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A new augmented parallel factor analysismodel (Augmented PARAFAC) is presented, inspired by the useful aug-
mentation concept employed inmultivariate curve resolution-alternating least-squares (MCR-ALS), applicable to
calibration based on non-quadrilinear four-way data, such as those produced by high-performance liquid chro-
matography with matrix excitation–emission fluorescence detection. The new model involves creating an aug-
mented three-way array in the elution time direction, containing data for the calibration sample set and for
each of the test samples, subsequently analyzed with an Augmented PARAFAC version. To test the properties
of this approach, chromatographic data were simulated with different degrees of overlapping and misalignment
among the chromatographic peaks. Additionally, experimental data from olive oil samples were tested with the
new model, aimed at the quantitation of the level of chlorophylls and pheophytins. The results were compared
with those obtained by data processing with MCR-ALS. Relative prediction errors (%) were: Augmented
PARAFAC, 9.7, 21.0, 14.7 and 9.3, and MCR-ALS, 5.9, 14.5, 20.0 and 14.7 for Chl a, Chl b, Phe a Phe b, respectively,
for concentrations in the range 0.00–1.00 μgmL−1. BothMCR-ALS and Augmented PARAFAC allow one to obtain
a detailed and realistic description of the analyzed samples, in terms of pure elution time, excitation and emission
spectral profiles, which can be independently retrieved for every component.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Chemical multi-way calibration has become an important frontier in
chemometric research. Themultivariate analysis of excitation–emission
fluorescence matrix (EEM) data, constituting three-way arrays when
joining data for a group of samples, has been summarized in two recent
reviews and a tutorial, all reporting up-to-date applications in the bio-
medical, environmental and food analysis fields [1–3].

High-performance liquid chromatography (HPLC), when combined
with spectroscopic techniques, such as UV–visible diode-array detec-
tion (DAD) or fast-scanning fluorescence detection (FSFD) is also able
to yield spectral-elution timematrix data. The response can be arranged
as a data matrix, where each column corresponds to a different wave-
length and each row to a different elution time. When full selectivity
in the chromatographic separation is not achieved, and even in the pres-
ence of unexpected components, multivariate calibration can be suc-
cessfully applied to the three-way arrays obtained by joining data for
a group of samples. Additional benefits are decreasing cost and times
of analysis. Several recent reports deal with the advantages and draw-
backs associated with the combination of multivariate calibration and
ieri).
chromatography, and pertinent references on the successful processing
of spectroscopic–chromatographic data can be found [4–14].

Four-waydata can be obtained by joining third-order data for a set of
samples into a four-dimensional mathematical object. The latter data
not only retain the ‘second-order advantage’ inherent to three-way/
second-order calibration [15], but can also have additional advantages
[16]. They would display the obvious advantage of providing richer an-
alytical information, implying more stable methods towards interfer-
ences and matrix effects, and less sensitive to minor changes in
reaction conditions, which should allow for an improvement in predic-
tive ability. In addition, improvements in sensitivity and the resolution
of collinearity problemshave been reported [17]. However, it is interest-
ing to note that only few experimental four-way data have been record-
ed and used to develop analytical methodologies to date, which can be
attributed to the fact that the practical acquisition of these data arrays
is still difficult to implement. In addition, a thorough understanding of
their analytical advantages is still needed.

Four-way data can be collected with a single instrument; the most
common approach is the recording of luminescence EEMs as a function
of some factors such as reaction time, decay time or any additional var-
iable affecting the analytical signal (pH, sample volume, quenching ef-
fects, etc.). These factors are introduced as independent analytical
modes, to construct multi-way data and to exploit the additional
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Fig. 1.Noiseless profiles employed for the simulations, in the elution timemode (A), in the
emissionmode (B) and in the excitationmode (C), for sample components at unit concen-
tration. Solid line, analyte 1, dotted line, analyte 2, dashed line, potential interferent. The
time profiles in (A) are scaled to unit area under each profile, while in (B) and (C) they
are normalized to unit length.
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information they provide. Several different experimental approaches,
describing practical analytical applications, can be found in the litera-
ture [18–41].

In the case of chromatographic data, four-way arrays can be generat-
edwith comprehensive gas or liquid two-dimensional chromatographic
systems equipped with detection based on time of flight mass spec-
trometry (TOFMS) or DAD, leading to GC × GC–TOFMS or LC × LC–
DAD hyphenated data. This is a currently growing scenario, and exam-
ples of different analytical problems in samples of high complexity
have been reported [42–47].

Unidimensional chromatography can also provide four-way data,
and Bro was the first to explore this possibility by recording full fluores-
cence EEMs during detection [48]. An alternative are LC–DAD-kinetic
data, collected while following the hydrolysis of the Aly pesticide [49].
Recently, two different approaches have been reported by recording
four-way LC–EEMdata,whichwere employed for the analysis of: chloro-
phylls and pheophytins in olive oil samples [50], and fluoroquinolones in
water samples [51].

