Journal of Algebra and Its Applications Vol. 15, No. 10 (2016) 1650191 (19 pages) © World Scientific Publishing Company DOI: 10.1142/S0219498816501917

Minimal representations for 6-dimensional nilpotent Lie algebra

Nadina Rojas

CIEM-CONICET and FCEFyN Universidad Nacional de Córdoba, Argentina nrojas@efn.unc.edu.ar

> Received 19 November 2013 Accepted 24 November 2015 Published 26 January 2016

Communicated by Efim Zelmanov

Given a Lie algebra \mathfrak{g} , let $\mu(\mathfrak{g})$ and $\mu_{nil}(\mathfrak{g})$ be the minimal dimension of a faithful representation and nilrepresentation of \mathfrak{g} , respectively. In this paper, we give $\mu(\mathfrak{g})$ and $\mu_{nil}(\mathfrak{g})$ for each nilpotent Lie algebra \mathfrak{g} of dimension 6 over a field \mathbb{K} of characteristic zero. We also give a minimal faithful representation and nilrepresentation in each case.

Keywords: Nilpotent Lie algebras; Ado's theorem; minimal faithful representation; nil-representation.

Mathematics Subject Classification 2010: 17B10, 17B30, 17B45

1. Introduction

In this paper, Lie algebras and representations are finite-dimensional over a field \mathbb{K} of characteristic zero. Ado's theorem states that every Lie algebra has a finitedimensional faithful representation [14, p. 202]. So, given a Lie algebra \mathfrak{g} , let

 $\mu(\mathfrak{g}) = \min\{\dim V : (\pi, V) \text{ is a faithful representation of } \mathfrak{g}\},\$

and additionally, if \mathfrak{g} is nilpotent let

 $\mu_{\rm nil}(\mathfrak{g}) = \min\{\dim V : (\pi_{\rm nil}, V) \text{ is a faithful nilrepresentation of } \mathfrak{g}\}.$

In general, it is very difficult to determine $\mu(\mathfrak{g})$ and it is also hard to obtain suitable estimations for $\mu(\mathfrak{g})$. More generally, to give faithful representations of nilpotent Lie algebras is a challenging problem in the theory of finite-dimensional Lie algebras ([4, 8]) which is related to another well-known problems, such as Milnor's Conjecture (see [2, 16]). Some results on μ can be found in [2, 5, 7, 13, 18, 19]. An upper bound for $\mu(\mathfrak{g})$ is given in [6] for any finite-dimensional complex Lie

De Graaf's classification	μ	$\mu_{\rm nil}$
$L_{6,3}, L_{6,4}, L_{6,5}, L_{6,8}$	4	5
$L_{6,1}, L_{6,2}, L_{6,6}, L_{6,7}, L_{6,10}, L_{6,11}, L_{6,12}, L_{6,13}$	5	5
$L_{6,20}, L_{6,21}(\epsilon), L_{6,22}(\epsilon), L_{6,23}, L_{6,25}, L_{6,26}$		
$L_{6,9}$	5	6
$L_{6,14}, L_{6,15}, L_{6,16}, L_{6,17}, L_{6,18}$	6	6
$L_{6,19}(\epsilon)$ if $\sqrt{-\epsilon} \in \mathbb{K}^*$	4	4
$L_{6,19}(\epsilon)$ if $\sqrt{-\epsilon} \notin \mathbb{K}^*$	5	5
$L_{6,24}(\epsilon)$ if $\sqrt{\epsilon} \in \mathbb{K}^*$	5	5
$L_{6,24}(\epsilon)$ if $\sqrt{\epsilon} \notin \mathbb{K}^*$	6	6

Table 1. μ and μ_{nil} for all nilpotent Lie algebras of dim = 6.

algebras. In particular, it is known that $\mu(\mathfrak{g}) < \frac{3}{\sqrt{\dim \mathfrak{g}}} 2^{\dim \mathfrak{g}}$ for any nilpotent Lie algebra \mathfrak{g} (see for instance [3]) and if $\dim \mathfrak{g} \leq 7$ then $\mu(\mathfrak{g}) \leq \dim \mathfrak{g} + 1$ [2, Lemma 6].

Many authors have tried to determine minimal faithful representations for lowdimensional nilpotent Lie algebras starting from a known classification of nilpotent Lie algebras. For instance in [15], μ is computed by the Lie algebras of dimension ≤ 4 . Faithful representations of nilpotent Lie algebras of dimension 5 are given in [10] but the minimality problem was studied independently in [1]. On the other hand, a faithful representation was given for each indecomposable nilpotent Lie algebras of dimension 6 in [11] but the minimality problem is not addressed in this.

Our purpose is to give μ and μ_{nil} for each nilpotent Lie algebra of dimension ≤ 6 over any field K of characteristic zero. In fact, we give a minimal faithful representation and minimal faithful nilrepresentation for this family of Lie algebras. Throughout the paper, we use the classification of nilpotent Lie algebras up to dimension 6 by De Graaf [9]. According to the notation used in [9], the values of μ and μ_{nil} of all Lie algebras of dimension 6 are given in Table 1.

The problems that occur in the 7-dimensional nilpotent Lie algebra are similar to the 6-dimensional case, except for the number of Lie algebras. For instance, the set of the 7-dimensional complex nilpotent Lie algebras can be seen as six curves of pairwise nonisomorphic nilpotent Lie algebras and 148 complex nilpotent Lie algebras (see [12]).

2. Preliminaries

We recall some results that will be needed throughout the paper.

If \mathfrak{g} is a nilpotent Lie algebra and (π_{nil}, V) is a nilrepresentation of \mathfrak{g} , let $\pi : \mathfrak{g} \oplus \mathbb{K} \to \mathfrak{gl}(V)$ be the linear mapping given by $\pi(X, a) = \pi_{nil}(X) + aI$ where I is the identity map on V. It is easy to see that if (π_{nil}, V) is a faithful nilrepresentation then (π, V) is a faithful representation of \mathfrak{g} so

$$\mu(\mathfrak{g} \oplus \mathbb{K}) \le \mu_{\mathrm{nil}}(\mathfrak{g}). \tag{2.1}$$

On the other hand, it follows from [7, Theorems 2.1 and 2.2] that if \mathfrak{g} is nilpotent and the center $\mathfrak{z}(\mathfrak{g})$ such that $\mathfrak{z}(\mathfrak{g}) \subseteq [\mathfrak{g}, \mathfrak{g}]$ then

$$\mu(\mathfrak{g}) = \mu_{\mathrm{nil}}(\mathfrak{g}). \tag{2.2}$$

Let us now summarize well-known results on μ .

Proposition 2.1. Let \mathfrak{g} be a Lie algebra of finite dimension over a field \mathbb{K} of characteristic zero.

- (1) If \mathfrak{g} is an abelian Lie algebra then $\mu(\mathfrak{g}) = \lceil 2\sqrt{\dim \mathfrak{g}} 1 \rceil$ and $\mu_{nil}(\mathfrak{g}) = \lceil 2\sqrt{\dim \mathfrak{g}} \rceil$ (see [3, 13, 17, 19]).
- (2) If \mathfrak{g} is a filiform Lie algebra then $\mu(\mathfrak{g}) \geq \dim \mathfrak{g}$ and if $\dim \mathfrak{g} < 10$ then $\mu(\mathfrak{g}) = \dim \mathfrak{g}$ (see [3]). We also have $\mu_{nil}(\mathfrak{g}) = \mu(\mathfrak{g})$ (see (2.2)).
- (3) If g is a nilpotent Lie algebra then μ(g ⊕ K) ≤ μ_{nil}(g) and if 3(g) ⊆ [g, g] then μ(g ⊕ K) = μ(g) (see (2.1) and (2.2)).

In the remainder of this section, we summarize the results obtained in [1, 18] for the Lie algebras of dimension 5.

The following list contains the classification of all nilpotent Lie algebras of dimension 5.

(1) $L_{5,1}$ is the abelian Lie algebra of dimension 5.

(2) $L_{5,2}: [X_1, X_2] = Z_1.$

(3)
$$L_{5,3}: [X_1, X_2] = X_3, [X_1, X_3] = Z_1$$

- (4) $L_{5,4}: [X_1, X_2] = Z_1, [X_3, X_4] = Z_1.$
- (5) $L_{5,5}: [X_1, X_2] = X_3, [X_1, X_3] = Z_1, [X_2, X_4] = Z_1.$
- (6) $L_{5,6}: [X_1, X_2] = X_3, [X_1, X_3] = X_4, [X_1, X_4] = Z_1, [X_2, X_3] = Z_1.$
- (7) $L_{5,7}: [X_1, X_2] = X_3, [X_1, X_3] = X_4, [X_1, X_4] = Z_1.$
- (8) $L_{5,8}: [X_1, X_2] = Z_1, [X_1, X_3] = Z_1.$
- (9) $L_{5,9}: [X_1, X_2] = X_3, [X_1, X_3] = Z_1, [X_2, X_3] = Z_2.$

Tables 2 and 3 contain a minimal faithful representation and a minimal faithful nilrepresentation for each nilpotent Lie algebra of dimension 5 and in the last column contains the necessary reference for the lower bound of μ and μ_{nil} . For example, where it says "by Engel's Theorem" means that if (π, V) is a faithful nilrepresentation of $L_{5,j}$ (or $L_{6,j}$) there exists a basis B of V such that $[\pi(X)]_B$ is a strictly upper triangular matrix for all $X \in L_{5,j}$. Therefore, since dim $L_{5,j} = 5$ (or dim $L_{6,j} = 6$), we obtain $\mu_{nil}(L_{5,j}) \ge 4$.

