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a b s t r a c t

The main scope of this paper is to present a fully coupled numerical model for isothermal
soil consolidation analysis based on a combination of different stress states. Being originally
a non-symmetric problem, it may be straightforward reduced to a symmetric one,
and general guidelines for the conditions in which this reduction may be carried out,
are addressed. Non-linear saturation–suction and permeability-suction functions were
incorporated into a Galerkin approach of the non-saturated soil consolidation problem,
which was solved using the finite element method.
In order to validate the model, various examples, for which previous solutions

are known, were solved. The use of either a strongly non-linear and non-symmetric
formulation or a simple symmetric formulation with accurate prediction in deformation
and pore-pressures is extremely dependent on the soil characteristic curves and their
derivatives and this aspect is taken into account in the present mathematical approach.
The emergent coupling effects may be easily uncoupled in the computer model by merely
recasting some coefficients of the discrete equation system.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Soil consolidation research is commonly carried out by the application of the finite element method to specific
mathematical models. These models have undergone a continuous evolution during the last years, so that important
achievements towards the prediction of porous media behaviour were attained, based on a robust mathematical
framework [1,2].
From Biot [3] pioneer work, many approaches for soil consolidation analysis have been made. For the non-saturated

case, Ghaboussi et al. [4] presented a two-phase model; Lewis et al. [5] and Pietraszezak et al. [6] developed some of the
earlier three phase models, and, Ng et al. [7] tackled ordinary problems using similar methods. The non-isothermal analysis
in saturated models is included in Masters et al. [8], while in Yang et al. [9] the non-isothermal case is extended to the
unsaturated situation.
More recently and based onHassanizadeh et al. [10–12] environmental geomechanics topicswere faced by Schrefler [13],

among some others. Klubertantz et al. [14] worked onmodels withmiscible and immiscible pore fluids, addressing domains
of applicability for each case and Ehlers and Blome [15] developed a triphasic model based on porous media theory.
With respect to constitutive models, one of the most referenced for the solid phase was developed by Alonso et al. [16].

Khalili et al. [17] presented a non-associative plasticity model and Sun et al. [18] developed a model based on suction
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controlled triaxial tests, whereas Graziano & Lancellotta [19] dealt with the derivation of an evolution constitutive equation
for deformable porous media.
Regarding with the mathematical framework of the aforementioned models, one controversial topic is the degree of

saturation as the main coupling element between water–air fields [17] and the induced matric suction variation. From the
present review, it comes up that the suction change gives to the governing equations a highly non-linear [17] characteristic
and leads to the loss of symmetry in the isothermal case, which is the main scope of the present paper. However, it was not
clearly stated throughout the reviewed papers, when it is crucial to take on the additional costs in terms of processing time
and computational memory due to the appearance of non-symmetric matrices and how reliable the approach is without
the inclusion of the suction rate.
One straightforwardway to dealwith this problemmaybe to select among any of the aforementioned three phasemodels

and neglect all those terms that involve any suction rate and solve the remainder system, if possible. Nevertheless, this
procedure may be tedious and cumbersome with plenty of hesitance and uncertainties. Moreover, the remainder equations
may not be totally consistent.
Then a different line of attack was taken on. Khalili et al. [20] approach for non-saturated consolidation analysis was

followed. It relies on the combination of different components (stress decomposition) and lead to a simple symmetric
equation system. In Ref. [21], the mathematical framework was debugged and also implemented using the finite element
method with good results in certain conditions. Throughout the present article, the original model [21] was extended by
means of the addition of new components and the inclusion of suction changes with the saturation levels (widely used
nowadays). Thereby, a new model is attained and with further finite element implementation, the results agree with those
given in Refs. [5,22,23] in isothermal conditions. Besides, one noteworthy feature of the model is that it may be used to
establish whether or not the additional costs in terms of processing time and computational memory due to the loss of
symmetry are justified, based on a consistent mathematical background.
Related to the mechanical behaviour model for the soil skeleton, it must be pointed out that it may be elastic or

alternatively elastoplastic [24,25]. For the elastoplastic and isothermal case, in order to preserve the symmetry, it should
be noted that – consistent with the critical state theory [26] – the volumetric plastic strains must vanish at the critical
state line, independently of the suction value; therefore, it is not convenient to take the plastic potential as a function
of the suction [17]. This situation leads to a non-associative flow rule and the elimination of the symmetry; hence some
considerations on the plastic potential and stress function will be addressed in future publications.
One last issue was considered. The non-saturated soil consolidation analysis without thermal effects is of great interest

for civil constructions like buildings and earth dams, especially when the location area is placed in the north east region
of Argentine or south of Paraguay and Brazil. In these locations, many important cities are situated in ancient river valleys
where clay, lime-clay or even sandy soil type with a degree of saturation over 70% (generally due to the groundwater table
position) are commonly found.
This last fact and the possibility of counting with a simple, open and reliable code were the principal motivations for the

present work. Additionally, a different perspective for awell-known problemwas addressed and consequently some hidden
aspects were appropriately discussed.