When component profiles change from sample to sample, as it usu-
ally happens during the collection of chromatographic data because of
elution time shifts or peak shape changes, the four-way LC–EEM data
are not quadrilinear (strictly speaking, low-rank quadrilinear) [52]. In
this case, the elution time mode is considered to be the ‘quadrilinearity
breaking’ mode, or the mode suspected of breaking the quadrilinearity
of the data [51,53]. Only a few multivariate techniques have been duly
tested for data processing of these data: multivariate curve resolution
with alternating least-squares (MCR-ALS) is the most common one
[51], although the variant parallel factor analysis-2 (PARAFAC2) has
also been applied [48]. However, it should be noted that the use of
MCR-ALS implies unfolding the four-way data set into a super-
augmented matrix. The statistical efficiency of decomposing multi-
way arrays is higher (and consequently the sensitivity is larger) when
the original data structure is maintained, in comparison with unfolding
into arrays of lower dimensions [54]. PARAFAC2, on the other hand, has
been shown to be less efficient than MCR-ALS when processing multi-
way data in the presence of unexpected interferents not included in
the calibration phase [55].

To avoid the abovementioned potential disadvantages, we propose a
new model based on three-way PARAFAC, taking advantage of the aug-
mentation philosophy applied in MCR-ALS studies. In the present work,
both simulated and experimental four-way liquid chromatographic
data with EEM detection are analyzed using the new Augmented
PARAFAC model which allows to model inter-sample chromatographic
profile variations, with an exhaustive comparison with the MCR-ALS al-
gorithm. In the case of experimental data, samples already analyzed in
Ref. [50] were now processed by Augmented PARAFAC, MCR-ALS and
PARAFAC2.

2. Theory

2.1. Simulations

Data have been synthesized for a system having two calibrated
analytes and a single potential interferent in the test samples along
with the analytes. All data arrays were built mimicking four-way chro-
matographic data with EEM detection (elution time-excitation
wavelength-emissionwavelength), similar to those recorded for the ex-
perimental systems. The simulated signal for component n at unit con-
centration (mn) is governed by the following equation:

mn ¼ tn⊗wn⊗zn ð1Þ

wheremn is the JKL × 1 vectorized signal at unit concentration (J, K and
L are the number of channels in each mode – elution time, excitation
and emission wavelength, respectively – and are equal to 30, 20 and
50), tn, wn and zn are the individual profiles in each data mode (of size
J × 1, K × 1, and L × 1, respectively), and the symbol ‘⊗’ indicates the
Kronecker product.

Representative Gaussian elution time profiles tn (n = 1, 2 and 3),
partially overlapped in the timemode, are shown in Fig. 1A, although
they change randomly from sample to sample during the simula-
tions. Various types of chromatographic shifts were introduced into
these time profiles, in order to generate a comprehensive set of
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cases to be studied. This was done to rigorously test the predictive
ability of Augmented PARAFAC model and MCR-ALS towards analyte
determination in the test sample sets. With regard to the spectral
profiles (zn and wn) for the sample components, they are shown in
Fig. 1B and C, respectively, where considerable overlap can be ob-
served among them. These profiles are common to all samples, and
do not change from sample to sample, as is usual for fluorescence ex-
citation and emission spectra.

To produce the calibration data, the unfold signal for a typical sample
(x) is given by the sum of the contributions of both analytes:

x ¼ y1m1 þ y2m2 ð2Þ

with y1 and y2 being the component concentrations, andm1 andm2 given
by an expression analogous to Eq. (1). In all the simulated data sets, cali-
bration sampleswere created following a 9-sample central composite de-
sign with concentrations in the range 0.0–1.0. Later, fifty test samples
containing the potential interferent along with the analytes, at concen-
trations taken at random from the range 0.2–1.5, were created. In this
case, the test signals were given by the sum of three vectors given by
(yn mn), each of them provided by equations analogous to Eqs. (1) and
(2). Once the noiseless calibration and test matrices were built, Gaussian
noise was added to all signals. The standard deviation was 0.0015 units,
representing 1% with respect to the maximum calibration signal of each
analyte at unit concentration. The data sets were then submitted to
third-order multivariate calibration for the determination of both cali-
brated analytes as described in the next sections.

All systems were processed by Augmented PARAFAC and MCR-ALS,
whichwere applied in the usual way: (1) data for the unknown sample
are joined with calibration data to create an augmented three-way
array or a super-augmented matrix, respectively, (2) the latter array is
adequately decomposed, (3) the calibration analyte scores are
regressed against nominal concentrations, and (4) the test analyte
score is interpolated in the calibration graph to estimate its concentra-
tion. The relevant details are discussed below for each of the imple-
mented algorithms.

2.2. Augmented PARAFAC

In principle, each x vector described by Eq. (2) for a given sample can
be rearranged to give a three-dimensional signal array, and a group of
Fig. 2. Third-order chromatographic-EEM data. Flow
sample data can be joined into a four-way data array X of size I × J ×
K× L. Provided the latter is quadrilinear (i.e., if chromatographic elution
time, excitation and emission profiles were unique for all constituents
and did not change from sample to sample), the well-known four-
way PARAFAC model could be applied to process these data, as has
been widely reported [56]. A four-way PARAFAC model can simply be
written as follows, using the Khatri–Rao or column-wise Kronecker
product indicated as ‘⊙’ which makes the model description easier
[57]:

X I� JKLð Þ ¼ A4w D4w⊙C4w⊙B4wð ÞT þ E I� JKLð Þ ð3Þ

where X(I × JKL) is a matrix of size I × JKL obtained by appropriately
unfolding X, and A4w, B4w, C4w and D4w are the four profile matrices in
which X can be decomposed following a four-way PARAFAC model, of
size I × N, J × N, K × N and L × N, respectively. The model residuals are
included in E(I × JKL).

