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1 Introduction

Nichols algebras are graded connected algebras with a comultiplication in a braided
sense. In particular, the Jordan plane and the super Jordan plane are two Nichols
algebras that play an important role in the classification of pointed Hopf algebras with
finite Gelfand–Kirillov dimension [1,2].

The Jordan plane was first defined in [4] and considered in many papers, e.g. [3],
see also the references in [2,5]. Its representation theory was studied in [5].

The purpose of this note is to begin the study of the representation theory of the super
Jordan planeB: we classify the simple finite-dimensionalB-modules (all of dimension
1, Theorem 2.6) and the indecomposable B-modules of dimension 2 (Theorem 3.2)
and 3 (Theorem 3.11). We also observe that one of the generators of B has at most
two eigenvalues in every indecomposable B-module (Theorem 2.11) and describe two
families of indecomposable modules in every dimension.

2 Basic facts

2.1 Notations and conventions

Fix an algebraically closed fieldk of characteristic 0; all vector spaces, tensor products,
Hom spaces, algebras are over k. All algebras are associative and all modules are left,
unless explicitly stated. Let A be a k-algebra; then [ , ] denotes the Lie bracket given
by the commutator. As customary we use indistinctly the languages of modules and
representations. Denote byAM the category of finite dimensional A-modules. Given
a k-vector space V , gl(V ) denotes the Lie algebra of all linear operators on V . The
Jacobson radical of an algebra A it will be denoted by Jac A.

2.2 The Jordan plane

The Jordan plane is the free associative algebra A in generators y1 and y2 subject to
the quadratic relation

y1y2 − y2y1 − y22 .

The algebraA is a Nichols algebra, GKdimA = 2 and {ya
1 yb

2 :a, b ∈ N0} is a basis of
A. By Proposition 3.4 of [5], A is a Koszul algebra.

2.3 The super Jordan plane

Let x21 = x1x2 + x2x1 in the free associative algebra in generators x1 and x2. Let B
be the algebra generated by x1 and x2 with defining relations

x21 , (2.1)

x2x21 − x21x2 − x1x21. (2.2)
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The algebra B (which is graded by deg x1 = deg x2 = 1) was introduced in [1,2] and
is called the super Jordan plane. Since B is not a quadratic algebra, it follows that B
is not Koszul; see e. g. § 2.1 of [6].

Proposition 2.1 [2] The algebra B is a Nichols algebra, GKdimB = 2 and
{xa

1 xb
21xc

2 :a ∈ {0, 1}, b, c ∈ N0} is a basis of B. ��
The following identities are valid in B:

x21x1 = x1x21, (2.3)

x22 x1 = x1x22 + x1x2x1, (2.4)

x21x22 = (x22 − x21)x21. (2.5)

Indeed, in presence of (2.1), (2.2) is equivalent to (2.4).
By (2.5) and Proposition 2.1, the subalgebra of the super Jordan plane B generated

by x22 and x21, is isomorphic to the Jordan plane via y1 �→ x22 and y2 �→ x21.
It is convenient to introduce s = x21 and t = x22 . By (2.5), st = ts −s2 and whence

[t, sn] = nsn+1, n ≥ 1; x1s = sx1; x2t = t x2; t x1 = x1(t + s). (2.6)

Lemma 2.2 Given b, c ∈ N, we have that

xb
21xc

2
∗= (x2 − bx1)xb

21xc−1
2 , x1xb

21xc
2

♥= x1x2xb
21xc−1

2 .

Proof We prove ∗ by induction. For b = c = 1, the relation is valid by (2.2). Suppose
that ∗ is valid for b − 1 > 0 and c = 1. Then

xb
21x2 = xb−1

21 x21x2 = xb−1
21 (x2x21 − x1x21)

= (x2 − (b − 1)x1)xb−1
21 x21 − xb

21x1 = (x2 − bx1)xb
21.

Fix b ∈ N and assume that the relation is true for c − 1, with c > 1. Thus

xb
21xc

2 = (xb
21xc−1

2 )x2 = (x2 − bx1)xb
21xc−2

2 x2 = (x2 − bx1)xb
21xc−1

2 .