2. The governing equations

2.1. Introduction

In this section, a review of Ref. [20] as well as some fundamental modifications to what was proposed there will be
included. The present approach may be depicted as a three element set, namely, a deformation model, a water flux model
and an air flux model.
The constitutive equations are written in terms of effective stress rather than conventional stress variables used in

constitutive models for unsaturated soils, such as net stress [16]; this allows handling a single variable in the elastic
deformation model [17] besides the fact that it furnishes a direct bridge between the two-phase and three-phase system.
The flowmodel is based on two interacting continua: the liquid flow and the air flow. Two pressures are introduced: the

average water pressure and the average air pressure.
The coupling between the flow and the deformation fields is established bymeans of the introduction of parameters that

connect the water and air phase pressures to the change in the deformation matrix.

2.2. Mechanical equilibrium

For the solid phase description in an unsaturatedmedium, it can be considered a differential volume of the solidmedium
subjected to external total stress components σij. The linear momentum balance, disregarding inertial effects, is given by:

∂σij

∂xj
+ Fi = 0 with i, j = 1, 2, 3. (1)

As it was previously pointed out in paragraph Section 2.1, it is convenient for this work general purpose to extend
the Terzaghi’s effective stress concept [20,22,27] to unsaturated soils. Considering the effects of pore air and pore water
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pressures, the total stress components and the effective stress components, may be expressed as (using infinitesimal
notation):

dσ ′ij = dσij − a1dp
wδij − a2dpgδij (2)

being dpw and dpg the differential pore water and pore air pressures respectively, a1 and a2 are the effective stress
parameters and δij is the Kronecker delta. This equation may be also expressed in terms of time derivatives, as:

σ̇ ′ij = σ̇ij − a1ṗ
wδij − a2ṗgδij (3)

with:

a1 =
cm
c
−
cs
c

(4)

a2 = 1−
cm
c

(5)

where
cm = 1

Km
is the compressibility of soil structure with respect to a change in matric suction pc , (pc = pg − pw).

c = 1
KT
is the drained compressibility of the soil structure.

cs = 1
Ks
is the compressibility of the soil grains.

KT = (1− α) Ks is the bulk modulus of the overall skeleton[5] with ‘‘α’’ being the Biot constant[3].
The following expression is suggested for the soil skeleton compressibility with respect to matric suction, based on the

compressibility of each single component, on some laboratory tests [21] and on the water saturation–suction relationship
(see Appendix B):

Km =
KTKs

SwKs + SgKT
(6)

being Sw and Sg the water and gas phase saturation, respectively. Consider that Sw = Vw/Vv and Sg = Vg/Vv where Vw , is
the pore-water volume,Vg , is the pore-air volume and Vv , is the void volume.
Expression (6) has the following restriction: when Sw → 1; Km → KT , (fully saturated case).

2.3. Flux model: Water phase

The water flow in saturated, as well as in unsaturated soils, can be described by the combination of Darcy’s law and the
conservation of fluid mass.
According to Darcy’s law [28]:

νwi = −
kwi
γ w

∂ρw

∂xi
(7)

and as the fluid mass continuity is given by:

−
∂

∂xi

(
ρwnwνfi

)
=
∂

∂t
(nwρw) (8)

the following expression is obtained [20]:

−
1
ρw

∂

∂xi

(
ρw
kwi
γw

∂pw

∂xi

)
= −nwcf ṗw +

1
V
V̇w (9)

where kwi is the coefficient of permeability, νwi is the relative discharge velocity of the water flux, γw is the water specific
weight, ρw is the water density, νfi is the absolute fluid velocity, nw = Vw/V stands for the relative water porosity, V is the
total volume and cf is the fluid compressibility.

2.4. Flux model: Air phase

The Fick’s law is commonly used to describe the flow of air through unsaturated soils. According to this law, the rate of
mass transfer for a diffusing substance across a unit area (Jgi) is proportional to the concentration of the diffusing substance
(C)[29]. This definition renders the following expression:

Jgi = −Di
∂C
∂xi

(10)

where Di, is the diffusion coefficient.
For isothermal conditions and satisfying the conservation of air mass, using a similar procedure than the one employed

for the water phase, the following expression is obtained [20]:
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−
1
ρg

∂

∂xi

(
D∗i
∂pg

∂xi

)
= −

ng
P
ṗg +

1
V
V̇g (11)

in which D∗i is the transmission coefficient for the air phase, ρ
g is the air density, P is the absolute pressure, ng = Vg/V

stands for the relative air porosity and V is the total volume.
Eqs. (9) and (11) are the governing differential equations describing flowofwater and air throughunsaturated porousme-

dia, respectively. Note thatwehave two equations for four unknowns (pw, pg , Vw andVg ), therefore two additional equations
are required. To tackle the problem, a relationship between the rate of water and air volume and the primary variableswater
pore pressure, air pore pressure and displacement components (pw , pg , ui), is addressed in the upcoming paragraph. Once
this relationship was attained, the Eq. (3) should be formulated in terms of the displacement field through the addition of
an adequate constitutive equation (for the elastic case, see Ref. [20]). Hence (3), (9) and (11) could be solved simultaneously.

