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Ciudad Universitaria, 5000 Córdoba, Argentina
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We call the p-fundamental string of a complex simple Lie algebra to the sequence
of irreducible representations having highest weights of the form kω1 +ωp for k ≥ 0,
where ωj denotes the jth fundamental weight of the associated root system. For a
classical complex Lie algebra, we establish a closed explicit formula for the weight
multiplicities of any representation in any p-fundamental string. Published by AIP
Publishing. https://doi.org/10.1063/1.4993851

I. INTRODUCTION

Let g be a complex semisimple Lie algebra. We fix a Cartan subalgebra h of g. Let (π, V π) be
a finite dimensional representation of g, that is, a homomorphism π : g→ gl(Vπ) with V π a complex
vector space. An element µ ∈ h∗ is called a weight of π if

Vπ(µ)B {v ∈ Vπ : π(X)v = µ(X)v for all X ∈ h} , 0.

The multiplicity of µ in the representation π, denoted by mπ(µ), is defined as dim V π(µ).
There are many formulas in the literature to compute mπ(µ) for arbitrary g, π, and µ. The ones

by Freudenthal12 and Kostant19 are very classical. More recent formulas were given by Lusztig,25

Littelmann,24 and Sahi.28 Although all of them are very elegant and powerful theoretical results,
they may not be considered closed explicit expressions. Moreover, some of them are not adequate for
computer implementation (cf. in Refs. 14 and 29).

Actually, it is not expected a closed formula in general. There should always be a sum over a
symmetric group (whose cardinal grows quickly when the rank of g does) or over partitions, or being
recursive, or written in terms of combinatorial objects (e.g., Young diagrams like in Ref. 17), among
other ways.

However, closed explicit expressions are possible for particular choices ofg and π. Obviously, this
is the case forsl(2,C) and π any of its irreducible representations (see Sec. I.9 in Ref. 16). Furthermore,
for a classical Lie algebra g, it is not difficult to give expressions for the weight multiplicities of the
representations Symk(V st) and

∧p(V st) and also for their irreducible components (see, for instance,
Lemmas III.2, IV.3, and V.3 and Theorem VI.1; these formulas are probably well known but they
are included here for completeness). Here, V st denotes the standard representation of g. A good
example of a closed explicit formula in a non-trivial case was given by Cagliero and Tirao5 for
sp(2,C)' so(5,C) and π arbitrary.

In order to end the description of previous results in this large area, we name a few recent related
results, though the list is far from being complete: Refs. 1, 2, 6–11, 26, and 30.

The main goal of this article is to show, for each classical complex Lie algebra g of rank n, a closed
explicit formula for the weight multiplicities of any irreducible representation of g having highest
weight kω1 + ωp, for any integers k ≥ 0 and 1 ≤ p ≤ n. Here, ω1, . . . , ωn denote the fundamental
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weights associated with the root system Σ(g, h). We call the p-fundamental string to the sequence of
irreducible representations of g with highest weights kω1 + ωp for k ≥ 0. We will write πλ for the
irreducible representation of g with highest weight λ.

For types Bn, Cn, or Dn [i.e., so(2n + 1,C), sp(n,C), or so(2n,C), respectively] an accessory
representation πk ,p is introduced to unify the approach (see Definition II.2). We have that πk ,p and
πkω1+ωp coincide except for p = n in type Bn and p = n � 1, n in type Dn. The weight multiplicity
formulas for πk ,p are in Theorems III.1, IV.1, and V.1 for types Cn, Dn, and Bn, respectively. Their
proofs follow the same strategy (see Sec. II). The formulas for the remaining cases, namely, the (spin)
representations πkω1+ωn in type Bn and πkω1+ωn−1 , πkω1+ωn in type Dn can be found in Theorems IV.2
and V.4, respectively.

Given a weight µ=
∑n

j=1 ajεj (see Notation II.1) of a classical Lie algebra g of types Bn, Cn, or
Dn, we set

‖µ‖1 =

n∑
j=1

|aj | and Z(µ)= #{1 ≤ j ≤ n : aj = 0}. (1)

We call ‖µ‖1 the one-norm of µ. The function Z(µ) counts the number of zero coordinates of µ. It is
not difficult to check that mπkω1

(µ) depends only on ‖µ‖1 for a fixed k ≥ 0. Moreover, it is known that
mπk,p (µ) depends only on ‖µ‖1 and Z(µ) for type Dn (see Lemma 3.3 in Ref. 23). This last property
is extended to types Bn and Cn as a consequence of their multiplicity formulas.

Corollary I.1. For g, a classical Lie algebra of types Bn, Cn, or Dn and a weight µ=
∑n

i=1 aiεi,
the multiplicity of µ in πk ,p depends only on ‖µ‖1 and Z(µ).

For g= sl(n + 1,C) (type An), the multiplicity formula for a representation in a fundamental
string is in Theorem VI.1. This case is simpler since it follows immediately from basic facts on
Young diagrams. Although this formula should be well known, it is included for completeness.

Explicit expressions for the weight multiplicities of a representation in a fundamental string are
required in several different areas. The interest of the authors on them comes from their application
to spectral geometry. Actually, many multiplicity formulas have already been applied to determine
the spectrum of Laplace and Dirac operators on certain locally homogeneous spaces. See Sec. VII
for a detailed account of these applications.

It is important to note that all the weight multiplicity formulas obtained in this article have been
checked with Sage31 for many cases. This computer program uses the classical Freudenthal formula.
Because of the simplicity of the expressions obtained in the main theorems, the computer takes
usually a fraction of a second to calculate the result.

Throughout the article, we use the convention
(

b
a

)
= 0 if a < 0 or b < a.

The article is organized as follows. Section II explains the method to obtain mπk,p (µ) for types
Bn, Cn, and Dn. These cases are considered in Secs. V, III, and IV, respectively, and type An is in
Sec. VI. In Sec. VII, we include some conclusions.

II. STRATEGY

In this section, we introduce the abstract method used to find the weight multiplicity formulas
for the cases Bn, Cn, and Dn. Throughout this section, g denotes a classical complex Lie algebra of
types Bn, Cn, and Dn, namely so(2n + 1,C), sp(n,C), so(2n,C), for some n ≥ 2. We first introduce
some standard notation.