The proof of ♥ is similar. ��
The next result follows immediately from Proposition 2.1 and Lemma 2.2.

Proposition 2.3 The set {1, x1, x2, x1x2} generates B as a right A-module. ��

2.4 Simple modules

Let (V, ρ) be a finite-dimensional representation of B; set X1 = ρ(x1), X2 = ρ(x2),
S = ρ(s) and T = ρ(t) and

V0 = ker X1.
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Then V0 is always 
= 0 and it is stable under S and T by (2.6). In fact, let E12(n) ∈
gl(kn) (or E12 if n is clearly from the context) the matrix whose the entry 1 × 2 is
equal to 1 and all other entries are equal to 0. Then the Jordan form of X1 consists
of r blocks like E12(2) and s blocks of size 1 filled by 0. Hence dim V = 2r + s;
r = 0 ⇐⇒ V = V0.

Lemma 2.4 Assume the previous notations. Then:

(i) S and T have a simultaneous eigenvector in V0.
(ii) W = X2V0 ∩ V0 is a submodule of V .
(iii) U = X2V0 + V0 is a submodule of V .

Proof (i) The subspace of gl(V ) generated by T and Sn , n ∈ N0, is a solvable Lie
subalgebra by (2.6); then Lie Theorem applies.

(ii) Clearly X1W ⊆ X1V0 = {0} ⊆ W . It remains to show that X2W ⊆ W . In fact,
letw ∈ W , this is,w ∈ V0 andw = X2v for some v ∈ V0. Clearly X2w ∈ X2V0.
Moreover,

X1(X2w) = X1X2
2v

(2.4)= (X2
2 X1 − X1X2X1)v = 0 �⇒ X2w ∈ W.

(iii) Since B · V0 ⊆ X2V0 and B · (X2V0) ⊆ V0, the claim follows. ��
Lemma 2.5 If V ∈BM is simple, then V = V0.

Proof Assume that V 
= V0. By Lemma 2.4 we have that W = X2V0 ∩ V0 = 0 and
V = X2V0+V0, so that V = X2V0⊕V0. ByLemma2.4 (i), there exists a simultaneous
eigenvector v ∈ V0 of S and T , i.e. there exist α, τ ∈ k such that Sv = αv, T v = τv.

Now M = span{v, X2v} 
= 0 is a B-submodule of V and by simplicity of V ,
M = V . By our assumption, X2v /∈ V0; hence � = {v, X2v} is a basis of V . Note

that [X1]� =
(
0 α

0 0

)
and [X2]� =

(
0 τ

1 0

)
. The relation X2

2 X1 = X1X2
2 + X1X2X1 is

satisfied if and only if τα = ατ + α2. Therefore α = 0 and V = V0, a contradiction.
��

Let A ∈ End(kn). Denote by k
n
A the B-module defined by X1 = 0 and X2 = A.

Every B-module V with V = V0 is isomorphic to k
n
A for some A. If B ∈ End(km),

then k
n
A � k

m
B iff n = m and A and B are similar matrices.

Theorem 2.6 Every simple B-module is isomorphic to k
1
a for a unique a ∈ k.

Proof This follows from Lemma 2.5 and the preceding considerations. ��
Corollary 2.7 Let ρ : B → End V a finite dimensional representation of B and
B = ρ(B). Then there exists an integer s such that B/Jac B � k

s and Jac B = {x ∈
B:x is nilpotent}.
Proof Since B/Jac B is semisimple and k is algebraically closed, there are positive
integers n1, . . . , ns such that B/Jac B = Mn1(k) × · · · × Mns (k). The composition

B ρ
B

π
B/Jac B

π j
Mn j (k)
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is a finite dimensional simple representation of B. Hence, by Theorem 2.6, n1 =
· · · = ns = 1. Thus, B/Jac B � k

s . Let x ∈ B a nilpotent element. Then π(x) is a
nilpotent element of B/Jac B. Since B/Jac B is commutative, we obtain that π(x) ∈
Jac (B/Jac B) = {0}. Hence, x ∈ Jac B. On the other hand, B finite dimensional
implies that Jac B is a nilpotent ideal. Consequently, Jac B = {x ∈ B:x is nilpotent}.

