ON FINITE GK-DIMENSIONAL NICHOLS ALGEBRAS OVER ABELIAN GROUPS

NICOLÁS ANDRUSKIEWITSCH, IVÁN ANGIONO, ISTVÁN HECKENBERGER

Abstract. We describe

Contents

1. Yetter-Drinfeld modules of dimension $3 \quad 1$
2. One block and several points 6

References 16

1. Yetter-Drinfeld modules of dimension 3

1.1. The setting. Let Γ be an abelian group. In this Section we consider $V \in{ }_{\mathbb{k} \Gamma}^{\mathbb{k} \Gamma \mathcal{D}}$, $\operatorname{dim} V=3$, such that the corresponding braided vector space is not of diagonal type. So, V is not semisimple and we have two possibilities that we discuss in $\S 1.1 .1$ and ??.
1.1.1. A block and a point. $V=\mathcal{V}_{g_{1}}\left(\chi_{1}, \eta\right) \oplus \mathbb{k}_{g_{2}}^{\chi_{2}}$, where $g_{1}, g_{2} \in \Gamma, \chi_{1}, \chi_{2} \in \widehat{\Gamma}$ and $\eta: \Gamma \rightarrow \mathbb{k}$ is a $\left(\chi_{1}, \chi_{1}\right)$-derivation. Here $\mathcal{V}_{g_{1}}\left(\chi_{1}, \eta\right) \in{ }_{\mathbb{k} \Gamma}^{\mathbb{k} \Gamma \mathcal{Y} \mathcal{D} \text { is indecom- }}$ posable with basis $\left(x_{i}\right)_{i \in \mathbb{I}_{2}}$ and action given by (??); while $\mathbb{k}_{g_{2}}^{\chi_{2}} \in{ }_{\mathbb{k} \Gamma}^{\mathbb{k} \Gamma \mathcal{Y} \mathcal{D} \text { is }, ~}$ irreducible with base $\left(x_{3}\right)$. Also $\eta\left(g_{1}\right) \neq 0$, otherwise V would be of diagonal type, and then we may suppose that $\eta\left(g_{1}\right)=1$ by normalizing x_{1}. Let

$$
q_{i j}=\chi_{j}\left(g_{i}\right), \quad i, j \in \mathbb{I}_{2} ; \quad \epsilon=q_{11} ; \quad a=q_{21}^{-1} \eta\left(g_{2}\right)
$$

Then the braiding is given in the basis $\left(x_{i}\right)_{i \in \mathbb{I}_{3}}$ by

$$
\left(c\left(x_{i} \otimes x_{j}\right)\right)_{i, j \in \mathbb{I}_{3}}=\left(\begin{array}{ccc}
\epsilon x_{1} \otimes x_{1} & \left(\epsilon x_{2}+x_{1}\right) \otimes x_{1} & q_{12} x_{3} \otimes x_{1} \tag{1.1}\\
\epsilon x_{1} \otimes x_{2} & \left(\epsilon x_{2}+x_{1}\right) \otimes x_{2} & q_{12} x_{3} \otimes x_{2} \\
q_{21} x_{1} \otimes x_{3} & q_{21}\left(x_{2}+a x_{1}\right) \otimes x_{3} & q_{22} x_{3} \otimes x_{3}
\end{array}\right)
$$

Let $V_{1}=\mathcal{V}_{g_{1}}\left(\chi_{1}, \eta\right), V_{2}=\mathbb{k}_{g_{2}}^{\chi_{2}}$. If $\epsilon^{2}=1$, then

$$
\begin{equation*}
c_{\mid V_{1} \otimes V_{2}}^{2}=\mathrm{id} \Longleftrightarrow q_{12} q_{21}=1 \text { and } a=0 \tag{1.2}
\end{equation*}
$$

The scalar $q_{12} q_{21}$ will be called the interaction between the block and the point. The interaction is

$$
\text { weak if } q_{12} q_{21}=1, \quad \text { mild if } q_{12} q_{21}=-1, \quad \text { strong if } q_{12} q_{21} \notin\{ \pm 1\} .
$$

So $c_{\mid V_{1} \otimes V_{2}}^{2}$ is determined by the interaction and the (somewhat hidden) parameter a. We introduce a normalized version of a, called the ghost:

$$
\mathscr{G}= \begin{cases}-2 a, & \epsilon=1, \tag{1.3}\\ a, & \epsilon=-1 .\end{cases}
$$

If $\mathscr{G} \in \mathbb{N}$, then we say that the ghost is discrete.
Theorem 1.1. Let V be a braided vector space with braiding (1.1). Assume that $\operatorname{GKdim} \mathcal{B}(V)<\infty$. Then V is as in Table 1.

Table 1. Nichols algebras of a block and a point with finite GKdim

interaction	ϵ	q_{22}	\mathscr{G}	$\mathcal{B}(V), \S$	GKdim
weak	± 1	1 or $\notin \mathbb{G}_{\infty}$	0	$\mathcal{B}(\mathcal{V}(\epsilon, 1)) \otimes \mathcal{B}\left(\mathbb{k} x_{3}\right)$	3
		$\in \mathbb{G}_{\infty}-\{1\}$			2
	1	1	discrete	$\mathcal{B}(\mathfrak{L}(1, \mathscr{G})), 1.2 .1$	$\mathscr{G}+3$
		-1	discrete	$\mathcal{B}(\mathfrak{L}(-1, \mathscr{G})), 1.2 .2$	2
	$\in \mathbb{G}_{3}^{\prime}$	1	$\mathcal{B}(\mathfrak{L}(\omega, \mathscr{G})), 1.2 .5$	2	
	-1	1	discrete	$\mathcal{B}(\mathfrak{L}-(1, \mathscr{G})), 1.2 .3$	$\mathscr{G}+3$
		-1	discrete	$\mathcal{B}\left(\mathfrak{L}_{-}(-1, \mathscr{G})\right), 1.2 .4$	$\mathscr{G}+2$
mild	-1	-1	1	$\mathcal{B}\left(\mathfrak{C}_{1}\right), 1.2 .6$	2

1.2. The Nichols algebras with finite GKdim. Here we describe a presentation by generators and relations and exhibit an explicit PBW basis of the Nichols algebras in Theorem 1.1. We denote the braided vector space with braiding (1.1) by

$$
\begin{array}{lll}
\mathfrak{L}\left(q_{22}, \mathscr{G}\right), & \text { if the interaction is weak, } & \epsilon=1 ; \\
\mathfrak{L}_{-}\left(q_{22}, \mathscr{G}\right), & \text { if the interaction is weak, } & \epsilon=-1 ; \\
\mathfrak{C}_{1}, & \text { if the interaction is mild, } & \epsilon=q_{22}=-1, \quad \mathscr{G}=1 .
\end{array}
$$

Recall the relations of the Jordan and super Jordan planes:

$$
\begin{align*}
& x_{2} x_{1}-x_{1} x_{2}+\frac{1}{2} x_{1}^{2}, \tag{??}\\
& x_{1}^{2}, \tag{??}\\
& x_{2} x_{12}-x_{12} x_{2}-x_{1} x_{12} . \tag{??}
\end{align*}
$$

Lemma 1.2. Assume that $\epsilon^{2}=q_{22}^{2}=1$. In $\mathcal{B}\left(\mathfrak{L}\left(q_{22}, \mathscr{G}\right)\right)$, or correspondingly $\mathcal{B}_{-}\left(\mathfrak{L}\left(q_{22}, \mathscr{G}\right)\right)$

$$
\begin{array}{rlrl}
z_{|2 a|+1} & =0, & \\
z_{t} z_{t+1} & =q_{21} q_{22} z_{t+1} z_{t} & t \in \mathbb{N}_{0}, t<|2 a|, \\
z_{t}^{2} & =0 & t \in \mathbb{N}_{0}, \epsilon^{t} q_{22}=-1 . \\
\partial_{3}\left(z_{t}^{n+1}\right) & =\mu_{t} q_{21}^{n t} q_{22}^{n} n y_{t} z_{t}^{n}, & n, t \in \mathbb{N}_{0}, \epsilon^{t} q_{22}=1 .
\end{array}
$$

Lemma 1.3. Let \mathcal{B} be a quotient algebra of $T(V)$. Assume that $x_{1} x_{3}=$ $q_{12} x_{3} x_{1}$, and either
(a) (??), or else
(b) (??), $x_{12} x_{3}=q_{12}^{2} x_{3} x_{12}$
hold in \mathcal{B}. Then for all $n \in \mathbb{N}_{0}, x_{1} z_{n}=\epsilon^{n} q_{12} z_{n} x_{1}$ and $x_{12} z_{n}=q_{12}^{2} z_{n} x_{12}$.
Lemma 1.4. Let \mathcal{B} be a quotient algebra of $T(V)$.
(i) Assume that (1.5) holds in \mathcal{B}. Then for $0 \leq t<k \leq 2|a|$,

$$
\begin{equation*}
z_{t} z_{k}-\epsilon^{t k} q_{21}^{k-t} q_{22} z_{k} z_{t}=\sum_{j=0}^{\frac{t+k}{2}} \nu_{t k}(j) z_{t+k-j} z_{j}, \quad \text { for some } \nu_{t k}(j) \in \mathbb{k} . \tag{1.8}
\end{equation*}
$$

(ii) Assume that $z_{t}^{2}=0$ in \mathcal{B} for $t \in \mathbb{N}_{0}$ such that $\epsilon^{t} q_{22}=-1$. Then $z_{t} z_{t+1}=q_{21} q_{22} z_{t+1} z_{t}$ in \mathcal{B}.
1.2.1. The Nichols algebra $\mathcal{B}(\mathfrak{L}(1, \mathscr{G}))$. Recall that $z_{n}=\left(a d_{c} x_{2}\right)^{n} x_{3}$.