Notation II.1. We fix a Cartan subalgebra h of g. Let {ε1, . . . , εn} be the standard basis of
h∗. Thus, the sets of simple roots Π(g, h) are given by {ε1 � ε2, . . . , εn�1 � εn, εn} for type Bn,
{ε1 � ε2, . . . , εn�1 � εn, 2εn} for type Cn, and {ε1 � ε2, . . . , εn�1 � εn, εn�1 + εn} for type Dn. A
precise choice for h and εj will be indicated in each type.

We denote by Σ(g, h) the set of roots, by Σ+(g, h) the set of positive roots, by ω1, . . . , ωn the
fundamental weights, by P(g) the (integral) weight space of g, and by P++(g) the set of dominant
weights.
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Let g0 be the compact real form of g associated with Σ(g, h), let G be the compact linear group
with Lie algebra g0 [e.g., G = SO(2n) for type Dn in place of spin(2n)], and let T be the maximal
torus in G corresponding to h, that is, the Lie algebra t of T is a real subalgebra of h. Write P(G) for
the set of G-integral weights and P++(G)=P(G) ∩ P++(g).

By the highest weight theorem, the irreducible representations of g and G are in correspondence
with elements in P++(g) and P++(G), respectively. For λ, an integral dominant weight, we denote by
πλ the associated irreducible representation of g.

We recall that, under Notation II.1, the fundamental weights are

in type Bn, ωp =

{
ε1 + · · · + εp if 1 ≤ p ≤ n − 1,
1
2 (ε1 + · · · + εn) if p= n,

in type Cn, ωp = ε1 + · · · + εp for every 1 ≤ p ≤ n,

in type Dn, ωp =




ε1 + · · · + εp if 1 ≤ p ≤ n − 2,
1
2 (ε1 + · · · + εn−1 − εn) if p= n − 1,
1
2 (ε1 + · · · + εn−1 + εn) if p= n.

We set ω̃p = ε1 + · · · + εp for any 1 ≤ p ≤ n. Thus, ω̃p =ωp excepts for type Bn and p = n when
ω̃n = 2ωn, and for type Dn and p ∈ {n � 1, n} when ω̃n−1 =ωn−1 + ωn and ω̃n = 2ωn.

Definition II.2. Let g be a classical Lie algebra of types Bn, Cn, or Dn. For k ≥ 0 and 1 ≤ p ≤ n
integers, let us denote by πk ,p the irreducible representation of gwith highest weight kω1 + ω̃p, except
for p = n and type Dn when we set πk,n = πkω1+2ωn−1 ⊕ πkω1+2ωn . By convention, we set πk ,0 = 0 for
k ≥ 0.

Next we explain the procedure to determine the multiplicity formula for πk ,p.

Step 1: Obtain the decomposition in irreducible representations of

σk,pB πkω1 ⊗ πω̃p , (2)

and consequently, write πk ,p in terms of representations of the form (2) in the virtual
representation ring. Fortunately, this decomposition is already known and coincides for
the types Bn, Cn, and Dn; thus, the second requirement has also a uniform statement (see
Lemma II.3).

Step 2: Obtain a formula for the weight multiplicities of the extreme cases πkω1 and πω̃p . It will

be useful to realize these representations inside Symk(Vπω1
) and

∧p(Vπω1
), respectively.

Note that πω1 is the standard representation.
Step 3: Obtain a closed expression for the weight multiplicities on σk ,p. This is the hardest step.

One has that (see, for instance, Exercise V.14 in Ref. 16)

mσk,p (µ)=
∑
η

mπkω1
(µ − η) mπω̃p

(η), (3)

where the sum is over the weights of πω̃p . Then, the multiplicity formulas obtained in step
2 can be applied.

Step 4: Obtain the weight multiplicity formula for πk ,p. We will replace the formula obtained in
step 3 into the formula obtained in step 1.

The following result works out step 1.

Lemma II.3. Let g be a classical Lie algebra of types Bn, Cn, or Dn and let k ≥ 0, 1 ≤ p ≤ n
integers. Then

σk,p = πkω1 ⊗ πω̃p = πk−1,1 ⊗ π0,p ' πk,p ⊕ πk−1,p+1 ⊕ πk−2,p ⊕ πk−1,p−1. (4)

Furthermore, in the virtual ring of representations, we have that

πk,p =

p∑
j=1

(−1)j−1
j−1∑
i=0

σk+j−2i,p−j. (5)
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Proof. The decomposition (4) is proved by Koike and Terada18 [see Example (3) in p. 510],
though their results are much more general and this particular case was probably already known.

We now show (5). The case p = 1 is trivial. Indeed, the right hand side equals σk+1,0 = πk ,1 by
definition. We assume that the formula is valid for values lower than or equal to p. By this assumption
and (4), we have that

πk,p+1 =σk+1,p − πk+1,p − πk−1,p − πk,p−1

=σk+1,p −

p∑
j=1

(−1)j−1
j−1∑
i=0

σk+1+j−2i,p−j −

p∑
j=1

(−1)j−1
j−1∑
i=0

σk−1+j−2i,p−j −

p−1∑
j=1

(−1)j−1
j−1∑
i=0

σk+j−2i,p−1−j.

By making the change of variables h = j + 1 in the last term, one gets

πk,p+1 =σk+1,p −

p∑
j=1

(−1)j−1
j−1∑
i=0

σk+1+j−2i,p−j − σk,p−1 −

p∑
j=2

(−1)j−1σk+1−j,p−j.

The rest of the proof is straightforward. �

III. TYPE C

In this section, we consider the classical Lie algebra g of type Cn, that is, g= sp(n,C). In this
case, according to Notation II.1, ω̃p =ωp for every p, thus πkω1+ωp = πk,p. The next theorem gives
the explicit expression of mπk,p (µ) for any weight µ. This expression depends on the terms ‖µ‖1 and
Z(µ), introduced in (1).

Theorem III.1. Let g= sp(n,C) for some n ≥ 2 and let k ≥ 0, 1 ≤ p ≤ n integers. For µ ∈ P(g),
if r(µ)B (k + p � ‖µ‖1)/2 is a non-negative integer, then

mπk,p (µ)=
p∑

j=1

(−1)j−1
b

p−j
2 c∑

t=0

n − p + j + 1
n− p + j + t + 1

(
n − p + j + 2t

t

) p−j−2t∑
β=0

2p−j−2t−β
(
n − Z(µ)

β

) (
Z(µ)

p − j − 2t − β

)
β∑
α=0

(
β

α

) j−1∑
i=0

(
r(µ) − i − p + α + t + j + n − 1

n − 1

)
,

and mπk,p (µ)= 0 otherwise.