��
We also remark:

Proposition 2.8 If V is an indecomposable B-module with V = V0, then there exist
n ∈ N and λ ∈ k such that V is isomorphic to k

n
A where A is the Jordan block of size

n with eigenvalue λ. ��
If A is the Jordan block of size n with eigenvalue λ, then denote Aλ = k

n
A.

2.5 Indecomposable modules

Throughout this subsection, V , X1, X2, T and S are as in § 2.4. When V is indecom-
posable, wewill prove that T has a unique eigenvalue. In order to do this, the following
relations are useful.

Lemma 2.9 Let λ ∈ k, z := t − λ id ∈ B and n ∈ N. Then

zn x1
♣= x1

n∑
j=0

n!
(n − j)! s j zn− j , zn x1x2

♦= x1x2

n∑
j=0

n!
(n − j)! s j zn− j .

Proof We prove ♣ by induction on n; the proof of ♦ is similar. We will use that
x1zsn = x1xn

21z + nx1sn+1, which can be verified easily. Note that

zx1 = x1z + x1x2x1 = x1z + x1s = x1(z + s),

and whence the formula is true for n = 1. Denote ζn, j := n!
(n− j)! , 0 ≤ j ≤ n. Consider

n > 1 and assume that the formula is true for n − 1. Then

zn x1 = (zx1)
n−1∑
j=0

ζn−1, j s
j zn−1− j (2.2)= (x1z + x1s)

n−1∑
j=0

ζn−1, j s
j zn−1− j

=
n−1∑
j=0

ζn−1, j (x1zs j )zn−1− j +
n−1∑
j=0

ζn−1, j x1s j+1zn−1− j = x1

n∑
j=0

ζn, j s
j zn− j .

��
Let λ be an eigenvalue of T . Denote by V T

λ the generalized eigenspace of V
associated to λ, i. e. V T

λ := ∪ j≥0 ker (T − λ id) j

Lemma 2.10 V T
λ is a B-submodule of V , for all eigenvalue λ of T .
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Proof Clearly V T
λ = ker (T − λ id)r = ker

(
X2
2 − λ id

)r
, where r is the maximal size

of λ-blocks in the Jordan normal form of T . Thus V T
λ is stable by X2. It remains to

show that it stable by X1. By Lemma 2.9, if u ∈ V T
λ then

(T − λ id)n X1u = X1

n∑
j=0

ζ j,n S j (T − λ id)n− j u.

By Lemma 2.1 of [5], S is nilpotent. Taking n big enough, it follows that (T −
λ id)n X1u = 0 and whence X1u ∈ V T

λ . ��
Now Lemma 2.10 implies the next result.

Theorem 2.11 Let λ1, . . . , λt be the different eigenvalues of T . Then V decomposes
into the direct sum of the B-submodules V T

λi
.

In particular, if V is indecomposable then T has a unique eigenvalue. Hence either
X2 has a unique eigenvalue or else the eigenvalues of X2 are λ and −λ, with λ ∈ k

×.
��

Given λ ∈ k, denote by BMλ the full subcategory of BM whose objects are the
B-modules V such that V = ker (T − λ id)m , for some m ∈ N0. With this notation,
the next result follows immediately from Theorem 2.11.

Corollary 2.12 BM � ∏
λ∈k BMλ. ��

The next result will be useful in § 3.

Lemma 2.13 Let � = {v1, . . . , vn} be a basis of V such that [X1]� = E12 and W a
one-dimensional B-submodule of V . Then:

(i) If L is a complement (as a B-module) of W in V then L ∩ V0 = 〈v1〉.
(ii) W = 〈v1〉 does not have a complement (as a B-submodule) in V .