Proposition 1.5. Let $\mathscr{G} \in \mathbb{N}$. The algebra $\mathcal{B}(\mathfrak{L}(1, \mathscr{G}))$ is presented by generators x_{1}, x_{2}, x_{3} and relations (??),

$$
\begin{align*}
x_{1} x_{3} & =q_{12} x_{3} x_{1}, \tag{1.9}\\
z_{1+\mathscr{G}} & =0, \tag{1.10}\\
z_{t} z_{t+1} & =q_{21} q_{22} z_{t+1} z_{t}, \quad 0 \leq t<\mathscr{G} \tag{1.11}
\end{align*}
$$

The set

$$
B=\left\{x_{1}^{m_{1}} x_{2}^{m_{2}} z_{\mathscr{G}}^{n_{\mathscr{G}}} \ldots z_{1}^{n_{1}} z_{0}^{n_{0}}: m_{i}, n_{j} \in \mathbb{N}_{0}\right\}
$$

is a basis of $\mathcal{B}(\mathfrak{L}(1, \mathscr{G}))$ and $\operatorname{GKdim} \mathcal{B}(\mathfrak{L}(1, \mathscr{G}))=3+\mathscr{G}$.
Proof. Relations (1.9), (1.10) are 0 in $\mathcal{B}(\mathfrak{L}(1, \mathscr{G}))$ being annihilated by ∂_{i}, $i=1,2,3$, and (1.11) holds by Lemma 1.2. Hence the quotient $\widetilde{\mathcal{B}}$ of $T(V)$ by (??), (1.9), (1.10) and (1.11) projects onto $\mathcal{B}(\mathfrak{L}(1, \mathscr{G}))$. Then (1.8) holds in $\widetilde{\mathcal{B}}$.

We claim that the subspace I spanned by B is a right ideal of $\widetilde{\mathcal{B}}$. Indeed,

- $I x_{1} \subseteq I$ follows by Lemma 1.3,
- $I x_{2} \subseteq I$ since $z_{t} x_{2}=\epsilon^{t} q_{21}\left(x_{2} z_{t}-z_{t+1}\right)$, so we use (1.10), (1.8),
and $I x_{3} \subseteq I$ by definition. Since $1 \in I, \widetilde{\mathcal{B}}$ is spanned by B.
To prove that $\widetilde{\mathcal{B}} \simeq \mathcal{B}(\mathfrak{L}(1, \mathscr{G}))$, it remains to show that B is linearly independent in $\mathcal{B}(\mathfrak{L}(1, \mathscr{G}))$. For, suppose that there is a non-trivial linear combination S of elements of B in $\mathcal{B}(\mathfrak{L}(1, \mathscr{G}))$, say of minimal degree. Now

$$
\begin{aligned}
\partial_{1}\left(x_{1}^{m_{1}} x_{2}^{m_{2}} z_{\mathscr{G}}^{n_{\mathscr{G}}} \ldots z_{1}^{n_{1}} z_{0}^{n_{0}}\right) & =m_{1} q_{12}^{\sum_{n} n_{i}} x_{1}^{m_{1}-1} x_{2}^{m_{2}} z_{\mathscr{G}}^{n_{\mathscr{G}}} \ldots z_{1}^{n_{1}} z_{0}^{n_{0}}, \\
\partial_{2}\left(x_{1}^{m_{1}} x_{2}^{m_{2}} z_{\mathscr{G}}^{n_{\mathscr{G}}} \ldots z_{1}^{n_{1}} z_{0}^{n_{0}}\right) & =m_{2} q_{12}^{\sum_{1} n_{i}} x_{1}^{m_{1}} x_{2}^{m_{2}-1} z_{\mathscr{G}}^{n_{\mathscr{G}}} \ldots z_{1}^{n_{1}} z_{0}^{n_{0}},
\end{aligned}
$$

since $\partial_{1}, \partial_{2}$ are skew derivations, so we apply Lemma ?? and $\partial_{2}\left(z_{t}\right)=0$. Then such linear combination does not have terms with m_{1} or m_{2} greater than 0 . Let k be maximal such that $z_{k}^{n_{k}} \ldots z_{1}^{n_{1}} z_{0}^{n_{0}}$ has non-zero coefficient in S for some $k \geq 1$, and for such k fix the maximal n_{k}. By (1.7), $y_{k} z_{k}^{n_{k}-1} \ldots z_{1}^{n_{1}} z_{0}^{n_{0}}$ has non-zero coefficient in $\partial_{3}(\mathrm{~S})$, and $\partial_{3}(\mathrm{~S})$ is also a nontrivial linear combination of elements of B, a contradiction. Then B is a basis of $\mathcal{B}(\mathfrak{L}(1, \mathscr{G}))$ and $\widetilde{\mathcal{B}}=\mathcal{B}(\mathfrak{L}(1, \mathscr{G}))$. The computation of GKdim follows from the Hilbert series at once.
1.2.2. The Nichols algebra $\mathcal{B}(\mathfrak{L}(-1, \mathscr{G}))$.

Proposition 1.6. Let $\mathscr{G} \in \mathbb{N}$. The algebra $\mathcal{B}(\mathfrak{L}(-1, \mathscr{G}))$ is presented by generators x_{1}, x_{2}, x_{3} and relations (??), (1.9), (1.10) and

$$
\begin{equation*}
z_{t}^{2}=0, \quad 0 \leq t \leq \mathscr{G} . \tag{1.12}
\end{equation*}
$$

The set

$$
B=\left\{x_{1}^{m_{1}} x_{2}^{m_{2}} z_{\mathscr{G}}^{n_{\mathscr{G}}} \ldots z_{1}^{n_{1}} z_{0}^{n_{0}}: n_{i} \in\{0,1\}, m_{j} \in \mathbb{N}_{0}\right\}
$$

is a basis of $\mathcal{B}(\mathfrak{L}(-1, \mathscr{G}))$ and $\operatorname{GKdim} \mathcal{B}(\mathfrak{L}(-1, \mathscr{G}))=2$.
1.2.3. The Nichols algebra $\mathcal{B}\left(\mathfrak{L}_{-}(1, \mathscr{G})\right)$.

Proposition 1.7. Let $\mathscr{G} \in \mathbb{N}$. The algebra $\mathcal{B}\left(\mathfrak{L}_{-}(1, \mathscr{G})\right)$ is presented by generators x_{1}, x_{2}, x_{3} and relations (??), (??), (1.9) and

$$
\begin{align*}
z_{1+2 \mathscr{G}} & =0, & & \tag{1.13}\\
x_{12} z_{0} & =q_{12}^{2} z_{0} x_{12}, & & 0 \leq k<\mathscr{G}, \tag{1.14}\\
z_{2 k+1}^{2} & =0, & & 0 \leq k<\mathscr{G} . \tag{1.15}
\end{align*}
$$

The set

$$
B=\left\{x_{1}^{m_{1}} x_{12}^{m_{2}} x_{2}^{m_{3}} z_{2 \mathscr{G}}^{n_{2 \mathscr{G}}} \cdots z_{1}^{n_{1}} z_{0}^{n_{0}}: m_{1}, n_{2 k+1} \in\{0,1\}, m_{2}, m_{3}, n_{2 k} \in \mathbb{N}_{0}\right\}
$$

is a basis of $\mathcal{B}\left(\mathfrak{L}_{-}(1, \mathscr{G})\right)$ and $\operatorname{GKdim} \mathcal{B}\left(\mathfrak{L}_{-}(1, \mathscr{G})\right)=\mathscr{G}+3$.
1.2.4. The Nichols algebra $\mathcal{B}\left(\mathfrak{L}_{-}(-1, \mathscr{G})\right)$.

Proposition 1.8. Let $\mathscr{G} \in \mathbb{N}$. The algebra $\mathcal{B}\left(\mathfrak{L}_{-}(-1, \mathscr{G})\right)$ is presented by generators x_{1}, x_{2}, x_{3} and relations (??), (??), (1.9), (1.13), (1.14) and

$$
\begin{array}{rlrl}
z_{2 k}^{2} & =0, & 0 & 0 k \leq \mathscr{G} \\
z_{2 k-1} z_{2 k} & =q_{21} q_{22} z_{2 k} z_{2 k-1}, & & 0<k \leq \mathscr{G} .
\end{array}
$$

The set

$$
B=\left\{x_{1}^{m_{1}} x_{12}^{m_{2}} x_{2}^{m_{3}} z_{2 \mathscr{G}}^{n_{2} \mathscr{G}} \ldots z_{1}^{n_{1}} z_{0}^{n_{0}}: m_{1}, n_{2 k} \in\{0,1\}, m_{2}, m_{3}, n_{2 k-1} \in \mathbb{N}_{0}\right\}
$$

is a basis of $\mathcal{B}\left(\mathfrak{L}_{-}(-1, \mathscr{G})\right)$ and $\operatorname{GKdim} \mathcal{B}\left(\mathfrak{L}_{-}(-1, \mathscr{G})\right)=\mathscr{G}+2$.
1.2.5. The Nichols algebra $\mathcal{B}(\mathfrak{L}(\omega, 1))$.