However, in the presence of elution time profileswhich change from
sample to sample, either in peak position of profile shape, Xwill not be
quadrilinear. One possibility to model this type of data is unfolding X
into a super-augmentedmatrix and applyingMCR-ALS [6], as pictorially
depicted in Fig. 2A and detailed in the next section. A useful alternative
is introduced in the present report, in the form of the Augmented
PARAFAC model, where the four-way X array is unfolded into an aug-
mented three-way array by unfolding X along the combined sample-
elution time mode. Fig. 2B shows the generation of the three-way
array for the Augmented PARAFAC model, contrasted with the super-
augmented data matrix for MCR-ALS (Fig. 2A).

According to Fig. 2B, the augmented three-way arrayhas dimensions
P × KL (P= IJ), and the corresponding Augmented PARAFACmodel can
be represented by:

X P�KLð Þ ¼ AB3w D3w⊙C3wð ÞT þ E P�KLð Þ ð4Þ

where decomposition is accomplished into three loading matrices
AB3w, C3w and D3w, with sizes P × N, K × N and L × N, respectively.
The model residuals are collected into E(P × KL), and the sum of its
squared elements is minimized during data processing [56]. Thematrix
AB3w collects the unfolded profiles along the combined sample-elution
time modes, and carries concentration information regarding the
chart to: A) MCR-ALS, B) Augmented PARAFAC.
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responsive constituents. The central idea of the proposed model is thus
to avoid the potential non-quadrilinearity problem.

Augmented PARAFAC can be implemented through a typical alter-
nating least-squares process, which can be compactly described as
follows:

(1) Randomly (or via known pure spectral profiles) initialize matri-
ces C3w andD3w, and findmatrix AB3w from the properly unfold-
ed X:

AB3w ¼ X P�KLð Þ � D3w ⊗ C3wð Þþ
h iT ð5Þ

where ‘+’ denotes the Moore–Penrose generalized inverse.
(2) Update C3w using the new AB3w:

C3w ¼ X K�PLð Þ � AB3w ⊗ D3wð Þþ
h iT

: ð6Þ

(3) Update D3w using the new AB3w and C3w:

D3w ¼ X L�PKð Þ � AB3w ⊗ C3wð Þþ
h iT

: ð7Þ

(4) Repeat steps 1–3 until certain stopping criterion is fulfilled, such
as a convergence tolerance or maximum number of iterations, as
is regularly done in PARAFAC studies.

The model can be initialized using spectral and chromatographic
data which are known in advance for pure components, or automat-
ically using direct trilinear decomposition (DTLD), as in regular
PARAFAC [56]. The number of responsive components (N) can be es-
timated by consideration of the Augmented PARAFAC residual error,
i.e., the standard deviation of the elements of the array E(P × KL) in
Eq. (4) [56]. Usually this parameter decreases with increasing N,
until it stabilizes at a value compatible with the instrumental noise.
A reasonable choice for N is the smallest number of components for
which the residual error is not statistically different than the instru-
mental noise.

Once the algorithm converges, the information gathered in the
matrices AB3w, C3w and D3w serves to characterize both qualitatively
and quantitatively the whole system. In our case, C3w contains exci-
tation spectra, andD3w emission spectra of the chemical constituents
under investigation. Identification is done with the aid of these two
estimated profiles, and comparing themwith those for a standard so-
lution of the analyte of interest. This is required since the compo-
nents obtained by decomposition of the three-way array are sorted
according to their contribution to the overall spectral variance, and
this order is not necessarily maintained when the unknown sample
is changed.

Absolute analyte concentrations are obtained after calibration, be-
cause the three-way array decomposition only provides relative values
(AB3w). However, since the resolved chromatographic profiles for each
component in the matrix AB3w consist of merged calibration and test
profiles, once identification is done, caution must be taken when build-
ing the univariate calibration graph against analyte concentrations.
Component scores are generated from the elements of AB3w according
to the following expression:

a3w i;nð Þ ¼
Xi J

p¼1þ i−1ð Þ J
ab3w p;nð Þ ð8Þ

in which a3w(i,n) is the score for the component n in the ith sample, ex-
tracted from the nth chromatographic profile of AB3w. Subsequently,
calibration is done bymeans of the set of standards with known analyte
concentrations (contained in an Ical × 1 vector ycal), and regression of
the first Ical elements against ycal:

k ¼ ycal
þ a3w 1;nð Þ …j ja3w Ical;nð Þ½ �: ð9Þ

Conversion of relative to absolute concentration of n in the unknown
(yu) proceeds by division of the test sample element by the slope of the
calibration graph k:

yu ¼ a3w Ical þ 1;nð Þ=k: ð10Þ

The above procedure is repeated for each new test sample analyzed.
In principle, the three-way Augmented PARAFAC model of Eq. (4) is

unique and does not require constraints for successful decomposition
[53]. However, we have added the possibility of applying similar con-
straints to those regularly employed in the case of MCR-ALS, i.e., non-
negativity and unimodality, which can be imposed on individual pro-
files along each mode and in each sub-array of the augmented data
set, and correspondence among species and samples in the case of sam-
ples containing uncalibrated interferents. In fact, as we shall see, in the
study of simulated cases, no restrictions were implemented, but, as
discussed below, for the study of experimental data, some constraints
were necessary for adequate resolution. Thereby, it is possible to impose
non-negativity and/or unimodality constraints in each component pro-
file, background or interferent independently, as in MCR-ALS. Later we
will see the benefits that this option can provide.

