR
pattern. It starts with a high-level description together with
a motivating example. Then, the semantics is formalized
with FXML. Section 3 discusses extensions to the basic
PCR pattern which allow composing PCRs beyond the PCR
computational model. Section 4 explores case studies of
increasing complexity to illustrate how PCRs express com-
monly used parallel programming patterns [30]. The second
part (Sects. 5 and 6) explains the implementation of PCRs,
together with its associated tool. Section 5 briefly introduces
CnC and proposes a translation of PCRs into CnC . Sec-
tion 6 describes a C++ template library which provides a
programming framework for PCRs. It also sketches a con-
crete CnC-based implementation and compares it with CnC
through a set of benchmarks. Finally, Sects. 7 and 8 discuss
related and future work.

2 The produce–consume–reduce pattern

2.1 Informal presentation

The PCR pattern aims at expressing computations consisting
of a producer consuming input data items and generating,
for each one of them, a data set to be consumed by sev-
eral consumers working in parallel. Their outputs are finally
aggregated back into a single result by a reducer. PCRs
emphasize the independence between different computations
in order to expose all parallelization opportunities.

Figure 1 depicts the general form of a PCR. Arrows repre-
sent data connections. Full ones model the possibly multiple
input sources and the single output channel to the external
environment. Dashed arrows denote internal data channels.
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Fig. 1 The PCR pattern

Fig. 2 PCR for counting Fibonacci primes

Notice that all PCR external inputs are available to any inner
component. Cycles between components are not allowed.2

Data flow inside a PCR is as follows. For each input data
item, the producer component generates a set of output
values; each one being immediately available for reading.
Consumers read values from the outer scope and from the pri-
vate data channels to perform their computations. At the end,
a reducer combines values from one or more data sources
coming from the producer and one or more consumers, gen-
erating a single output item for every input item processed by
the producer. Reads in data channels are nondestructive, i.e.,
the same value can be read multiple times by any consumer
and by the reducer. No input is ignored, i.e., every item is
handled by some component—all dashed arrows carry the
same number of data items to be read. Producer, consumers,
and reducer work in parallel subject to data dependencies: all
input itemsmust be available for a consumer/reducer instance
in order to perform its calculation. Each producer, consumer
and reducer can potentially spawn asmany parallel execution
instances as necessary for any specific workload. Both the
nature of an execution instance (local and/or remote thread
or process) and the scheduling policy are defined by each
PCR underlying implementation.

We illustrate the concept by specifying a program that
counts primes among the first N Fibonacci numbers. Fig-
ure 2 (top) shows the PCR countFibPrimes. The pro-
ducer allFibs generates the sequence F1, F2, . . . , FN

of Fibonacci numbers. Each instance i ∈ [1 . . . N ] of the

2 Cyclic composition through recursion is discussed in Sect. 3.

isPrime consumer checks, in parallel, the primality of Fi ,
resulting in the unordered output of indexed boolean val-
ues isPrime(Fi ). The reducer count counts the number
of those which are true. Figure 2 (bottom) shows the PCR
of consumer isPrime which checks in parallel all possi-
ble di divisors. The and reducer computes the conjunction
of all the bi outputs by the parallel instances of consumer
not_divides. This is an example of a consumer reading
the producer output and the PCR input as well. The ability
of nesting PCRs allows reusing components and control-
ling the desired grain of parallelism in a simple way. The
PCR countFibPrimes admits parallel execution at sev-
eral levels. First, many instances of isPrime could be
executed simultaneously as allowed by the available pro-
cessing engines and the Fi production rate. Second, since
the count reduce operation is associative and commutative,
it could also be parallelized. It is worth noticing that, even
if at PCR scope the producer and reducer components are
single instances, PCR nesting allows for concurrent execu-
tion of multiple instances of the same producer/reducer pair.
In this example, there are as many logical instances of the
divisors producer and of the and reducer as the number
of Fi to be processed by consumer isPrime in the outer
scope.
PCRs and collectives Collectives ([22], Chapter 5 of [30])
are parallel patterns based on different communication strate-
gies between nodes: gather, collecting data from several
senders; scatter, partitioning data among several recipients;
broadcast, sending the same data to multiple recipients;
reduce, combining multiple elements); and scan, produc-
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ing all partial reductions of a collection. PCRs combine
collective operations into a single, composable, high-level
pattern. The producer in a PCR is a scatter/broadcast com-
ponent, sending each produced item to different instances
of the same consumer (scatter), and every produced item to
all different consumers reading its output (broadcast). The
reducer is a gather component, combining all the consumer
outputs. Composability follows since producers, consumers
and reducers are themselves PCRs. Scan is obtained by com-
posing PCRs. Moreover, the consumer/reducer combination
is a map/reduce fusion.

2.2 Formal definition of PCRs

To give both a specification language and a formal semantics
to the PCR concept, we choose the FXML language and pro-
pose syntactic extensions to it in order to ease writing PCR
instances. As an introduction, we informally provide FXML
syntax and semantics. The reader is referred to [5,39] for an
in-depth and formal definition.

2.2.1 FXML

An FXML specification describes parallel computations by
defining the expected behavior of any valid implementation
of it as a set of partial orders. The body of an FXML spec-
ification is composed of blocks called pnodes. The basic
pnode-types are variable (var) and function (fun) decla-
rations, assignments, and basic code. Basic pnodes are exe-
cuted atomically. Pnodes can be combined with sequential
execution constructs: seq, while, for, if-then-else,
and with parallel execution constructs: par (parallel code
blocks) and forall (parallel for loop). Pnodes can be
labeled. Pnodes inside loops (for, while, forall) are
automatically and dynamically indexed.

Parallelism can be restricted by specifying data depen-
dencies. The statement dep Q(i)→ P(i) specifies a data
dependency between occurrences of assignments labeled Q
and P, meaning that the i-th occurrence of P must use the
value of the variable, say x , written by the i-th occurrence of
Q. We call this an (i, i) dependency. FXML supports depen-
dencies of the form (i, g(i)), where g is an affine function.
Besides, FXML provides some predefined types of depen-
dencies: weak, i.e., the read value could be any written one,
strong, i.e., everywritten valuemust be read at least once, and
bijective, i.e., every written value must be read exactly once.
Data and control dependencies determine a partial order of
the execution of statements. The semantics of a pnode is
a (possibly infinite) set of (possibly infinite) partial orders,
called executions, consistent with the conjunction of con-
straints imposed by dependencies.