The rest of this section is devoted to prove this formula following the procedure described
in Sec. II. We first set the notation for this case. Here G = Sp(n,C)∩ U(2n) where Sp(n,C)
= {g ∈ SL(2n,C) : gtJng= JnB

(
0 Idn
− Idn 0

)
}, g0 = sp(n,C) ∩ u(2n),

T =
{
diag

(
eiθ1 , . . . , eiθn , e−iθ1 , . . . , e−iθn

)
: θi ∈R∀ i

}
, (6)

h=
{
diag(θ1, . . . , θn,−θ1, . . . ,−θn) : θi ∈C∀ i

}
, (7)

εi (diag (θ1, . . . , θn,−θ1, . . . ,−θn))= θi for each 1 ≤ i ≤ n, Σ+(g, h)= {εi ± εj : 1 ≤ i < j ≤ n} ∪ {2εi :
1 ≤ i ≤ n}, and

P(g)=P(G)=Zε1 ⊕ · · · ⊕ Zεn,

P++(g)=P++(G)= {
∑

i aiεi ∈ P(g) : a1 ≥ a2 ≥ · · · ≥ an ≥ 0} .

The following well-known identities (see, for instance, Sec. 17.2 in Ref. 13) will be useful to show
step 2,

πkω1 = πkε1 'Symk(C2n),
∧p(C2n)' πωp ⊕

∧p−2(C2n), (8)

for any integers k ≥ 0 and 1 ≤ p ≤ n. Here, C2n denotes the standard representation of g= sp(2n,C).
Since G = Sp(n) is simply connected, πλ descends to a representation of G for any λ ∈ P++(g). In
what follows we will work with representations of G for simplicity. Thus, mπ(µ)= dim{v ∈ Vπ :
π(exp X)v = eµ(X)v ∀X ∈ t}.
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Lemma III.2. Let n ≥ 2, g= sp(n,C), k ≥ 0, 1 ≤ p ≤ n, and µ=
∑n

j=1 ajεj ∈ P(g). Then,

mπkω1
(µ)=mπkε1

(µ)=



(
r(µ)+n−1

n−1

)
if r(µ)B k−‖µ ‖1

2 ∈N0,
0 otherwise,

(9)

mπωp
(µ)=




n−p+1
n−p+r(µ)+1

(
n−p+2r(µ)

r(µ)

)
if r(µ)B p−‖µ ‖1

2 ∈N0 and |aj | ≤ 1∀ j,
0 otherwise.

(10)

Proof. By (8), πkε1 is realized in the space of homogeneous polynomials Pk 'Symk(C2n) of
degree k in the variables x1, . . . , x2n. The action of g ∈ G on f (x) ∈Pk is given by (πkε1 (g) · f )(x)
= f (g−1x), where x denotes the column vector (x1, . . . , x2n)t .

The monomials xk1
1 . . . xkn

n xl1
n+1 . . . x

ln
2n with k1, . . . , kn, l1, . . . , ln non-negative integers satisfying

that
∑n

j=1 kj + lj = k form a basis of Pk given by weight vectors. Indeed, one can check that the action

of the element h= diag
(
eiθ1 , . . . , eiθn , e−iθ1 , . . . , e−iθn

)
∈ T on the monomial xk1

1 . . . xkn
n xl1

n+1 . . . x
ln
2n is

given by the multiplication by ei
∑n

j=1 θj(kj−lj). Hence, the polynomial xk1
1 . . . xkn

n xl1
n+1 . . . x

ln
2n is a weight

vector of weight µ=
∑n

j=1(kj − lj)εj.
Consequently, the multiplicity of a weight µ=

∑n
j=1 ajεj ∈P(g) in Pk is the number of different

tuples (k1, . . . , kn, l1, . . . , ln) ∈N2n
0 satisfying

∑n
j=1(kj + lj)= k and aj = kj � lj for all j. For such a

tuple, we note that k − ‖ µ ‖1 = k −
∑n

i=1 |ai | = 2
∑n

i=1 min(ki, li). It follows that µ is a weight of Pk if
and only if k � ‖µ‖1 = 2r with r a non-negative integer. Moreover, its multiplicity is the number of
different ways one can write r as an ordered sum of n non-negative integers, which equals

(
r+n−1

n−1

)
.

This implies (9).
For (10), we consider the representation

∧p(C2n). The action of G on
∧p(C2n) is given by g · v1

∧· · ·∧vp = (gv1)∧· · ·∧(gvp), where gv stands for the matrix multiplication between g∈G⊂GL(2n,C)

and the column vector v∈C2n.
Let {e1, . . . , e2n} denote the canonical basis ofC2n. For I = {i1, . . . , ip}with 1≤ i1 < · · · < ip ≤ 2n,

we write wI = ei1 ∧ · · · ∧ eip . Clearly, the set of wI for all choices of I is a basis of
∧p(C2n). Since h

= diag
(
eiθ1 , . . . , eiθn , e−iθ1 , . . . , e−iθn

)
∈ T satisfies hej = eiθj ej and hej+n = e−iθj ej+n for all 1 ≤ j ≤ n,

we see that wI is a weight vector of weight µ=
∑n

j=1 ajεj where

aj =




1 if j ∈ I and j + n < I ,
−1 if j < I and j + n ∈ I ,
0 if j, j + n ∈ I or j, j + n < I .

(11)

Thus, an arbitrary element µ=
∑

j ajεj ∈ P(g) is a weight of
∧p(C2n) if and only if |aj | ≤ 1 for all j

and p � ‖µ‖1 = 2r for some non-negative integer r.
It remains to determine the multiplicity in

∧p(C2n) of a weight µ=
∑n

j=1 ajεj ∈ P(g) satisfying

|aj | ≤ 1 for all j and rB p−‖µ ‖1
2 ∈N0. Let Iµ = {i: 1 ≤ i ≤ n, ai = 1} ∪ {i: n + 1 ≤ i ≤ 2n, ai�n

= �1}. The set Iµ has p � 2r elements. For I = {i1, . . . , ip} with 1 ≤ i1 < · · · < ip ≤ 2n, it is a simple
matter to check that wI is a weight vector with weight µ if and only if I has p elements, Iµ⊂I and I has
the property that j ∈ I r Iµ⇔ j + n ∈ I r Iµ for 1 ≤ j ≤ n. One can see that there are

(
n−p+2r

r

)
choices for

I. Hence m∧p(C2n)(µ)=
(

n−p+2r
r

)
. From (8), we conclude that mπωp

(µ)=m∧p(C2n)(µ) − m∧p−2(C2n)(µ)

=
(

n−p+2r
r

)
−

(
n−p+2+2r

r

)
and (10) is proved. �

We next consider step 3, namely, a multiplicity formula for σk ,p.