2.3. MCR-ALS

TheMCR-ALSmodel is illustrated in Fig. 2A, and requires the follow-
ing activities: (1) for each sample data, unfolding the two spectral
modes into a single one, transforming the third-order arrays into matri-
ces, and (2) augmenting the latter matrices in the direction of the elu-
tion time, which is suspected of being quadrilinearity breaking, to
create a super-augmented matrix X(P × Q) (Q = KL) [6,53]. The latter
matrix is decomposed according to:

X P�Qð Þ ¼ AB2wCD2w
T þ E P�Qð Þ ð11Þ

where AB2w is a matrix of the N pure profiles along the augmented un-
foldedmode for different samples and elution times, CD2w is a matrix of
the unfolded mode combining excitation and emission spectra, and
E(P × Q) a matrix of residuals. Eq. (11) is identical to thematrix formula-
tion of MCR-ALS analysis, which yields AB2w and CD2w

T after minimiza-
tion of the residual matrix E(P × Q) through an alternating least-squares
procedure.

As in the classical MCR-ALS representation, the AB2w matrix in
Eq. (11) contains component concentration information in all (Ical + 1)
samples for the N resolved components, similarly to the augmented
AB3w discussed above for the Augmented PARAFACmodel. This concen-
tration information is used to construct the univariate graph, by plotting
the analyte concentration scores against the nominal analyte concentra-
tions, with the scores defined as before:

a2w i;nð Þ ¼
Xi J

p¼1þ i−1ð Þ J
ab2w p;nð Þ ð12Þ

where a2w(i,n) is the score for the component n in the sample i. Analyte
quantitation proceeds in a similar manner to that described above for
the Augmented PARAFAC model. The pure-component spectrally-
unfolded profile for each component, represented by a given row of
CD2w

T (N × LK) can be reshaped into an EEM of size L × K, and used for
the identification of the resolved components (see below).

As is well-known, MCR-ALS requires initialization with system pa-
rameters as close as possible to the final results. Usually this requires



Table 1
Predicted concentrations (μg mL−1) in the validation samples using MCR-ALS and Aug-
mented PARAFAC.

Analyte MCR-ALS Augmented
PARAFAC

Analyte MCR-ALS Augmented
PARAFAC

Chl a Phe a
0.40 0.50 0.47 1.20 1.28 1.26
0.80 0.92 0.89 1.40 1.32 1.27
1.40 1.48 1.48 0.80 0.80 0.79
0.60 0.56 0.60 0.60 0.55 0.6
0.90 0.99 1.02 0.90 0.85 0.87
1.00 0.99 1.05 1.00 1.054 1.09
RMSEP a 0.08 0.07 0.06 0.06
REP b 11.2 10.4 7.6 9.3

Chl b Phe b
1.40 1.38 1.25 0.80 0.79 0.82
0.40 0.43 0.53 1.20 1.27 1.28
1.20 1.21 1.01 0.40 0.48 0.40
0.90 0.91 0.99 0.90 0.88 0.86
0.60 0.50 0.59 0.60 0.72 0.64
1.00 1.11 1.05 1.00 1.04 1.04
RMSEPa 0.06 0.11 0.07 0.04
REPb 8.6 15.0 9.2 5.9

a RMSEP: root mean square error of prediction.
b REP: relative error prediction in %.
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analyte and interferent spectra to be known or estimated by spectral se-
lection based on the purest variables [58].Moreover, convergence to the
chemically desired solution can be achieved by imposing certain con-
straints. Non-negativity restrictions in the concentrations and spectra,
aswell as unimodality in the chromatographic profiles are highly useful,
allowing the fit to converge to the minimum with physical meaning,
while it is also very practical to use correspondence among species
and samples in the case of samples containing interferents. When
third-order data are processed by MCR-ALS, constraints can be applied
on the different modes depending on the specific manner in which
the unfoldedmodes are combined, including the possibility of imposing
tri- or quadrilinearity in the data [59].

3. Materials and methods

3.1. Reagents and solutions

Chlorophylls a and b (Chl a and Chl b) were obtained from Sigma
(St. Louis, MO, USA) and used as received. Stock solutions of chloro-
phylls a and b were prepared by dissolving the contents of ampules
containing 1 mg of each chlorophyll in 25.00 mL of acetone and stored
at−4 °C in darkness. Acetone was purchased from Merck (Darmstadt,
Germany). Pheophytin (Phe) stock solutions of 40 μg mL−1 were pre-
pared according to a previously described procedure [60]. Solutions of
the four pigments of lower concentrations were prepared by appropriate
dilution with acetone. These solutions were stored at −4 °C. All other
chemicals utilized were of analytical reagent grade or better.

Methanol and 1-propanol, both HPLC-grade, were purchased from
Sigma (Madrid, Spain). Ultrapure water provided by a Milli-Q purifica-
tion system was used. Solvents and samples used to perform the chro-
matographic technique were filtered through 0.22 μm nylon filter
membranes before each injection.