FXML semantics describes the full history of assignments.
This is achieved by keeping track of all values carried out by

a variable through dynamic and automatic indexing of each
assignment. This property is leveraged into a syntactic mech-
anism by enabling FXML pnodes to refer to specific indexes
of a variable. Given a computable function g, the operation
x[g] on variable x refers to the value xi+g(i) assigned to x
by the assignment indexed i + g(i), where i is the dynamic
index given by the semantics to the innermost pnode where
the expression x[g] appears. This allows stream program-
ming operations look-ahead and look-behind, to be used on
FXML variables. For example, x[-1] (resp., x[1]) references
the value of x at the previous (resp., next) index. Whenever
needed, we will use the syntax x[0] to make it clear we are
specifically referring to the value xi where i is the index of
the current context, as opposed to the complete history of
values. The behavior of FXML variables is further explained
in Sect. 6.1 alongwith the implementation of look-ahead and
look-behind.

Example Figure 3 (left) shows an FXML specification of the
Fibonacci primes counting problem. Program indentation is
only for pretty printing. Figure 3 (right) depicts the schematic
diagram of its semantics. Notice that only one partial order,
actually the less restrictive one, is shown. Arrows model data
and sequential control dependencies. Occurrences of pnodes
are indexed. For instance, Pi represents the occurrence of
the i-th assignment to variable p, or equivalently, the value
pi . Indeed, indexes are vectors whose dimension increases
along with loop nesting. The dependency B(i,j)→ C(i)
entails the i-th evaluation of (basic function) and depends
on all values of variable bwith index (i, j), that is bi, j , where
j ∈ Ji , and Ji = [0 . . . (sqrt(pi )-1)/2]. Assuming and
computes the conjunction of all these values, the value ci is
∧

j∈Ji b
i, j . Similarly, the dependency C(i)→ R entails the

evaluation of (basic function) count depends on all values
ci , where i ∈ [0 . . . N ). Assuming count computes the
number of all these values which are true, the value of this
occurrence of r is

∑
i∈[0...N ) if ci then 1 else 0.

2.2.2 PCR syntax

The syntax of PCRs is defined in Table 1. var is a variable
name, and param is a formal parameter. We refer as basic
functions to user provided functions implemented in the host
language. For the sake of simplicity, we restrict the grammar
to always include a producer and reducer. In Sect. 4, we will
relax this requirement in special cases where we omit the
producer/reducer pair.

Example Figure 4 shows the example from Fig. 2, reusing
some elements from the pure FXML example from Fig. 3.
We omit the par keyword inside forall if there is only
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Fig. 3 (Left) Fibonacci primes counter in FXML. (Right) Diagram of its semantics

Table 1 PCR grammar

〈PCR〉 :: = 〈PCR-name〉 ( 〈param-list〉 ) 〈body〉
〈body〉 :: = par 〈producer〉

{forall p {par 〈cons-list〉1 } }
〈reducer〉

〈producer〉 :: = p = produce 〈f-name〉 〈var-list〉
〈cons-list〉i :: = 〈consumer〉i 〈cons-list〉i+1 | ε

〈consumer〉 j :: = c j = consume 〈f-name〉 〈var-list〉 |
c j = iterate 〈cnd〉 〈f-name〉 〈var-list〉

〈reducer〉 :: = r = reduce〈cnd〉〈f-name〉 〈init〉 〈v-list〉
〈param-list〉 :: = 〈param〉 , 〈param-list〉 | 〈param〉

〈v-list〉 :: = 〈var〉 〈v-list〉 | 〈var〉
〈f-name〉 :: = 〈PCR-name〉 | 〈basic-fun-name〉

〈init〉 :: = 〈basic-fun-name〉 〈param-list〉

one children. Notice that basic functions and and count
have been replaced by lower-level functions && and sum
as arguments of reduce. This enables taking care of the
potential parallelism at this level (see Sect. 2.2.3). The role
of bnd f will become clear later.

2.2.3 Semantics

We start by providing the corresponding FXML specification
of each building block for the casewhere f is a basic function
(Table 2). Nesting is considered afterward.

Specification of produce A producer generates the set of
indexed values to be processed by consumer and reducer ele-
ments. Formally, it is a forall-pnode, say P , that iterates
a basic function f . Let I be the index dynamically assigned

Fig. 4 Fibonacci primes counter written in PCR syntax

by the underlying FXML-semantics to a particular execution
of P , denoted P I . In P I , bnd f determines the number of
parallel instances of f as a function of input variables x1..xn .
For each instance i ∈ [0, . . . ,bnd f (x1..xn)), the producer
writes its output variable p, setting its (I ◦ i)-th value pI◦i ,
that is, the value of index i produced by the I -th instance of
producer P . This indexing allows for the concurrent execu-
tion of any two instances I �= J of the producer, each one
generating its own set of p values, namely pI◦i and pJ◦ j .
To compute pI◦i , f can use any value of the input variables
x1..xn , any previous value pI◦i ′ of p, i ′ < i , and i . That is,
a producer can look-ahead/behind at will on input variables
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Table 2 PCR building blocks and their FXML specification

and look-behind on its own output. We omit these dependen-
cies in the table.

Specification of consume A basic PCR-consumer reads a
set of input parameters and applies a basic function on them in
order to compute a single output. Formally, a consumer is an
assignment-pnode, say C j , whose left-hand side is its output
variable c j , and its right-hand side is function f j , possibly
depending on PCR input variables x1..xn , producer’s output
p, and other consumers’ output variables c1..ck , k < j . We
restrict the j-th consumer to only read outputs of previous
consumers to avoid data-dependency loops inside a PCR.
However, it is allowed to look-ahead/behind on any of them.
Associated with the surrounding forall p, there is an (i, i)
dependency pI◦i → cI◦ij , which is omitted in the Table.

Thus, for each value pI◦i written by the producer, there is an
instance C I◦i

j writing value cI◦ij .

Specification of iterate This construct enables looping a
PCR until a given condition is met. In each iteration, it looks-
behind to use previous values. Like produce, iterate
is restricted to look-behind operations, as look-ahead would
generate a deadlock. Setting cnd to y[0] == y[-1] allows
computing a fixpoint. ylast is the last value of y.

Specification of reduce The reducer uses a commutative
and associative operation ⊕ and an initial neutral value v0
to combine consumers’ outputs into a single result, until
cnd holds. This condition allows specifying eureka com-
putations ([25]) making possible early termination. This is
a common pattern in search and optimization problems in

Fig. 5 Generic FXML specification of reduce

which a solution space is searched in parallel until the first
(or best) solution is found. Setting cnd to false corre-
sponds to reducing all values. Hereinafter, we assume that
this is the default condition for the reducer and omit it in this
case. A reducer is modeled as a for-pnode that reads the
variables z1..zq . The dependencies are z I◦ij → v I◦i , where
v I◦i is the i-th value of the assignment v = . . . inside
the for-loop of the I -th instance of the reducer, and z I◦ij

is the i-th value assigned to z j in the PCR. The value v I
0

represents the result of evaluating the initializer function.
The reducer computes v I = v I

0 ⊕ Z I◦0 · · · ⊕ Z I◦bI where
Z I◦i = 〈z I◦i1 ..z I◦iq 〉 and assigns v to r , therefore obtaining
its I -th value r I . Here, bI is the minimum between the num-
ber of iterations of producer P I (there are as many iterations
as values of p written by the I -th instance of the producer)
and the index of the first iteration in which cnd(v) becomes
true.