2.5. The originally proposed soil states

To set up the required variables link, consider a representative volume of unsaturated porous media subjected to the
following stress conditions [20] (see Fig. 1):
The state (1) corresponds to an external isotropic pressure, dσ , an internal pore-water pressure dpw and an internal

pore-air pressure dpg .
The state number (2) shows a soil portion with identical internal and external pressure dpw and the state number (3)

matches an identical external and internal pore-air dpw plus a pore-water pressure equal to zero.
According to the above situation and after applying Betty’s reciprocal law to the states [(1)–(2)], [(1)–(3)], and [(2)–(3)],

Khalili & Khabbaz[20] have obtained the following expression:

dVw
V
=

(
1
Km
−
1
Ks

)
dσ −

[(
1− ng

) 1
Km
−
(
1+ nw − ng

) 1
Ks

]
dpw − ng

(
1
Km
−
1
Ks

)
dpg (12)

or, in a more compact form, expression (12) may be written as follows,
dVw
V
= (cm − cs) dσ −

[(
1− ng

)
cm −

(
1+ nw − ng

)
cs
]
dpw − ng (cm − cs) dpg . (13)

Regarding the following equation [20]

dσ =
dεii
c
+ a1dpw + a12dpg (14)

and, substituting (6) in (4) and (5), the subsequent relationships are yielded:
a1 = αSw (15)
a2 = αSg . (16)

Considering (14)–(16); and after some algebraic manipulation, Eq. (12) becomes:

dVw
V
= αSwεii +

(
1
Km
−
1
Ks

)
(α − n) Sgdpg −

[
Sw
Ks
(α − n)+ Sg (α − n)

(
1
Km
−
1
Ks

)]
dpw (17)

or
dVw
V
= αSwεii −

(α − n)
Ks

(
SwSwdpw + SgSwdpg

)
+
(α − n)
KT

SgSw
(
dpg − dpw

)
. (18)

Substituting (18) in (9) and taking the time derivative, it is obtained:
1
ρw

∂

∂xi

(
ρw
kwi
γw

∂pw

∂xi

)
−
nSw
Kw
ṗw −

(α − n)
Ks

S2w ṗ
w
+ αSw ε̇ii −

(α − n)
Ks

SgSw ṗg

−

(
(α − n)
Ks

Swdpw −
(α − n)
Ks

Swdpg
)
Ṡw + Sw

(α − n)
KT

(
Sg ṗc + dpc Ṡg

)
= 0 (19)

where ṗc = ṗg − ṗw and n is the porosity (n = ng/Sg = nw/Sw). An important issue which must be outlined here is that in
Ref. [20] the rate of water saturation with time was not considered whereas in this work, this aspect was taken into account
trough the derivative mentioned above.
Moreover, to attain the goals of the present article a different proposal with respect to states 1 to 3 shown in Fig. 1 will be

addressed in the next paragraph. Through this rephrasing, a convenient relationship between Vg and the primary variables
may be achieved.

2.6. Additional soils states

Accordingly to what was previously mentioned, two new states are introduced and they are shown in Fig. 2.
The state (4) shows a soil portion with identical internal and external pressure equal to dpg . The state (5) corresponds to

a soil portion with external and pore-water pressure equal to dpg , plus a null pore-air pressure.
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Fig. 1. Set of soil states proposed in Ref. [20].

Fig. 2. Additional soil states.

From this new situation, applying Betty’s reciprocal law to the states [(1)–(5)], [(4)–(5)] and [(1)–(4)], the subsequent
relationships are addressed:

(dV − dVw) dpg = −dV Vg dp
g
+ V [(c − cm + cs) dσ − nw (c − cm + cs) dpw] dpg (20)

V (c − cm + cs)
(
dpg − nwdpg

)
dpg − dV Vg dp

g
= V

(
csdpg − nwcsdpg

)
dpg . (21)

Recalling the expression(
dV − dVw − dVg

)
= Vcs

(
dσ − nwdpw − ngdpg

)
(22)

obtained in Ref. [20] from state 1 and state 2 (Fig. 1), and solving Eqs. (20) and (21) and (22) for dVg , it leads to:

dVg
V
=
[
(cm − cs) (nw − 1)+ csng

]
dpg − [(c − cm) nw] dpw + [c − cm] dσ . (23)

The above equation may be easily compared with (13) using the following relationship:

ĉm = c − cm + cs. (24)

Including (24) in (23), it leads to

dVg
V
=
(
ĉm − cs

)
dσ −

[
(1− nw) ĉm −

(
1− nw + ng

)
cs
]
dpg − nw

(
ĉm − cs

)
dpw. (25)

Both Eqs. (13) and (25), show the consistency of the new added states, for they denote relationships between the fluid
phases and the principal variables in a tantamount manner since they have the same form, apart from merely a parameter
(i.e. cm and ĉm) and the order of some factors.
The expression (23), will be used in place of the Eq. (33b) of Ref. [20] since it will indirectly show to be a more general

description, provided that the systemof equations furnished in Khalili & Kabbaz[20] is a particular case of the system yielded
in the next section.
Once more, considering (14)–(16), and after some algebraic manipulation, Eq. (23) becomes:

dVg
V
= αSgεii + [(c − cm) αSw − nSw (c − cm)] dpw +

[
(c − cm) αSg + csnSg − c (1− nSw)+ cm (1− nSw)