3.2. Apparatus and software

HPLC was carried out on an Agilent 1260 Infinity Series equipped
with degasser, quaternary pump, column oven, manual six-way injec-
tion valve with a 10 μL fixed loop, a multi-scan fluorescent detector
(G1321B FLD) and the ChemStation software package to control the in-
strument and data acquisition. The analytical column used was a
Poroshell 120 EC-C18 column (4.6 × 50 mm, 2.7 μm, Agilent Technolo-
gies, Inc.). The Poroshell 120 packing has a solid core of 1.7 μm in size
with a porous outer layer 0.5 μm thick and a total particle size of
2.7 μm. The column temperature was set at 20 °C. Data acquisition
and instrument control were performed on the HPLC 1260 software
package. The mobile phase consisted of a mixture of methanol and 1-
propanol and these components were filtered through a 0.22 μmmem-
brane nylon filter and degassed by ultra-sonication before use. The flow
ratewas 2.0mLmin−1. The elutionwasmade applying a gradientmode
increasing the percentage of 1-propanol. The gradient programwas the
following: from 0 to 0.2 min the percentage of 1-propanol was 40%;
from 0.2 to 0.3 min the percentage of 1-propanol was increased from
40 to 70% and then was maintained constant until 0.9 min; from 0.9
to 1.0 min the percentage of 1-propanol was decreased up to 40% and
from 1 to 1.1 min, was maintained constant at 40%. The sequential
mode was used and, for each sample, eight chromatograms were ob-
tained exciting at eight different excitation wavelengths (from 350 to
490 nm in 20 nm steps) and recording the emission spectra from
620 nm to 680 nm every 1 nm, in 1.8 s time steps (the data points be-
tween 0 and 0.27 min were discarded because of a dead-time artifact).
Each run was accomplished in 1.1 min and the complete analysis for a
specific sample was carried out in 8.8 min. These matrices were then
saved in ASCII format, and transferred to a computer for subsequent
manipulation.

In terms of themodels presented in Section 2, to facilitate the under-
standing of the equations used, we can consider that for each sample, K
chromatographic runs were collected (excited from 350 to 490 nm in
steps of 20 nm), in J time steps (K = 8 and J = 37). In each case, the
fluorescence emission was read and saved as 61 different data points
(L=61). Thereby, for each k run an elution time–emission wavelength
matrix (ETEM) of size J × Lwas obtained, in which J and L are the num-
ber of time sensors and emission wavelengths, respectively. Once the
ETEMs were obtained, data were organized for their subsequent MCR-
ALS analysis. The first stage was to unfold each ETEM generating, for
each sample, a row vector of dimension (1 × LK), and from the latter,
a matrix of J × LK. Subsequently, a super-augmented data matrix
X(P × Q) of size J(Ical + 1) × LKwas built. The column-wise data arrange-
mentX(P × Q) is very flexible and adequate to bilinear modeling require-
ments, because the number of wavelengths is equal for both all the
chromatographic runs. Fig. 2A shows a flow chart of the complete
MCR-ALS processing of the four-way data.

All calculationsweremade using in-houseMATLAB7.0 routines [61].
Augmented PARAFAC was implemented in-house and inspired in the
freely available codes in Bro's webpage [62]. The routines used for
MCR-ALS are freely available on the Internet [63]. All programs were
run on an IBM-compatible microcomputer with an Intel Core(TM) i5-
2310, 2.90 GHz microprocessor and 16.00 GB of RAM.

3.3. Calibration, validation and olive oil samples

For the experimental procedure corresponding to the four-way anal-
ysis for Chl a, Chl b, Phe a and Phe b, 25 samples of calibration and six
samples of validation were prepared. The tested concentrations were
established by the analysis of the linear fluorescence-concentration
range, from 0.5 to 1.5 μg mL−1 for each analyte. The specific validation
concentrations are provided in Table 1. Calibration and validation sam-
pleswere prepared bymeasuring appropriate aliquots of standard solu-
tions, placing them in 5.00 mL volumetric flasks in order to obtain the
desired concentrations, and completing to the mark with the mobile
phase. Injection into the chromatographic systemwas made in random
order and in different days.

The olive oil samples (approximately 1 g)with andwithout addition
of different amounts of each pigment were diluted to 10 mL with 1-
propanol. Aliquots of 1 mL of these solutions were diluted with 3.0 mL
of 1-propanol and with 6.0 mL of methanol up to a final volume of
10.0 mL. After that, aliquots (10 μL) of each sample were injected in
the chromatographic system to obtain the chromatograms at the differ-
ent selected excitationwavelengths. The four-way arrays obtainedwere



6 S.A. Bortolato et al. / Chemometrics and Intelligent Laboratory Systems 141 (2015) 1–11
used to measure the pigments in the olive oil samples. See additional
details in Ref. [50].

4. Results and discussion

4.1. Simulated data

The generation of the simulated data has been described in detail in
the relevant Section 2.1. To process the data, multivariate calibration
was performed in order to predict the analyte concentrations in all
test mixtures. The first applied model was the Augmented PARAFAC
supplying the pure profiles in both spectral modes to start the itera-
tions. In this case, it was not necessary to apply any constraints to
achieve convergence, since the model is unique. Fig. 3A shows the
model performance, with satisfactory results: the root mean square
error predictions (RMSEPs) and the relative error predictions (REPs, in
%) are equal to 0.01 and 2.5, respectively, for both analytes.

MCR-ALSwas then applied to this simulated system (see Section 2.3.),
considering three components, because the potential interferent is pres-
ent in test samples along with the two analytes. The initialization of the
algorithmwasmadewith the unfolded pure excitation–emission profiles,
and the applied constraints were unimodality in the elution time mode
(in each sub-profile corresponding to each sample) and non-negativity
in both modes, while in this case the correspondence constraint was not
necessary. The results in terms of how well the predicted and nominal
concentrations correlate are shown in Fig. 3B for all analyzed cases. It is
apparent that the algorithm performance is also satisfactory, with
RMSEP andREP values of 0.04 (7.2%) for analyte 1 and0.06 (12.1%) for an-
alyte 2. These results encouraged us to investigate the performance of
these algorithms on experimental data. In this connection, the samples
analyzed in Ref. [50] are used for such purpose, as we have already men-
tioned. Additionally, this is the first time MCR-ALS is used to resolve the
systems present in the latter work, showing another example of the ver-
satility of this algorithm, and contributes to the general knowledge of the
chemometric processing of four-way data.