Lemma III.3. Let n ≥ 2, g= sp(n,C), k ≥ 0, 1 ≤ p < n, and µ ∈ P(g). If r(µ)B (k + p � ‖µ‖1)/2
is a non-negative integer, then
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mσk,p (µ)=
bp/2c∑
t=0

n − p + 1
n − p + t + 1

(
n − p + 2t

t

) p−2t∑
β=0

2p−2t−β
(
n − Z(µ)

β

) (
Z(µ)

p − 2t − β

)
β∑
α=0

(
β

α

) (
r(µ) − p + α + t + n − 1

n − 1

)
,

and mσk,p (µ)= 0 otherwise.

Proof. Write r = r(µ) and ` = Z(µ). We may assume that µ is dominant, thus µ=
∑n−`

j=1 ajεj with
a1≥· · ·≥an−` > 0 since it has ` zero-coordinates. In order to use (3), by Lemma III.2, we write the set
of weights of πωp as

P(πωp )B
bp/2c⋃
t=0

p−2t⋃
β=0

β⋃
α=0

P(p)
t,β,α,

where

P(p)
t,β,α =




p−2t∑
h=1

bhεih :
i1< . . . <iβ ≤ n − `<iβ+1< . . . <ip−2t

bj =±1 ∀j, #{1 ≤ j ≤ β : bj = 1} = α




. (12)

A weight η ∈P(p)
t,β,α has all entries in {0, ±1} and satisfies ‖η‖1 = p − 2t, thus mπωp

(η)

=
n−p+1

n−p+t+1

(
n−p+2t

t

)
by (10). It is a simple matter to check that

#P(p)
t,β,α = 2p−2t−β

(
n − `
β

) (
β

α

) (
`

p − 2t − β

)
. (13)

From (3), since the triple union above is disjoint, we obtain that

mσk,p (µ)=
bp/2c∑
t=0

p−2t∑
β=0

β∑
α=0

∑
η∈P(p)

t,β,α

mπkε1
(µ − η) mπωp

(η).

One has that ‖µ − η‖1 = (k +p−2r)+(β−α)−α+(p−2t− β)= k−2(r + t +α−p) for every η ∈P(p)
t,β,α.

If r <N0, (9) forces mπkε1
(µ − η)= 0 for all η ∈P(p)

t,β,α, consequently mσk,p (µ)= 0. Otherwise,

mσk,p (µ)=
bp/2c∑
t=0

p−2t∑
β=0

β∑
α=0

(
r + t + α − p + n − 1

n − 1

)
n − p + 1

n − p + t + 1

(
n − p + 2t

t

)
#P(p)

t,β,α

by Lemma III.2. The proof is complete by (13). �

Theorem III.1 follows by replacing the multiplicity formula given in Lemma III.3 into (5).

IV. TYPE D

We now consider type Dn, that is, g= so(2n,C) and G = SO(2n). We assume that n ≥ 2, so the
non-simple case g= so(4,C)' sl(2,C) ⊕ sl(2,C) is also considered.

Since G is not simply connected and has a fundamental group of order 2, the lattice of G-integral
weights P(G) is strictly included with index 2 in the weight space P(g). Consequently, a dominant
weight λ in P(g) r P(G) corresponds to a representation πλ of spin(2n), which does not descend to
a representation of G = SO(2n).

In this case, for all k ≥ 0 and 1 ≤ p ≤ n � 2, we have that

πk,p = πkω1+ωp , πk,n−1 = πkω1+ωn−1+ωn , πk,n = πkω1+2ωn−1 ⊕ πkω1+2ωn . (14)

Each of them descends to a representation of G and its multiplicity formula is established in Theorem
IV.1. The remaining cases πkω1+ωn−1 and πkω1+ωn are spin representations. Their multiplicity formulas
were obtained in Ref. 4 (Lemma 4.2) and are stated in Theorem IV.2.
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Theorem IV.1. Let g= so(2n,C) and G = SO(2n) for some n ≥ 2 and let k ≥ 0, 1 ≤ p ≤ n
integers. For µ ∈ P(G), if r(µ)B (k + p � ‖µ‖1)/2 is a non-negative integer, then

mπk,p (µ)=
p∑

j=1

(−1)j−1
b

p−j
2 c∑

t=0

(
n − p + j + 2t

t

) p−j−2t∑
β=0

2p−j−2t−β
(
n − Z(µ)

β

) (
Z(µ)

p − j − 2t − β

)
β∑
α=0

(
β

α

) j−1∑
i=0

(
r(µ) − i − p + α + t + j + n − 2

n − 2

)
,

and mπk,p (µ)= 0 otherwise. Furthermore, mπk,p (µ)= 0 for every µ ∈ P(g) r P(G).

Theorem IV.2. Let g= so(2n,C) and G = SO(2n) for some n ≥ 2 and let k ≥ 0 an integer. Let
µ ∈ P(g) r P(G). Write r(µ)= k + n

2 − ‖ µ ‖1, then

mπkω1+ωn
(µ)=

{ (
r(µ)+n−2

n−2

)
if r(µ) ≥ 0 and neg(µ)≡ r(µ) (mod 2),

0 otherwise,

mπkω1+ωn−1
(µ)=

{ (
r(µ)+n−2

n−2

)
if r(µ) ≥ 0 and neg(µ)≡ r(µ) + 1 (mod 2),

0 otherwise,

where neg(µ) stands for the number of negative entries of µ. Furthermore, mπkω1+ωn−1
(µ)=mπkω1+ωn

(µ)
= 0 for every µ ∈ P(G).