]
dpg (26)
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or

dVg
V
= Sg

[
αεii +

(α − n)
Ks

(
Swdpw + Sgdpg

)
−
(α − n)
KT

Swdpc
]
. (27)

Likewise Eq. (19), substituting (27) in (11) and taking the time derivative, it is obtained:

−
1
ρg

∂

∂xi

(
D∗i
∂pg

∂xi

)
= −

nSg
P
ṗg + αSg ε̇ii −

(α − n)
Ks

SwSg ṗw −
(α − n)
Ks

S2g ṗ
g

−
(α − n)
Ks

Sgdpw Ṡw −
(α − n)
Ks

Sgdpg Ṡg − Sg
(α − n)
KT

(
Sw ṗc + dpc Ṡg

)
. (28)

3. Full system of equation for unsaturated consolidation analysis

Eqs. (6), (19) and (28) constitute a set of three independent equations. In order to implement the finite element method,
some transformations in these equations are necessary:

3.1. Mechanical equilibrium

Considering small strains and small displacement (the geometrically non-linear analysis will be left out of the scope of
this article), the stress-strain relationship may be expressed as follows:

σ̇ ′ij = Cijklε̇kl with ε̇kl =
1
2

(
∂ u̇k
∂xl
+
∂ u̇l
∂xk

)
. (29)

Initially, no restrictions will be imposed to Cijkl, i.e., it should be elastic or alternatively elastoplastic with the limitations
pointed out in paragraph Section 1. The equilibrium equations in rate form are given by:

∇σ̇ij + Ḟi = 0. (30)

Combining Eqs. (3), (29) and (30); the following equation governing the soil deformation is obtained:

∇
(
Cijklε̇kl

)
+ a1∇ṗw + a2∇ṗg + Ḟi = 0. (31)

3.2. Water phase

After some manipulation and considering the relationships Ṡw = dSw
dpc ṗ

c and ṗc = ṗg − ṗw the Eq. (19) may be written as
follows:

1
ρw

∂

∂xi

(
ρw
kwi
γw

∂pw

∂xi

)
+ αSw ε̇ii −

{
n
Sw
Kw
−

[
(α − n)
Ks

Sw

(
−Sw −

dSw
dpc

(
dpg − dpw

))
−

(α − n)
KT

Sw

(
Sg − dpc

dSw
dpc

)]}
ṗw −

{
(α − n)
Ks

SgSw

−

(
(α − n)
Ks

Sw
(
dpg − dpw

)) dSw
dpc
−
(α − n)
KT

Sw

(
Sg − dpc

dSw
dpc

)}
ṗg = 0. (32)

3.3. Air phase

Carrying out similar modifications than those performed in the water phase and adding the relationship Ṡg =
dSg
dpc ṗ

c
=

−
dSw
dpc ṗ

c , the Eq. (28) may be written as follows:

1
ρg

∂

∂xi

(
D∗i
∂pg

∂xi

)
+ αSg ε̇ii −

{
(α − n)
Ks

SwSg + Sg

[
(α − n)
Ks

(
dpg − dpw

) dSw
dpc
−
(α − n)
KT

(
Sw − dpc

dSw
dpc

)]}
ṗw

−

{
nSg
P
+
(α − n)
Ks

S2g − Sg

[
(α − n)
Ks

(
dpg − dpw

) dSw
dpc
−
(α − n)
KT

(
Sw − dpc

dSw
dpc

)]}
ṗg = 0. (33)
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3.4. Coupling of the mechanical equilibrium with the fluid phases

Gathering Eqs. (31)–(33), it is obtained:

∇
(
Cijklε̇kl

)
+ a1∇ṗw + a2∇ṗg + Ḟi = 0

a1ε̇ii − a11ṗw − a12ṗg +
1
ρw

∂

∂xi

(
ρw
kwi
γw

∂pw

∂xi

)
= 0

a2ε̇ii − a21ṗw − a22ṗg +
1
ρg

∂

∂xi

(
D∗i
∂pg

∂xi

)
= 0

(34)

where strain displacement components are given by Eq. (29).
The parameters in the above equation are:

a1 = αSw, a2 = αSg

a11 =
{
nSw
Kw
+
(α − n)
Ks

Sw

(
Sw +

(
dpg − dpw

) Cs
n

)
− Cws

}
a12 =

{
(α − n)
Ks

Sw

(
Sg −

(
dpg − dpw

) Cs
n

)
+ Cws

}
a21 =

{
(α − n)
Ks

Sg

(
Sw +

(
dpg − dpw

) Cs
n

)
+ Cgs

}
a22 =

{
nSg
P
+
(α − n)
Ks

Sg

(
Sg −

(
dpg − dpw

) Cs
n

)
− Cgs

}
(35)

with

Cs = n
dSw
dpc

Cws = −Sw
(α − n)
KT

(
Sg − dpc

dSw
dpc

)
Cgs = −Sg

(α − n)
KT

(
Sw − dpc

dSw
dpc

)
.

(36)

Eq. (34) stands for a system of partial differential equations for the solution of isothermal soil consolidation problems,
obtained by a combination of several stress situations applied on a soil system. This formulation leads to non-symmetrical
matrices when the finite elements method is applied and may be straightforward reduced to a formulation with symmetric
matrices adjusting only the saturation indicator. The simplicity of this fact eliminates any possibility of conceptual
drawbacks and it will be remarked in the next paragraph.