The sequential reducer is a special case of the generic
specification shown in Fig. 5, where K is a partition of a
given set J indexing the set of values to reduce. Indexes
k ∈ K are processed in parallel and sequentially reduced.
The sequential reducer is a single-partition implementation
of this general model.

Nesting of PCRs PCRs do not support recursion. There-
fore, using PCR B in the definition of PCR A is semantically
equivalent to inlining the definition of B inside A, renam-
ing all local variables in B as fresh variables, and renaming
the formal parameters of B as the variables referenced in
the usage of A. In Sect. 3, we discuss recursive calling
of PCRs.

Example Figure 6 shows the result of inlining isPrime
inside countFibPrimes (inner par block).

Remark It is worth making two observations. First, nesting
entails the inner PCR inputs are references to outputs from
the outside scope. Variables of the outer scope have an index
with lower dimension than the reading pnode. Therefore, the
value is obtained truncating the index of the reading pnode
to the dimension of the read variable. Second, besides the
(i, i) dependencies enforced so far, look-ahead/behind oper-
ations introduce their own data constraints. Since these are
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Fig. 6 Flattened code for countFibPrimes (Fig. 4)

data dependencies, they are automatically accounted for by
the underlying FXML semantics [39]. The way indexes are
handled in these situations is revisited in detail in Sect. 5
where the proposed implementation of PCRs is explained.
See Sect. 6.1 for a discussion about this.

Property 1 The result of evaluating a PCR in FXML seman-
tics is a function on the input parameters assuming (a) the
basic producer, consumer and reducer functions are total,
and (b) no data cycles are introduced by look-ahead in basic
functions.

3 PCR extensions

Property 1 shows that any PCR behaves like a total func-
tion. This allows calling a PCR from any basic function in a
blockingway, where the caller holds until the call returns. Of
course, even if the caller is blocked, the parallelism inside the
callee is preserved. In this section, we discuss various exten-
sions to the basic PCR model defined so far that exploit this
capability in different manners. Their use is later illustrated
in Sect. 4.

3.1 Divide and conquer

Calling a PCR as a function enables recursive parallelism.
A prominent example is divide and conquer, an algorithmic
technique consisting in partitioning a complex instance of a
problem into several smaller subproblems, solving each one
independently, and combining their solutions in order to cal-
culate thefinal result. Each subproblemcanbe solved directly
if it is simple enough. Otherwise divide and conquer can be
recursively applied. This is done by defining the following
functions:

– is_base: checks whether a problem is a base case;
– base: computes the solution for a base case;
– divide: partitions a problem into subproblems;
– conquer: describes how to combine solutions.

Figure 7 shows a PCR-based parallel solution. The pro-
ducer partitions the original problem into subproblems

Fig. 7 PCR definition for divide and conquer

using the iter_divide function. Consumers process
each subproblem, either using base or recursively call-
ing PCR divide_and_conquer, depending on the result
of is_base. The reducer uses conquer to combine all
the subproblems’ solutions. null is the empty subproblem.
Function terminate is used to define an eureka stopping
condition.

The divide and conquer pattern is illustrated with the N-
Queens problem in Sect. 4.3.

3.2 Feedback loops

Some computations involve producing, for each input item,
one or more results, each of which being either output or
feedback into the same component. Programming languages
for data-parallel streaming applications, like StreamIt [35],
provide explicit constructs for specifying feedback loops. In
the context of task-based parallelism, this behavior corre-
sponds to the workpile pattern, where an instance of a task
can generate more instances and add them to a pile of tasks to
be done [30]. To cope with such behaviors, we extend PCRs
with:

o = feedbackloop f v

where o is the output variable, f is a function and v is a
value. Table 3 sketches the big-step operational semantics
of feedbackloop. The notation A 
 p ⇓ A′ means
that executing program p in a set of indexed assignments

Table 3 Semantics of feedbackloop

Fdb
〈E, {v}〉 
 o = feedbackloop f v ⇓ 〈E ′,∅〉

E 
 o = feedbackloop f v ⇓ E ′

DoWork
xi ∈ X f i (xi ) = Oi ∪ Xi

〈E,X 〉 
 o = feedbackloop f v ⇓ 〈E � Oi ,X \ xi � Xi 〉
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Fig. 8 (Left) Connection of preProcess and doStatistics by means of delegate makeBucket. (Right) Diagram of its semantics

A yields the set of indexed assignments A′. We use E to
denote the set of indexed assignments of the “external”
variables, while X denotes the indexed assignments of the
variable x , which is “internal” to the feedbackloop.
We use the notation 〈E,X 〉 to make explicit the separa-
tion between external and internal variables. Rule [Fdb]
states that the initial value x0 of x is v. That is, X starts
being {v}. Whenever all values of x have been consumed,
i.e., the set X is empty, the feedbackloop terminates,
yielding the set of assignments E ′, which extends E with
the indexed values of variable o. Rule [DoWork] gives the
semantics of the actual work done by feedbackloop.
It states that for each value xi ∈ X , there is an instance
f i such that f i (xi ) performs a set of assignments Oi and
Xi on variables o and x , respectively. The assignments
to o are visible “outside” the feedbackloop, so they
are added to E . The assignments Xi on x “spawn” fur-
ther executions of f , so they are added to X , while xi is
removed since it has already been consumed. The�operation
ensures the attribution of appropriate indexes to the added
assignments.

A major difference with the forall construct of FXML
is that x is assigned inside the forall body; therefore,
the total number of instances of x is not known in advance
and the overall structure of the computation is not regular.
Besides, feedbackloop is different from iterate in
two aspects: (1) each instance may generate an output, and
(2) instances can be executed as soon as their dependencies
hold.

Indeed, the feedbackloop construct entails a proper
extension of the basic PCR model as it somehow com-
bines producer and consumer capabilities: it consumes each
instance of xi of x and produces a set of indexed of outputs
o j0 . . . o jmi and of new instances xk◦0 . . . xk◦ni of x to be con-
sumed. Nevertheless, it can be composed with a reducer to
get a PCR as follows:

1 PCR P(v):
2 par
3 o = feedbackloop f v
4 r = reduce cnd ⊕ r0 o

The use of this pattern is illustrated with the N-Queens
case study in Sect. 4.