Remark 1.9. As in the previous cases, (1.9) and

$$
\begin{equation*}
z_{2}=0 \tag{1.19}
\end{equation*}
$$

hold in $\mathcal{B}(\mathfrak{L}(\omega, 1))$. As $q_{22}=\omega \in \mathbb{G}_{3}^{\prime}$ we also have

$$
\begin{equation*}
z_{0}^{3}=0 \tag{1.20}
\end{equation*}
$$

Let $z_{1,0}:=z_{1} z_{0}-q_{12} q_{22} z_{0} z_{1}$.
Remark 1.10. The following equations hold in $\mathcal{B}(\mathfrak{L}(\omega, 1))$ by Lemma ??

$$
\begin{array}{ll}
g_{1} \cdot z_{1,0}=q_{12}^{2} z_{1,0}, & g_{2} \cdot z_{1,0}=q_{21} q_{22}^{2} z_{1,0} \\
\partial_{1}\left(z_{1,0}\right)=\partial_{2}\left(z_{1,0}\right)=0, & \partial_{3}\left(z_{1,0}\right)=\left(1-q_{22}^{2}\right) z_{1,0} \tag{1.22}
\end{array}
$$

Lemma 1.11. Let \mathcal{B} be a quotient algebra of $T(V)$. Assume that (1.9), (1.19) and (1.20) hold in \mathcal{B}. Then the following relations also hold:

$$
\begin{array}{ll}
z_{1} z_{1,0}=q_{12} \omega^{2} z_{1,0} z_{1}, & z_{1,0} z_{0}=q_{12} \omega^{2} z_{0} z_{1,0} \\
x_{2} z_{1,0}=q_{12}^{2} z_{1,0} x_{2}+q_{12}(1-\omega) z_{1}^{2}, & x_{1} z_{1,0}=q_{12}^{2} z_{1,0} x_{1} \tag{1.24}
\end{array}
$$

Lemma 1.12. In $\mathcal{B}(\mathfrak{L}(\omega, 1))$,

$$
\begin{equation*}
z_{1}^{3}=z_{1,0}^{3}=0 \tag{1.25}
\end{equation*}
$$

Proposition 1.13. Let $\omega \in \mathbb{G}_{3}^{\prime}$. The algebra $\mathcal{B}(\mathfrak{L}(\omega, 1))$ is presented by generators x_{1}, x_{2}, x_{3} and relations (??), (1.9), (1.19), (1.20) and (1.25). The set

$$
B=\left\{x_{1}^{m_{1}} x_{2}^{m_{2}} z_{1}^{n_{1}} z^{n_{2}} z_{0}^{n_{3}}: m_{i} \in \mathbb{N}_{0}, 0 \leq n_{j} \leq 2\right\}
$$

is a basis of $\mathcal{B}(\mathfrak{L}(\omega, 1))$ and $\operatorname{GKdim} \mathcal{B}(\mathfrak{L}(\omega, 1))=2$.
1.2.6. The Nichols algebra $\mathcal{B}\left(\mathfrak{C}_{1}\right)$. Recall that $f_{i}=\left(\operatorname{ad}_{c} x_{1}\right) z_{i}$.

Remark 1.14. The following relations hold in $\mathcal{B}\left(\mathfrak{C}_{1}\right)$:

$$
\begin{align*}
x_{12} z_{0} & =q_{12}^{2} z_{0} x_{12}, \tag{1.26}\\
x_{2} z_{1}+q_{12} z_{1} x_{2} & =q_{12} f_{0} x_{2}+\frac{1}{2} f_{1}, \tag{1.27}\\
z_{i}^{2} & =0, \tag{1.28}\\
f_{1}^{2} & =0 . \tag{1.29}
\end{align*}
$$

Indeed (1.26) follows from the proof of Lemma ??, while (1.27), (1.28) and (1.29) follows from the proof of Lemma ??.

Lemma 1.15. Let \mathcal{B} be a quotient algebra of $T(V)$. Assume that (??), (??), (1.26), (1.27), (1.28) and (1.29) hold in \mathcal{B}. Then the following relations also hold: $f_{0}^{2}=0$,

$$
\begin{align*}
x_{1} f_{0} & =-q_{12} f_{0} x_{1}, & x_{1} f_{1} & =q_{12} f_{1} x_{1}, \tag{1.30}\\
x_{2} f_{0}+q_{12} f_{0} x_{2} & =-f_{1}, & x_{2} f_{1} & =-q_{12} f_{1} x_{2}, \tag{1.31}\\
z_{1} z_{0} & =-q_{12} z_{1} z_{0}, & f_{1} f_{0} & =q_{12} f_{0} f_{1}, \tag{1.32}\\
f_{1} z_{0}+q_{12}^{2} z_{0} f_{1} & =-2 q_{12} f_{0} z_{1}, & f_{0} z_{0} & =-q_{12} z_{0} f_{0}, \tag{1.33}\\
f_{1} z_{1}-q_{12}^{2} z_{1} f_{1} & =-2 q_{12} f_{0} z_{1}, & f_{0} z_{1} & =-z_{1} f_{0}, \tag{1.34}\\
x_{12} f_{0} & =q_{12}^{2} f_{0} x_{12}, & x_{12} f_{1} & =q_{12}^{2} f_{1} x_{12}, \tag{1.35}\\
x_{12} z_{1}-q_{12}^{2} z_{1} x_{12} & =2 x_{2} f_{1}-x_{1} f_{1}-2 x_{12} f_{0} . & & \tag{1.36}
\end{align*}
$$

Proposition 1.16. The algebra $\left.\mathcal{B}\left(\mathfrak{C}_{1}\right)\right)$ is presented by generators x_{1}, x_{2}, x_{3} and relations (??), (??), (1.26), (1.27), (1.28) and (1.29). The set

$$
B=\left\{x_{1}^{m_{1}} x_{12}^{m_{2}} x_{2}^{m_{3}} f_{1}^{n_{1}} f_{0}^{n_{2}} z_{1}^{n_{3}} z_{0}^{n_{4}}: m_{1}, n_{i} \in\{0,1\}, m_{2}, m_{3} \in \mathbb{N}_{0}\right\}
$$

is a basis of $\mathcal{B}\left(\mathfrak{C}_{1}\right)$ and $\operatorname{GKdim} \mathcal{B}\left(\mathfrak{C}_{1}\right)=2$.

2. One block and several points

2.1. The setting. Let Γ be an abelian group. In this Section and the next we consider $V \in \underset{\mathbb{k} \Gamma}{\mathbb{k} \Gamma \mathcal{D}}$, $\operatorname{dim} V>3$, such that the corresponding braided vector space is a direct sum of blocks and points, but we assume that the underlying braided vector space is not of diagonal type. We seek to determine when $G \operatorname{GKim} \mathcal{B}(V)<\infty$. By Theorem ??, we may assume that the blocks are of the form $\mathcal{V}(\epsilon, 2)$, with $\epsilon^{2}=1$. So, V is not semisimple and we need to consider various possibilities:

- The direct sum of one block and several points.
- The direct sum of two blocks and possibly several points.

In this Section we deal with one block and several points. For a more suggestive presentation, we introduce the notation

$$
\mathbb{I}_{2, \theta}=\mathbb{I}_{\theta}-\{1\}, \quad \mathbb{I}_{\theta}^{\dagger}=\mathbb{I}_{\theta} \cup\left\{\frac{3}{2}\right\}, \quad \theta \in \mathbb{N}
$$

Let $g_{1}, \ldots, g_{\theta} \in \Gamma, \chi_{1}, \ldots, \chi_{\theta} \in \widehat{\Gamma}$ and $\eta: \Gamma \rightarrow \mathbb{k}$ a $\left(\chi_{1}, \chi_{1}\right)$-derivation. Let $\mathcal{V}_{g_{1}}\left(\chi_{1}, \eta\right) \in \frac{\mathrm{k} \Gamma}{\mathrm{k} \Gamma} \mathcal{Y} \mathcal{D}$ be the indecomposable with basis $\left(x_{i}\right)_{i \in \mathbb{I}_{1}^{+}}$and action given by (??)- but with $\frac{3}{2}$ instead of 2 ; while $\mathbb{k}_{g_{j}}^{\chi_{j}} \in{ }_{k \mathrm{k} \Gamma}^{\mathrm{k} \Gamma} \mathcal{Y} \mathcal{D}$ is irreducible with basis $\left(x_{j}\right), j \in \mathbb{I}_{2, \theta}$. Let

$$
V=\mathcal{V}_{g_{1}}\left(\chi_{1}, \eta\right) \oplus \mathbb{k}_{g_{2}}^{\chi_{2}} \oplus \cdots \oplus \mathbb{k}_{g_{\theta}}^{\chi_{\theta}}
$$