Proof (i) Assume that W = 〈w〉 and {u1, u2, . . . , un−1} is a basis of L . Since
W0 = W ∩ V0 
= 0, it follows that W ⊂ V0. Using that v2 is a linear combination
of w, u1, u2, . . . , un−1 we see that v1 = X1v2 ∈ L; hence v1 ∈ V0 ∩ L .

(ii) It follows at once from (i). ��

3 Indecomposable representations of dimension 2 and 3

3.1 Dimension 2

In this subsection we describe all 2-dimensional indecomposable representations of
B. Fix (V, ρ) a 2-dimensional representation of B.

Lemma 3.1 If V 
= V0 then V is indecomposable.

Proof Suppose that V is decomposable, i.e. there are non-trivial submodules U and
W such that V = U ⊕ W . Then V0 = U0 ⊕ W0 = U ⊕ W = V . ��
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Define representations of B on the vector space k
2 given by X1 = E12 and the

following action of x2:

� X2 =
(

a b
0 a

)
, a, b ∈ k. This is denoted by Ua,b.

� X2 =
(

a 0
0 −a

)
, a ∈ k

×. This is denoted by Va .

It is easy to check that these are indecomposable modules pairwise non-isomorphic.

Theorem 3.2 Every 2-dimensional indecomposable representation ofB is isomorphic
either to Ua,b, or to Va, or to k

2
λ for unique a, b, λ ∈ k.

This confirms Theorem 2.11.

Proof If V = V0, then Proposition 2.8 applies. Assume that V0 
= 0; then there exists

a basis � = {v1, v2} of V such that [X1]� = E12. Let [X2]� =
(

a b
c d

)
. Then (2.4) is

satisfied if and only if

c(a + d) = 0 and d2 + c = a2.

Suppose that c 
= 0. Then by the first equation it follows that d = −a. Replacing in
the second equation we have that c = 0, which is a contradiction. Therefore c = 0
and consequently d = a or d = −a.

If d = a then V � Ua,b. Assume that d = −a 
= 0 and take w1 = v1 and
w2 = −b

2a v1 + v2. Then 	 = {w1, w2} is a basis of V such that [X1]	 = E12 and

[X2]	 =
(

a 0
0 −a

)
. Thus V � Va . ��

Corollary 3.3 If Ext1(k1a,k1b) 
= 0 then a = ±b. ��

3.2 Dimension 3

Let V be a B-module of dimension 3 such that V 
= V0. Throughout this subsection,
� = {v1, v2, v3} denotes a basis of V such that [X1]� = E12. We define four families
of representations of B on the vector space V determined by the following action of
[X2]�, for all a, b, c, d, e ∈ k:


1 :
⎛
⎝a b c
0 d e

0 a2−d2

e −d

⎞
⎠ , e ∈ k

×; 
2 :
⎛
⎝a b c
0 a 0
0 d e

⎞
⎠ ;


3 :
⎛
⎝a b c2−a2

d
0 c 0
d e −a

⎞
⎠ , d ∈ k

×; 
4 :
⎛
⎝a b c
0 −a 0
0 d e

⎞
⎠ , a ∈ k

×.
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Lemma 3.4 The families 
1, 
2, 
3 and 
4 contain all 3-dimensional representa-
tions of B, up to isomorphism.

Proof Let [X2]� =
⎛
⎝α β γ

δ ε ζ

η θ ι

⎞
⎠. Then (2.4) is valid if and only if

⎧⎪⎪⎨
⎪⎪⎩

δ(α + ε) = −ζη

ζ(ε + ι) = −γ δ

η(α + ι) = −δθ

ε2 − α2 = −δ + γ η − ζθ

(3.1)

Claim: If the system (3.1) has solution then δ = 0.
Assume that δ 
= 0. If ζ = 0 then γ = 0 and ε = −α. Thus, δ = 0 which is a
contradiction. If ζ 
= 0 then

γ = −ζ(ε + ι)

δ
, η = −δ(α + ε)

ζ
and θ = (α + ε)(α + ι)

ζ
.