4. General reliability

To analyze the reliability of this approach, it is important to be careful with the limit conditions. Firstly, consider the fully
saturated case. This means a unit value in water saturation and a null value in air saturation, leading to the following values
of the different coefficients:

Sw = 1 H⇒ a1 = α ∧ a2 = a12 = a21 = a22 = 0 ∧ a11 =
nSw
Kw
−
(α − n)
Ks

. (37)

The substitution of these values in Eq. (34), leads to a set of equation equivalent to those corresponding to the saturated
case [27,30].
Another interesting possibility is a non-saturated soil, in which the saturation change with suction is disregarded. Then,

the coefficients turn into:

a1 = αSw, a2 = αSg

a11 =
{
nSw
Kw
+ (α − n) Sw

[
Sw
Ks
+
Sg
KT

]}
a22 =

{
nSg
P
+ (α − n) Sg

[
Sg
Ks
+
Sw
KT

]}
a12 = a21 =

{
(α − n) SwSg

[
1
Ks
−
1
KT

]}
.

(38)
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Fig. 3. (a) The one dimensional consolidation problem. Geometry, finite element mesh, load, boundary conditions and selected points to study
displacements and water saturation behaviour. (b) Curve of Vertical Displacement vs. Time. (Present work= solid line, Lewis et al. [31] = dotted line).

All values exactly match those obtained in the symmetric case [20,21]. This situation may be regarded as a reduction of
the non-symmetric system of Eq. (34) to a symmetric system. Further insights about aspects in which this condition may
be exploitable will be given in Section 6. Furthermore, this is a feature of utmost importance because it reveals the crucial
role that the saturation variation with suction renders to the whole model. In the isothermal case, the loss of symmetry is
exclusively due to this fact.

5. Finite element implementation

Applying theGalerkinmethod to the systemof Eq. (34) and using the finite element technique, it is obtained the following
system of ordinary differential equations:

Ku̇+ Cswṗw + Csg ṗg = Ḟs
Cwsu̇+ Pwwṗw + Qwg ṗ

g
+ Hwwpw = Ḟw

Cgsu̇+ Qwg ṗ
w
+ Pgg ṗg + Hggpg = Ḟg

(39)

or [K Csw Csg
Cws Pww Qwg
Cgs Qgw Pgg

]{u̇
ṗw
ṗg

}
+

[0 0 0
0 Hww 0
0 0 Hgg

]{u
pw
pg

}
=

Ḟs
Ḟw
Ḟg

 . (40)

All the matrices involved in Eqs. (39) and (40) are summarized in Appendix A.

6. Model validation

6.1. Example 1: A one dimensional consolidation problem

In order to validate the numerical model obtained in the previous paragraph, a one dimensional consolidation problem
was solved and the outcomes were checked against those obtained in Lewis et al. [31]. The soil column was assumed to be
unsaturated with initial water saturation Sw equal to 0.52. The initial pore water pressure pw was taken equal to−280 kPa
and the boundary pore water pressure was instantaneously changed to −420 kPa at the surface. The column height was
taken equal to 1 m.
The material parameters are: Young’s modulus E = 173 000 kPa, Poisson’s ratio ν = 0.4, Permeability k =

0.11456 m/day, Void ratio e = 0.4, and the parameters for the Eq. (B.1) are: a = 427.0, n = 0.794,m = 0.613, pcr =
3000.0 Kpa and Sw0 = 1.0. In Fig. 3(a) the geometry, the finite element mesh, the load and the boundary conditions are
shown. Pointswhere displacements andwater saturation evolutionwill be analyzed, are indicated. The boundary conditions
are: (1) Lateral surface: u1 = 0.0. (2) Top surface: pw = −420 kPa, pg= atmospheric pressure (3) Bottom surface: u2 = 0.0.
Fig. 3(b) shows the vertical displacement vs. time for some selected points and Fig. 4 presents the distribution of water
saturation vs. time at different points within the soil column.
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Fig. 4. Curve of Water Saturation vs. Time.

Fig. 5. Strip footing: mesh and dimensions.

Fig. 6. Pore water pressure vs. time for different levels of saturation at point A.

6.2. Example 2: A strip footing

Another useful example is a strip footing under uniform load solved in Ref. [5]. The data are (see Fig. 5): Width: 6 m,
Depth: 2 m,Young’s modulus: E = 13 000 kPa, Poisson’s ratio: ν = 0.4, Permeability: k = 3.4 ∗ 10−4 m/day, Void ratio: 0.9
and Load: Q = 1 kN/m.
In first place, in Fig. 6, the pore water pressure for different saturation levels is presented for the symmetric and for the

non-symmetric schemes.
Fig. 6 allows confirming, for this case, the strong influence that the saturation level and indirectly the suction exerts over

the values of pore pressure at a point located 1m below the centre of the strip footing. For high values of saturation, the
outcomes are almost not affected by the suction changes.
Another important issue that must be emphasized is the dependence of the permeability coefficient on saturation [29].