4.2. Experimental data

Fig. 4A shows the excitation and emission spectra for 1.00 μg mL−1

of the studied analytes in methanol:1-propanol 60:40 (v/v). As already
mentioned in previous sections, for each sample, 61 emission spectra
were recorded between 620 and 680 nm, with data interval of 1 nm,
and at intervals of 1.8 s. The excitation wavelengths were ranged be-
tween 350 and 490 nm in steps of 20 nm. These eight matrices were
then mathematically assembled to obtain a three-way array for each
sample.

Fig. 4B shows the profile of the optimized elution gradient, and a
chromatogram of an olive oil sample without addition of analytes and
Fig. 3. Plots of predicted concentrations of the studied analytes in simulated system as a functio
and B) MCR-ALS.
the same sample with addition of 0.45 μg mL−1 of each one eluted
under the optimized conditions. As can be seen, the selected olive oil
sample (and also the remaining ones) shows an important peak in the
elution time where Chl a appears. The fluorescence intensity of each
of the analytes increases at different elution times, and highlights the
fact that a significant overlapping occurs between chlorophylls and
pheophytins. At 0.30 min the first peak corresponding to Chl b begins
to elute, finishing at 0.45 min, and Chl a starts appearing reaching its
maximum at 0.45 min. Phe b appears at 0.65 min and continues until
0.81 min, and Phe a comes out at 0.85 min.

In order to quantitate Chl a, Chl b, Phe a and Phe b simultaneously, a
set of six validation samples with the analytes (Table 1) was investigat-
ed with the aid of Augmented PARAFAC and MCR-ALS. In a first phase,
thenewmodel based onAugmented PARAFACwasused. An augmented
data array was constructed as described in Section 2.2, placing calibra-
tion and test third-order arrays on top of each other. Unlike in the sim-
ulated systems, during optimization the following constraints were
applied to get physically meaningful solutions: (1) the concentration
and spectral profiles were constrained to be non-negative, and (2) indi-
vidual concentration sub-profiles along the augmented elution time
mode were constrained to be unimodal. The initialization in this in-
stance was done using pure experimental spectra, and once the optimi-
zation converged to the reasonable tolerance, the information gathered
in the matrix AB3w was used to quantify the analytes under study, ac-
cording to Section 2.2.

For MCR-ALS data processing, a super-augmented matrix was built
by appending each unknown sample to the twenty-five calibration
standard sample data for submission to MCR-ALS analysis. During opti-
mization, the following constraints were applied to get physically
meaningful solutions: (1) non-negativity in all concentration and spec-
tral profiles and (2) unimodality in all concentration sub-profiles. In ad-
dition, both the number of components (four in the case of validation
samples, and five to the olive oil samples) and their initial spectra
were estimated according to Section 2.3.

As can be seen, the results of themodels used in thiswork do not sig-
nificantly differ from each other: the REP values (in %) obtained from
MCR-ALS are equal to 11.2, 8.6, 7.6 and 9.2 for Chl a, Chl b, Phe a and
Phe b, respectively, while for Augmented PARAFAC are 10.4, 15.0, 9.3
and 5.9 for Chl a, Chl b, Phe a and Phe b, respectively (see Table 1). Fur-
ther, these results are similar to those obtained in Ref. [50] using the un-
folded partial least-squares (U-PLS) algorithm, with reported REPs of 5,
9, 5 and 8, for Chl a, Chl b, Phe a and Phe b, respectively [50]. Indeed, the
RMSEP values were statistically compared to those rendered by MCR-
ALS or Augmented PARAFAC using the randomization test proposed
by Van der Voet to compare prediction errors [64]. The result indicates
that the RMSEPs found by U-PLS are not significantly smaller than the
ones by de model assayed in this work, since the probability values ob-
tained for the four analytes is much smaller than the critical level of
n of the nominal values, in fifty test samples with interferences: A) Augmented PARAFAC,



Fig. 4. (A) Excitation and emission spectra of Chl a, Chl b, Phe a and Phe b inmethanol-1-propanol (60:40, v/v). All concentrationswere 1.00 μgmL−1. (B) Liquid chromatogram for an olive
oil sample (dash-dot pink line). Spiked olive oil sample with 0.45 μgmL−1 of Chl a, Chl b, Phe a and Phe b (solid green line). Mobile phase: gradient program as function of 1-propanol (%)
during the analysis time (dashed black line).
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0.05. Besides, unlike the U-PLS approach, through both MCR-ALS and
Augmented PARAFAC it is possible to obtain amore detailed description
of the analyzed samples. In each case, the pure profiles (elution time,
and excitation and emissionfluorescence spectra) are achieved; howev-
er, while MCR-ALS gives the unfolded emission–excitation spectral pro-
file along with the time profile for each analyte, Augmented PARAFAC
gives the emission and excitation spectral profiles, independently for
every component. For complex samples, this advantage allows a better
identification of the analytes under study and perhaps increasing
model versatility.