The proof of Theorem IV.1 will follow the steps from Sec. II. Let us first set the
elements introduced in Notation II.1. Define h=

{
diag

( [
0 θ1
−θ1 0

]
, . . . ,

[
0 θn
−θn 0

] )
: θi ∈C∀ i

}
and

εi
(
diag

( [
0 θ1
−θ1 0

]
, . . . ,

[
0 θn
−θn 0

] ) )
= θi for each 1 ≤ i ≤ n. Thus Σ+(g, h)= {εi ± εj : i<j},

P(g)= {
∑

i aiεi : ai ∈Z∀i, or ai − 1/2 ∈Z∀i}, P(G)=Zε1 ⊕ · · · ⊕ Zεn,

P++(g)= {
∑

i aiεi ∈ P(g) : a1 ≥ · · · ≥ an−1 ≥ |an |} , P++(G)=P++(g) ∩ P(G).

It is now clear that P(G) has index 2 in P(g).
The multiplicity formulas in type Dn for the extreme representations in step 2 are already

determined. A proof can be found in Ref. 23 (Lemma 3.2).

Lemma IV.3. Let n ≥ 2, g= so(2n,C), G = SO(2n), k ≥ 0, and 1 ≤ p ≤ n. For µ=
∑n

j=1 ajεj ∈ P(G),
we have that

mπkω1
(µ)= mπkε1

(µ)=



(
r(µ)+n−2

n−2

)
if r(µ)B k−‖µ ‖1

2 ∈N0,
0 otherwise,

(15)

mπω̃p
(µ)=




(
n−p+2r(µ)

r(µ)

)
if r(µ)B p−‖µ ‖1

2 ∈N0 and |aj | ≤ 1∀ j,
0 otherwise.

(16)

Lemma IV.4. Let n ≥ 2, g= so(2n,C), G = SO(2n), k ≥ 0, 1 ≤ p ≤ n � 1, and µ ∈ P(G). Write
r(µ) = (k + p � ‖µ‖1)/2. If r(µ) is a non-negative integer, then

mσk,p (µ)=
bp/2c∑
t=0

(
n − p + 2t

t

) p−2t∑
β=0

2p−2t−β
(
n − Z(µ)

β

) (
Z(µ)

p − 2t − β

) β∑
α=0

(
β

α

) (
r(µ) − p + α + t + n − 2

n − 2

)
,

and mσk,p (µ)= 0 otherwise.

Proof. We will omit several details in the rest of the proof since it is very similar to the one of
Lemma III.3. Write r = (k + p � ‖µ‖1)/2 and ` =Z(µ). We assume that µ is dominant. Lemma IV.3
implies that the set of weights of πω̃p is P(πω̃p )B

⋃ bp/2c
t=0

⋃p−2t
β=0

⋃β
α=0 P(p)

t,β,α, with P(p)
t,β,α as in (12).



111703-8 E. A. Lauret and F. Rossi Bertone J. Math. Phys. 58, 111703 (2017)

One has that ‖µ − η‖1 = k � 2(r + t + α � p) for any η ∈P(p)
t,β,α. Hence, (3) and Lemma IV.3

imply mσk,p (µ)= 0 if r <N0 and

mσk,p (µ)=
bp/2c∑
t=0

p−2t∑
β=0

β∑
α=0

(
r + t + α − p + n − 2

n − 2

) (
n − p + 2t

t

)
#P(p)

t,β,α

otherwise. The proof follows by (13). �

Theorem IV.1 then follows by substituting in (5) the multiplicity formula in Lemma IV.4.

Remark IV.5. By Definition II.2, πk ,n in type Dn is the only case where πk ,p is not irreducible.
We have that πk,n = πkω1+ω̃n ⊕ πkω1+ω̃n−2εn = πkω1+2ωn−1 ⊕ πkω1+2ωn for every k ≥ 0. One can obtain
the corresponding multiplicity formula for each of these irreducible constituents from Theorem IV.1
by proving the following facts. If µ ∈ P(G) satisfies ‖µ‖1 = k + n, then mπkω1+2ωn

(µ)=mπk,n (µ) and
mπkω1+2ωn−1

(µ)= 0 or mπkω1+2ωn
(µ)= 0 and mπkω1+2ωn−1

(µ)=mπk,n (µ) and accordingly µ has an even or
odd number of negative entries, respectively. Furthermore, if µ ∈ P(G) satisfies ‖µ‖1 < k + n, then
mπkω1+2ωn

(µ)=mπkω1+2ωn−1
(µ)=mπk,n (µ)/2.

V. TYPE B

We now consider g= so(2n + 1,C) and G = SO(2n + 1), so g is of type Bn. The same observation
in the beginning of Sec. IV is valid in this case. Namely, a weight in P++(g) r P++(G) induces an
irreducible representation of spin(2n + 1) which does not descend to G.

For any k ≥ 0 and 1 ≤ p ≤ n � 1, we have that

πk,p = πkω1+ωp , πk,n = πkω1+2ωn . (17)

All of them descend to representations of G. The corresponding multiplicity formula is in Theorem
V.1 and the remaining case, πkω1+ωn for k ≥ 0, is considered in Theorem V.4.

Theorem V.1. Let g= so(2n + 1), G = SO(2n + 1) for some n ≥ 2 and let k ≥ 0, 1 ≤ p ≤ n
integers. For µ ∈ P(G), write r(µ) = k + p � ‖µ‖1, then

mπk,p (µ)=
p∑

j=1

(−1)j−1
b

p−j
2 c∑

t=0

(
n − p + j + 2t

t

) p−j−2t∑
β=0

2p−j−2t−β
(
n − Z(µ)

β

) (
Z(µ)

p − j − 2t − β

)
β∑
α=0

(
β

α

) j−1∑
i=0

(
b

r(µ)
2 c − i − p + j + α + t + n − 1

n − 1

)

+
p−1∑
j=1

(−1)j−1
b

p−j−1
2 c∑

t=0

(
n − p + j + 2t + 1

t

) p−j−2t−1∑
β=0

2p−j−2t−β−1
(
n − Z(µ)

β

) (
Z(µ)

p − j − 2t − β − 1

)
β∑
α=0

(
β

α

) j−1∑
i=0

(
b

r(µ)+1
2 c − i − p + j + α + t + n − 1

n − 1

)
.

Furthermore, mπk,p (µ)= 0 for all µ ∈ P(g) r P(G).

Remark V.2. Notice that, in Theorem V.1, mπk,p (µ)= 0 if r(µ) < 0 because of the convention(
b
a

)
= 0 if b < a.