From the last equation of (3.1), δ = 0 which is again a contradiction.
Assume δ = 0. Thus ζη = 0. If ζ 
= 0 then η = 0, ι = −ε and θ = α2−ε2

ζ
. Hence

V belongs to the family 
1. When ζ = 0 and η 
= 0, it follows that ι = −α and
γ = ε2−α2

η
. Thus, V belongs to the family 
3. If ζ = 0 and η = 0 then ε = |α|. In

this case, V belongs to the families 
2 or 
4. ��
Remark 3.5 Let L a B-submodule of V of dimension 2 such that L ∩ V0 is one-
dimensional. Fix L := L/(L ∩ V0) = 〈u〉. Since u /∈ V0, we can suppose that
u = αv1 + v2 + γ v3 ∈ L , with α, γ ∈ k.

Proposition 3.6 Let V be a B-module. Then:

(i) the representations in the family 
1 are always indecomposable;
(ii) a representation in the family 
2 is indecomposable if and only if c 
= 0 and

e = a or d 
= 0 and e = a;
(iii) the representations in the family 
3 are always indecomposable;
(iv) a representation in the family 
4 is indecomposable if and only if c 
= 0 and

e = a or d 
= 0 and e = −a.

Proof (i) The unique one-dimensionalB-submodule of V is 〈v1〉which does not have
complement by Lemma 2.13 (ii).

(ii) Let V be a representation of B of the type 
2. Suppose that W = 〈w〉 is a one-
dimensional B-submodule of V . Since W ⊂ V0, see §2.4, w = αv1 + βv3,
with α, β ∈ k. Note that X2w = γw, γ ∈ k, if and only if β(γ − e) = 0 and
α(γ − a) = βc. Consequently, the one-dimensional B-submodules of V are:

� 〈v1〉, 〈v3〉, c = 0, e 
= a,
� 〈αv1 + βv3〉, c = 0, e = a,
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� 〈v1〉, 〈v1 + e−a
c v3〉, c 
= 0, e 
= a

� 〈v1〉, c 
= 0, e = a.

Assume e 
= a. If c 
= 0, V = 〈v1 + e−a
c v3〉 ⊕ 〈v1, v1 + v2 + d

a−e v3〉. If c = 0,

V = 〈v3〉 ⊕ 〈v1, v1 + v2 + d
a−e v3〉. If c = d = 0, V = 〈v1, v2〉 ⊕ 〈v3〉. Hence, V is

decomposable.
Conversely, suppose e = a and c 
= 0. Then the unique one-dimensionalB-submodule
of V is 〈v1〉 which does not have complement. Suppose that e = a and d 
= 0.
Assume that W is a one-dimensional B-submodule of V which admits a complement
L = 〈u1, u2〉. Then by Lemma 2.13 (ii), v1 ∈ L ∩ V0. By Remark 3.5, L = 〈u〉 where
u = αv1 + v2 +βv3. Thus X2u = γ u, γ ∈ k, if and only if γ = a and β(a − e) = d.
Since d 
= 0 and e = a then W does not have complement in V .

(iii) Suppose that W = 〈w〉 is a one-dimensional B-submodule of V which admits a
complement L . Then by Lemma 2.13 (ii), 〈v1〉 = L ∩V0, which is a contradiction
because d 
= 0.

(iv) Analogous to item (ii).
��

3.2.1 Isomorphism classes in 
1

Assume V in the family 
1. We distinguish: for all a, b, c, d, e ∈ k

� X2 =
⎛
⎝a b c
0 d e

0 a2−d2

e −d

⎞
⎠ , e ∈ k

×. This is denoted by Ya,b,c,d,e.

� X2 =
⎛
⎝a b 0
0 a 1
0 0 −a

⎞
⎠. This is denoted by Ua,b.

By Proposition 3.6 (i), these representations are indecomposable. Note that Ua,b =
Ya,b,0,a,1.

Proposition 3.7 Every 3-dimensional indecomposable representation V of B in 
1
is isomorphic either to Ua,b, or to Ya,b,c,d,e. Moreover,

Ya,b,c,d,e � Ya,b′,c′,d ′,e′ if and only if (a − d ′)ce′ − c′e
e′ = e(b′ − b) + c(d ′ − d).