Thus $\left(x_{i}\right)_{i \in \mathbb{I}_{\theta}^{\dagger}}$ is a basis of V. We suppose that V is not of diagonal type, hence $\eta\left(g_{1}\right) \neq 0$; we may assume that $\eta\left(g_{1}\right)=1$ by normalizing x_{1}. Let

$$
q_{i j}=\chi_{j}\left(g_{i}\right), \quad i, j \in \mathbb{I}_{\theta} ; \quad a_{j}=q_{j 1}^{-1} \eta\left(g_{j}\right), \quad j \in \mathbb{I}_{\theta}
$$

Let $\lfloor i\rfloor$ be the largest integer $\leq i$. Then the braiding in the basis $\left(x_{i}\right)_{i \in \mathbb{I}_{\theta}^{\dagger}}$ is

$$
c\left(x_{i} \otimes x_{j}\right)= \begin{cases}q_{\lfloor i j j} x_{j} \otimes x_{i}, & i \in \mathbb{I}_{\theta}^{\dagger}, j \in \mathbb{I}_{\theta} ; \tag{2.1}\\ q_{\lfloor i\rfloor 1}\left(x_{\frac{3}{2}}+a_{\lfloor i\rfloor} x_{1}\right) \otimes x_{i}, & i \in \mathbb{I}_{\theta}^{\dagger}, j=\frac{3}{2} .\end{cases}
$$

Let $\epsilon:=q_{11}$. Notice that $\mathcal{B}\left(\mathcal{V}_{g_{1}}\left(\chi_{1}, \eta\right) \oplus \mathbb{k}_{g_{j}}^{\chi_{j}}\right) \hookrightarrow \mathcal{B}(V)$ for all $\in \mathbb{I}_{2, \theta}$, thus we may apply the results from $\S 5,6$. By Theorem ??, we may assume that $\epsilon^{2}=1$, thus $a_{1}=\epsilon$.

The interaction and the ghost between the block and the points are the vectors

$$
\left(q_{1 h} q_{h 1}\right)_{h \in \mathbb{I}_{2, \theta}}, \quad \mathscr{G}=\left(\mathscr{G}_{j}\right)_{j \in \mathbb{I}_{2, \theta}}= \begin{cases}-2\left(a_{j}\right)_{j \in \mathbb{I}_{2, \theta}}, & \epsilon=1, \tag{2.2}\\ \left(a_{j}\right)_{j \in \mathbb{I}_{2, \theta}}, & \epsilon=-1 .\end{cases}
$$

The interaction is strong if there exists $h \in \mathbb{I}_{2, \theta}$ such that $q_{1 h} q_{h 1} \notin\{ \pm 1\} ;$ when it is not strong, it is

$$
\text { weak if } q_{1 h} q_{h 1}=1, \quad \forall h \in \mathbb{I}_{2, \theta} ; \quad \text { mild, otherwise. }
$$

We say that the ghost is discrete if $\mathscr{G} \in \mathbb{N}_{0}^{\mathbb{I}_{2, \theta}}-\{0\}$.
We can present our main object of interest in the language of braided vector spaces. Given $\left(q_{i j}\right)_{i, j \in \mathbb{I}_{\theta}}$, with $q_{11}^{2}=1$, and $\mathscr{G} \in \mathbb{k}^{\mathbb{I}_{2, \theta}}$, we set $a_{1}=\epsilon=$ q_{11} and consider the braided vector space ($\left.V, c\right)$ of dimension $\theta+1$, with a basis $\left(x_{i}\right)_{i \in \mathbb{I}_{\theta}^{\dagger}}$ and braiding given by (2.1). This braided vector space (V, c) can be realized as a Yetter-Drinfeld module $\mathcal{V}_{g_{1}}\left(\chi_{1}, \eta\right) \oplus \bigoplus_{j \in \mathbb{I}_{\theta}} \mathbb{k}_{g_{j}}^{\chi_{j}}$ over some abelian group Γ as described above; for instance $\Gamma=\mathbb{Z}^{\theta}$ would do. Such a realization will be called principal.

The braided subspace V_{1} spanned by $x_{1}, x_{\frac{3}{2}}$ is $\simeq \mathcal{V}(\epsilon, 2)$, while V_{2} spanned by $\left(x_{i}\right)_{i \in \mathbb{I}_{2, \theta}}$ is of diagonal type. Obviously,

$$
\begin{equation*}
V=V_{1} \oplus V_{2} . \tag{2.3}
\end{equation*}
$$

Let \mathcal{X} be the set of connected components of the generalized Dynkin diagram of the matrix $\mathbf{q}=\left(q_{i j}\right)_{i, j \in \mathbb{I}_{2, \theta}}$. If $J \in \mathcal{X}$, then we set $J^{\prime}=\mathbb{I}_{2, \theta}-J$,

$$
V_{J}=\sum_{j \in J} \mathbb{k}_{g_{j}}^{\chi_{j}}, \quad \mathscr{G}_{J}=\left(\mathscr{G}_{j}\right)_{j \in J}, \quad \text { interaction of } J=\left(q_{1 h} q_{h 1}\right)_{h \in J}
$$

As before, J could have weak, mild or strong interaction.
Table 2. A block and several points, finite GKdim, weak interaction, $\epsilon=1$; here $\omega \in \mathbb{G}_{3}^{\prime}$ and $\mathfrak{d}_{J}=\operatorname{GKdim} \mathcal{B}\left(K_{J}\right)$

V_{J}	type	\mathscr{G}_{J}	K_{J}	\mathfrak{d}_{J}
${ }_{0}^{1}$	A_{1}	discrete	$\left(A_{1}\right)^{\mathscr{G}_{J}+1}$	$\mathscr{G}_{J}+1$
${ }_{-1}^{0}$	A_{1}	discrete	$\left(A_{1}\right)^{\mathscr{G}_{J}+1}$	0
$\stackrel{\omega}{\circ}$	A_{1}	1	A_{2}	0
$\begin{array}{ccccccc} \hline-1 & -1 & { }_{0}^{-1} & \ldots & { }_{0}^{-1} & -1 & -1 \\ 0 & 0_{0}^{-1} \end{array}$	$A_{\theta-1}$	$(1,0, \ldots, 0)$	$\begin{aligned} & A_{3}, \theta=3 \\ & D_{\theta}, \theta>3 \end{aligned}$	0
$\stackrel{-1}{0} \xrightarrow{-1} \stackrel{-1}{\circ}$	A_{2}	$(2,0)$	D_{4}	0
$\begin{array}{ccc} \hline-1 & \omega & { }_{0}^{-1} \\ \hline \end{array}$	super A	$(1,0)$	$\mathfrak{g}(2,3)$	0
$\begin{array}{ccc} \hline-1 & \omega^{2} & \omega \\ 0 & \\ 0 \end{array}$	super A	$(1,0)$	super A	0
		$(0,1)$	$\mathfrak{g}(2,3)$	0
$\begin{array}{ccc} -1 \\ 0 & \omega & \omega^{2} \\ 0 & \omega \\ 0 \end{array} \omega_{0}^{2}$	super A	$(1,0,0)$	$\mathfrak{g}(3,3)$	0
$\begin{array}{cccc} -1 & \omega & \omega_{0}^{2} \omega_{0}^{2} & \omega \\ 0 \end{array}$	super ${ }^{\text {osp }}$	$(1,0,0)$	$\mathfrak{g}(3,3)$	0
$\stackrel{-1}{\circ} r^{-1} \stackrel{r}{\circ}, r \notin \mathbb{G}_{\infty}$	super A	$(1,0)$	$D(2,1 ; \alpha)$	2
${\stackrel{-1}{\circ} r^{-1} \stackrel{r}{\circ}, r \in \mathbb{G}_{N}^{\prime}, N>3}^{\circ}$	super A	$(1,0)$	$D(2,1 ; \alpha)$	0

Theorem 2.1. Let V be a braided vector space with braiding (2.1). Assume that $\epsilon=1$; then the interaction is weak. Then the following are equivalent:
(i) $\operatorname{GKdim} \mathcal{B}(V)<\infty$.
(ii) For $J \in \mathcal{X}$, either $\mathscr{G}_{J}=0$, or else V_{J} is as in Table 4.

Furthermore, if (ii) holds, then

$$
\begin{equation*}
\mathrm{GK} \operatorname{dim} \mathcal{B}(V)=2+\sum_{J \in \mathcal{X}} \mathrm{GK} \operatorname{dim} \mathcal{B}\left(K_{J}\right) . \tag{2.4}
\end{equation*}
$$

Theorem 2.2. Let V be a braided vector space with braiding (2.1). Assume that $\epsilon=-1$. Then the following are equivalent:
(i) $\operatorname{GKdim} \mathcal{B}(V)<\infty$.
(ii) For $J \in \mathcal{X}$, either of the following holds:
(a) The interaction of J is weak and $\mathscr{G}_{J}=0$.
(b) The interaction of J is weak, $J=\{i\}, \mathscr{G}_{i}$ discrete and $q_{i i}= \pm 1$.
(c) The interaction of J is $(-1,1, \ldots, 1), \mathscr{G}=(1,0, \ldots, 0)$ and the Dynkin

Furthermore, if (ii) holds, then

$$
\begin{equation*}
\operatorname{GKdim} \mathcal{B}(V)=2+\sum_{J \in \mathcal{X}} \mathrm{GKdim} \mathcal{B}\left(K_{J}\right) \tag{2.5}
\end{equation*}
$$

The meaning of K_{J} in Table 4 is explained in $\S ? ?$ below.
2.2. The Nichols algebras with finite GKdim. Let $V=V_{1} \oplus V_{2}$ as in (2.3) and assume that the Dynkin diagram of V_{2} is connected, i.e. $\mathcal{X}=$ $\{J\}$, where $J=\mathbb{I}_{2, \theta}$. Assume that $|J|>1$. We provide a presentation by generators and relations and exhibit an explicit PBW basis of $\mathcal{B}(V)$, cf. Theorem ??.