The above data were also processed using the PARAFAC2 model,
with reasonable results regarding the validation samples, but discourag-
ing in the case of the real samples: relative prediction errors for the two
chlorophylls were ca. 25 and 35% respectively, while for the two
pheophytins they were 12 and 17%. These results are consistent with
previous findings concerning PARAFAC2 analyte quantitation in the
presence of uncalibrated interferents [55]. The reasons why PARAFAC2
renders worse results than MCR-ALS for chromatographic-spectral
data have already been explained [55].

Table 2 shows the figures of merit corresponding to the calibration
curves obtained from both MCR-ALS and Augmented PARAFAC models
for different samples. They were calculated according to Refs. [65] and
[66] for MCR-ALS and Augmented PARAFAC. Concerning the latter, the
Table 2
Figures of merit computed from validation and olive oil samples.a

Chl a Chl b

Figure of merit MCR-ALS Augm.
PARAFAC

MCR-ALS Aug
PAR

Validation samples
SENb 240 280 340 230
[ASEN]−1 × 104c 4 4 1 6
SELd 0.31 0.90 0.66 0
LOD (ng mL−1)e 1 1 4 1
LOQ (ng mL−1)f 4 4 12 4

Olive oil samples
SENb 260 270 260 190
[ASEN]−1c 0.04 0.004 0.01 0
SELd 0.29 0.84 0.51 0
LOD (ng mL−1)e 1 1 5 1
LOQ (ng mL−1)f 4 4 18 4

a The average of the figures of merit calculated for all validation and olive oil samples is rep
b SEN: sensitivity, calculated according to Refs. [65] and [66] for MCR-ALS and Augmented P
c ASEN: analytical sensitivity calculated as sensitivity/sdtest; sdtest: standard deviation of rep
d SEL: calculated according to Refs. [65] and [66] for MCR-ALS and Augmented PARAFAC, re
e LOD: limit of detection, calculated according to Refs. [65] and [66] for MCR-ALS and Augm
f LOQ: limit of quantitation, calculated according to Refs. [65] and [66] for MCR-ALS and Aug
expressions are in principle rather overoptimistic, since they were de-
veloped for quadrilinear four-way PARAFAC. However, to date there
are no available expressions that compute figures ofmerit for Augment-
ed PARAFAC, and therefore the present results should be employed only
in order tomakequalitative comparisons. Regarding the validation sam-
ples, the sensitivities (SENs), inverse of analytical sensitivities (ASENs),
limits of detection (LODs) and limits of quantification (LOQs) are similar
in bothmethods, and are close to those for the U-PLS approach [50], ex-
cept for the sensitivity computed for PARAFAC in the case of Phe a,
which is apparently low. It is well-known that figures of merit can be
improved by using the data in their originally structured form [54], so
better values would be expected for the model based on PARAFAC in
comparison to either MCR-ALS or U-PLS. Unfortunately, this trend is
not strictly observed; only the values of SEL are slightly better than
the one corresponding toMCR-ALS, but the remaining results are incon-
clusive. Nevertheless, further research would be needed for a rigorous
comparison of figures of merit.

In the case of the analyzed olive oil samples, the number of compo-
nents for all cases was five, i.e., in addition to the analytes, an additional
species that is not present in the calibration set is necessary. The profiles
retrieved byMCR-ALS after decomposing the augmentedX(P × Q)matrix
from time-unfolded EEMs for Cornicabra olive oil sample are shown in
Fig. 5. The decomposition of X(P × Q) furnishes a temporal profile for
Phe a Phe b

m.
AFAC

MCR-ALS Augm.
PARAFAC

MCR-ALS Augm.
PARAFAC

270 30 600 600
7 10 2 2

.92 0.42 0.91 0.45 0.95
2 2 1 1
7 7 4 4

270 100 520 405
.013 0.02 0.01 0.02 0.005
.71 0.40 0.65 0.43 0.80

2 1 1 1
8 4 4 4

orted.
ARAFAC, respectively.
licate samples.
spectively.
ented PARAFAC, respectively.
mented PARAFAC, respectively, as LOD × (10/3.3).



Fig. 5. Profiles retrievedbyAugmented PARAFAC (A: emission, B: excitation and C: time) andMCR-ALS (D: emission, E: excitation and F: time)when the four-order data array correspond-
ing to Cornicabra olive oil sample (1.10 μg mL−1 for Chl a, Chl b, Phe a and Phe b) was modeled. Chl a: red solid line, Chl b: green dotted line, Phe a: blue dashed line, Phe b: black dash-
dotted line. Gray dash-dot-dotted lines correspond to the species present in the olive oil sample, not included in the calibration step (see details in text).
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Chl a, Chl b, Phe a and Phe b (Fig. 5D) and an unfolded EEM profile for
every component. The latter can be rearranged to obtain the excitation
and emission profiles (Fig. 5E and F, respectively). This rearrangement
was made by creating a suitable data matrix, submitted to singular
value decomposition, and taking the first left and right eigenvectors as
estimations of the true component profiles in both data modes.

Fig. 5C shows the time profiles retrieved by Augmented PARAFAC
modeling of the third-order data for the same olive oil sample processed
by MCR-ALS. A comparison of the spectral profiles retrieved of Aug-
mented PARAFAC (Fig. 5A and B)with the pure spectra (Fig. 4A) enables
us to conclude that themodel performance is as satisfactory as forMCR-
ALS. The predictive ability of the algorithms used to process the olive oil
samples is summarized in Table 3. Because these samples did not con-
tain Chl a, Chl b, Phe a and Phe b at levels higher than the attained
detection limits, a recovery study was carried out by spiking them
with different amounts of the four analytes. The average recoveries
and REPs obtained suggest that the proposed methods are appropriate
for the determination of the studied compound, besides being just as
good as those obtained in Ref. [50].