In Table 3 all the Lie algebras, except $L_{5,3}$, verify that $\mathfrak{z}(\mathfrak{g}) \subseteq [\mathfrak{g}, \mathfrak{g}]$. From (2.2) we have $\mu_{nil}(\mathfrak{g}) = \mu(\mathfrak{g})$.

The matrices appearing in the tables are given by

$$\pi\left(\sum x_i X_i + \sum z_i Z_i + \sum a_i A_i\right),\,$$

g	$\mu_{\rm nil}$	μ	Faith. nilrep.	Faith. rep.	Ref.
$L_{5,1}$	5	4	$\begin{bmatrix} 0 & 0 & a_1 & a_2 & a_3 \\ 0 & 0 & 0 & a_4 & a_5 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0$	$\begin{bmatrix} a_1 & 0 & a_2 & a_3 \\ 0 & a_1 & a_4 & a_5 \\ 0 & 0 & a_1 & 0 \\ 0 & 0 & 0 & a_1 \end{bmatrix}$	Proposition $2.1(1)$
$L_{5,2}$	5	4	$\begin{bmatrix} 0 & x_1 & z_1 & a_1 & a_2 \\ 0 & 0 & x_2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0$	$\begin{bmatrix} a_1 & x_1 & z_1 & 0\\ 0 & a_1 & x_2 & 0\\ 0 & 0 & a_1 & 0\\ 0 & 0 & 0 & a_2 \end{bmatrix}$	[18], since $L_{5,2}$ is $L_{3,2} \oplus L_{2,1}$

Table 2. Lie algebras such that $\mu < \mu_{nil}$.

Table 2	Lie algebras	such that	u = u
Table 5.	Lie algebras	such that	$\mu = \mu_{\rm nil}$.

g	μ	Faithful nilrepresentation	Ref.
$L_{5,3}$	4	$\begin{bmatrix} 0 & x_1 & x_3 + a_1 & -2z_1 \\ 0 & 0 & x_2 & -x_3 + a_1 \\ 0 & 0 & 0 & x_1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$	Proposition 2.1(3)
$L_{5,4}$	4	$\begin{bmatrix} 0 & x_1 & x_3 & z_1 \\ 0 & 0 & 0 & x_2 \\ 0 & 0 & 0 & x_4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$	By Engel's theorem, we have $\mu_{nil}(L_{5,4}) \ge 4$
$L_{5,5}$	4	$\begin{bmatrix} 0 & x_1 & -x_4 & z_1 \\ 0 & 0 & x_1 & x_3 \\ 0 & 0 & 0 & x_2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$	By Engel's theorem, we have $\mu_{nil}(L_{5,4}) \ge 4$
$L_{5,6}$	5	$\begin{bmatrix} 0 & x_1 & \frac{1}{2}x_2 & -\frac{1}{2}x_3 & z_1 \\ 0 & 0 & x_1 & 0 & x_4 \\ 0 & 0 & 0 & x_1 & x_3 \\ 0 & 0 & 0 & 0 & x_2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & x_1 & 0 & z_1 \\ 0 & 0 & x_1 & 0 & x_4 \\ 0 & 0 & 0 & x_1 & x_3 \\ 0 & 0 & 0 & 0 & x_2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	Proposition 2.1(2)
$L_{5,7}$	5	$\begin{bmatrix} 0 & x_1 & 0 & 0 & z_1 \\ 0 & 0 & x_1 & 0 & x_4 \\ 0 & 0 & 0 & x_1 & x_3 \\ 0 & 0 & 0 & 0 & x_2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	Proposition $2.1(2)$
$L_{5,8}$		$\begin{bmatrix} 0 & x_1 & z_1 & z_2 \\ 0 & 0 & x_2 & x_3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$	By Engel's Theorem, we have $\mu_{nil}(L_{5,4}) \ge 4$
$L_{5,9}$	5	$\begin{bmatrix} 0 & 0 & \frac{1}{2}x_2 & -\frac{1}{2}x_3 & z_2 \\ 0 & 0 & x_1 & 0 & z_1 \\ 0 & 0 & 0 & x_1 & x_3 \\ 0 & 0 & 0 & 0 & x_2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	Remark 2.1

such that $\{Z_1, \ldots, Z_q, A_1, \ldots, A_r\}$ is a basis of $\mathfrak{z}(\mathfrak{g}), \{Z_1, \ldots, Z_q\}$ is a basis of $\mathfrak{z}(\mathfrak{g}) \cap [\mathfrak{g}, \mathfrak{g}]$ and $\{A_1, \ldots, A_r\}$ is a basis of a linear complement of $\mathfrak{z}(\mathfrak{g}) \cap [\mathfrak{g}, \mathfrak{g}]$ in $\mathfrak{z}(\mathfrak{g})$.

Remark 2.1. If $\mu_{nil}(L_{5,9}) = 4$ we obtain dim $[L_{5,9}, [L_{5,9}, L_{5,9}]] \leq 1$. But dim $[L_{5,9}, [L_{5,9}, L_{5,9}]] = 2$, therefore $\mu_{nil}(L_{5,9}) \geq 5$.

3. Minimal Faithful Representations for the Nilpotent Lie Algebras of Dimension 6

Let us now recall De Graaf's classification of the nilpotent Lie algebras of dimension 6 (see [9]).

- (1) $L_{6,j} = L_{5,j} \oplus \mathbb{K}$ for all $j = 1, \dots, 9$.
- (2) $L_{6,10}: [X_1, X_2] = X_3, [X_1, X_3] = Z_1, [X_4, X_5] = Z_1.$
- (3) $L_{6,11}$: $[X_1, X_2] = X_3, [X_1, X_3] = X_4, [X_1, X_4] = Z_1, [X_2, X_3] = Z_1, [X_2, X_5] = Z_1.$
- (4) $L_{6,12}: [X_1, X_2] = X_3, [X_1, X_3] = X_4, [X_1, X_4] = Z_1, [X_2, X_5] = Z_1.$
- (5) $L_{6,13}$: $[X_1, X_2] = X_3, [X_1, X_3] = X_5, [X_2, X_4] = X_5, [X_1, X_5] = Z_1, [X_3, X_4] = Z_1.$
- (6) $L_{6,14}$: $[X_1, X_2] = X_3, [X_1, X_3] = X_4, [X_1, X_4] = X_5, [X_2, X_3] = X_5, [X_2, X_5] = Z_1, [X_3, X_4] = -Z_1.$
- (7) $L_{6,15}$: $[X_1, X_2] = X_3, [X_1, X_3] = X_4, [X_1, X_4] = X_5, [X_2, X_3] = X_5, [X_1, X_5] = Z_1, [X_2, X_4] = Z_1.$
- (8) $L_{6,16}$: $[X_1, X_2] = X_3, [X_1, X_3] = X_4, [X_1, X_4] = X_5, [X_2, X_5] = Z_1, [X_3, X_4] = -Z_1.$
- (9) $L_{6,17}$: $[X_1, X_2] = X_3, [X_1, X_3] = X_4, [X_1, X_4] = X_5, [X_1, X_5] = Z_1, [X_2, X_3] = Z_1.$
- (10) $L_{6,18}: [X_1, X_2] = X_3, [X_1, X_3] = X_4, [X_1, X_4] = X_5, [X_1, X_5] = Z_1.$
- (11) $L_{6,19}(\epsilon) : [X_1, X_2] = X_4, [X_1, X_3] = X_5, [X_2, X_4] = Z_1, [X_3, X_5] = \epsilon Z_1.$ Isomorphism: $L_{6,19}(\epsilon) \cong L_{6,19}(\delta)$ if and only if there is $\alpha \in \mathbb{K}^*$ such that $\epsilon = \alpha^2 \delta.$
- (12) $L_{6,20}: [X_1, X_2] = X_4, [X_1, X_3] = X_5, [X_1, X_5] = Z_1, [X_2, X_4] = Z_1.$
- (13) $L_{6,21}(\epsilon)$: $[X_1, X_2] = X_3, [X_1, X_3] = X_4, [X_2, X_3] = X_5, [X_1, X_4] = Z_1, [X_2, X_5] = \epsilon Z_1$. Isomorphism: $L_{6,21}(\epsilon) \cong L_{6,21}(\delta)$ if and only if there is $\alpha \in \mathbb{K}^*$ such that $\epsilon = \alpha^2 \delta$.
- (14) $L_{6,22}(\epsilon) : [X_1, X_2] = Z_1, [X_1, X_3] = Z_2, [X_2, X_4] = \epsilon Z_2, [X_3, X_4] = Z_1.$ Isomorphism: $L_{6,22}(\epsilon) \cong L_{6,22}(\delta)$ if and only if there is $\alpha \in \mathbb{K}^*$ such that $\epsilon = \alpha^2 \delta.$
- (15) $L_{6,23}: [X_1, X_2] = X_3, [X_1, X_3] = Z_1, [X_1, X_4] = Z_2, [X_2, X_4] = Z_1.$
- (16) $L_{6,24}(\epsilon)$: $[X_1, X_2] = X_3, [X_1, X_3] = Z_1, [X_1, X_4] = \epsilon Z_2, [X_2, X_3] = Z_2, [X_2, X_4] = Z_1$. Isomorphism: $L_{6,24}(\epsilon) \cong L_{6,24}(\delta)$ if and only if there is $\alpha \in \mathbb{K}^*$ such that $\epsilon = \alpha^2 \delta$.
- (17) $L_{6,25}: [X_1, X_2] = X_3, [X_1, X_3] = Z_1, [X_1, X_4] = Z_2.$
- (18) $L_{6,26}: [X_1, X_2] = Z_1, [X_1, X_3] = Z_2, [X_2, X_3] = Z_3.$