In particular, Ua,b � Ua,b′
if and only if b = b′.

Proof Since 〈X2v1〉 = Im X1, we obtain that a is invariant. Consider the indecompos-
able representation Ya,b′,c′,d ′,e′ of B. If d ′ = a, taking the basis {v1, c′

e′ v1 + v2,
1
e′ v3}

we conclude that Ya,b′,c′,d ′,e′ � Ua,b′
.

Note that Ya,b,c,d,e and Ya,b′,c,d ′,e′ are isomorphic if and only if there exists a basis
{w1, w2, w3} of V such that X1w1 = X1w3 = 0, X1w2 = w1, X2w1 = aw1, X2w2 =
b′w1 + d ′w2 + a2−d ′2

e′ w3 and X2w3 = c′w1 + e′w2 − d ′w3. Since 〈v1〉 = Im X1 and
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V0 has dimension 2, then we can consider w1 = v1, w2 = λ1v1 + λ2v2 + λ3v3 and
w3 = β1v1 + β3v3, λ1, λ2, λ3, β1, β3 ∈ k. Then, Ya,b,c,d,e � Ya,b′,c,d ′,e′ if and only

if (a − d ′)ce′ − c′e
e′ = e(b′ − b) + c(d ′ − d). ��

3.2.2 Isomorphism classes in 
2

Consider V in the family 
2 and the following distinguish representations: for all
a ∈ k

� X2 =
⎛
⎝a 0 0
0 a 0
0 1 a

⎞
⎠. This is denoted by Ra .

� X2 =
⎛
⎝a 0 1
0 a 0
0 0 a

⎞
⎠. This is denoted by Sa .

� X2 =
⎛
⎝a 0 b
0 a 0
0 c a

⎞
⎠ , b ∈ k

× or c ∈ k
×. This is denoted by Ta,b,c.

By Proposition 3.6 (ii), these are indecomposable representations. Notice that Ra =
Ta,0,1 and Sa = Ta,1,0.

Proposition 3.8 Every 3-dimensional indecomposable representation V of B in 
2
is isomorphic either to Ra, or to Sa or to Ta,b,c. Moreover, Ta,b,c and Ta,b′,c′ are
isomorphic if and only if bc = b′c′.

Proof Let V ′ the representation of B given by

[X2]� =
⎛
⎝a d ′ b′
0 a 0
0 c′ a

⎞
⎠ .

If b′ = 0, then by Proposition 3.6 (ii) we have that c′ 
= 0. In this case, taking the
basis {v1, v2, d ′v1 + c′v3} of V ′, we conclude that V ′ � Ra . Similarly, if c′ = 0
then b′ 
= 0. Taking the basis {v1, v2 − d ′

b′ v3, 1
b′ v3} of V ′, we obtain that V ′ � Sa . If

b, b′, c, c′ ∈ k
×, taking the basis {v1, v2, d ′

c′ v1 + v3}, it follows that V ′ � Ta,b′,c′ .
Finally, notice that Ta,b,c � Ta,b′,c′ if and only if there exists a basis {w1, w2, w3}

of k3 such that X1w1 = X1w3 = 0, X1w2 = w1, X2w1 = aw1, X2w2 = aw2 + cw3
and X2w3 = bw1 + aw3. We can assume w1 = v1, w2 = λ1v1 + λ2v2 + λ3v3 and
w3 = β1v1 + β3v3, λ1, λ2, λ3, β1, β3 ∈ k . Note that X2w2 = w1 if and only if
λ2 = 1. Moreover, X2w2 = aw2 + cw3 and X2w3 = bw1 + aw3 if and only if
bc = b′c′. ��

3.2.3 Isomorphism classes in 
3

Consider V in the family 
3 and the following distinguished representations: for all
a, b, c, d, e ∈ k
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� X2 =
⎛
⎝a b c2−a2

d
0 c 0
d e −a

⎞
⎠ , d ∈ k

×. This is denoted by Wa,b,c,d,e.