3.3 PCR networks

PCRs enforce an (i, i) dependency between input and out-
put. In some scenarios, it is useful to relax that dependency
in order to forward more (or less) elements from a source
PCR to one or more target PCRs. Some examples of con-
nections between two PCRs A and B are: grouping outputs
of A in variable-sized buckets to be processed by B; parti-
tioning each output of A in a variable number of items read
by B; and monitoring (some) outputs of A with B without
changing A’s behavior. In all these use cases, enforcing the
(i, i) dependency is either incompatible or costly in practical
terms.

To solve this, we propose a mechanism of connecting two
PCRs as follows. The connect(A, d) operation bridges
the output of PCR A to a delegate function d: for each out-
put value v of A, d(v) will be called. Execution of d could
ignore v based on some condition or forward fk(v), for some
function fk , to PCRs P1, . . . , Pq , by calling Pk( fk(v)).

Figure 8 shows a connect example along with its exe-
cution semantics. Delegate function makeBucket reads
inputs from PCR preProcess and calls the PCR
doStatistics with a bucket of size size whenever the
index of the current input is a multiple of size. The construc-
tion of the buckets is done using look-behind. At call i of
makeBucket, variable x in line 3 gets instantiated with the
i-th output of preProcess. The diagram depicts one pos-
sible execution. Labels P , B and S represent instances of
preProcess, makeBucket, and S, respectively.

Adding an intermediate and opaque delegate allows for
breaking the (i, i) dependency. Therefore, the resulting net-
work of PCRs may no longer be a PCR. Indeed, connect
extends themodel into a two-level hierarchy: a level ofPCRs
with (i, i) dependencies, and a second level of connections
with dependencies between indexed sets of potentially dif-
ferent sizes, derived from the behavior of the participating
delegates. A complete formalization of this two-level model
is out of the scope of this paper.
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Fig. 9 PCR “Low-pass Filter” (left) and DEMOD (right)

4 Case studies

We illustrate how PCRs and its extensions allow expressing
commonly used parallel programming patterns [30].

4.1 Low-pass filter

This example is a pipeline with three computing stages:
low-pass filter (LPF), demodulator (DEMOD), and equalizer
(EQU) [35]. An interesting aspect is that pipeline stages rely
on look-ahead. LPF consumes NT consecutive input ele-
ments in order to produce a single output element, while
DEMOD uses the two previous values produced by LPF. EQU
needs the NT previous outputs from DEMOD in order to gen-
erate one value. The PCR shown in Figure 9 has no producer
and reducer. This is equivalent to having a producer/reducer
pair with the identity operation.

A typical implementation would interconnect stages with
buffers. Instead, the PCR-based description abstracts out any
buffering scheme between stages using look-ahead inside the
consumers to describe this behavior (e.g., DEMOD). Besides,
this example involves two parallel programming patterns:
(a) it showcases an instance of a stateless parallel pipeline
composedof consume components, and (b) eachconsume
can be regarded as a one dimensional stencil computation, as

Fig. 10 Count-words

Fig. 11 N-Queens using PCR-based divide and conquer

Fig. 12 N-Queens with feedbackloop

Fig. 13 N-Queens with iterate

look-ahead is used to access several neighbor values of the
input.

4.2 Count words

Given a text T and a set W of words, count-words computes
the number of appearances of each w ∈ W in T . This is a
typical MapReduce example [14].
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Fig. 14 A diagram of a CnC graph. Diamonds, ovals and boxes, respectively, represent tag, step and item collections. Dotted lines indicate
prescribes (control) relationships between tag and step collections and arrows denote produce/consume/control relationships between step, item
and tag collections

Figure 10 shows two PCRs for counting words. PCR
count-words-by-lines splits T in lines and counts the
appearances of words in W for each line in parallel, using
basic function count. PCR count-words-by-words
adds an extra level of parallelization, by calling, for each
word w ∈ W , PCR count-words-by-lines.

4.3 N-Queens problem

This problem consists in placing N queens in an N × N
chessboard, with no two queens sharing the same row, col-
umn or diagonal. Figure 11 shows a PCR for finding all
solutions using divide and conquer: c is a configuration
of the chessboard with the placed queens, and cs is a list
of configurations. Function complete checks whether a
configuration is a solution, and canAddQueens checks
whether it is possible to place a queen, etc. Predicateis_big
controls if a subproblem is large enough to warrant solving
it in parallel: MAXDEPTH is the maximum recursion depth
done in parallel before starting to work sequentially.

A variation consists in finding only one solution. This
is done by appropriately defining terminate in the
divide_and_conquer PCR of Fig. 7 to stop the recur-
sion as soon as a valid solution is found. Figure 12 shows an
alternative specification using feedbackloop composed
with an eureka reducer. Function initial(N) constructs
a start configuration of size N, and found(cs) verifies
whether cs contains a complete configuration in order to stop
the computation. Figure 13 shows a PCR using iterate.

5 Implementing PCRs

In this section, we present Concurrent Collections (CnC) [9],
a concrete target model for implementing PCRs.

5.1 The concurrent collections model

A CnC program consists of a high-level description of a
computation graph, legacy code to be executed, and the
environment. The basic atoms are computation steps host-
ing legacy code to be run; control instances or tags, where
each tag value represents the signal of one unit of work to be

done by each dependent step; and data items, which are read
and written by the steps during their computation work.

The CnC graph is constructed by interconnecting collec-
tions. Each tag collection prescribes a number of computa-
tion steps. Tag values can be put into tag collections by the
environment or by steps; in the latter case, each step con-
trols the tag collection. Posting a new tag value will spawn
one instance of each controlled step collection with the tag
value as a parameter. Each item collection is a concurrent
map storing items indexed by tag values, providing get and
put operations. Items are get/put by the environment or by
steps; in the latter case, the steps consume-from/produce-to
the item collection. To ensure determinism, the semantics
prohibit overwriting tags or items in collections (Dynamic
Single Assignment).

Figure 14 shows an instance of aCnC graph and illustrates
the basic building blocks.

CnC (operational) semantics is given considering a sim-
plified core language calledFeatherweight-CnC [9], formal-
izing the concept of launching steps when tags are posted.
Item collections are expressed as a flat memory array. Tag
collections are modeled as step-spawning rewriting rules in
the operational semantics.

We briefly describe the relevant Featherweight-CnC syn-
tax elements.CnC computation steps are written as functions
with a single tag input parameter. Execution of a step S is
triggered by the prescribe S operation. Memory is repre-
sented by the data object with get(i) for reading the value
stored in memory location i and put(i, v) for writing value
v into memory location i . The CnC semantics requirement
of Dynamic Single Assignment means there can be at most
one data.put(i, v) execution for each possible value of
tag i .