Since dim $L_{6,j} = 6$ and by Engel's Theorem, we obtain $\mu_{nil}(L_{6,j}) \ge 4$ for $j = 1, \ldots, 26$.

It is easy to see that $\mathfrak{z}(L_{6,j}) \subseteq [L_{6,j}, L_{6,j}]$ for $j = 10, \ldots, 26$. From (2.2) we have $4 \leq \mu(L_{6,j}) = \mu_{\mathrm{nil}}(L_{6,j})$ for $j = 10, \ldots, 26$. By other hand, $L_{6,j} = L_{5,j} \oplus \mathbb{K}$ for $j = 1, \ldots, 9$. From Tables 2 and 3, we obtain $4 \leq \mu(L_{5,j}) \leq \mu(L_{6,j})$ for $j = 1, \ldots, 9$.

It follows that

$$4 \le \mu(L_{6,j})$$
 and $4 \le \mu_{nil}(L_{6,j})$ (3.1)

for all j = 1, ..., 26.

3.1. Minimal faithful representation and minimal faithful nilrepresentation

Tables 4 and 5 contain a minimal faithful representation and a minimal faithful nilrepresentation for each Lie algebra $L_{6,j}$, j = 1, ..., 26. The last column contains the necessary reference for the lower bound of μ and μ_{nil} . The matrices in the tables are given by

$$\pi\left(\sum x_i X_i + \sum z_i Z_i + \sum a_i A_i\right),\,$$

where $\{Z_1, \ldots, Z_q, A_1, \ldots, A_r\}$ is a basis of $\mathfrak{z}(\mathfrak{g}), \{Z_1, \ldots, Z_q\}$ is a basis of $\mathfrak{z}(\mathfrak{g}) \cap [\mathfrak{g}, \mathfrak{g}]$ and $\{A_1, \ldots, A_r\}$ is a basis of a linear complement of $\mathfrak{z}(\mathfrak{g}) \cap [\mathfrak{g}, \mathfrak{g}]$ in $\mathfrak{z}(\mathfrak{g})$.

In Table 5, all the Lie algebras, except the Lie algebras $L_{6,1}, L_{6,2}, L_{6,6}$ and $L_{6,7}$, verify that $\mathfrak{z}(\mathfrak{g}) \subseteq [\mathfrak{g}, \mathfrak{g}]$ and so, from (2.2), we have $\mu_{nil}(\mathfrak{g}) = \mu(\mathfrak{g})$.

g	μ_n	μ	Faith. nilreps.	Faith. reps.	Ref.
$L_{6,3}$	5	4	$\begin{bmatrix} 0 & x_1 & x_3 + a_1 & -2z_1 & a_2 \\ 0 & 0 & x_2 & -x_3 + a_1 & 0 \\ 0 & 0 & 0 & x_1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0$	$\begin{bmatrix} a_2 & x_1 & x_3 + a_1 & -2z_1 \\ 0 & a_2 & x_2 & -x_3 + a_1 \\ 0 & 0 & a_2 & x_1 \\ 0 & 0 & 0 & a_2 \end{bmatrix}$	Eq. (3.4) Eq. (3.1)
$L_{6,4}$	5	4	$\begin{bmatrix} 0 & x_1 & x_2 & z_1 & a_1 \\ 0 & 0 & 0 & x_3 & 0 \\ 0 & 0 & 0 & x_4 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0$	$\begin{bmatrix} a_1 & x_1 & x_2 & z_1 \\ 0 & a_1 & 0 & x_3 \\ 0 & 0 & a_1 & x_4 \\ 0 & 0 & 0 & a_1 \end{bmatrix}$	Eq. (3.4) Eq. (3.1)
$L_{6,5}$	5	4	$\begin{bmatrix} 0 & x_1 & -x_4 & z_1 & a_1 \\ 0 & 0 & x_1 & x_3 & 0 \\ 0 & 0 & 0 & x_2 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0$	$\begin{bmatrix} a_1 & x_1 & -x_4 & z_1 \\ 0 & a_1 & x_1 & x_3 \\ 0 & 0 & a_1 & x_2 \\ 0 & 0 & 0 & a_1 \end{bmatrix}$	Eq. (3.4) Eq. (3.1)
$L_{6,8}$	5	4	$\begin{bmatrix} 0 & x_1 & z_1 & z_2 & a_1 \\ 0 & 0 & x_2 & x_3 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0$	$\begin{bmatrix} a_1 & x_1 & z_1 & z_2 \\ 0 & a_1 & x_2 & x_3 \\ 0 & 0 & a_1 & 0 \\ 0 & 0 & 0 & a_1 \end{bmatrix}$	Eq. (3.4) Eq. (3.1)
$L_{6,9}$	6	5	$\begin{bmatrix} 0 & 0 & \frac{1}{2}x_2 & -\frac{1}{2}x_3 & z_2 & a_1 \\ 0 & 0 & x_1 & 0 & z_1 & 0 \\ 0 & 0 & 0 & x_1 & x_3 & 0 \\ 0 & 0 & 0 & 0 & x_2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0$	$\begin{bmatrix} a_1 & 0 & \frac{1}{2}x_2 & -\frac{1}{2}x_3 & z_2 \\ 0 & a_1 & x_1 & 0 & z_1 \\ 0 & 0 & a_1 & x_1 & x_3 \\ 0 & 0 & 0 & a_1 & x_2 \\ 0 & 0 & 0 & 0 & a_1 \end{bmatrix}$	Corollary 3.1 Proposition 2.1(3)

Table 4. Lie algebras such that $\mu < \mu_{nil}$.

g	μ	Faith. nilreps.	Ref.
$L_{6,1}$	5	$\begin{bmatrix} 0 & 0 & a_1 & a_2 & a_3 \\ 0 & 0 & a_4 & a_5 & a_6 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0$	Proposition $2.1(1)$
$L_{6,2}$	5	$\begin{bmatrix} 0 & 0 & x_1 & z_1 & a_1 \\ 0 & 0 & 0 & a_2 & a_3 \\ 0 & 0 & 0 & x_2 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0$	[18], since $L_{6,2}$ is $L_{3,2} \oplus L_{3,2}$
$L_{6,6}$	5	$\begin{bmatrix} 0 & x_1 & 3x_2 & x_4 + a_1 & -3z_1 \\ 0 & 0 & x_1 & x_3 & -2x_4 + a_1 \\ 0 & 0 & 0 & x_2 & -x_3 \\ 0 & 0 & 0 & 0 & x_1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	Proposition 2.1(3)
$L_{6,7}$	5	$\begin{bmatrix} 0 & x_1 & 0 & x_4 + a_1 & -3z_1 \\ 0 & 0 & x_1 & x_3 & -2x_4 + a_1 \\ 0 & 0 & 0 & x_2 & -x_3 \\ 0 & 0 & 0 & 0 & x_1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	Proposition $2.1(3)$
$L_{6,10}$	5	$\begin{bmatrix} 0 & x_1 & 0 & x_4 & z_1 \\ 0 & 0 & x_1 & 0 & x_3 \\ 0 & 0 & 0 & 0 & x_2 \\ 0 & 0 & 0 & 0 & x_5 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	Eq. (3.4)
$L_{6,11}$	5	$\begin{bmatrix} 0 & x_1 & x_2 & -x_5 & z_1 \\ 0 & 0 & x_1 & x_2 & x_4 \\ 0 & 0 & 0 & x_1 & x_3 \\ 0 & 0 & 0 & 0 & x_2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	Eq. (3.4)
$L_{6,12}$	5	$\begin{bmatrix} 0 & x_1 & 0 & -x_5 & z_1 \\ 0 & 0 & x_1 & 0 & x_4 \\ 0 & 0 & 0 & x_1 & x_3 \\ 0 & 0 & 0 & 0 & x_2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	Eq. (3.4)
$L_{6,13}$	5	$\begin{bmatrix} 0 & x_1 & -x_4 & 0 & z_1 \\ 0 & 0 & x_1 & -x_4 & x_5 \\ 0 & 0 & 0 & x_1 & x_3 \\ 0 & 0 & 0 & 0 & x_2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	Eq. (3.4)
$L_{6,14}$	6	$\begin{bmatrix} 0 & x_2 & -x_3 & 0 & 0 & z_1 \\ 0 & 0 & x_1 & \frac{1}{2}x_2 & -\frac{1}{2}x_3 & x_5 \\ 0 & 0 & 0 & x_1 & 0 & x_4 \\ 0 & 0 & 0 & 0 & x_1 & x_3 \\ 0 & 0 & 0 & 0 & 0 & x_2 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	Proposition $2.1(2)$
$L_{6,15}$	6	$\begin{bmatrix} 0 & x_1 & \frac{1}{2}x_2 & 0 & -\frac{1}{2}x_4 & z_1 \\ 0 & 0 & x_1 & \frac{1}{2}x_2 & -\frac{1}{2}x_3 & x_5 \\ 0 & 0 & 0 & x_1 & 0 & x_4 \\ 0 & 0 & 0 & 0 & x_1 & x_3 \\ 0 & 0 & 0 & 0 & 0 & x_2 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	Proposition 2.1(2)