The subspace $V_{1} \oplus \mathbb{k} x_{2}$ is a braided vector subspace of type either of type $\mathcal{B}(\mathfrak{L}(-1,2))$ when V is of type $\mathfrak{L}\left(A_{2}, 2\right)$, or else $\mathcal{B}(\mathfrak{L}(\omega, 1))$ when V is of type $\mathfrak{L}\left(A(1 \mid 0)_{3} ; \omega\right)$, or $\mathcal{B}(\mathfrak{L}(-1,1))$ for all the other cases. Thus the subalgebra generated by $V_{1} \oplus \mathbb{k} x_{2}$ is a Nichols algebra of the corresponding type.

Recall the defining relations of $\mathcal{B}(\mathfrak{L}(-1,1))$:

$$
\begin{align*}
& x_{\frac{3}{2}} x_{1}-x_{1} x_{\frac{3}{2}}+\frac{1}{2} x_{1}^{2} \tag{??}\\
& x_{1} x_{2}-q_{12} x_{2} x_{1} \tag{1.9}\\
& \left(\operatorname{ad}_{c} x_{\frac{3}{2}}\right)^{2} x_{2} \tag{1.10}\\
& x_{2}^{2}, x_{\frac{3}{2} 2}^{2} \tag{1.12}
\end{align*}
$$

Remark 2.3. Let $j \in \mathbb{I}_{3, \theta}$. As $q_{1 j} q_{j 1}=1$ and $\mathscr{G}_{j}=0$,

$$
\begin{equation*}
x_{1} x_{j}=q_{1 j} x_{j} x_{1}, \quad x_{\frac{3}{2}} x_{j}=q_{1 j} x_{j} x_{\frac{3}{2}} \tag{2.6}
\end{equation*}
$$

TABLE $3 . V=V(1,2) \oplus V_{2}$, weak int., $\mathscr{G}=(1,0, \ldots, 0)$

V_{2}	V
	$\mathfrak{L}\left(A_{\theta-1}\right), \theta>2$
$\stackrel{-1}{\circ} \stackrel{-1}{-} \stackrel{-1}{\circ}, \mathscr{G}=(2,0)$	$\mathfrak{L}\left(A_{2}, 2\right)$
$\mathbf{O}_{0}^{-1} \underline{r}^{-1} \stackrel{r}{o} ; r \in \mathbb{K}^{\times}$	$\mathfrak{L}\left(A(1 \mid 0)_{1} ; r\right)$
$\mathrm{o}^{-1} \stackrel{\omega}{0^{-1}}{ }^{-1} ; \omega \in \mathbb{G}_{3}^{\prime}$	$\mathfrak{L}\left(A(1 \mid 0)_{2} ; \omega\right)$
	$\mathfrak{L}\left(A(1 \mid 0)_{3} ; \omega\right)$
$\stackrel{-1}{\circ} \quad \omega \quad \stackrel{\omega^{2}}{\circ} \xrightarrow{\omega} \stackrel{\omega^{2}}{\circ} ; \omega \in \mathbb{G}_{3}^{\prime}$	$\mathfrak{L}\left(A(2 \mid 0)_{1} ; \omega\right)$
$\stackrel{-1}{\circ} \stackrel{\omega}{\circ} \stackrel{\omega^{2}}{\circ} \omega^{\omega^{2}} \stackrel{\omega}{\circ} ; \omega \in \mathbb{G}_{3}^{\prime}$	$\mathfrak{L}(D(2 \mid 1) ; \omega)$

2.2.1. The Nichols algebra $\mathcal{B}\left(\mathfrak{L}\left(A_{\theta-1}\right)\right)$.

Proposition 2.4. The algebra $\mathcal{B}\left(\mathfrak{L}\left(A_{\theta-1}\right)\right)$ is presented by generators x_{1}, \ldots and relations (??),

$$
\begin{align*}
x_{1} x_{3} & =q_{12} x_{3} x_{1} \tag{2.7}\\
z_{1+\mathscr{G}} & =0 \tag{2.8}\\
z_{t} z_{t+1} & =q_{21} q_{22} z_{t+1} z_{t}, \quad 0 \leq t<\mathscr{G} \tag{2.9}
\end{align*}
$$

The set

$$
B=\left\{x_{1}^{m_{1}} x_{2}^{m_{2}} z_{\mathscr{G}}^{n_{\mathscr{G}}} \ldots z_{1}^{n_{1}} z_{0}^{n_{0}}: m_{i}, n_{j} \in \mathbb{N}_{0}\right\}
$$

is a basis of $\mathcal{B}\left(\mathfrak{L}\left(A_{\theta-1}\right)\right)$ and $\operatorname{GK} \operatorname{dim} \mathcal{B}\left(\mathfrak{L}\left(A_{\theta-1}\right)\right)=2$.
2.2.2. The Nichols algebra $\mathcal{B}\left(\mathfrak{L}\left(A_{2}, 2\right)\right)$.

Proposition 2.5. The algebra $\mathcal{B}\left(\mathfrak{L}\left(A_{2}, 2\right)\right)$ is presented by generators x_{1}, \ldots and relations (??),

$$
\begin{align*}
x_{1} x_{3} & =q_{12} x_{3} x_{1} \tag{2.10}\\
z_{1+\mathscr{G}} & =0 \tag{2.11}\\
z_{t} z_{t+1} & =q_{21} q_{22} z_{t+1} z_{t}, \quad 0 \leq t<\mathscr{G} \tag{2.12}
\end{align*}
$$

The set

$$
B=\left\{x_{1}^{m_{1}} x_{2}^{m_{2}} z_{\mathscr{G}}^{n_{\mathscr{G}}} \ldots z_{1}^{n_{1}} z_{0}^{n_{0}}: m_{i}, n_{j} \in \mathbb{N}_{0}\right\}
$$

is a basis of $\mathcal{B}\left(\mathfrak{L}\left(A_{2}, 2\right)\right)$ and $\operatorname{GKdim} \mathcal{B}\left(\mathfrak{L}\left(A_{2}, 2\right)\right)=2$.
2.2.3. The Nichols algebra $\mathcal{B}\left(\mathfrak{L}\left(A(1 \mid 0)_{1} ; r\right)\right)$. Let r be a root of unity of order $N \geq 3$. The subalgebra generated by x_{2}, x_{3} is a Nichols algebra of type $A(1 \mid 0)_{1}$. Thus,

$$
\begin{equation*}
\left(\operatorname{ad}_{c} x_{3}\right)^{2} x_{2}=0, \quad x_{3}^{N}=0 \tag{2.13}
\end{equation*}
$$

Let W be the braided vector space with basis y_{1}, y_{2}, y_{3} and Dynkin diagram $\stackrel{-1}{\circ} \stackrel{r^{-1}}{\circ} \stackrel{r}{\circ} r^{r^{-1}} \stackrel{-1}{\circ}$. By [An3], $\mathcal{B}(W)$ is presented by generators y_{1}, y_{2}, y_{3} and relations

$$
\begin{equation*}
\left(\operatorname{ad}_{c} y_{2}\right)^{2} y_{1}, \quad\left(\operatorname{ad}_{c} y_{2}\right)^{2} y_{3}, \quad\left(\operatorname{ad}_{c} y_{1}\right) y_{3}, \quad y_{1}^{2}, \quad y_{3}^{2}, \quad y_{2}^{N}, \quad y_{123}^{N} \tag{2.14}
\end{equation*}
$$

The set

$$
B_{W}=\left\{y_{1}^{n_{1}} y_{12}^{n_{12}} y_{123}^{n_{123}} y_{2}^{n_{2}} y_{23}^{n_{23}} y_{3}^{n_{3}}: n_{1}, n_{12}, n_{23}, n_{3} \in\{0,1\}, 0 \leq n_{2}, n_{123}<N\right\}
$$

is a basis of $\mathcal{B}(W)$.
Remark 2.6. By Lemma ?? K^{1} is isomorphic to W as braided vector spaces. Moreover there exists an algebra isomorphism $\psi: \mathcal{B}(W) \rightarrow K$ such that $\psi\left(y_{1}\right)=x_{3 / 2,2}, \psi\left(y_{2}\right)=x_{3}, \psi\left(y_{3}\right)=x_{2}$. Let

$$
\mathbf{z}_{1}=\left[x_{\frac{3}{2} 2}, x_{3}\right]_{c}=\psi\left(y_{12}\right), \quad \mathbf{z}_{2}=\left[x_{\frac{3}{2} 2}, x_{23}\right]_{c}=\psi\left(y_{123}\right)
$$

Thus, in $\mathcal{B}\left(\mathfrak{L}\left(q_{22}, \mathscr{G}\right)\right)$,

$$
\begin{equation*}
\mathrm{z}_{2}^{N}=0, \tag{2.15}
\end{equation*}
$$

and the set

$$
B_{K}=\left\{x_{\frac{3}{2} 2}^{n_{1}} \mathbf{z}_{1}^{n_{2}} z_{2}^{n_{3}} x_{3}^{n_{4}} x_{23}^{n_{5}} x_{2}^{n_{6}}: n_{1}, n_{2}, n_{5}, n_{6} \in\{0,1\}, 0 \leq n_{3}, n_{4}<N\right\}
$$

is a basis of K.
Lemma 2.7. Let \mathcal{B} be a quotient algebra of $T(V)$. Assume that (1.10), (1.12), (2.6), (2.13), (2.15) hold in \mathcal{B}. Then there exists an algebra map $\phi: \mathcal{B}(W) \rightarrow \mathcal{B}$ such that $\phi\left(y_{1}\right)=x_{\frac{3}{2}, 2}, \phi\left(y_{2}\right)=x_{3}, \phi\left(y_{3}\right)=x_{2}$.