We will omit most of the details since this case is very similar to the previ-
ous ones. According to Notation II.1, we set h=

{
diag

( [
0 θ1
−θ1 0

]
, . . . ,

[
0 θn
−θn 0

]
, 0

)
: θi ∈C∀ i

}
,

εi
(
diag

( [
0 θ1
−θ1 0

]
, . . . ,

[
0 θn
−θn 0

]
, 0

) )
= θi for each 1 ≤ i ≤ n, Σ+(g, h)= {εi ± εj : i<j} ∪ {εi},

P(g)= {
∑

i aiεi : ai ∈Z∀i, or ai − 1/2 ∈Z∀i}, P(G)=Zε1 ⊕ · · · ⊕ Zεn,

P++(g)= {
∑

i aiεi ∈ P(g) : a1 ≥ a2 ≥ · · · ≥ an ≥ 0} , P++(G)=P++(g) ∩ P(G).
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It is well known that (see Exercises IV.10 and V.8 in Ref. 16)

Symk(C2n+1)' πkω1 ⊕ Symk−2(C2n+1), πω̃p '
∧p(C2n+1), (18)

where C2n+1 denotes the standard representation of g. Actually, πkω1 can be realized inside
Symk(C2n+1) as the subspace of harmonic homogeneous polynomials of degree k.

Lemma V.3. Let n ≥ 2, g= so(2n + 1,C), G = SO(2n + 1), k ≥ 0, and 1 ≤ p ≤ n. For µ=
∑n

j=1 ajεj

∈ P(G), we have that

mπkω1
(µ)= mπkε1

(µ)=
(

r(µ)+n−1
n−1

)
where r(µ)= b k−‖µ ‖1

2 c, (19)

mπω̃p
(µ)=




(
n−p+r(µ)
br(µ)/2c

)
if |aj | ≤ 1∀ j,

0 otherwise,
where r(µ)= p − ‖ µ ‖1. (20)

Proof. Let Pk be the space of complex homogeneous polynomials of degree k in the vari-
ables x1, . . . , x2n+1. Set f j = x2j�1 + ix2j and gj = x2j�1 � ix2j for 1 ≤ j ≤ n. One can check that
the polynomials f k1

1 . . . f kn
n gl1

1 . . . g
ln
n xk0

2n+1 with k0, . . . , kn, l1, . . . , ln non-negative integers satisfy-
ing that

∑n
j=0 kj +

∑n
j=1 lj = k form a basis of Pk given by weight vectors, each of them of weight

µ=
∑n

j=1(kj − lj)εj. Notice that the number k0 does not take part of µ.

Consequently, mπPk
(µ) for µ=

∑n
j=1 ajεj is the number of tuples (k0, . . . , kn, l1, . . . , ln) ∈N2n+1

0
satisfying aj = kj � lj for all 1 ≤ j ≤ n and

n∑
j=0

kj +
n∑

j=1

lj = k. (21)

Note that (21) implies k � ‖µ‖1 � k0 = 2s for some integer s ≥ 0.
We fix an integer s satisfying 0 ≤ s ≤ r B b(k − ‖µ‖1)/2c. Set k0 = k � ‖µ‖1 � 2s ≥ 0. As in the

proof of Lemma III.2, the number of (k1, . . . , kn, l1, . . . , ln) ∈N2n
0 satisfying that aj = kj � lj for all 1

≤ j ≤ n and (21) is equal to
(

s+n−1
n−1

)
. Hence,

mPk (µ)=
r∑

s=0

(
s + n − 1

n − 1

)
=

(
r + n

n

)
.

The second equality is well known. It may be proven by showing that both sides are the r-term of
the generating function (1 � z)�(n+1). From (18), we conclude that mπkε1

(µ)=mPk (µ) − mPk−2 (µ)

=
(

r+n
n

)
−

(
r−1+n

n

)
=

(
r+n−1

n−1

)
.

We have that πω̃p '
∧p(C2n+1) by (18). By setting vj = e2j�1 � ie2j, vj+n = e2j�1 + ie2j and v2n+1

= e2n+1, one obtains that the vectors wI B vi1 ∧ · · · ∧ vip , for I = {i1, . . . , ip} satisfying 1 ≤ i1 < · · ·

< ip ≤ 2n + 1, form a basis of
∧p(C2n+1). Furthermore, wI is a weight vector of weight µ=

∑n
j=1 ajεj

given by (11). Note that the condition of 2n + 1 being or not in I does not influence on µ.
Hence, µ=

∑
jajεj is a weight of

∧p(C2n+1) if and only if |aj | ≤ 1 for all j and p � ‖µ‖1 ≥

0. Proceeding as in Lemma III.2, by writing s= b p−‖µ ‖1
2 c ≥ 0, the multiplicity of µ is

(
n−p+2s

s

)
if

p � ‖µ‖1 is even and
(

n−p+2s+1
s

)
if p � ‖µ‖1 is odd. �

Theorem V.4. Let g= so(2n + 1,C) and G = SO(2n + 1) for some n ≥ 2 and let k ≥ 0 an integer.
Let µ ∈ P(g) r P(G). Write r(µ)= k + n

2 − ‖ µ ‖1, then

mπkω1+ωn
(µ)=

(
r(µ) + n − 1

n − 1

)
. (22)

Furthermore, mkω1+ωn (µ)= 0 for all µ ∈ P(G).

Proof. This proof is very similar to Lemma 4.2 in Ref. 4. The assertion mkω1+ωn (µ)= 0 for every
µ ∈ P(G) is clear since any weight of πkω1+ωn is equal to the highest weight kω1 + ωn minus a sum
of positive roots, which clearly lies in P(g) r P(G).
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Let µ ∈ P(g)rP(G). We may assume that µ is dominant, thus µ= 1
2

∑n
i=1 aiεi with a1 ≥· · · ≥ an

≥ 1 odd integers. One has that

πkω1 ⊗ πωn ' πkω1+ωn ⊕ π(k−1)ω1+ωn , (23)

for any k ≥ 1. Indeed, it follows immediately by Exercise V.19 in Ref. 16 since in its sum over the
weights of πωn , the only non-zero terms are attained at the weights ωn and ωn � ω1.

It is well known that the set of weights of πωn is P(πωn )B { 1
2

∑n
i=1 biεi : |bi | = 1} and mπωn

(ν)= 1
for all ν ∈P(πωn ) (see, for instance, Exercise V.35 in Ref. 16).