Table 5. Lie algebras such that $\mu = \mu_{nil}$.

g	μ	Faith. nilreps.	Ref.
$L_{6,16}$	6	$\begin{bmatrix} 0 & \frac{1}{2}x_2 & -\frac{1}{2}x_3 & \frac{1}{2}x_4 & -\frac{1}{2}x_5 & z_1 \\ 0 & 0 & x_1 & 0 & 0 & x_5 \\ 0 & 0 & 0 & x_1 & 0 & x_4 \\ 0 & 0 & 0 & 0 & x_1 & x_3 \\ 0 & 0 & 0 & 0 & 0 & x_2 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	Proposition 2.1(2)
$L_{6,17}$	6	$\begin{bmatrix} 0 & x_1 & 0 & \frac{1}{2}x_2 & -\frac{1}{2}x_3 & z_1 \\ 0 & 0 & x_1 & 0 & 0 & x_5 \\ 0 & 0 & 0 & x_1 & 0 & x_4 \\ 0 & 0 & 0 & 0 & x_1 & x_3 \\ 0 & 0 & 0 & 0 & 0 & x_2 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	Proposition 2.1(2)
$L_{6,18}$	6	$\begin{bmatrix} 0 & x_1 & 0 & 0 & 0 & z_1 \\ 0 & 0 & x_1 & 0 & 0 & x_5 \\ 0 & 0 & 0 & x_1 & 0 & x_4 \\ 0 & 0 & 0 & 0 & x_1 & x_3 \\ 0 & 0 & 0 & 0 & 0 & x_2 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	Proposition $2.1(2)$
$L_{6,19}(\epsilon)$	4	$\begin{bmatrix} 0 & -\frac{1}{\sqrt{-\epsilon}}x_2 + x_3 & \frac{1}{\sqrt{-\epsilon}}x_4 - x_5 & -\frac{2}{\sqrt{-\epsilon}}z_1 \\ 0 & 0 & x_1 & x_4 + \sqrt{-\epsilon}x_5 \\ 0 & 0 & 0 & x_2 + \sqrt{-\epsilon}x_3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$	Proposition 3.1; if there exists $\alpha \in \mathbb{K}^*$ such that $\epsilon = -\alpha^2$
	5	$\begin{bmatrix} 0 & x_1 & x_4 & x_5 & z_1 \\ 0 & 0 & x_2 & x_3 & 0 \\ 0 & 0 & 0 & 0 & -x_2 \\ 0 & 0 & 0 & 0 & -\epsilon x_3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	Proposition 3.1; if $\epsilon \neq -\alpha^2$ for all $\alpha \in \mathbb{K}^*$
$L_{6,20}$	5	$\begin{bmatrix} 0 & x_1 & 0 & x_4 & z_1 \\ 0 & 0 & x_1 & x_2 & x_5 \\ 0 & 0 & 0 & 0 & x_3 \\ 0 & 0 & 0 & 0 & -x_2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	Eq. (3.4)
$L_{6,21}(\epsilon)$	5	$\begin{bmatrix} 0 & -x_1 + x_2 & (\epsilon + 1)x_3 & -x_4 - \epsilon x_5 & 3z_1 \\ 0 & 0 & x_1 - (\epsilon + 2)x_2 & x_3 & -2x_4 + \epsilon x_5 \\ 0 & 0 & 0 & x_2 & -x_3 \\ 0 & 0 & 0 & 0 & 2x_2 + x_1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	Eq. (3.4); if $\epsilon \neq 0$
	5	$\begin{bmatrix} 0 & -x_1 + x_2 + x_3 & -x_3 - 2x_4 - x_5 & x_4 - x_5 & 3z_1 \\ 0 & 0 & x_2 & -x_3 & x_4 - x_5 \\ 0 & 0 & 0 & x_1 + x_2 & -x_3 \\ 0 & 0 & 0 & 0 & x_1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	Eq. (3.4); if $\epsilon = 0$.
$L_{6,22}(\epsilon)$	5	$\begin{bmatrix} 0 & x_1 & x_4 & z_1 & z_2 \\ 0 & 0 & 0 & x_2 & x_3 \\ 0 & 0 & 0 & x_3 & \epsilon x_2 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0$	Eq. (3.4)
$L_{6,23}$	5	$\begin{bmatrix} 0 & x_1 & -x_4 & z_2 & z_1 \\ 0 & 0 & x_1 & 0 & x_3 \\ 0 & 0 & 0 & x_1 & x_2 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0$	Eq. (3.4)
$L_{6,24}(\epsilon)$	5	Remark 3.1	Corollary 3.2; if there exists $\alpha \in \mathbb{K}$ such that $\epsilon = \alpha^2$

Table 5. (Continued)

g	μ	Faith. nilreps.	Ref.
	6	$\begin{bmatrix} 0 & x_2 & x_1 & x_3 & -2z_1 & -z_2 \\ 0 & 0 & 0 & 0 & -2x_4 & 0 \\ 0 & 0 & 0 & x_2 & -x_3 & -\epsilon x_4 \\ 0 & 0 & 0 & 0 & x_1 & x_2 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0$	Corollary 3.2; if $\epsilon \neq \alpha^2$ for all $\alpha \in \mathbb{K}$
$L_{6,25}$	5	$\begin{bmatrix} 0 & x_1 & x_3 & 2z_1 & z_2 \\ 0 & 0 & x_2 & x_3 & x_4 \\ 0 & 0 & 0 & -x_1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0$	Eq. (3.4)
$L_{6,26}$	5	$\begin{bmatrix} 0 & 0 & x_1 & z_1 & z_2 \\ 0 & 0 & x_2 & 0 & z_3 \\ 0 & 0 & 0 & x_2 & x_3 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0$	Eq. (3.4)

Table 5. (Continued)

Remark 3.1. For space reasons, we give a minimal faithful representation of the Lie algebra $L_{6,24}(\epsilon)$ (if there exists $a \in \mathbb{K}$ such that $\epsilon = \alpha^2$) in this remark:

[0	$\sqrt{\epsilon}x_1 + x_2$	$(-\epsilon + \sqrt{\epsilon})x_4$	$(3\sqrt{\epsilon}-1)z_1$	$(-\sqrt{\epsilon}+1)z_1$	
		$+(3\epsilon-1)x_3$	$+(3-\sqrt{\epsilon})z_2$	$+(-\sqrt{\epsilon}+1)z_2$	
0	0	$x_1 + x_2$	$(-\epsilon + 4\sqrt{\epsilon} - 1)x_4 + 2x_3$	$(-\epsilon+1)x_4$	
0	0	0	$-x_1 + x_2$	$x_1 + x_2$	•
0	0	0	0	0	
0	0	0	0	0	

The faithful representation of $L_{6,19}(\epsilon)$, $L_{6,21}(\epsilon)$ and $L_{6,24}(\epsilon)$ was obtained using Maple.