The plots to be shown in Fig. 6 are the elliptical joint confidence re-
gions (EJCR) of the slope and intercept of the linear regressions of pre-
dicted vs. nominal analyte concentrations for olive oil samples. The
EJCR test is applied to gain insight into the accuracy and precision of an-
alytical methods. If the ideal (1,0) point, i.e., unit slope and zero inter-
cept, is contained within the ellipse, the method is considered to be
accurate. On the other hand, the comparison of the relative sizes of
the elliptical regions allows one to assess the relative precision of two
methodologies, because the smaller the size the greater the precision.



Table 3
Predicted concentrations (μg mL−1) in real samples using MCR-ALS and augmented PARAFAC models.

Olive oilb Added a Chl a Chl b Phe a Phe b

MCR-
ALS

Augm.
PARAFAC

MCR-
ALS

Augm.
PARAFAC

MCR-
ALS

Augm.
PARAFAC

MCR-
ALS

Augm.
PARAFAC

Cornicabra
0.00 0.00 0.12 0.10 0.13 0.05 0.17 0.04 0.10
0.55 0.48 0.55 0.71 0.72 0.54 0.58 0.67 0.58
0.75 0.79 0.78 0.90 0.88 0.88 0.82 0.91 0.77
1.10 1.08 1.04 1.08 1.02 1.16 1.11 1.15 1.09

Picual
0.00 0.01 0.04 0.08 0.23 0.03 0.21 0.11 0.08
0.40 0.37 0.42 0.45 0.57 0.37 0.43 0.43 0.40
0.65 0.62 0.73 0.76 0.72 0.69 0.77 0.78 0.66
1.00 1.02 1.03 1.02 1.08 1.06 0.98 0.91 1.00

Manzanilla
Cacereña 0.00 0.00 0.05 0.08 0.16 0.02 0.13 0.04 0.08

0.45 0.43 0.47 0.54 0.68 0.50 0.54 0.49 0.49
0.80 0.88 0.90 1.01 1.00 0.91 0.89 0.88 0.89
0.95 1.00 0.98 1.20 0.94 1.07 1.01 0.99 1.05

Hojiblanca
0.00 0.01 0.04 0.02 0.20 0.13 0.08 0.00 0.08
0.35 0.25 0.45 0.33 0.50 0.44 0.39 0.35 0.34
0.70 0.68 0.87 0.67 0.88 0.96 0.92 0.68 0.66
0.90 0.94 0.95 0.83 1.04 1.00 1.05 0.87 0.71

RMSEPc 0.044 0.073 0.11 0.16 0.15 0.11 0.08 0.07
REPd 5.9 9.7 14.5 21.0 20.0 14.7 10.7 9.3
Rec.e 97 108 111 122 111 111 107 101

a The added value is the same for all analytes in each sample.
b N = 5 for the all analyzed samples (four analytes and one interferent). The number of components was determined as explained in Sections 2.2 and 2.3.
c RMSEP: root mean square error of prediction.
d REP: relative error of prediction in %.
e Rec.: average recovery in %.
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In the present case, as can be clearly appreciated, the sizes of the ellipses
are very similar for bothmethods, confirming the equivalent results ob-
tained using Augmented PARAFAC or MCR-ALS, which incidentally are
all accurate because they contain the ideal (1,0) point within the
ellipses.
5. Conclusions

A new PARAFAC model inspired by the augmentation concept used
by MCR-ALS was developed for multivariate calibration of four-way
Fig. 6. Elliptic joint confidence region (EJCR) tests for the prediction results of Chl a, Chl b,
Phe a and Phe b in olive oil samples forMCR-ALS (red solid line) and augmented PARAFAC
(blue dash line).
data, based on the combination of high-performance liquid chromatog-
raphy with excitation–emission fluorescence detection. The data were
obtained in a very short timewith an ultrafast chromatographic system.

The Augmented PARAFAC had a similar performance to the most
widely used model for high-order chromatographic data (MCR-ALS),
when simulated samples were processed. Moreover, these satisfactory
results are achieved without use any restrictions. For the determination
of Chl a, Chl b, Phe a and Phe b in different olive oils samples, the perfor-
mance of Augmented PARAFAC is also satisfactory, although the pres-
ence of interferent species affects its efficiency in a similar way to
MCR-ALS. It is likely that this fact made the expected improvement in
figures of merit not to become fully evident. In any case, it is necessary
to analyze a larger number of four-way systems to be conclusive
about it.

Finally, the global results furnished by Augmented PARAFAC do not
significantly differ from those already reported for the U-PLS algorithm,
but, unlike the latter approach, through the new model it is possible to
obtain amore detailed and realistic description of the analyzed samples,
in terms of pure elution time, excitation and emission spectral profiles,
which can be independently retrieved for every component. In addition,
the Augmented PARAFAC approach allows applying different con-
straints, as non-negativity and unimodality on the spectral modes. For
more complex systems, this advantage increases the potential versatili-
ty of the method. The present study is an introduction to the new algo-
rithm and new studies are under way in our laboratory to test the
advantages and/or potential shortcomings of the new algorithm when
dealing with different classes of non-quadrilinear data.
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