� X2 =
⎛
⎝a b 0
0 a 0
1 0 −a

⎞
⎠. This is denoted by Ua,b.

By Proposition 3.6 (iii), these representations are indecomposable. Observe that
Ua,b = Wa,b,a,1,0.

Proposition 3.9 Every 3-dimensional indecomposable representation V of B in 
3
is isomorphic either to Ua,b, or to Wa,b,c,d,e. Moreover,

Wa,b,c,d,e � Wa′,b′,c,d ′,e′ if and only if
ae − bd − ce

d
= a′e′ − b′d ′ − ce′

d ′ .

In particular, Ua,b � Ua,b′ iff b = b′.
Proof Since the characteristic polynomial of X2 is (t − c)2(t + c), c is an invariant.
Let the indecomposable representation Wa′,b′,c,d ′,e′ of B. If c = a, taking the basis
{v1,− e

d v1 + v2, dv3} we conclude that Wa′,b′,c,d ′,e′ � Ua′,b′ . Note that Wa,b,c,d,e �
Wa′,b′,c,d ′,e′ if and only if there is a basis {w1, w2, w3} of k3 such that X1w1 =
X1w3 = 0, X1w2 = w1, X2w1 = aw1, x2w2 = aw2 +cw3 and X2w3 = bw1+aw3.
We can assume w1 = v1, w2 = λ1v1 + λ2v2 + λ3v3 and w3 = β1v1 + β3v3, where
λ1, λ2, λ3, β1, β3 ∈ k. However X2w1 = a′w1 + d ′w3 if and only if β1 = a−a′

d ′ e

β3 = d
d ′ . With this choose of β1 and β3 we have that X2w3 = c2−a′2

d ′ w1 − a′w3.

Finally, X2w2 = b1w1 + cw2 + e′w3 if and only if ae−bd−ce
d = a′e′−b′d ′−ce′

d ′ . ��

3.2.4 Isomorphism classes in 
4

Consider V in 
4 and the following distinguish representations: for all a ∈ k
×

� X2 =
⎛
⎝a 0 1
0 −a 0
0 0 a

⎞
⎠. This is denoted by Va .

� X2 =
⎛
⎝a 0 0
0 −a 0
0 1 −a

⎞
⎠. This is denoted by Va .

By Proposition 3.6 (iv), these are indecomposable representations pairwise non-
isomorphic.

Proposition 3.10 Every 3-dimensional indecomposable representation V of B in 
4
is isomorphic either to Va or to Va for unique a ∈ k

×.

Proof Let V ′ be a 3-dimensional indecomposable representation of B such that

[X2]� =
⎛
⎝a b c
0 −a 0
0 d e

⎞
⎠ , a ∈ k

×.
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Since V ′ is indecomposable, by Proposition 3.6 (iv) we have that c 
= 0 and e = a
or d 
= 0 and e = −a. If c 
= 0 and e = a, taking the basis {v1, cd−2ab

4a2
v1 + v2 −

d
2a v3, v1 + 1

c v3} of V ′, we obtain V ′ � Va . If d 
= 0 and e = −a, taking the basis
{v1,− 2ab+cd

4a2
v1 + v2,− dc

2a v1 + dv3} of V ′, it follows that V ′ � Va . ��

3.2.5 Classification of indecomposable 3-dimensional B-modules

Theorem 3.11 Every 3-dimensional indecomposable B-module is isomorphic either
to k

3
λ for a unique λ, or else to a representation in one of the families 
 j , j =

1, 2, 3, 4, with the constraints described in Proposition 3.6. The isomorphism classes
are described in Propositions 3.7, 3.8, 3.9 and 3.10. ��

Again, this agrees with Theorem 2.11.

Remark 3.12 It is straightforward to verify that two 3-dimensional indecomposable
representations of B that belong to different families 
i , i = 1, 2, 3, 4, are not iso-
morphic.

4 Families of indecomposable B-modules

Throughout this section (V, ρ) is an n-dimensional representation of B, � =
{v1, . . . , vn} is a basis of V , X1 = ρ(x1), X2 = ρ(x2) and [X1]� = E12.