5.2 Translation of PCRs into CnC

We define a translation of a PCR into Featherweight-CnC .
Afterward, we show that the semantics of the CnC code is
functionally equivalent to the FXML semantics.
CnC memory modelAsCnC computation steps are stateless,
the only memory used by a CnC program is its item collec-
tions’ storage. In its operational semantics definition, CnC
simplifies the formalmemorymodel bymapping all item col-
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lections into a single flat data structure. In this translation, we
assume this memory flattening mapping as given but keep-
ing track of the memory mapped to each item collection.
To achieve this, we denote, for the item collection associ-
ated with FXML variable x , datax as the memory reserved
to it; therefore, datax .get(t) denotes the value stored in
data for tag value t in the item collection associated to
x . Likewise, datax .put(t, v) denotes a write operation
into the item collection associated to x of value v for tag
value t .
FXML variables and indexes In CnC , item collections rep-
resent the assignment history for FXML variables. The index
of each assignment is the tag value used as key in the col-
lection. As FXML indexes may be multidimensional because
of iteration space nesting, the tag type is a vector of inte-
ger values. When reading an FXML variable indexed with
a lower dimension, the implementation truncates the reader
tag dimension to the read variable dimension. In this way, the
get operation done in the source item collection is always
well defined.

Translation of look-ahead/behind To translate these opera-
tions, we need to rewrite functions in produce, consume
and reduce primitives. Given f (s1, . . . , sk) = E with
input FXML variables si written as an expression E , and an

index I , we define the translation operator f
I
as

f (s1, . . . , sk)
I ≡ E[si[d] := datasi.get(I + d)]i∈1...k

where E[x := y] denotes syntactic substitution of x by y in
expression E .
Note Without loss of generality, we assume that every vari-
able si appears in E in the form si[d] for some integer d,
and that d is a value and not an expression.

Producer Given a producer function f (x1..xn, p, i) and a
boundexpressionbnd f (x1..xn), theCnC translationof p =
produce f x1..xn is defined as

Note that the producer assignment increments the index
dimension. This producer translation prescribes a special

reducer step reduce-end with a tag value encoding the
total number of items to process.

For prescribing the consumers, we define the macro
PCR_prescribe C which translates into prescribe C
ifC is a basic function, and into prescribe produceC if
C is a nested PCR, where produceC is the corresponding
produce step for the CnC translation of PCR C .

Consumer Given a basic function f (x1 . . . xn, p, c1 . . . ck),
the CnC translation of c j = consume f x1..xn, p, c1 . . . ck
is

If the consumer is aPCR P , the translation does not gener-
ate a CnC step: It recursively expands the definition into the
corresponding CnC translations of producer, consumer and
reducer of P . The nested producer step does the get oper-
ations for the input parameters, and the reducer step does
the put operation on its output item collection which corre-
sponds to variable c j .

Reducer Given f (v, z1 . . . zq) and v0, the CnC implemen-
tation of r = reduce cnd f v0 z1 . . . zq is defined as

The reducer folds the nested iteration space (with tags
I ◦ 0 . . . I ◦ (k − 1)) into that of the outside scope (with tag
I ). Each reduce step executes one operation reading the
output of the previous step stored in collection v, or using
the initial value v0 (for the first reducer). u is a local variable
of the step in the host language. After checking cnd, the
executing step either posts the result to the final output r or
to v. reduce-end is eventually prescribed by the producer
and forwards the last value from v to the output r . Exactly
one of the put operations of lines 5 and 9 is executed. If
the cnd operation is omitted, the constant function false
is assumed (i.e., no input will produce an eureka event).

Iterate The implementation of c j = iterate cnd f z is a
direct translation of the pseudocode in Table 2.
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Fig. 15 CnC implementation of nesting of isPrime as consumer in countFibPrimes

Feedback Loop Given a function f , the CnC translation of
o = feedbackloop f v is

The CnC code in steps fdb f and fdb-start f uses an
atomic function nextindex to obtain a fresh index to use
in the put operations. Performing k calls to nextindex
will return consecutive indexes from 0 to k − 1 for each
combination of input parameters. Again, u is a local variable
of the step in the host language.

Remark In this translation, f is presented as returning sets
of assignments and outputs O, X as in rule [DoWork] from
the feedbackloop semantics in Sect. 3.2.

Evaluation In order to implement the evaluation of a PCR
P(x1 . . . xn) on a set of input values v1 . . . vn , we provide
the following CnC code generated from the definition of
P , where index I is provided by the environment, and
reducer(P) is the output variable of P’s reducer.

1 evaluate P ( I , v1 . . . vn) {
2 data x1.put( I , v1)
3 . . .

4 data xn .put( I , vn)
5 PCR_prescribe P( I )
6 return datareducer(P).get( I )
7 }

CompleteCnC translation exampleFigure 15 shows theCnC
graph of PCR countFib Primes (Fig. 6). The complete
translation into CnC is shown in Fig. 16.

Property 2 The implementation of PCRs by CnC compu-
tation graphs is sound.

6 A C++ template library for PCRs

Herewe present a platform-independent API forPCRs based
onC++ templates and its implementation on Intel’sC++CnC
runtime through template rewriting.

6.1 Implementation agnostic PCR C++ API

In C++, PCRs are specified as compositions of template type
definitions. A PCR is specified as a pcr template instance
parameterized with: a list of input types Ti , producer P, con-
sumers C j , and reducer R:

1 typedef pcr<T1 ,... ,Tn, P, C1,
2 ..., Ck , R> PCR_NAME;
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Fig. 16 Translated CnC code for the countFibPrimes example

Table 4 summarizes the syntax for specifying Ti , P, C j , and
R. In all cases, (parameters…) is a list i1, . . . , ik of pos-
itive integer constants specifying the source parameters as
relative positions backwards in the PCR body list; i.e., ik
means “the output of the ik-th precedingPCR body element”.
PROD, CONS and RED parameters are basic code binding
specifications to be explained in what follows. CONS can be
alternatively an existing pcr template specification, allow-
ing nesting of PCRs in consumers.

Figure 17 shows the C++ specification of countFib
Primes PCR from Sect. 2.2.2. Note the positional
syntax for input parameter specification in the PCR body.

Host Language Code Integration The countFib
Primes example is incomplete as there is no definition of
the components fibs, isPrime and count which corre-

Table 4 Summary of C++ templates used for PCR specifications

Element C++ Specification

Ti pcr_in< type(Xi ) >

P pcr_produce< PROD, parameters…>

C j pcr_consume< CONS, parameters…>

R pcr_reduce< RED, parameters…>

Fig. 17 countFibPrimes written as a C++ template
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Fig. 18 Host language code and binding for fib producer

Table 5 Parameter wrapping operators for basic functions

Operation Description

operator T() Read implicit index value

int idx () Return current implicit index

T operator[] (int) Look-ahead/behind

spond to template parameters PROD, CONS and RED from
Table 4. Figure 18 completes the example giving the com-
plete code for the fib operation.