3.2. Computing μ and μ_{nil} of $L_{6,19}(\epsilon)$ for $\epsilon \in \mathbb{K}$

A basis of the Lie algebra $L_{6,19}(\epsilon)$ is $B = \{X_1, X_2, X_3, X_4, X_5, Z_1\}$ which is such that the brackets are given by

$$[X_1, X_2] = X_4, \quad [X_1, X_3] = X_5, \quad [X_2, X_4] = Z_1, \quad [X_3, X_5] = \epsilon Z_1.$$
 (3.2)

The Lie algebras $L_{6,19}(\epsilon)$ and $L_{6,19}(\delta)$ are isomorphic if and only if there exists $\alpha \in \mathbb{K}^*$ such that

$$\epsilon = \alpha^2 \delta. \tag{3.3}$$

Now we prove the following result.

Proposition 3.1. Let \mathbb{K} be a field of characteristic $\neq 2$ then

$$\mu_{\rm nil}(L_{6,19}(\epsilon)) = \begin{cases} 4 & \text{if } \exists \, \alpha \in \mathbb{K}^* : \epsilon = -\alpha^2; \\ 5 & \text{if } \forall \, \alpha \in \mathbb{K}^* : \epsilon \neq -\alpha^2. \end{cases}$$

Proof. Let $\pi_1: L_{6,19}(\epsilon) \to \mathfrak{gl}(5)$ be a linear map defined by

$$\pi_1\left(\sum_{i=1}^5 x_i X_i + z_1 Z_1\right) = \begin{bmatrix} 0 & x_1 & x_4 & x_5 & z_1 \\ 0 & 0 & x_2 & x_3 & 0 \\ 0 & 0 & 0 & 0 & -x_2 \\ 0 & 0 & 0 & 0 & -\epsilon x_3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

It is easy to check that (π_1, \mathbb{K}^5) is a faithful representation for all $\epsilon \in \mathbb{K}$. Then $\mu_{\text{nil}}(L_{6,19}(\epsilon)) \leq 5$ for all $\epsilon \in \mathbb{K}$.

Let $\pi_2: L_{6,19}(-1) \to \mathfrak{gl}(4)$ be a linear map given by

$$\pi_2\left(\sum_{i=1}^5 x_i X_i + z_1 Z_1\right) = \begin{bmatrix} 0 & x_2 + x_3 & -x_4 - x_5 & 2z_1 \\ 0 & 0 & x_1 & x_4 - x_5 \\ 0 & 0 & 0 & x_2 - x_3 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

By a straightforward calculation we have (π_2, \mathbb{K}^4) a faithful representation. Hence $\mu_{\text{nil}}(L_{6,19}(-1)) \leq 4$ and from (3.1), we obtain

$$\mu_{\rm nil}(L_{6,19}(-1)) = 4.$$

The Lie algebra $L_{6,19}(-1)$ is isomorphic to $L_{6,19}(\epsilon)$ if and only if there is $\alpha \in \mathbb{K}^*$ such that $\epsilon = -\alpha^2$. Therefore, if $\epsilon \neq -\alpha^2$ for all $\alpha \in \mathbb{K}^*$, we obtain $5 \leq \mu_{nil}(L_{6,19}(\epsilon))$.

Suppose that $\mu_{nil}(L_{6,j}) = 4$. By Engel's Theorem, we have $L_{6,j} \cong \mathfrak{n}_4(\mathbb{K})$ and by Proposition 3.1 we obtain $L_{6,j} \cong L_{6,19}(\epsilon)$ for some $\epsilon \in \mathbb{K}$. From [9], with j = 19, it follows that,

$$5 \le \mu_{\rm nil}(L_{6,j}).$$
 (3.4)

3.3. The lower bound of μ_{nil} for $L_{6,9}$ and $L_{6,24}(\epsilon)$ for all $\epsilon \in \mathbb{K}$

The aim of this subsection is to prove the following results.

Theorem 3.1. Let $n \in \mathbb{N}$ and let \mathfrak{g} be a Lie subalgebra of $\mathfrak{n}_n(\mathbb{K})$ isomorphic to $L_{6,9}$ then $n \geq 6$.

Theorem 3.2. Let $\epsilon \in \mathbb{K}$, $n \in \mathbb{N}$ and let \mathfrak{g} be a Lie subalgebra of $\mathfrak{n}_n(\mathbb{K})$ isomorphic to $L_{6,24}(\epsilon)$. Then

- (1) n = 5, if there exists $\alpha \in \mathbb{K}$ such that $\epsilon = \alpha^2$ and
- (2) $n \ge 6$, if $\epsilon = \alpha^2$ for all $\alpha \in \mathbb{K}$.

Let $B = \{X_1, X_2, X_3, X_4, Z_1, Z_2\}$ be a basis of $L_{6,24}(\epsilon)$ such that the only nonzero brackets are

$$[X_1, X_2] = X_3, \quad [X_1, X_3] = Z_1, \quad [X_2, X_3] = Z_2,$$

 $[X_1, X_4] = \epsilon Z_2, \quad [X_2, X_4] = Z_1.$

The Lie algebra \mathfrak{h} generated by the set $\{X_1, X_2, X_3, Z_1, Z_2\}$ is a Lie subalgebra of $L_{6,24}(\epsilon)$ isomorphic to $L_{5,9}$. On the other hand, $L_{6,9} = L_{5,9} \oplus L_{1,1}$ then $L_{5,9}$ is an ideal of $L_{6,9}$ of codimension 1.

Let V be a vector space of dimension 3 and let W be a subspace of V of dimension 2. If $B = \{v_1, v_2, v_3\}$ is a basis of V then, by a straightforward calculation using linear algebra, it follows that W has a basis given by one of the following ways:

- (1) $\{v_1 + av_3, v_2 + bv_3\}$ with $a, b \in \mathbb{K}$;
- (2) $\{v_1 + cv_2, v_3\}$ with $c \in \mathbb{K}$;
- (3) $\{v_2, v_3\}.$

In order to prove Theorems 3.1 and 3.2 we need the following results. By E_{ij} we denote the $n \times n$ matrix with a 1 on position (i, j) and zeros elsewhere.

Lemma 3.1. Let \mathfrak{h} be a Lie subalgebra of $\mathfrak{n}_5(\mathbb{K})$ isomorphic to $L_{5,9}$. Then the center $\mathfrak{z}(\mathfrak{h})$ is given by one of the following ways

(1) $\mathfrak{z}(\mathfrak{h}) = \operatorname{span}_{\mathbb{K}} \{ E_{14} + cE_{25}, E_{15} \}$ with $c \in \mathbb{K}$; (2) $\mathfrak{z}(\mathfrak{h}) = \operatorname{span}_{\mathbb{K}} \{ E_{25}, E_{15} \}.$

Proof. Since \mathfrak{h} is a Lie subalgebra of $\mathfrak{n}_5(\mathbb{K})$ isomorphic to $L_{5,9}$, we have $\mathfrak{z}(\mathfrak{h}) = [\mathfrak{h}, [\mathfrak{h}, \mathfrak{h}]]$ and dim $\mathfrak{z}(\mathfrak{h}) = 2$. Hence $\mathfrak{z}(\mathfrak{h}) \subseteq \operatorname{span}_{\mathbb{K}} \{ E_{14}, E_{25}, E_{15} \}$ then a basis of $\mathfrak{z}(\mathfrak{h})$ is given by one of the following ways

(1) $\{E_{14} + aE_{15}, E_{25} + bE_{15}\}$ with $a, b \in \mathbb{K}$; (2) $\{E_{14} + cE_{25}, E_{15}\}$ with $c \in \mathbb{K}$; (3) $\{E_{25}, E_{15}\}$.

If the center is $\mathfrak{z}(\mathfrak{h}) = \operatorname{span}_{\mathbb{K}} \{ E_{14} + aE_{15}, E_{25} + bE_{15} \}$, it follows that

Therefore \mathfrak{h} is k-step nilpotent Lie algebra with $k \leq 2$, which contradicts that \mathfrak{h} is isomorphic to $L_{5,9}$.

Lemma 3.2. Let \mathfrak{h} be a Lie subalgebra of $\mathfrak{n}_5(\mathbb{K})$ isomorphic to $L_{5,9}$. Let $X_1 = [x_{ij}]_{1 \leq i < j \leq 5}, X_2 = [y_{ij}]_{1 \leq i < j \leq 5} \in \mathfrak{n}_5(\mathbb{K})$ such that the set

 $\{X_1, X_2, X_3, Z_1, Z_2\} \subseteq \mathfrak{n}_5(\mathbb{K})$

is a basis of \mathfrak{h} that verified $[X_1, X_2] = X_3, [X_1, X_3] = Z_1$ and $[X_2, X_3] = Z_2$.