We proceed now to prove (22) by induction on k. It is clear for k = 0 by the previous paragraph.
Suppose that it holds for k � 1. By this assumption and (23), we obtain that

mπkω1+ωn
(µ)=mπkω1 ⊗πωn

(µ) − mπ(k−1)ω1+ωn
(µ)=mπkω1 ⊗πωn

(µ) −

(
r + n − 2

n − 1

)
, (24)

where r = k + n
2 − ‖ µ ‖1. It only remains to prove that mπkω1 ⊗πωn

(µ)=
(

r+n−1
n−1

)
+

(
r+n−2

n−1

)
.

Similarly to (3), we have that mπkω1 ⊗πωn
(µ)=

∑
η∈P(πωn ) mπkω1

(µ − η). Since µ is dominant, for

any η = 1
2

∑n
i=1 biεi ∈P(πωn ), it follows that

‖µ − η‖1 =
1
2

n∑
i=1

(ai − bi)= ‖ µ ‖1 +
n
2
− `1(η)= k − r + n − `1(η),

where `1(η) = #{1 ≤ i ≤ n: bi = 1}. By Lemma V.3, mπkω1
(µ − η), 0 only if r + `1(η) � n ≥ 0. For

each integer `1 satisfying n � r ≤ `1 ≤ n, there are
(

n
`1

)
weights η ∈P(πωn ) such that `1(η)= `1. On

account of the above remarks,

mπkω1 ⊗πωn
(µ)=

n∑
`1=n−r

(
b

r+`1−n
2 c + n − 1

n − 1

) (
n
`1

)
=

r∑
j=0

(
b

r−j
2 c + n − 1

n − 1

) (
n
j

)
. (25)

We claim that the last term in (25) equals
(

r+n−1
n−1

)
+

(
r+n−2

n−1

)
. Indeed, a simple verification shows

that both numbers are the rth term of the generating function 1+z
(1−z)n . From (24) and (25), we conclude

that mπkω1+ωn
(µ)=

(
r+n−1

n−1

)
as asserted. �

Lemma V.5. Let n ≥ 2, g= so(2n + 1,C), G = SO(2n + 1), k ≥ 0, 1 ≤ p < n, and µ ∈ P(G). Write
r(µ) = k + p � ‖µ‖1. Then

mσk,p (µ)=
bp/2c∑
t=0

(
n − p + 2t

t

) p−2t∑
β=0

2p−2t−β
(
n − Z(µ)

β

) (
Z(µ)

p − 2t − β

) β∑
α=0

(
β

α

) (
b

r(µ)
2 c − p + α + t + n − 1

n − 1

)

+
b(p−1)/2c∑

t=0

(
n − p + 1 + 2t

t

) p−1−2t∑
β=0

2p−1−2t−β
(
n − Z(µ)

β

) (
Z(µ)

p − 1 − 2t − β

)
β∑
α=0

(
β

α

) (
b

r(µ)+1
2 c − p + α + t + n − 1

n − 1

)
.

Proof. Write r = k + p � ‖µ‖1 and ` =Z(µ) and assume µ dominant. Define P(p)
t,β,α as in (12).

From Lemma V.3, we deduce that the set of weights of πω̃p is

P(πω̃p )B
( bp/2c⋃

t=0

p−2t⋃
β=0

β⋃
α=0

P(p)
t,β,α

)
∪

( bp−1/2c⋃
t=0

p−1−2t⋃
β=0

β⋃
α=0

P(p−1)
t,β,α

)
.
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This fact and (3) give

mσk,p (µ)=
bp/2c∑
t=0

p−2t∑
β=0

β∑
α=0

(
b r

2 c + t + α − p + n − 1

n − 1

) (
n − p + 2t

t

)
#P(p)

t,β,α

+
b(p−1)/2c∑

t=0

p−1−2t∑
β=0

β∑
α=0

(
b r−1

2 c + t + α − p + n

n − 1

) (
n − p + 1 + 2t

t

)
#P(p−1)

t,β,α ,

since ‖µ − η‖1 = k � r � 2(t + α � p) for all η ∈P(p)
t,β,α and ‖µ − η‖1 = k � r � 2(t + α � p) � 1 for all

η ∈P(p−1)
t,β,α . The proof follows by (13). �

Lemmas II.3 and V.5 complete the proof of Theorem V.1.

VI. TYPE A

Type An is the simplest case to compute the weight multiplicity formula of πk ,p. Actually, it
follows immediately by standard calculations using Young diagrams. We include this formula to
complete the list of all classical simple Lie algebras.

We consider in g= sl(n + 1,C), h= {diag
(
θ1, . . . , θn+1

)
: θi ∈C∀ i,

∑n+1
i=1 θi = 0}. We set

εi
(
diag(θ1, . . . , θn+1)

)
= θi for each 1 ≤ i ≤ n + 1. We will use the conventions of Ref. 13 in Lecture

15. Thus

h
∗ =

n+1⊕
i=1

Cεi/〈
n+1∑
i=1

εi = 0〉,

the set of positive roots is Σ+(g, h)= {εi − εj : 1 ≤ i<j ≤ n + 1}, and the weight lattice is P(g)

=
⊕n+1

i=1 Zεi/〈
n+1∑
i=1

εi = 0〉. By abuse of notation, we use the same letter εi for the image of εi in

h∗. A weight µ=
∑n+1

i=1 aiεi is dominant if a1 ≥ a2 ≥ · · · ≥ an+1.
The representations having highest weights λ =

∑n+1
i=1 aiεi and µ=

∑n+1
i=1 biεi are isomorphic if

and only if ai � bi is constant, independent of i. Consequently, we can restrict to those λ =
∑n+1

i=1 aiεi

with an+1 = 0. Then,

P++(g)=

{
n∑

i=1
aiεi ∈ P(g) : a1 ≥ a2 ≥ · · · ≥ an ≥ 0

}
.

The corresponding fundamental weights are given by ωp = ε1 + · · · + εp for each 1 ≤ p ≤ n.
It is well known that for λ ∈ P++(g) and µ a weight of πλ, one can assume that µ=

∑n+1
i=1 aiεi with

ai ∈ N0 for all i and
∑n+1

i=1 ai = ‖λ‖1.

Theorem VI.1. Let g= sl(n + 1,C) for some n ≥ 1 and let k ≥ 0, 1 ≤ p ≤ n integers. Let
µ=

∑n+1
i=1 aiεi ∈ P(g) with ai ∈ N0 for all i and

∑n+1
i=1 ai = k + p. If a1 + a2 + · · · + aj ≤ k + j for all 1

≤ j ≤ p, then

mπkω1+ωp
(µ)=

(
n − Z(µ)

p − 1

)
,

and mπk,p (µ)= 0 otherwise.