At the outset, as the soil becomes unsaturated, the air replaces the water in the large pores and this causes the water to
flow through the smaller pores with an increase of the tortuosity in the flow path. A further increase in thematric suction of
the soil, which may be understood as a consequence of the increment in the curvature of the air-water interface, leads to a
further decrease in the pore volume occupied by thewater feeding back the process. Thus, as long as the degree of saturation
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Fig. 7. Surface settlement for different time values.

Fig. 8. Characteristic curve derivative and the relative error of pore water pressure vs. Suction.

decreases the coefficient of permeability declines as well, and the dissipation of pore pressures occurs taking a large amount
of extra time. Finally, in Fig. 7, the surface settlements versus horizontal distances at different time values, are presented.

7. Field where the symmetric approach is valid

Eqs. (35) and (36) show the strong dependence of system (34) with respect to saturation values through the matrices
coefficients, something stated hereinafter. A straightforward way to relate the water saturation to the matric suction is
through the saturation–suction characteristic curve. The complete mathematical model for these curves derived from
experimental results may be found in Ref. [32], however, a summary of this article was carried out in Appendix B.
It must be underscored the importance of having a smooth expression for the saturation–suction relationship, i.e. a

mathematical model, since the slope of this curve plays a fundamental roll in this article, as it will be shortly seen. The
expression of the characteristic curve derivative was furnished here from the function proposed in Ref. [32] (this function
was also repeated in Appendix B), and it is given by the following equation:

∂Sw
∂pc
=

1− ln
(
1+ pc

pcr

)
ln
(
1+ 106

pcr

)

Sw0(−m)

[
ln
(
e+

(
pc

a

)n)](−m−1) 
(
n
(
pc

a

)(n−1) ( 1
a

))
(
e+

(
pc
a

)n)



−


(
1
pcr

)
(
ln
(
1+ 106

pcr

)) (
1+ pc

pcr

)

 Sw0(
ln
(
e+

(
pc
a

)n))m
 . (41)

All the parameters involved in the above equation may be found in the aforementioned appendix and for the sake of
brevity, they will not be repeated here.
For the one dimensional consolidation problem considered formerly, the pore pressure vs. suction, taken at the point

with depth equal to 0.30 m, was calculated using the symmetric approach presented in Refs. [20,21] and using Eq. (34),
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for a soil which characteristic curve matches those of the sort used in Fig. 8. Afterwards, the relative error between both
approaches with respect to the suction was calculated. Comparing the derivative of the characteristic curve and the relative
error, it can be easily noticed that both lines grow and decrease in a similar form, which allows us to bring the relative error
into correspondence with saturation derivative. Hence, the higher the values of the slope, the higher the relative error and
this fact gives a criterion for deciding whether to assume the computational cost of the approach using Eq. (34) or to assume
a rational error and use the same line of attack presented in Refs. [20,21].
Specifically, for the example of Fig. 8, as long as an error of about 10%was tolerated, the entire soil portionwith saturation

above 90 % or, i.e. a derivative value above 0.14 may be treated disregarding the suction influence. On the other hand, the
soil portion with lower water content must be solved with the general case addressed in (34). However, what it seems to
be a complication, with the system (34) can be straightforward done by merely setting the matrix coefficients according to
Eq. (37) and then some domain decomposition strategies [33] may be implemented later on for the different soil portions.
Finally, wemust underscored one fact about the relative error curve. Provided that the tendency of this curvewas already

settled downwith the plotted points and low saturation values are not a priority for this article, the relative error curve was
no longer assessed for suction values over 5 kPa.

8. Final remarks

A general formulation and the numerical solution for non-saturated soils consolidation were presented. A non-linear
saturation–suction and permeability-suction functions were incorporated into a Galerkin finite element model. The
governing equation, in terms of displacement and fluid pressures, result in a coupled non-linear partial differential equation
system.
A one dimensional numerical simulation was presented to validate the model and an alternative to avoid non-

symmetrical systems was addressed. Furthermore, a study of the settlement and pore pressures evolution for a strip footing
was carried out.
When the rate of matric suction is brought in the mathematical framework, a strong non-linearity is induced to the

equation system as well as an important coupling effect involving the degree of saturation and the principal variables.
Within these considerations, the relevance of the coupling effect may be evaluated through the soil characteristic curve, for
the decision of using either complex and non-symmetric system or simple symmetric formulationswith accurate prediction
in deformation and pore-pressures may be aided by the analysis of the soil characteristic curves and their derivatives.
Furthermore, using the one dimensional example, some limit values for the degree of saturation of a selected soil-

type were provided and, using the aforementioned curve, it allows foreseeing whether the simple symmetric formulation
will be accurate enough to be selected for the solution, provided that this selection may be straightforward undertaken.
Through the computer modelling of the mathematical approach presented here, it is possible to easily uncouple the suction
effects, i.e. to switch between both kinds of formulations, by merely recasting some coefficients of the discrete equation
system.
It would be interesting to introduce in future works, a subdomain decomposition technique in order to handle with the

symmetric and the non-symmetric formulations simultaneously.