Proof. Let $\bar{\phi}: T(W) \rightarrow \mathcal{B}$ be the algebra map defined as ϕ on the y_{i} 's. We claim that $\bar{\phi}$ annihilates all the relations in (2.14), and the Lemma follows. The second and the sixth relations are annihilated by (2.13) while the last is (2.15). The fourth and the fifth relations are annihilated because of (1.12), and for the third relation we apply Lemma 1.4 (ii). Finally,

$$
\bar{\phi}\left(\left(\operatorname{ad}_{c} y_{2}\right)^{2} y_{1}\right)=\left(\operatorname{ad}_{c} x_{3}\right)^{2} x_{\frac{3}{2}, 2}=q_{31}^{2}\left(\operatorname{ad}_{c} x_{\frac{3}{2}}\right)\left(\operatorname{ad}_{c} x_{3}\right)^{2} x_{2}=0,
$$

where we use (2.6) and (2.13).
Proposition 2.8. The algebra $\mathcal{B}\left(\mathfrak{L}\left(A(1 \mid 0)_{1} ; r\right)\right)$ is presented by generators $x_{i}, i \in \mathbb{I}_{\theta}^{\dagger}$, and relations (??), (1.9), (1.10), (1.12), (2.6), (2.13), (2.15).

The set

$$
\begin{gathered}
B=\left\{x_{1}^{m_{1}} x_{\frac{3}{2}}^{m_{2}} x_{\frac{3}{2}}^{n_{1}} \mathbf{z}_{1}^{n_{2}} z_{2}^{n_{3}} x_{3}^{n_{4}} x_{23}^{n_{5}} x_{2}^{n_{6}}: n_{1}, n_{2}, n_{5}, n_{6} \in\{0,1\}\right. \\
\left.0 \leq n_{3}, n_{4}<N, m_{i} \in \mathbb{N}_{0}\right\}
\end{gathered}
$$

is a basis of $\mathcal{B}\left(\mathfrak{L}\left(A(1 \mid 0)_{1} ; r\right)\right)$ and $\operatorname{GKdim} \mathcal{B}\left(\mathfrak{L}\left(A(1 \mid 0)_{1} ; r\right)\right)=2$.
Proof. The set B is a basis because of the isomorphism $\mathcal{B}\left(\mathfrak{L}\left(A(1 \mid 0)_{1} ; r\right)\right) \simeq$ $K \# \mathcal{B}\left(V_{1}\right)$ as in $\S ? ?$, and Remark 2.6. The computation of GKdim follows from the Hilbert series at once.

Relations (??), (1.9), (1.10), (1.12), (2.6), (2.13), (2.15) hold as we have discussed at the beginning of the subsection. Hence the quotient $\widetilde{\mathcal{B}}$ of $T(V)$ by these relations projects onto $\mathcal{B}\left(\mathfrak{L}\left(A(1 \mid 0)_{1} ; r\right)\right)$.

We claim that the subspace I spanned by B is a left ideal of $\widetilde{\mathcal{B}}$. Indeed, $x_{1} I \subseteq I$ by definition, and $x_{\frac{3}{2}} I \subseteq I$ by (??). By Lemma 2.7,

$$
\begin{aligned}
& x_{3} \phi\left(B_{W}\right)=\phi\left(y_{2} B_{W}\right) \subset \phi\left(B_{W}\right), \quad x_{\frac{3}{2} 2} \phi\left(B_{W}\right)=\phi\left(y_{1} B_{W}\right) \subset \phi\left(B_{W}\right) \\
& x_{2} \phi\left(B_{W}\right)=\phi\left(y_{3} B_{W}\right) \subset \phi\left(B_{W}\right) .
\end{aligned}
$$

As $I=\sum_{m_{1}, m_{2}} \mathbb{k} x_{1}^{m_{1}} x_{\frac{3}{2}}^{m_{2}} \phi\left(B_{W}\right)$, we have that

$$
\begin{aligned}
x_{3} I & =\sum_{m_{1}, m_{2}} \mathbb{k} x_{3} x_{1}^{m_{1}} x_{\frac{3}{2}}^{m_{2}} \phi\left(B_{W}\right)=\sum_{m_{1}, m_{2}} \mathbb{k} x_{1}^{m_{1}} x_{\frac{3}{2}}^{m_{2}} x_{3} \phi\left(B_{W}\right) \subset I, \\
x_{2} I & =\sum_{m_{1}, m_{2}} \mathbb{k} x_{2} x_{1}^{m_{1}} x_{\frac{3}{2}}^{m_{2}} \phi\left(B_{W}\right) \\
& =\sum_{m_{1}, m_{2}} \mathbb{k} x_{1}^{m_{1}} x_{\frac{3}{2}}^{m_{2}} x_{2} \phi\left(B_{W}\right)+\mathbb{k} x_{1}^{m_{1}} x_{\frac{3}{2}}^{m_{2}-1} x_{\frac{3}{2}}{ }_{2} \phi\left(B_{W}\right) \subset I,
\end{aligned}
$$

by $(2.6),(1.12)$. Since $1 \in I, \widetilde{\mathcal{B}}$ is spanned by B. Thus $\widetilde{\mathcal{B}}=\mathcal{B}(\mathfrak{L}(1, \mathscr{G}))$ since B is a basis of $\mathcal{B}(\mathfrak{L}(1, \mathscr{G}))$.

Dudas: donde fijar la notacion $y_{i_{1} \ldots y_{k}}=\left(\operatorname{ad}_{c} y_{i_{1}}\right) y_{i_{2} \ldots y_{k}}$? como trabajar con otros sistemas de raices mas complejos?
2.2.4. The Nichols algebra $\mathcal{B}\left(\mathfrak{L}\left(A(1 \mid 0)_{2} ; \omega\right)\right)$.

Proposition 2.9. The algebra $\mathcal{B}\left(\mathfrak{L}\left(A(1 \mid 0)_{2} ; \omega\right)\right)$ is presented by generators x_{1}, \ldots and relations (??),

$$
\begin{align*}
x_{1} x_{3} & =q_{12} x_{3} x_{1} \tag{2.16}\\
z_{1+\mathscr{G}} & =0 \tag{2.17}\\
z_{t} z_{t+1} & =q_{21} q_{22} z_{t+1} z_{t}, \quad 0 \leq t<\mathscr{G} \tag{2.18}
\end{align*}
$$

The set

$$
B=\left\{x_{1}^{m_{1}} x_{2}^{m_{2}} z_{\mathscr{G}}^{n_{\mathscr{G}}} \ldots z_{1}^{n_{1}} z_{0}^{n_{0}}: m_{i}, n_{j} \in \mathbb{N}_{0}\right\}
$$

is a basis of $\mathcal{B}\left(\mathfrak{L}\left(A(1 \mid 0)_{2} ; \omega\right)\right)$ and $\operatorname{GK} \operatorname{dim} \mathcal{B}\left(\mathfrak{L}\left(A(1 \mid 0)_{2} ; \omega\right)\right)=2$.
2.2.5. The Nichols algebra $\mathcal{B}\left(\mathfrak{L}\left(A(1 \mid 0)_{2} ; \omega\right)\right)$.

Proposition 2.10. The algebra $\mathcal{B}\left(\mathfrak{L}\left(A(1 \mid 0)_{2} ; \omega\right)\right)$ is presented by generators x_{1}, \ldots and relations (??),

$$
\begin{align*}
x_{1} x_{3} & =q_{12} x_{3} x_{1}, \tag{2.19}\\
z_{1+\mathscr{G}} & =0, \tag{2.20}\\
z_{t} z_{t+1} & =q_{21} q_{22} z_{t+1} z_{t}, \quad 0 \leq t<\mathscr{G} . \tag{2.21}
\end{align*}
$$

The set

$$
B=\left\{x_{1}^{m_{1}} x_{3}^{m_{3}} z_{\mathscr{G}}^{n_{\mathscr{G}}} \ldots z_{1}^{n_{1}} z_{0}^{n_{0}}: m_{i}, n_{j} \in \mathbb{N}_{0}\right\}
$$

is a basis of $\mathcal{B}\left(\mathfrak{L}\left(A(1 \mid 0)_{3} ; \omega\right)\right)$ and $\operatorname{GKdim} \mathcal{B}\left(\mathfrak{L}\left(A(1 \mid 0)_{3} ; \omega\right)\right)=2$.
2.2.6. The Nichols algebra $\mathcal{B}\left(\mathfrak{L}\left(A(2 \mid 0)_{1} ; \omega\right)\right)$.