(1) If $\mathfrak{z}(\mathfrak{h}) = \operatorname{span}_{\mathbb{K}} \{ E_{14} + cE_{25}, E_{15} \}$ with $c \neq 0$ then $y_{34} \neq 0, x_{23} = \frac{y_{23}}{y_{34}} x_{34}$ and $y_{23}(x_{12}y_{34} - x_{34}y_{12}) \neq 0.$

(2) If
$$\mathfrak{z}(\mathfrak{h}) = \operatorname{span}_{\mathbb{K}} \{ E_{14}, E_{15} \}$$
 then $(y_{12}x_{23} - x_{12}y_{23})(x_{34}y_{35} - x_{35}y_{34}) \neq 0.$

(3) If
$$\mathfrak{z}(\mathfrak{h}) = \operatorname{span}_{\mathbb{K}} \{ E_{25}, E_{15} \}$$
 then $(x_{23}y_{12} - x_{12}y_{23})(x_{34}y_{35} - x_{35}y_{34}) \neq 0.$

Proof. Since $X_3 = [X_1, X_2], Z_1 = [X_1, X_3]$ and $Z_2 = [X_2, X_3]$, we get

with

$$\begin{cases} a_1 = x_{12}(x_{23}y_{34} - y_{23}x_{34}) - (x_{12}y_{23} - y_{12}x_{23})x_{34}, \\ a_2 = x_{12}(x_{23}y_{35} + x_{24}y_{45} - y_{23}x_{35} - y_{24}x_{45}) + x_{13}(x_{34}y_{45} - y_{34}x_{45}) \\ - x_{35}(x_{12}y_{23} - y_{12}x_{23}) - x_{45}(x_{12}y_{24} + x_{13}y_{34} - y_{12}x_{24} - y_{13}x_{34}), \\ a_3 = x_{23}(x_{34}y_{45} - y_{34}x_{45}) - x_{45}(x_{23}y_{34} - y_{23}x_{34}), \\ b_1 = y_{12}(x_{23}y_{34} - y_{23}x_{34}) - y_{34}(x_{12}y_{23} - y_{12}x_{23}), \\ b_2 = y_{12}(x_{23}y_{35} + x_{24}y_{45} - y_{23}x_{35} - y_{24}x_{45}) + y_{13}(x_{34}y_{45} - y_{34}x_{45}) \\ - y_{35}(x_{12}y_{23} - y_{12}x_{23}) - y_{45}(x_{12}y_{24} + x_{13}y_{34} - y_{12}x_{24} - y_{13}x_{34}), \\ b_3 = y_{23}(x_{34}y_{45} - y_{34}x_{45}) - y_{45}(x_{23}y_{34} - y_{23}x_{34}). \end{cases}$$

(1) Let
$$c \neq 0$$
, if $\mathfrak{z}(\mathfrak{h}) = \operatorname{span}_{\mathbb{K}} \{ E_{14} + cE_{25}, E_{15} \}$, we obtain

$$\mathfrak{h} \subseteq \left\{ \begin{bmatrix} 0 & m_{12} & m_{13} & m_{14} & m_{15} \\ 0 & 0 & m_{23} & m_{24} & m_{25} \\ 0 & 0 & 0 & m_{34} & m_{35} \\ 0 & 0 & 0 & 0 & c & m_{12} \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} : m_{ij} \in \mathbb{K} \right\}$$

Therefore

- (1) $x_{45} = cx_{12}, y_{45} = cy_{12}$ and
- (2) $Z_1, Z_2 \in \operatorname{span}_{\mathbb{K}} \{ E_{14} + cE_{25}, E_{15} \}.$

By item (a), we obtain

$$\begin{cases} a_1 = x_{12}(x_{23}y_{34} - y_{23}x_{34}) - x_{34}(x_{12}y_{23} - y_{12}x_{23}), \\ a_3 = c(x_{23}(x_{34}y_{12} - y_{34}x_{12}) - x_{12}(x_{23}y_{34} - y_{23}x_{34})), \\ b_1 = y_{12}(x_{23}y_{34} - y_{23}x_{34}) - y_{34}(x_{12}y_{23} - y_{12}x_{23}), \\ b_3 = c(y_{23}(x_{34}y_{12} - y_{34}x_{12}) - y_{12}(x_{23}y_{34} - y_{23}x_{34})). \end{cases}$$

Since $c \neq 0$ and by item (b), we have $a_3 = ca_1$ and $b_3 = ca_1$. It follows that

$$\begin{aligned} x_{12}(x_{23}y_{34} - y_{23}x_{34}) &= 0, \\ y_{12}(x_{23}y_{34} - y_{23}x_{34}) &= 0. \end{aligned}$$

By a straightforward calculation, we have the only solution that it makes the set $\{Z_1, Z_2\}$ a linearly independent set i.e. $y_{34} \neq 0$ and $x_{23} = \frac{y_{23}}{y_{34}} x_{34}$. Since

we have det $\begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix} \neq 0$ with

$$\begin{cases} a_2 = x_{12}(x_{23}y_{35} - y_{23}x_{35} + cx_{24}y_{12} - cy_{24}x_{12}) + cx_{13}(x_{34}y_{12} - y_{34}x_{12}) \\ - x_{35}(x_{12}y_{23} - y_{12}x_{23}) - cx_{12}(x_{12}y_{24} + x_{13}y_{34} - y_{12}x_{24} - y_{13}x_{34}), \\ b_2 = y_{12}(x_{23}y_{35} - y_{23}x_{35} + cx_{24}y_{12} - cy_{24}x_{12}) + cy_{13}(x_{34}y_{12} - y_{34}x_{12}) \\ - y_{35}(x_{12}y_{23} - y_{12}x_{23}) - cy_{12}(x_{12}y_{24} + x_{13}y_{34} - y_{12}x_{24} - y_{13}x_{34}). \end{cases}$$

Therefore

$$\det \begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix} = \frac{-2y_{23}(y_{34}x_{12} - x_{34}y_{12})^2 a}{y_{34}^2} \neq 0$$

with $a = cy_{34}(y_{24}x_{12} + x_{13}y_{34} - x_{34}y_{13} - x_{24}y_{12}) + y_{23}(x_{35}y_{34} - x_{34}y_{35}).$ (2) If c = 0 and $\mathfrak{z}(\mathfrak{h}) = \operatorname{span}_{\mathbb{K}} \{ E_{14}, E_{15} \}$, we get

Hence $x_{45} = y_{45} = 0$, thus $a_3 = b_3 = 0$. Since the set $\{Z_1, Z_2\}$ is linearly independent, we obtain det $\begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix} \neq 0$ with

$$\begin{cases} a_2 = x_{12}(x_{23}y_{35} - y_{23}x_{35}) - x_{35}(x_{12}y_{23} - y_{12}x_{23}), \\ b_2 = y_{12}(x_{23}y_{35} - y_{23}x_{35}) - y_{35}(x_{12}y_{23} - y_{12}x_{23}). \end{cases}$$

It follows that det $\begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix} = 2(y_{12}x_{23} - x_{12}y_{23})^2(x_{34}y_{35} - x_{35}y_{34}) \neq 0.$ (3) Analysis similar to that in the proof of (2) shows that

$$(y_{12}x_{23} - x_{12}y_{23})^2(x_{34}y_{35} - x_{35}y_{34}) \neq 0.$$

The proof is now completed.

Lemma 3.3. Let \mathfrak{h} be a Lie subalgebra of $\mathfrak{n}_5(\mathbb{K})$ isomorphic to $L_{5,9}$. Let $X_1 = [x_{ij}]_{1 \leq i < j \leq 5}, X_2 = [y_{ij}]_{1 \leq i < j \leq 5} \in \mathfrak{n}_5(\mathbb{K})$ such that the set

$$\{X_1, X_2, X_3, Z_1, Z_2\} \subseteq \mathfrak{n}_5(\mathbb{K})$$

1650191-13

J. Algebra Appl. Downloaded from www.worldscientific.com by FLINDERS UNIVERSITY on 01/27/16. For personal use only.

is a basis of \mathfrak{h} that verified $[X_1, X_2] = X_3, [X_1, X_3] = Z_1, [X_2, X_3] = Z_2$ and let $X_4 = [a_{ij}]_{1 \le i < j \le 5} \in \mathfrak{n}_5(\mathbb{K})$ be nonzero matrix such that $[X_3, X_4] = 0$.

- (1) If $Z_1, Z_2, [X_1, X_4], [X_2, X_4] \in \operatorname{span}_{\mathbb{K}} \{ E_{14} + c E_{25}, E_{15} \}$ and $a_{45} = c a_{12}$ then $a_{12} = a_{23} = a_{34} = 0$ and $a_{35} = -c a_{13} \frac{y_{34}}{y_{23}};$
- (2) if $Z_1, Z_2, [X_1, X_4], [X_2, X_4] \in \operatorname{span}_{\mathbb{K}} \{ \tilde{E}_{25}, E_{15} \}$ and $a_{12} = 0$ then $a_{23} = a_{34} = a_{45} = 0$.