Appendix A. Matrices and vectors given in Eq. (34)

u̇i = Nuu̇, ṗg = Npṗg , ṗw = Npṗw, m = {1, 1, 1, 0, 0, 0}

K =
∫
Ω

BuTDBudΩ Ḟs =
∫
Ω

NuT ḃdΩ +
∫
Γg

NuT ṫdΩ

Csg =
∫
Ω

BuTa2mNpdΩ Cgs =
∫
Ω

NpTma2BudΩ

Cws =
∫
Ω

NpTma1BudΩ Csw =
∫
Ω

BuTa1mNpdΩ

Qwg = −
∫
Ω

NpTa12NpdΩ Qgw = −
∫
Ω

NpTa21NpdΩ

Hww =
∫
Ω

∇NpT
kwi
γw
∇NpdΩ Hgg =

∫
Ω

∇NpT
Di
P
(1− Sw) n∇NpdΩ

Pww = −
∫
Ω

NpTa11NpdΩ Pgg = −
∫
Ω

NpTa22NpdΩ

Ḟg = −
∫
Γg

NpT q̇gdΓ Ḟw = −
∫
Γw

NpT q̇wdΓ
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Fig. B.1. Modelled clay type characteristic curves.

where:

Nu: Vector containing the interpolation functions of the displacements components.
Np: Vector containing the interpolation functions of the water and gas pressures.
Bu: Matrix relating strain and displacement components.
D: Constitutive matrix.
b: Body force vector acting on the element domain.
t: Surface force vector acting on the element boundary.

∇Nu: Gradient of the interpolation functions for water and gas pore pressures.
qw: Water flux through the boundary element.
qg : Air flux through the boundary element.

Appendix B. Characteristic Curve: Saturation-Suction relationship

In the present work, to relate the saturation values to suction, the soil characteristic curve is used. This curve may adopt
different shapes depending on soils attributes and several authors refer to its different aspects and usefulness [32,34,35].
Moreover, in Ref. [32] an approach to obtain a mathematical model from experimental curves is addressed, and, since it is
specifically important here, it will be briefly described.
Characteristic curves may be obtained from the following formulae:

Sw =

1−
 ln

(
1+ pc

pcr

)
ln
(
1+ 106

pcr

)

[ Sw0(

ln
(
e+ (pc/a)n

))m
]
. (B.1)

The soil parameters used above are:

pc Suction values (kPa)
pcr Residual water content suction (kPa)
Sw Saturation Values
Sw0 Saturation initial value (Here this value was taken equal to 1)
a = pci Suction value at the inflection point.

m = 3.67 ln
(
Sw0
Swi

)
pcr With Swi , being the saturation value at the inflection point.

n = 1.31m+1
mSw0

3.72s pci

s =
Sw0
pcp−p

c
i
Slope of the tangent line.

Different characteristic curves are presented in Fig. B.1 standing for the evolution of the saturation of water towards
matric suction for clay-type soils.
Asmay be noticed, the Eq. (B.1) relies on some experimental values. These experimental quantities, i.e. pcr , p

c
p, p

c
i , Swi ; are

indicated in Fig. B.2:
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Fig. B.2. Sample plot showing how to obtain values of pci , p
c
p, Swi and Sw0 in order to compute the three parameters a, n and m, used in expressions (41)

and (B.1) [32].

References

[1] R.J. Moitsheki, P. Broadbridge,M.P. Edwards, Symmetry solutions for transient solute transport in unsaturated soilswith realisticwater profile, Transp.
Porous Media 61 (1) (2005) 109–125.

[2] P. Tritscher, W.W Read, P. Broadbridge, J.H. Knight, Steady saturated-unsaturated flow in irregular porous domains, Math. Comput. Modeling 34 (1-2)
(2001) 177–194.

[3] M.A. Biot, General theory of three - dimensional consolidation, J. Appl. Phys. 12 (1941) 155–164.
[4] J. Ghaboussi, K. Kim, Quasistatic and dynamic analysis of saturated and partially saturated soils, Mech. Eng. Mater. 14 (1984) 277–296.
[5] R.W. Lewis, B.A. Schrefler, The Finite Element Method in the Deformation and Consolidation of Porous Media, John Wiley & Sons, 1987.
[6] S. Pietraszezak, G.N. Pandle, On the mechanics of partially saturated soils, Comput. Geotech. 12 (1991) 55–71.
[7] A.K.L. Ng, J.C. Small, Use of coupled finite element analysis in unsaturated soil problems, Int. J. Numer. Anal. Methods Geomech. 24 (2000) 73–94.
[8] I. Masters, W.K.S. Pao, R. Lewis, Coupling temperature to a double porosity model of deformable porous media, Int. J. Numer. Anal. Methods Geomech.
49 (2000) 421–438.

[9] D.Q. Yang, H. Rahardjo, E.C. Leong, V. Choa, Coupled model for heat, moisture, air flow and deformation problems in unsaturated soils, J. Eng. Mech.
ASCE 124 (1998) 1331–1338.

[10] S.M. Hassanizadeh, W.G. Gray, General conservation equation for multiphase sistems: 1, averaging procedures, Adv. Water Resour. 2 (1979) 131–144.
[11] S.M. Hassanizadeh, W.G. Gray, General conservation equation for multiphase sistems: 2, mass momenta, energy and entropy equations, Adv. Water

Resour. 2 (1979) 191–203.
[12] S.M. Hassanizadeh,W.G. Gray, General conservation equation formultiphase sistems: 3, constitutive theory for porousmedia flow, Adv.Water Resour.