Proposition 2.11. The algebra $\mathcal{B}\left(\mathfrak{L}\left(A(2 \mid 0)_{1} ; \omega\right)\right)$ is presented by generators x_{1}, \ldots and relations (??),

$$
\begin{align*}
x_{1} x_{3} & =q_{12} x_{3} x_{1}, \tag{2.22}\\
z_{1+\mathscr{G}} & =0, \tag{2.23}\\
z_{t} z_{t+1} & =q_{21} q_{22} z_{t+1} z_{t}, \tag{2.24}
\end{align*} \quad 0 \leq t<\mathscr{G} . ~ l
$$

The set

$$
B=\left\{x_{1}^{m_{1}} x_{2}^{m_{2}} z_{\mathscr{G}}^{n_{\mathscr{G}}} \ldots z_{1}^{n_{1}} z_{0}^{n_{0}}: m_{i}, n_{j} \in \mathbb{N}_{0}\right\}
$$

is a basis of $\mathcal{B}\left(\mathfrak{L}\left(A(2 \mid 0)_{1} ; \omega\right)\right)$ and $\operatorname{GKdim} \mathcal{B}\left(\mathfrak{L}\left(A(2 \mid 0)_{1} ; \omega\right)\right)=2$.
2.2.7. The Nichols algebra $\mathcal{B}(\mathfrak{L}(D(2 \mid 1) ; \omega))$.

Proposition 2.12. The algebra $\mathcal{B}(\mathfrak{L}(D(2 \mid 1) ; \omega))$ is presented by generators x_{1}, \ldots and relations (??),

$$
\begin{align*}
x_{1} x_{3} & =q_{12} x_{3} x_{1}, \tag{2.25}\\
z_{1+\mathscr{G}} & =0, \tag{2.26}\\
z_{t} z_{t+1} & =q_{21} q_{22} z_{t+1} z_{t}, \tag{2.27}
\end{align*} \quad 0 \leq t<\mathscr{G} .
$$

The set

$$
B=\left\{x_{1}^{m_{1}} x_{2}^{m_{2}} z_{\mathscr{G}}^{n_{\mathscr{G}}} \cdots z_{1}^{n_{1}} z_{0}^{n_{0}}: m_{i}, n_{j} \in \mathbb{N}_{0}\right\}
$$

is a basis of $\mathcal{B}(\mathfrak{L}(D(2 \mid 1) ; \omega))$ and $\operatorname{GKdim} \mathcal{B}(\mathfrak{L}(D(2 \mid 1) ; \omega))=2$.
2.2.8. The Nichols algebra $\mathcal{B}\left(\mathfrak{C}_{n}\right)$.

Lemma 2.13. Let $\mathscr{I}_{J}=(-1,1, \ldots, 1), \mathscr{G}_{J}=(1,0, \ldots, 0), n \geq 3$, with Dynkin diagram ${ }^{-1} \stackrel{-1}{-1} 0^{-1} \ldots \stackrel{o}{-1}_{-1}^{-1}{ }^{-1}$. Then $\operatorname{GKdim} \mathcal{B}(V)=\infty$.

Proof. We may assume that $n=2$. Fix $J=\{2,3\}, \mathcal{B}=\mathcal{B}\left(V_{1} \oplus V_{J}\right)$, and set $u=\left[x_{\frac{3}{2} 23}, x_{2}\right]_{c}, v=\left[x_{1}, u\right]_{c} \in \mathcal{B}$. As $\partial_{2}\left(x_{\frac{3}{2} 23}\right)=0$, we have

$$
\begin{aligned}
\partial_{2}(u) & =\partial_{2}\left(x_{\frac{3}{2} 23} x_{2}+q_{12} q_{32} x_{2} x_{\frac{3}{2} 23}\right)=x_{\frac{3}{2} 23}+q_{12} q_{32} g_{2} \cdot x_{\frac{3}{2} 23} \\
& =x_{\frac{3}{2} 23}+q_{12} q_{32} q_{21} q_{22} q_{23}\left(x_{\frac{3}{2} 23}+x_{123}\right)=-x_{123} .
\end{aligned}
$$

As x_{1}, x_{2}, x_{3} span a braided vector space of Cartan type A_{3}, we have that $\left[x_{123}, x_{2}\right]_{c}=x_{1}^{2}=0$. From the first relation,

$$
g_{1} \cdot u=q_{12}^{2} q_{13}\left(-u+\left[x_{123}, x_{2}\right]_{c}\right)=-q_{12}^{2} q_{13} u,
$$

and from the second, $x_{1} x_{123}=-q_{12} q_{13} x_{123} x_{1}$, so

$$
\begin{aligned}
\partial_{2}(v) & =\partial_{2}\left(x_{1} u+q_{12}^{2} q_{13} u x_{1}\right)=x_{1} \partial_{2}(u)+q_{12}^{2} q_{13} \partial_{2}(u) g_{2} \cdot x_{1} \\
& =-x_{1} x_{123}+q_{12} q_{13} x_{123} x_{1}=2 q_{12} q_{13} x_{123} x_{1} .
\end{aligned}
$$

Thus $v \neq 0$. As $x_{2}^{2}=\left(\operatorname{ad}_{c} x_{\frac{3}{2}}\right) x_{3}=0$,

$$
\begin{aligned}
\Delta\left(x_{\frac{3}{2} 23}\right) & =x_{\frac{3}{2} 23} \otimes 1+2 x_{\frac{3}{2} 2} \otimes x_{3}+\left(2 x_{\frac{3}{2}}+x_{1}\right) \otimes x_{23}+1 \otimes x_{\frac{3}{2} 23}, \\
\Delta(u) & =u \otimes 1-2 x_{12} \otimes x_{3} x_{2}+1 \otimes u, \\
\Delta(v) & =v \otimes 1+4 q_{12} x_{12} x_{1} \otimes x_{3} x_{2}+2 q_{12} x_{12} \otimes x_{3} x_{12}+1 \otimes v,
\end{aligned}
$$

so v is a primitive element in $\mathcal{B}^{\text {diag }}$. Let $\widetilde{\mathcal{B}}_{1}$ be the subalgebra of $\mathcal{B}^{\text {diag }}$ generated by v and the x_{i} 's. and $\widetilde{\mathcal{B}}_{2}$ the Nichols algebra whose degree one part is isomorphic (as a braided vector space) to $\mathbb{k} u \oplus V$. Arguing as in Theorem ??, let $\tilde{\mathcal{B}}_{2}$ be the graded braided Hopf algebra associated to the natural Hopf algebra filtration of $\tilde{\mathcal{B}}_{1}$, where the generators v and x_{i} have degree one. Let $\tilde{\mathcal{B}}_{3}$ be the Nichols algebra quotient of $\tilde{\mathcal{B}}_{2}$. Then

$$
\operatorname{GKdim} \tilde{\mathcal{B}}_{3} \leq \operatorname{GKdim} \tilde{\mathcal{B}}_{2} \leq \operatorname{GKdim} \tilde{\mathcal{B}}_{1} \leq \operatorname{GKdim} \mathcal{B}^{\text {diag }}=\operatorname{GKdim} \mathcal{B}(V)
$$

The Dynkin diagram of the degree one part of $\tilde{\mathcal{B}}_{3}$ is of Cartan type $D_{4}^{(1)}$ (with vertices labeled by -1), so GKdim $\tilde{\mathcal{B}}_{3}=\infty$ by Theorem ??, and then $G \operatorname{Gdim} \mathcal{B}(V)=\infty$.

Lemma 2.14. Let $\mathscr{I}_{J}=(-1,1, \ldots, 1), \mathscr{G}_{J}=(1,0, \ldots, 0)$, $n \geq 3$, with Dynkin diagram ${ }^{-1}{ }^{-1}{ }^{-1} 0^{-1} \ldots 0^{-1} \stackrel{-1}{-1}_{\circ}^{-1}$. Then $\operatorname{GKdim} \mathcal{B}(V)=\infty$.