Function parameters In countFibPrimes, basic func-
tions have their input parameters decorated with the
pcr_var template interface. This wrapper type abstracts
FXML variables in host language code, and allows for apply-
ing look-ahead and look-behind stream operations described
in Sect. 2.2.1. Table 5 summarizes the operations imple-
mented by this interface.

Remark Decorating function parameters corresponds to the

translation operator E
I
presented in Sect. 5.2.

Evaluation of PCRs as functions To enable interaction with
the calling environment, the pcr template provides the func-
tion call operator operator(…) which passes the given
inputs to the called PCR to feed it with the stream of values
to process.

Connecting PCRs The following template defines a type
implementing the behavior of the combination of a given
PCR with a delegate function. It provides a C++ interface for
the concepts described in Sect. 3.3.

1 template <typename P, typename
2 Delegate> struct connect;

6.2 Platform-dependent target code generation

Code generation is done through template metaprogram-
ming to unfold PCR definitions into CnC C++. The CnC
graph is represented by an instance of the CnC::context
class. Every step, item and tag collection is bound to
the containing context instance. The compiler generates a
CnC::context subclass representing the nested PCR in a
flat form. The template expansion rules convert a definition
of the form pcr<X1,…,Xn,P,C1,…,Ck,R> into a class
public inheritance chain of the form:

1 cnc_class(R): cnc_class(Ck) : ... :
2 cnc_class(C1): cnc_class(P):
3 cnc_class(Xn): ... : cnc_class(X1)
4 : CnC:: context

Here, cnc_class is the synthesized implementation
class for the correspondingPCR component. Table 6 sketches
the generated subcontexts for each type of component.

CnC implementation of pcr_var Each FXML variable is
implemented as an item collection mapping every FXML
assignment to the assigned value. Figure 19 shows an
abridged implementation of the read operations given in
Tab. 5. Type tag_t represents a static integer vector whose
dimension depends on the PCR nesting level of a pcr_var
instance. Operation last returns the index value for the
innermost nesting level. Type var_t abstracts out the type
of the value stored by the pcr_var.

CnC implementation of PCR evaluation For this purpose,
the translation synthesizes a CnC-based implementation of
operator(…) of template pcr, as mentioned in 6.1.

6.3 Performance tuning

The CnC code synthesis procedure presented so far ensures
correctness, but it is not focused on performance. In this sec-

Table 6 Overview of CnC implementations of PCR building blocks

PCR component Generated CnC context

pcr_in<T> Context with reference to the actual
item/tag collections storing values of
type T

pcr_produce<P,…> Item collections for output and
number of items to reduce; one tag
collection to prescribe consumers;
producer steps are prescribed by the
input (controlled by outer scope)

pcr_consume<C,…> One item collection for output; steps
prescribed by the producer

pcr_reduce<R,…> One item collection for output; steps
prescribed by tag collection
prescribing the producer (from outer
scope)
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Fig. 19 C++ CnC abridged implementation of the pcr_var type

tion, we discuss CnC tuning options and their application in
the PCR-to-CnC translation.

6.3.1 General considerations

Several concerns affect performance:
Locality An efficient implementation should allow tak-

ing advantage of time and space locality. This is achieved
by controlling processor affinity of threads and allocation in
computing nodes for distribution.

Early cancellationEureka computations require terminat-
ing ongoing tasks as soon as a result is found.

Dependencies The translation ensures that data depen-
dencies are enforced at runtime as it preserves program
correctness. Nevertheless, explicitly knowing dependencies
ahead of time may help improving the scheduling of compu-
tations.

Lifetime If a data item has potentially multiple concurrent
readers, it is not trivial to determine when to dispose of it.
Knowing the number of times an item will be read allows for
more efficient memory management.

Distribution Distribution performance is affected by the
frequency and size of data transmission between nodes, and

communication latencies. Minimal communication between
nodes is desired.

PCR level performance hints To allow tuning implementa-
tion performance, the PCR C++ API provides optional tem-
plate parameters for the pcr_produce, pcr_consume
and pcr_reduce constructs, affecting runtime behavior
related to the categories discussed above. In Table 7, we sum-
marize the set of high-level tuning parameters available to the
PCR user through the pcr_tune type. A tradeoff between
flexibility and portability exists, having favored the latter in
our approach. The set of parameters described in the table can
be used by the translation and runtime of the target execu-
tion framework to tune performance. All the parameters are
functions on each FXML index in order to allow a different
tuning decision for each processed input value.

6.3.2 Performance tuning in the CnC translation

The C++ CnC framework supports specifying tuners which
are optimization hints applied on a CnC graph step, tag,
and item collections. Tag tuners allow for partitioning of tag
ranges; which enables processing of a group of tag values
by the same step instance, improving locality. Tag tuners
also enable memoization of tag values. Item tuners let the
user specify the number of expected read operations on each
stored item (get_count). These also allow specifying in
which process (for distributed scenarios) each item is to be
produced/consumed on. Step tuners let the programmer: (a)
declare data dependencies by specifying which tag values
a step will consume from which item collections in a spe-
cific step execution and (b) specify the step relative priority
and give hints of thread/process affinity to the scheduler. A
cancel_tuner provides the function cancel_all()
to signal the early termination of all running instances of a
step.

Considering the performance hints described in 6.3.1, we
analyze their application to the CnC implementation:

Table 7 PCR optional
performance tuning hints given
for each component using the
pcr_tune type as container

PCR Parameter Meaning

typedef tuple<int,int> dep_t Index and expected number of read
operations done on that index

list<dep_t> dependencies(int p, int i) List of dep_t of parameter p on
which the i-th execution depends

int location(int i) Implementation-dependent
execution place of the component
for the given index value

int affinity(int i) Implementation-dependent thread
affinity for the given index value

int priority(int i) Implementation-dependent priority
for the given index value
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– dependencies(int p, int i) is used in the
consumer step tuner to declare data dependencies and
in the item tuner of each consumed input to declare the
get_count property for memory usage optimization.

– location(int i) is used in the item tuner in order
to specify the produced_on and consumed_on dis-
tributed properties for its output item collection.

– affinity(int i)mapsdirectly into theaffinity
function of the step tuner to specify thread affinity.

– whenever the termination condition cnd of the reducer
holds (line 5 of the implementation of reduce described
in Sec. 5.2), cancel_all() is called to cancel every
producer and consumer step instance on which the
reducer depends on.