4.1 The family Ua

Let a ∈ k. Consider the following action of X2 on V :

[X2]� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a 0 0 0 . . . 0 0
0 a 0 0 . . . 0 0
0 1 a 0 . . . 0 0
0 0 1 a . . . 0 0
...

...
...

. . .
. . .

...
...

0 0 0 . . . 1 a 0
0 0 0 . . . 0 1 a

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Clearly V with this action is a B-module which will be denoted by Ua .

Lemma 4.1 Let W be a proper B-submodule of Ua. Then:

(i) v2 /∈ W;
(ii) If v = ∑n

i=1 λivi ∈ W then λ2 = 0.

Proof (i) Suppose v2 ∈ W . Then v1 = X1v2 ∈ W and X2v2 = av2 + v3 ∈ W .
Hence v3 ∈ W . Again, X2v3 = av3 + v4 ∈ W and consequently v4 ∈ W .
With this procedure, we obtain that � ⊂ W . Thus, W = Ua and we have a
contradiction.
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(ii) Assume λ2 
= 0 and fix w1 = λ−1
2 v. Thus w1 = α1v1 + v2 + · · · + αnvn , where

αi = λ−1
2 λi , for all 1 ≤ i ≤ n. Consider the following elements of V :

w j := v j+1 + α3v j+2 + · · · + αn− j+1vn, for all 2 ≤ j ≤ n − 2.

By a straightforward calculation, we obtain that X2w j = aw j + w j+1, for all
1 ≤ j ≤ n−2. Thus,w1, . . . , wn−2 ∈ W and X2wn−2 = awn−2+vn . Therefore,
vn ∈ W . But wn−2 = vn−1 + α3vn and whence vn−1 ∈ W . By this procedure,
it follows that v3, . . . , vn ∈ W . From v1 = X1w1 ∈ W , it follows that v2 ∈ W
which contradicts (i). ��

Theorem 4.2 Ua is an indecomposable B-module, for all n ≥ 2.

Proof Suppose Ua decomposable. LetW, W̃ be nontrivial B-submodules of Ua such
that Ua = W ⊕ W̃ . Consider {w1, . . . , wr } and {wr+1, . . . , wn} basis of W and W̃
respectively. By Lemma 4.1, wi = λi1v1 + λi3v3 + · · · + λinvn , for all 1 ≤ i ≤ n.
Since v2 ∈ Ua , there exist α1, . . . , αn ∈ k such that v2 = α1w1 + · · · + αnwn , a
contradiction. ��

4.2 The family Va

Let a ∈ k
×. Consider the following action of X2 on V :

[X2]� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a 0 0 0 . . . 0 0
0 −a 0 0 . . . 0 0
0 1 −a 0 . . . 0 0
0 0 1 −a . . . 0 0
...

...
...

. . .
. . .

...
...

0 0 0 . . . 1 −a 0
0 0 0 . . . 0 1 −a

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Notice that V is a B-module which will be denoted by Va . Since a 
= 0, Ua and Va

are not isomorphic.

Theorem 4.3 Va is an indecomposable B-module, for all n ≥ 2.

Proof Let W a proper B-submodule of Va . As in Lemma 4.1 (i), we can show that
v2 /∈ W . Let v ∈ W such that v = ∑n

i=1 λivi . Assume that λ2 
= 0 and consider
u := λ−1

2 v ∈ W . Then v1 = X1u ∈ W . Take w1 := u − λ−1
2 λ1v1 and note that

w1 = α2v2 + · · · + αnvn , where αi = λ−1
2 λi , for all 2 ≤ i ≤ n. Considering the

following elements of V

w j := v j+1 + α3v j+2 + · · · + αn− j+1vn, for all 2 ≤ j ≤ n − 2,

it follows X2w j = −aw j + w j+1, for all 1 ≤ j ≤ n − 2. As in Lemma 4.1, this
implies that v2 ∈ W which is a contradiction. Thus, the result follows as in Theorem
4.2. ��
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