Proof. The Young diagram corresponding to the representation πkω1+ωp is the diagram with p
rows, having all length 1, excepting the first one which has length k + 1. It is well known that the
multiplicity of the weight µ in this representation is equal to the number of ways one can fill its
Young diagram with a1 1’s, a2 2’s, . . . , an+1 (n + 1)’s, in such a way that the entries in the first row
are non-decreasing and those in the first column are strictly increasing (see, for instance, Sec. 15.3
in Ref. 13).

Consequently, the multiplicity of µ is equal to the number of ways of filling the first column.
Since the first entry is uniquely determined, one has to choose p � 1 different numbers for the rest of
the entries. Hence, the theorem follows. �
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VII. CONCLUDING REMARKS

For a classical complex Lie algebra g, it has been shown a closed explicit formula for the weight
multiplicities of a representation in any p-fundamental string, namely, any irreducible representation
of g having highest weight kω1 + ωp, for some integers k ≥ 0 and 1 ≤ p ≤ n. When g is of type
An, the proof was quite simple and the corresponding formula could be probably established from a
more general result. To the best of the authors’ knowledge, the obtained expressions of the weight
multiplicities for types Bn, Cn, and Dn are new, except for small values of n, probably n ≤ 3.

Although the formulas in Theorems III.1, IV.1, and V.1 (types Cn, Dn, and Bn, respectively) look
complicated and long, they are easily handled in practice. It is important to note that all sums are over
(integer) intervals, without including any sum over partitions or permutations. Furthermore, there are
only combinatorial numbers in each term. Consequently, it is a simple matter to implement them in
a computer program, obtaining a very fast algorithm even when the rank n of the Lie algebra is very
large.

Moreover, for p and a weight µ fixed, the formulas become a quasi-polynomial on k. This fact
was already predicted and follows by the Kostant multiplicity formula, such as M. Vergne pointed
out to Kumar and Prasad20 (see also Refs. 3 and 27).

For instance, when g= so(2n,C) (type Dn), Theorem IV.1 ensures that

mπkω1
(µ)=




( k−‖µ‖1
2 +n−2
n−2

)
if k ≥ ‖ µ ‖1 and k ≡ ‖ µ ‖1 (mod 2),

0 otherwise.
(26)

Consequently, the generating function encoding the numbers {mπkω1
(µ) : k ≥ 0} is a rational function.

Indeed, ∑
k≥0

mπkω1
(µ)zk =

∑
k≥0

mπ(2k+‖µ‖1)ω1
(µ)z2k+‖µ ‖1 =

z ‖µ ‖1

(1 − z2)n−1
. (27)

From a different point of view, for fixed integers k and p, the formulas are quasi-polynomials in
the variables ‖µ‖1 and Z(µ).

We end the article with a summary of past (and possible future) applications of multiplicity
formulas in spectral geometry. We consider a locally homogeneous space Γ\G/K with the (induced)
standard metric, where G is a compact semisimple Lie group, K is a closed subgroup of G, and Γ is
a finite subgroup of the maximal torus T of G. When G = SO(2n), K = SO(2n � 1), and Γ is cyclic
acting freely on G/K'S2n−1, we obtain a lens space.

In order to determine explicitly the spectrum of a (natural) differential operator acting on smooth
sections of a (natural) vector bundle on Γ\G/K (e.g., Laplace–Beltrami operator, Hodge–Laplace
operator on p-form, Dirac operator), one has to calculate—among other things—numbers of the
form dim VΓ

π for π in a subset of the unitary dual Ĝ depending on the differential operator. Since
Γ⊂T , dim VΓ

π can be computed by counting the Γ-invariant weights in π according to its multiplicity,
so the problem is reduced to know mπ(µ).

At the moment, some weight multiplicity formulas have been successfully applied to the problem
described above. The multiplicity formula for πkω1 in type Dn (Lemma IV.3) was used by Miatello,
Rossetti, and the first named author23 to determine the spectrum of the Laplace–Beltrami operator
on a lens space. Furthermore, Corollary I.1 for type Dn was shown in the same article (Lemma 3.3)
obtaining a characterization of lens spaces p-isospectral for all p (i.e., their Hodge–Laplace operators
on p-forms have the same spectra). Later, Boldt and the first named author4 considered in the Dirac
operator on odd-dimensional spin lens spaces. In this work, it was obtained and used in Theorem
IV.2, namely, the multiplicity formula for type Dn of the spin representations πkω1+ωn−1 and πkω1+ωn .

As a continuation of the study begun in Ref. 23, Theorem IV.1 was applied in the preprint22

to determine explicitly every p-spectra of a lens space. Here, as usual, p-spectrum stands for the
spectrum of the Hodge–Laplace operator acting on smooth p-forms. This article was the motivation
to write the present paper.

The remaining formulas in the article may be used with the same goal. Actually, any application
of the formulas for type Dn can be translated to an analogue application for type Bn�1, working in
spaces covered by S2n�2 in place of S2n�1 (Sec. 4 in Ref. 15). This was partially done21 by applying



111703-13 E. A. Lauret and F. Rossi Bertone J. Math. Phys. 58, 111703 (2017)

Lemma V.3. The result extends Ref. 23 (for the Laplace–Beltrami operator) to even-dimensional lens
orbifolds.

A different but feasible application can be done for type An. One may consider the complex
projective space Pn(C) = SU(n + 1)/S(U(n) × U(1)). However, more general representations must be
used. Indeed, in Ref. 21, it was considered the Laplace–Beltrami operator and the representations
involved had highest weights k(ω1 + ωn) for k ≥ 0.

Theorem III.1 (type Cn) does not have an immediate application since the spherical represen-
tations of the symmetric space Sp(n)/(Sp(n � 1) ×Sp(1)) have highest weight of the form kω2 for
k ≥ 0. Maddox26 obtained a multiplicity formula for these representations. However, this expres-
sion is not explicit enough to be applied in this problem. An exception was the case n = 2, since in
Ref. 21, it was applied the closed multiplicity formula in Ref. 5. It is not know by the authors if there
is a closed subgroup K of G = Sp(n) such that the spherical representations of G/K are πkω1 for k
≥ 0, that is,

{π ∈ Ĝ : VK
π 'HomK (Vπ ,C), 0} = {πkω1 : k ≥ 0}. (28)

In such a case, Theorem III.1 could be used.
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