6.4 Performance evaluation

In this section, we make a preliminary analysis of the current
CnC implementation of our PCR parallel code library. Given
that at this stage the CnC implementation of PCRs is not
heavily optimized, the goal is to provide an initial overview
of the running time behavior to assess the feasibility of the
approach. For benchmarking analysis, we followed the rec-
ommendations given in [24]. Since our motivation is to ease
parallel programming, the goal of this performance evalu-
ation is not to analyze the scalability of applications with
respect to the available number of processors, but to validate
the practical interest of using automatically generated CnC
code from PCR templates in place of handwritten implemen-
tations.

Benchmarking platform Test case runs were performed in
a server with 4 processors (AMD Opteron(TM) Processor
6276@2.30GHz)of 16 computing cores each (64 total cores)
with 128GB of systemmemory running the 64-bit version of
RedHat Linux Enterprise 6.7.

Remark The implementations compared in this section do
not necessarily scale linearly with the number of physi-
cal processors; linear scaling depends on the nature of the
parallel computation, the input data sets, and the hardware
architecture.We stress that the focus of this section is to com-
pare different implementations solving the same problem and
to compare PCR-generated CnC code against a similar pure
CnC implementation.

6.4.1 N-Queens performance study

In this section, we compare the three implementations of
N-Queens presented in 4.3. We use the eureka versions, fin-
ishing the computation as soon as the first result is found.We
set the time limit to one minute.

Fig. 20 Runtime comparison between N-Queens PCR implementa-
tions with varying recursion depth for different N

First, we analyze running times for various recursion
depths and problem sizes (Fig. 20).

The iterate implementation with N = 16 shows its
best performance with recursion depth 3 and reaches the
time limit for recursion depths higher than 4. For N = 27,
this implementation does not finish within the time limit for
any recursion depth. The divide and conquer implementa-
tion shows much better running times than iterate. We
observe that increasing the recursion depth worsens run-
ning times, eventually hitting the time limit with recursion
depths higher than 3.This implementation does not scalewith
increasing problem sizes, as shown in the N = 27 graph. The
feedbackloop implementation performs badly for small
recursion depths, reaching the time limit. We observe that
increasing recursion depth improves running times, eventu-
ally achieving better times than the other implementations.
Figure 21 summarizes the best running time achieved in
each implementation for different problem sizes, showing
that only feedbackloop scales beyond N = 29.

As a second performance measure, Fig. 22 box-plots the
running times of the best PCR implementation we identified
so far (based on feedbackloop) compared to the hand-
coded CnC version which is part of the CnC suite. This
implementation follows the workpile pattern. Both imple-
mentations use equal recursion depth. All runs were repeated
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Fig. 21 Summary of the best running time in each implementation for
N = 16 . . . 32

Fig. 22 Time comparison between the feedbackloop N-Queens
implementation and a hand-coded CnC implementation

20 times and were performed using 16, 32 and 64 cores.With
16 cores, both implementations show high running time vari-
ability, feedbackloop having a slightly worse maximum
time. With 32 cores, variability reduces, but a small advan-
tage is still apparent in theCnC implementation. Finally,with
64 cores little variability is observed; with both implementa-
tions having almost equal running times.

6.4.2 Count-words performance study

In this section, we perform a performance comparison of the
two PCR solutions proposed for the count-words problem
in Sect. 4.2. The actual implementations partition the file in
chunks of several lines. Runs were repeated 10 times, and the
median of the measurements was recorded. An input text file
of 111M lines with a total size of 8GB was used.

Figure 23 shows running times of PCR-based imple-
mentations for counting 9 words with a chunk size of
10K lines. It also compares PCR versions against a pure
CnC implementation of count-words taken from the CnC

Fig. 23 Comparison of count-words implementations for increasing
numbers of available computing cores

samples which uses a parallel reduce graph. Globally,
count-words-by-lines exhibits better performance
than count-words-by-words, but the gap tends to
diminish for larger number of cores. For more than 32 cores,
PCR-based versions show slightly better running times than
the CnC one.We also analyzed the effect of providing tuning
hints at PCR-level for count-words-by-lines. From
its specification on Fig. 10, it follows that variables l and
c are written as many times as lines are produced, but read
exactly once by the consumer and by the reducer, respec-
tively. A simple tuning action is to specify this fact, with
dependencies, enabling the runtime to free memory as
soon as each value is read. Figure 23 shows that the tuned
version delivers the best performance.

Clearly, the number of words to count and the chunk
size used for partitioning the input file affect performance.
Figure 24 shows running times of both non-tuned PCR-
based implementations on 64 cores, for counting 100
words with increasing chunk sizes. The running time of
count-words-by-lines increases steadily with the
chunk size. This is consistent with the fact that it searches
each word in every chunk sequentially, and so bigger
chunks reduce the exploitable parallelism. On the other hand,
count-words-by-words, which counts each word in
parallel, takes advantage of a larger number of words to
count while too many small chunks affect its performance
negatively. The figure shows that its running time goes
down up to a chunk size of 100K, without further improve-
ment. For chunk sizes of 10M,count-words-by-lines
shows an abrupt decrease in performance compared to
count-words-by-words. This is consistent with the
fact that for this size there are less chunks than the number of
available processors. In this scenario, count-words-by-
words benefits of the extra dimension of parallelism.

Finally, to evaluate thememory gained by tuning, wemea-
sured the maximum Resident Set Size (RSS) of the runs
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Fig. 24 Comparison of two count-words implementations with vary-
ing chunk sizes

using 64, 48, 32, 16, 8 and 4 cores. With 4 cores, the tuned
implementation consumes in average around 45% less mem-
ory. For 8 cores and up, the median RSS peak drops from
about 8GB to 10MB, yielding an impressive reduction rang-
ing between 98 and 99%.

Final remarks The performance measurements obtained for
the case studies illustrate that our approach can ease com-
paring different parallelization strategies written as PCRs.
Also, comparisons made against pure CnC implementations
show that even without tuning the generated code can behave
comparably in terms of performance and can achieve the scal-
ability of a hand-coded CnC implementation.

7 Related work

PCRs are related to both algorithmic skeleton frame-
works [20] and stream processing models [33]. Following
the conclusions summarized in [34], we analyze the capa-
bilities of current streaming and skeleton frameworks with
respect to: (a) exposing task, data, and pipeline parallelism;
(b) exposing the presence of sliding window parallelism; (c)
preventing the usage of stateful filters; (d) naturally describ-
ing complex computation topologies; and (e) keeping the
parallel problem description platform-agnostic.

Hereinafter, we refer to the atomic components of a frame-
work as Single/Multiple Input (SI/MI) or Single/Multiple
Output (SO/MO) with respect to the number of input/out-
put channels a component can have.