Proof. (1) If $Z_1, Z_2 \in \mathbb{K} \{ E_{14} + cE_{25}, E_{15} \}$, we get

$$\mathfrak{h} \subseteq \left\{ \begin{bmatrix} 0 & m_{12} & m_{13} & m_{14} & m_{15} \\ 0 & 0 & m_{23} & m_{24} & m_{25} \\ 0 & 0 & 0 & m_{34} & m_{35} \\ 0 & 0 & 0 & 0 & cm_{12} \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} : m_{ij} \in \mathbb{K} \right\}$$

for every $c \in \mathbb{K}$. We first assume that $c \neq 0$. By Lemma 3.2(1), we get

$$X_{1} = \begin{bmatrix} 0 & x_{12} & x_{13} & x_{14} & x_{15} \\ 0 & 0 & \frac{y_{23}}{y_{34}} x_{34} & x_{24} & x_{25} \\ 0 & 0 & 0 & x_{34} & x_{35} \\ 0 & 0 & 0 & 0 & cx_{12} \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}, \quad X_{2} = \begin{bmatrix} 0 & y_{12} & y_{13} & y_{14} & y_{15} \\ 0 & 0 & y_{23} & y_{24} & y_{25} \\ 0 & 0 & 0 & y_{34} & y_{35} \\ 0 & 0 & 0 & 0 & cy_{12} \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

and

$$y_{23}(x_{12}y_{34} - x_{34}y_{12}) \neq 0. (3.5)$$

Since $0 = [X_3, X_4] = [[X_1, X_2], X_4]$, we obtain

(1)
$$a_{34}\frac{y_{23}}{y_{24}}(y_{34}x_{12}-x_{34}y_{12})=0,$$

- $(2) \ a_{23}c(y_{34}x_{12} x_{34}y_{12}) = 0,$
- (3) $a_{35}\frac{y_{23}}{y_{34}}(y_{34}x_{12} x_{34}y_{12}) + a_{13}c(y_{34}x_{12} x_{34}y_{12}) a_{12}m = 0$ with $m = 2c(x_{12}y_{24} y_{12}x_{24}) + c(x_{13}y_{34} y_{13}x_{34}) + \frac{y_{23}}{y_{34}}(x_{35}y_{34} x_{34}y_{35}).$

Since $[X_2, X_4] \in \operatorname{span}_{\mathbb{K}} \{ E_{14} + c E_{25}, E_{15} \}$, we have

$$(1) \ y_{12}a_{23} - a_{12}y_{23} = 0.$$

From (a), (b), (d) and (3.5), we obtain $a_{34} = a_{23} = a_{12} = 0$. Finally, by (c) and Eq. (3.5), it follows that $a_{35} \frac{y_{23}}{y_{34}} + ca_{13} = 0$.

Now assume c = 0. From Lemma 3.2(2), we obtain

$$(y_{12}x_{23} - x_{12}y_{23})^2(x_{34}y_{35} - x_{35}y_{34}) \neq 0.$$
(3.6)

Since $[X_1, X_4], [X_2, X_4] \in \operatorname{span}_{\mathbb{K}} \{ E_{14}, E_{15} \}$, we have the following equations

$$\begin{cases} x_{12}a_{23} - a_{12}x_{23} = 0, & y_{12}a_{23} - a_{12}y_{23} = 0, \\ x_{23}a_{34} - a_{23}x_{34} = 0, & y_{23}a_{34} - a_{23}y_{34} = 0, \\ x_{23}a_{35} - a_{23}x_{35} = 0, & y_{23}a_{35} - a_{23}y_{35} = 0. \end{cases}$$

From Eq. (3.6), we get $a_{12} = a_{23} = a_{34} = a_{35} = 0$.

(2) Analysis similar to that in (1) with c = 0 shows that $a_{13} = a_{23} = a_{34} = 0$ and the proof is complete.

Proposition 3.2. Let \mathfrak{h} be a Lie subalgebra of $\mathfrak{n}_5(\mathbb{K})$ isomorphic to $L_{5,9}$. Let $X_1 =$ $[x_{ij}]_{1\leq i< j\leq 5}, X_2 = [y_{ij}]_{1\leq i< j\leq 5} \in \mathfrak{n}_5(\mathbb{K})$ such that the set

 $\{X_1, X_2, X_3, Z_1, Z_2\} \subset \mathfrak{n}_5(\mathbb{K})$

is a basis of \mathfrak{h} that verified $[X_1, X_2] = X_3, [X_1, X_3] = Z_1, [X_2, X_3] = Z_2$ and let $X_4 \in \mathbb{R}$ $\mathfrak{n}_5(\mathbb{K})$ such that $[X_i, X_4] = 0$ for i = 1, 2, 3. Then $X_4 \in \operatorname{span}_{\mathbb{K}} \{X_1, X_2, X_3, Z_1, Z_2\}$.

Proof. From Lemma 3.1, we have the center $\mathfrak{z}(\mathfrak{h})$ given by any of the following ways:

(1) $\mathfrak{z}(\mathfrak{h}) = \operatorname{span}_{\mathbb{K}} \{ E_{14} + cE_{25}, E_{15} \}$ with $c \in \mathbb{K}$;

(2) $\mathfrak{z}(\mathfrak{h}) = \operatorname{span}_{\mathbb{K}} \{ E_{25}, E_{15} \}.$

We first assume (1). If $c \neq 0$, by Lemmas 3.2(1) and 3.3(1), we get

$$X_{1} = \begin{bmatrix} 0 & x_{12} & x_{13} & x_{14} & x_{15} \\ 0 & 0 & \frac{y_{23}}{y_{34}} x_{34} & x_{24} & x_{25} \\ 0 & 0 & 0 & x_{34} & x_{35} \\ 0 & 0 & 0 & 0 & cx_{12} \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}, \quad X_{2} = \begin{bmatrix} 0 & y_{12} & y_{13} & y_{14} & y_{15} \\ 0 & 0 & y_{23} & y_{24} & y_{25} \\ 0 & 0 & 0 & y_{34} & y_{35} \\ 0 & 0 & 0 & 0 & cy_{12} \\ 0 & 0 & 0 & 0 & cy_{12} \\ 0 & 0 & 0 & 0 & cy_{12} \\ 0 & 0 & 0 & 0 & cy_{12} \\ 0 & 0 & 0 & 0 & cy_{12} \\ 0 & 0 & 0 & 0 & cy_{12} \\ 0 & 0 & 0 & 0 & cy_{12} \\ 0 & 0 & 0 & 0 & cy_{12} \\ 0 & 0 & 0 & 0 & cy_{12} \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix},$$
$$y_{23}(y_{34}x_{12} - x_{34}y_{12}) \neq 0 \qquad (3.7)$$

following equations

(1)
$$a_{24}x_{12} - a_{13}x_{34} = 0;$$

(2) $a_{24}y_{12} - a_{13}y_{34} = 0;$
(3) $(a_{25} - ca_{14})x_{12} - a_{13}(\frac{cx_{13}y_{34}}{y_{23}} - x_{35}) = 0;$
(4) $(a_{25} - ca_{14})y_{12} - a_{13}(\frac{cy_{13}y_{34}}{y_{23}} - y_{35}) = 0.$

From items (a), (b) and from Eq. (3.7), we obtain $a_{13} = a_{24} = 0$. Hence, from items (c), (d) and from Eq. (3.7) we have

If c = 0, by Lemmas 3.2(2) and 3.3(1), we get

 $(y_{12}x_{23} - x_{12}y_{23})(x_{34}y_{35} - x_{35}y_{34}) \neq 0$

lowing equations

$$\begin{cases} x_{12}a_{24} - a_{13}x_{34} = 0, & x_{12}a_{25} - a_{13}x_{35} = 0\\ y_{12}a_{24} - a_{13}y_{34} = 0, & y_{12}a_{25} - a_{13}y_{35} = 0. \end{cases}$$

By Eq. (3.8), it is not difficult to see that

(2) Analysis similar to that in (1) with c = 0 shows that

and the proposition is proved.

Proposition 3.3. Let $\epsilon \in \mathbb{K}$ and let \mathfrak{h} be a Lie subalgebra of $\mathfrak{n}_5(\mathbb{K})$ isomorphic to $L_{5,9}$. Let $X_1 = [x_{ij}]_{1 \leq i < j \leq 5}, X_2 = [y_{ij}]_{1 \leq i < j \leq 5} \in \mathfrak{n}_5(\mathbb{K})$ such that the set

$$\{X_1, X_2, X_3, Z_1, Z_2\} \subseteq \mathfrak{n}_5(\mathbb{K})$$

is a basis of \mathfrak{h} that verified $[X_1, X_2] = X_3, [X_1, X_3] = Z_1, [X_2, X_3] = Z_2$. Let $X_4 \in \mathfrak{n}_5(\mathbb{K})$ such that

(1) $\{X_1, X_2, X_3, X_4, Z_1, Z_2\}$ is linearly independent and

(2)
$$[X_1, X_4] = \epsilon Z_2, [X_2, X_4] = Z_1, [X_3, X_4] = [Z_j, X_4] = 0$$
 for $j = 1, 2$.

Then there exists $a \in \mathbb{K}$ such that $a^2 - \epsilon = 0$.