3 (1980) 25–40.
[13] B.A. Schrefler, Computer modelling in enviromental geomechanics, Comput. Struct. 79 (2001) 2209–2223.
[14] G. Klubertanz, F. Bouchelaghem, L. Laloui, L. Vulliet, Miscible and immiscible multiphase flow in deformable porous media, Math. Comput. Modeling

37 (2003) 571–582.
[15] W. Ehlers, P. Blome, A triphasic model for unsaturated soil based on the theory of porous media, Math. Comput. Modeling 37 (2003) 507–513.
[16] E.E. Alonso, A. Gens, A. Josa, A constitutive model for partially saturated soils, Geotechnique 40 (3) (1990) 405–430.
[17] N. Khalili, B. Loret, An elasto-plastic model for non-isothermal analysis of flow and deformation in unsaturated porous media: Formulation, Internat.

J. Solids Structures 38 (46-47) (2001) 8305–8330.
[18] D.A. Sun, H. Matsouka, H.B. Cui, Y.F. Xu, Three dimensional elastoplastic model for unsaturated compacted soils with different initial densities, Int. J.

Numer. Anal. Methods Geomech. 27 (2003) 1079–1098.
[19] L. Graziano, R. Lancellotta, A constitutive equation for the porosity field, Math. Comput. Modeling 38 (10) (2003) 1067–1073.
[20] N. Khalili, M.H. Khabbaz, On the theory of three-dimensional consolidation in unsaturated soils, in: E.E. Alonso, P. Delage (Eds.), First International

Conference on Unsaturated Soils - UNSAT’95. 1995, pp. 745–750.
[21] P.A. Beneyto, H.A. Di Rado, J.E. Manzolillo, A.M. Awruch, Symmetry in the numerical modelling of nonsaturated soils: Advantages and drawbacks,

Mecánica Computacional 22 (2003) 258–271 (in Spanish).
[22] D. Gawin, P. Baggio, B.A. Schrefler, Coupled heat, water and gas flow in deformable porous media, Internat. J. Numer. Methods Fl 20 (1995) 969–987.
[23] V.A. Salomoni, B.A. Schrefler, A CBS type stabilizing algorithm for the consolidation of saturated porous media, Internat. J. Methods Engng. 63 (2005)

502–527.
[24] J.H. Atkinson, P.L. Bransby, The mechanics of soils. An introduction to critical state soil mechanics, in: University Series in Civil Engineering, McGraw

Hill, 1978.
[25] J.C. Small, H.N. Bui, Modelling creep behaviour of soils using laplace transforms, in: 13th European Conference on Soil Mechanics and Geotechnical

Engineering, 2003, pp. 889–894.
[26] A.N. Schofield, C.P. Wroth, Critical State soil Mechanics, McGraw Hill, 1969.
[27] H.A. Di Rado, A.M. Awruch, P.A. Beneyto, J.E. Manzolillo, Direct foundations analysis using the finite element method, Inf. Tec. - CIT 10 (6) (1999)

165–175.
[28] T.W. Lambe, R.V. Whitman, Soil Mechanics, John Wiley & Sons, 1979.
[29] D.G. Fredlund, H. Rahardjo, Soils Mechanics for Unsaturated Soils, John Wiley & Sons, 1993.
[30] H.A. Di Rado, A.M. Awruch, P.A. Beneyto, Consolidation in saturated porous media. Implementation and numerical problems, in: Computational

Mechanics, in: New Trends and Applications, vol. 2, IACM, Buenos Aires, Argentina, 1998, pp. 1066–1084.
[31] R.W. Lewis, B.A. Schrefler, The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media, John Wiley & Sons,

1998.
[32] D.G. Fredlund, A. Xing, Equations for the soil-water characteristic curve, Can. Geotech. J. 31 (1994) 521–532.
[33] K.J. Bathe, Finite Element Procedures, Prentice - Hall, 1996.
[34] N. Lu, A. Wayllace, J. Carrera, W.J. Likos, Constant flowmethod for concurrently measuring soil-water characteristic curve and hydraulic conductivity

function, Geotech. Test J. 29 (3) (2006) 230–241.
[35] A.J. Puppala, K. Punthutaecha, S.K. Vanapalli, Soil-water characteristic curves of stabilized expansive soils, J. Geotech. Geoenviron 132 (6) (2006)

736–751.


	Influence of the saturation--suction relationship in the formulation of non-saturated soil consolidation models
	Introduction
	The governing equations
	Introduction
	Mechanical equilibrium
	Flux model: Water phase
	Flux model: Air phase
	The originally proposed soil states
	Additional soils states

	Full system of equation for unsaturated consolidation analysis
	Mechanical equilibrium
	Water phase
	Air phase
	Coupling of the mechanical equilibrium with the fluid phases

	General reliability
	Finite element implementation
	Model validation
	Example 1: A one dimensional consolidation problem
	Example 2: A strip footing

	Field where the symmetric approach is valid
	Final remarks
	Matrices and vectors given in Eq. (34)
	Characteristic Curve: Saturation-Suction relationship
	References