PCRs cover the mentioned requirements by (a) exe-
cution semantics allowing for concurrent instances of the
same consumer and chaining of consumers, together with
FXML dependencies describing data parallelism; (b) provid-
ing look-ahead and look-behind operations on PCR variables
in order to enable expression of sliding window and stencil
computations; (c) use of pure functions in basic code; (d)

supporting nested PCRs with named parameters for the pro-
ducer, consumer and reducer inputs (MISO), allowing for
complex connections of PCRs while keeping a functional
behavior; and (e) separatingPCR specifications from the exe-
cution platform.

Algorithmic skeleton frameworks We limit the discussion to
those which are more closely related to PCRs.

Quaff [18] declares a concurrent computation coordina-
tion topology by the composition of basic skeletons. It uses
legacy code functions restricted to a single input parame-
ter (SISO). Another limitation is that the farm construct
requires fixing at compile time the number of processors to
be used at runtime. In [17], a CSP [23] semantics of Quaff
is provided without showing the implementation correctness
with respect to this semantics.

Muesli [11] supports task parallelism by constructing a
topology of connected processes and data parallelism by
using distributed data structures. The topology is constructed
by composing object instances (dynamic polymorphism) of
basic skeletons (Pipe, Filter, Farm) and algorithmic ones
(DivideAndConquer, BranchAndbound). All communica-
tion in data-parallel structures is explicit so the problem
description has embedded communication logic. No formal
model is provided.

MapReduce [14] defines a simple computation model
together with a reference implementation handling work
distribution. An extension [15] of the MapReduce imple-
mentation allows iterative computations, similar to PCRs
iterate construct. PCRs extend MapReduce with the
concepts of composition by nesting, iteration, producer com-
ponents, and “native” look-ahead/look-behind.

The Orleans Skeleton Library [27] follows the Bulk Syn-
chronous Parallel (BSP) [36] computation model with SISO
basic atoms. Its semantics is formalized by term rewriting,
but no formal relationship with the actual execution model
(MPI) is provided.

SkePU [16] is a multicore/GPU-oriented skeleton library.
It supportsMISOcomputations but limits the number of input
parameters to 3. No formal semantics of the skeleton execu-
tion is given.

STAPL [41] focuses on compositional reuse of skeletons
and provides a domain-specific syntax for describing com-
plex component interconnections. It supports iteration, but it
lacks formal semantics.

Summarizing, to the best of our knowledge, most algorith-
mic skeleton approaches are restricted to SISO components,
lack formal semantics, neither support iteration nor eureka
computations, and do not provide specific support for look-
ahead and look-behind.

Stream programming models StreamIT [35] is a program-
ming language based on pipelines of filters. Each filter
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has one input and one output streams. Communication is
achieved by push, pop and peek (look-ahead) operations on
streams. Complex topologies can be assembled using Feed-
backLoop (iteration) and SplitJoin connectors which first
separate and later combine items from/to one stream to/from
many. The main differences with PCRs are: (a) destructive
pop operations on streams preventing filters from using the
full history of stream values (look-behind); (b) lack of direct
support of filters with multiple independent input streams;
and (c) SplitJoin is restricted to duplicate and round-robin,
while PCR connect supports any user-defined policy.

FastFlow [2] is a layered stream programming frame-
work with a bottom layer of SISO components connected
by anonymous channels used to provide MISO and MIMO
components in themiddle layer; a top layer of skeletons com-
pletes the framework. It does not provide look-ahead/behind
capabilities.

RISC-pb2l [1] is a set of parallel building blocks imple-
mented over FastFlow allowing the construction of complex
parallel computation patterns. RISC does not model directly
complex data connections because channels are anonymous
and inherits FastFlow’s lack of support for look-ahead/look-
behind in its input channels.

S-Net [21] is a streaming computation model consisting
of stateless SISO boxes interconnected by streams of records
forming an acyclic computation graph. Record subtyping is
provided to enable composition and adaptation of boxes to
different environments. The S-Net model does not provide
look-ahead/behind capabilities on its input streams and can
not easily model complex data connections because channels
are anonymous.

In summary, none of the cited frameworks fully supports
the concepts of look-ahead/behind. Besides, they rely on
unnamed connections making it difficult to specify complex
interactions between components.

Other models Multi-BSP [37] is an extension of BSP [36].
This multi-level tree model aims at describing the concur-
rency capabilities of an architecturemade of a combination of
hardware and software elements. Each level defines runtime
parameters such as number of processors, synchronization/-
communication costs, and cache sizes. Its goal is to write
concurrent algorithms aware of architectural parameters in
order to achieve an optimal implementation for any archi-
tecture for any value of the parameters in some specifiable
sense. An important difference with PCRs is thatMulti-BSP
imposes several requirements on architectures to support it,
while PCRs are completely architecture-oblivious.

Dryad [26] models coarse-grained computations as
directed acyclic graphs with sequential pieces of code in
the nodes. The description language is flat although a graph
composition operator is provided. The main focus is on

implementation performance and scheduling adaptation to
available resources.

Clearly, both models are interesting targets for automated
code generation from PCR specifications.

8 Conclusions

From a theoretical point of view, we defined a composable
parallel pattern which combines concepts like collectives,
eurekas, iteration, recursion, and stream programming. We
formalized its abstract semantics and proposed a concrete one
through a formal translation of PCRs into CnC . We illus-
trated with several case studies from different application
domains that PCRs can ease writing parallel programs.

Tool-wise, we developed a framework which consists of
(i) a library forwriting platform-independentPCRs, and (ii) a
code generation engine based on templatemetaprogramming
for translating them into CnC-based implementations. It is
worth mentioning that PCR C++ templates are designed to
enhance portability in the sense that different target runtimes
could be used for code generation.

The framework provides theory-driven automated genera-
tion of parallel code from platform-independent, high-level,
structured descriptions. The experimental results provided
evidence that the synthesized code can achieve perfor-
mances which are comparable to those of low-level, unstruc-
tured, platform-dependent programs. This is a sign that the
approach could be feasible in practice. From a software engi-
neering perspective, it would result in less coding effort,
more reliability and faster prototyping of several implemen-
tations.

One envisaged extension of the framework consists in
enabling asynchronous composition of PCRs, letting caller
and callee proceed in parallel by not blocking the former until
it needs the latter’s output or it returns (e.g., Futures [38], Cilk
[7]). Other future research directions include experimenting
PCRs on other platforms, such as distributed clusters, many-
core architectures, andGPUs; running experiments ongroups
of programmers to evaluate average code size, coding time,
etc; and developing concrete semantics composing hetero-
geneous parallel computation models.
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