Proof. From Lemma 3.1, we have the center $\mathfrak{z}(\mathfrak{h})$ given by one of the following ways:

- (1) $\mathfrak{z}(\mathfrak{h}) = \operatorname{span}_{\mathbb{K}} \{ E_{14} + cE_{25}, E_{15} \}$ with $c \in \mathbb{K}$;
- (2) $\mathfrak{z}(\mathfrak{h}) = \operatorname{span}_{\mathbb{K}} \{ E_{25}, E_{15} \}.$

We first assume (1). If $c \neq 0$, by Lemmas 3.2(1) and 3.3(1), we get

$$X_{1} = \begin{bmatrix} 0 & x_{12} & x_{13} & x_{14} & x_{15} \\ 0 & 0 & \frac{y_{23}}{y_{34}} x_{34} & x_{24} & x_{25} \\ 0 & 0 & 0 & x_{34} & x_{35} \\ 0 & 0 & 0 & 0 & cx_{12} \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}, \quad X_{2} = \begin{bmatrix} 0 & y_{12} & y_{13} & y_{14} & y_{15} \\ 0 & 0 & y_{23} & y_{24} & y_{25} \\ 0 & 0 & 0 & y_{34} & y_{35} \\ 0 & 0 & 0 & 0 & cy_{12} \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}, \quad (3.9)$$

 $y_{23}(y_{34}x_{12} - x_{34}y_{12}) \neq 0$

(1)
$$a_{24}x_{12} - a_{13}x_{34} = -a_{13}x_{34} - a_{24}x_{12}$$

 $(2) \ a_{24}y_{12} - a_{13}y_{34} = -a_{13}y_{34} - a_{24}y_{12},$

(3)
$$a_{13}y_{34} = (x_{12}y_{23} - \frac{y_{12}y_{23}x_{34}}{y_{24}})x_{34}$$

(4)
$$a_{13}x_{34} = \epsilon (x_{12}y_{23} - \frac{y_{12}y_{23}x_{34}}{y_{34}})y_{34}$$

By (a), (b) and Eq. (3.9), we have $a_{24} = 0$. By (c), (d) and Eq. (3.9), we obtain $\epsilon = \frac{x_{34}^2}{y_{34}^2}$. If c = 0, by Lemmas 3.2(2) and 3.3(1), we have

$$(y_{12}x_{23} - x_{12}y_{23})(x_{34}y_{35} - x_{35}y_{34}) \neq 0$$

following equations

$$\begin{cases} x_{12}a_{24} - a_{13}x_{34} = \epsilon(y_{12}(x_{23}y_{34} - y_{23}x_{34}) - (x_{12}y_{23} - y_{12}x_{23})y_{34}), \\ x_{12}a_{25} - a_{13}x_{35} = \epsilon(y_{12}(x_{23}y_{35} - y_{23}x_{35}) - (x_{12}y_{23} - y_{12}x_{23})y_{35}), \\ y_{12}a_{24} - a_{13}y_{34} = x_{12}(x_{23}y_{34} - y_{23}x_{34}) - (x_{12}y_{23} - y_{12}x_{23})x_{34}, \\ y_{12}a_{25} - a_{13}y_{35} = x_{12}(x_{23}y_{35} - y_{23}x_{35}) - (x_{12}y_{23} - y_{12}x_{23})x_{35}. \end{cases}$$

By Eq. (3.10), we verify computationally that $\{X_1, X_2, X_3, X_4, Z_1, Z_2\} \subseteq \mathfrak{n}_5(\mathbb{K})$ is a linearly independent set if there exists $\alpha \in \mathbb{K}$ such that $\alpha^2 - \epsilon = 0$.

(2) Analysis similar to that in (1) with c = 0 shows that $\{X_1, X_2, X_3, X_4, Z_1, Z_2\} \subseteq \mathfrak{n}_5(\mathbb{K})$ is linearly independent if there exists $a \in \mathbb{K}$ such that $a^2 - \epsilon = 0$. It completes the proof.

Proof of Theorem 3.1. Since \mathfrak{g} is a Lie algebra isomorphic to $L_{6,9}$, we have

- (1) $n \ge 5$, by Eq. (3.4) and
- (2) there exists a basis $\{X_1, X_2, X_3, X_4, Z_1, Z_2\}$ of \mathfrak{g} such that $[X_1, X_2] = X_3, [X_1, X_3] = Z_1, [X_2, X_3] = Z_2$ and $[X_i, X_4] = [Z_j, X_4] = 0$ for i = 1, 2, 3 and j = 1, 2.

By Proposition 3.2, we obtain $n \ge 6$.

Proof of Theorem 3.2. Since \mathfrak{g} is a Lie algebra isomorphic to $L_{6,24}(\epsilon)$, we have

- (1) $n \ge 5$, by Eq. (3.4) and
- (1) there exists a basis $\{X_1, X_2, X_3, X_4, Z_1, Z_2\}$ of \mathfrak{g} such that $[X_1, X_2] = X_3, [X_1, X_3] = Z_1, [X_2, X_3] = Z_2$ and $[X_1, X_4] = \epsilon Z_2, [X_2, X_4] = Z_1$ and $[X_4, Z_j] = 0$ for j = 1, 2.

If n = 5, by Proposition 3.3, there exists $a \in \mathbb{K}$ such that $a^2 - \epsilon = 0$. It completes the proof.

By Theorems 3.1 and 3.2, we easily obtain the following corollaries.

Corollary 3.1. $\mu_{nil}(L_{6,9}) \ge 6.$

Corollary 3.2. Let $\epsilon \in \mathbb{K}$ then

$$\mu_{\mathrm{nil}}(L_{6,24}(\epsilon)) \ge \begin{cases} 5 & \text{if } \exists \alpha \in \mathbb{K} : \epsilon = \alpha^2, \\ 6 & \text{if } \epsilon \neq \alpha^2 \text{ for all } \alpha \in \mathbb{K}. \end{cases}$$

Acknowledgments

This is part of the author's Ph.D. thesis, which was written under supervision of Professor Leandro Cagliero at the University of Córdoba, Argentina.

References

- J. C. Benjumea-Acevedo, J. Nuñez-Valdes and A. F. Tenorio-Villalón, Minimal linear representations of the low-dimensional nilpotent Lie algebras, *Math. Scand.* 102(1) (2008) 17–26.
- [2] Y. Benoist, Une nilvariete non affine, J. Diff. Geom. 41 (1995) 21-52.
- [3] D. Burde, A refinement of Ado's theorem, Arch. Math. **70** (1998) 118–127.
- [4] D. Burde, B. Eick and W. de Graaf, Computing faithful representations for nilpotent Lie algebras, J. Algebra 322(3) (2009) 602–612.

- [5] D. Burde and W. Moens, Minimal faithful representations of reductive Lie algebras, Arch. Math. 89(6) (2007) 513–523.
- [6] D. Burde and W. Moens, Faithful Lie algebra modules and quotients of the universal enveloping algebra, J. Alg. 325(1) (2011) 440–460.
- [7] L. Cagliero and N. Rojas, Faithful representation of minimal dimension of current Heisenberg Lie algebras, *Internat. J. Math.* 20(11) (2009) 1347–1362.
- [8] W. A. De Graaf, Constructing faithful matrix representations of Lie algebras, in Proc. 1997 Int. Symp. Symbolic and Algebraic Computation, ISSAC97 (ACM Press, New York, 1997), pp. 54–59.
- [9] W. A. De Graaf, Classification of 6-dimensional nilpotent Lie algebras over fields of characteristic not 2, J. Algebra 309 (2007) 640–653.
- [10] R. Ghanam, I. Strugar and G. Thompson, Matrix representations for low dimensional Lie algebras, *Ext. Math.* 20(2) (2005) 151–184.
- [11] R. Ghanam, G. Thompson and S. Tonon, Representations for six-dimensional nilpotent Lie algebras, *Hadronic J.* 29(3) (2006) 299–317.
- [12] M.-P. Gong, Classification of nilpotent Lie algebras of dimension 7 (over algebraically closed fields and R), Ph.D. thesis, University of Waterloo, Waterloo, Canada (1998).
- [13] N. Jacobson, Schur's theorem on commutative matrices, Bull. Amer. Math. Soc. 50 (1944) 431–436.
- [14] N. Jacobson, *Lie Algebras* (Interscience Publishers, New York, 1962).
- [15] Y. Kang and C. Bai, Refinement of Ado's theorem in low dimensions and application in affine geometry, *Comm. Algebra* 36(1) (2008) 82–93.
- [16] J. Milnor, On fundamental groups of complete affinely flat manifolds, Adv. Math. 25 (1977) 178–187.
- [17] M. Mirzakhani, A simple proof of a theorem of Schur, Amer. Math. Monthly 105(3) (1992) 260–262.
- [18] N. Rojas, Minimal faithful representation of the Heisenberg lie algebra with abelian factor, J. Lie Theory 23(4) (2013) 1105–1114.
- [19] I. Schur, Zur theorie vertauschbarer matrizen, J. Reine Angew. Math. 130 (1905) 66–76.