Proof. We may assume that $n=3$. Fix $J=\{2,3,4\}, \mathcal{B}=\mathcal{B}\left(V_{1} \oplus V_{J}\right)$, and set $u=\left[x_{\frac{3}{2} 23}, x_{2}\right]_{c} \in \mathcal{B}$. As $\partial_{2}\left(x_{\frac{3}{2} 23}\right)=0$, we have

$$
\begin{aligned}
\partial_{2}(u) & =\partial_{2}\left(x_{\frac{3}{2} 23} x_{2}+q_{12} q_{32} x_{2} x_{\frac{3}{2}}\right)=x_{\frac{3}{2} 23}+q_{12} q_{32} g_{2} \cdot x_{\frac{3}{2} 23} \\
& =x_{\frac{3}{2} 23}+q_{12} q_{32} q_{21} q_{22} q_{23}\left(x_{\frac{3}{2} 23}+x_{123}\right)=-x_{123} .
\end{aligned}
$$

Thus $u \neq 0$. As $x_{2}^{2}=\left(\operatorname{ad}_{c} x_{\frac{3}{2}}\right) x_{3}=0$,

$$
\begin{aligned}
\Delta\left(x_{\frac{3}{2} 23}\right) & =x_{\frac{3}{2} 23} \otimes 1+2 x_{\frac{3}{2} 2} \otimes x_{3}+\left(2 x_{\frac{3}{2}}+x_{1}\right) \otimes x_{23}+1 \otimes x_{\frac{3}{2} 23}, \\
\Delta(u) & =u \otimes 1-2 x_{12} \otimes x_{3} x_{2}+1 \otimes u,
\end{aligned}
$$

so u is a primitive element in $\mathcal{B}^{\text {diag }}$. Let $\widetilde{\mathcal{B}}_{1}$ be the subalgebra of $\mathcal{B}^{\text {diag }}$ generated by u, x_{4}, and $\widetilde{\mathcal{B}}_{2}$ the Nichols algebra whose degree one part is isomorphic (as a braided vector space) to $\mathbb{k} u \oplus \mathbb{k} x_{4}$. The Dynkin diagram of $\widetilde{\mathcal{B}}_{2}$ is $\stackrel{1}{\circ}-\frac{-1}{-1}{ }_{\circ}^{-1}$, thus GKdim $\widetilde{\mathcal{B}}_{2}=\infty$. Arguing as in Theorem ??, $G K \operatorname{dim} \mathcal{B}=\infty$.

As $x_{1}, x_{\frac{3}{2}}, x_{2}$ span a braided vector space of type \mathfrak{C}_{1}, the following relations hold in $\mathcal{B}\left(\mathfrak{C}_{n}\right)$:

$$
\begin{align*}
x_{1 \frac{3}{2}} x_{2}-q_{12}^{2} x_{2} x_{1 \frac{3}{2}} & =0 \tag{1.26}\\
x_{\frac{3}{2}} x_{\frac{3}{2} 2}+q_{12} x_{\frac{3}{2}} x_{\frac{3}{2}} & =q_{12} x_{12} x_{\frac{3}{2}}+\frac{1}{2} x_{1 \frac{3}{2} 2}, \tag{1.27}\\
x_{\frac{3}{2}} x_{1 \frac{3}{2}}-x_{1 \frac{3}{2}} x_{\frac{3}{2}} & =x_{1} x_{1 \frac{3}{2}} . \tag{??}
\end{align*}
$$

Lemma 2.15. The following relations hold in $\left.\mathcal{B}\left(\mathfrak{C}_{n}\right)\right)$:

$$
\begin{array}{ll}
\left(\operatorname{ad}_{c} x_{i}\right) x_{j}, & i<j-1, \\
{\left[x_{\alpha_{i-1} i+1}, x_{i}\right]_{c},} & 2 \leq i \leq n-1, \\
{\left[x_{\beta 3}, x_{2}\right]_{c},} & \\
{\left[x_{12 \frac{3}{2}}, x_{2}\right]_{c} .} & \tag{2.31}
\end{array}
$$

Proof. As $x_{i}, i \in \mathbb{I}_{n}$, span a braided vector space of A_{n} type, (2.28) for $i \neq \frac{3}{2}$ and (2.29) hold in $\left.\mathcal{B}\left(\mathfrak{C}_{n}\right)\right) ;(2.28), i=\frac{3}{2}$, follows since $q_{1 j} q_{j 1}=1 \mathscr{G}_{j}=0$.

For (2.30), we claim that $\partial_{j}\left(\left[x_{\beta_{3}}, x_{2}\right]_{c}\right)=0$ for all $j \in \mathbb{I}_{n}^{\dagger}$. Indeed, it holds for $j \neq 2,3$ since $\partial_{j}\left(x_{\beta_{3}}\right)=\partial_{j}\left(x_{2}\right)=0$. As $\partial_{3}\left(x_{\beta_{3}}\right)=2 x_{\beta_{2}}, \partial_{2}\left(x_{\beta_{3}}\right)=0$,

$$
\begin{align*}
& \partial_{3}\left(\left[x_{\beta_{3}}, x_{2}\right]_{c}\right)=\partial_{3}\left(x_{\beta_{3}} x_{2}+q_{12} q_{32} x_{2} x_{\beta_{3}}\right)=2 q_{32}\left(x_{\beta_{2}} x_{2}+q_{12} x_{2} x_{\beta_{2}}\right)=0, \\
& \partial_{2}\left(\left[x_{\beta_{3}}, x_{2}\right]_{c}\right)=\partial_{2}\left(x_{\beta_{3}} x_{2}+q_{12} q_{32} x_{2} x_{\beta_{3}}\right)=\left(1-q_{12} q_{32} q_{21} q_{23}\right) x_{\beta_{3}}=0 . \tag{2.31}
\end{align*}
$$

Lemma 2.16. For each $\alpha \in \Delta_{+}^{\mathbf{q}}$, set x_{α} with the same recursive definition as y_{α}. Then

$$
\begin{equation*}
y_{\alpha}^{2}=0, \quad \alpha \in \Delta_{+}^{\mathbf{q}}-\left\{\alpha_{\frac{3}{2}}\right\} \tag{2.32}
\end{equation*}
$$

Proof.

$$
\begin{align*}
x_{2}^{2} & =x_{\frac{3}{2} 2}^{2}=0, & i=0,1, \tag{1.28}\\
x_{12}^{2} & =x_{1 \frac{3}{2} 3}^{2}=0, & i=0,1, \tag{1.29}\\
x_{1}^{2} & =0 . & \tag{??}
\end{align*}
$$

Proposition 2.17. The algebra $\mathcal{B}\left(\mathfrak{C}_{2}\right)$) is presented by generators $x_{1}, x_{\frac{3}{2}}$, x_{2}, x_{3} and relations (??), (??), (1.26), (1.27), (1.28) and (1.29). The set

$$
B=\left\{x_{1}^{m_{1}} x_{12}^{m_{2}} x_{2}^{m_{3}} f_{1}^{n_{1}} f_{0}^{n_{2}} z_{1}^{n_{3}} z_{0}^{n_{4}}: m_{1}, n_{i} \in\{0,1\}, m_{2}, m_{3} \in \mathbb{N}_{0}\right\}
$$

is a basis of $\mathcal{B}\left(\mathfrak{C}_{2}\right)$ and $\operatorname{GKdim} \mathcal{B}\left(\mathfrak{C}_{2}\right)=2$.
Proof.

Table 4. PBW generators of $\mathcal{B}\left(\mathfrak{C}_{2}\right)$

	x_{1}	$x_{1 \frac{3}{2}}$	$x^{\frac{3}{2}}$	$x_{1 \frac{3}{2} 2}$	$x_{\frac{3}{2} 2}$	x_{12}	x_{2}	$x_{1} \frac{3}{2} 232$	$x_{1 \frac{3}{2} 23}$	x_{123}	$x_{\frac{3}{2} 23}$	$x_{\frac{3}{2} 232}$	x_{23}	x_{3}
x_{1}	\square													
$x_{1 \frac{3}{2}}$	\checkmark	\square												
$x_{\frac{3}{2}}$	\checkmark	\checkmark												
$x_{1 \frac{3}{2}} 2$	\checkmark	\checkmark												
$x_{\frac{3}{2}}$	\checkmark	\checkmark												
x_{12}	\checkmark	\checkmark												
x_{2}	\checkmark	\checkmark												
$x_{1 \frac{3}{2} 232}$	\checkmark													
$x_{1 \frac{3}{2} 23}$	\checkmark													
x_{123}	\checkmark													
$x_{\frac{3}{2}}^{23}$	\checkmark													
$x_{\frac{3}{2} 232}$	\checkmark													
x_{23}	\checkmark	\checkmark												
x_{3}	\checkmark	\checkmark												
height	2	∞	∞	2	2	2	2	???	???	2	???	∞	2	2

References

[AA] N. Andruskiewitsch, I. Angiono. On Nichols algebras with generic braiding, in Modules and Comodules, Trends in Mathematics. Brzezinski, T.; Gómez Pardo, J.L.; Shestakov, I.; Smith, P.F. (Eds.), pp. 47-64 (2008).
[AAG] Andruskiewitsch, N., Angiono, I., García Iglesias, A. Liftings of Nichols algebras of diagonal type I. Cartan type A, in preparation.
[A+] Andruskiewitsch, N., Angiono, I., García Iglesias, A., Masuoka, A., Vay, C., Lifting via cocycle deformation, J. Pure Appl. Alg. 218 (2014), 684-703.
[AAH1] N. Andruskiewitsch, I. Angiono and I. Heckenberger. On finite GK-dimensional Nichols algebras of diagonal type. In preparation.
[AAR] Andruskiewitsch, N., Angiono, I., Rossi Bertone, F. The divided powers algebra of a finite-dimensional Nichols algebra of diagonal type, arXiv:1501.04518.
[ACE] N. Andruskiewitsch, J. Cuadra and P. Etingof, On two finiteness conditions for Hopf algebras with nonzero integral. Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), to appear.
[AD] N. Andruskiewitsch and S. Dăscălescu, Co-Frobenius Hopf algebras and the coradical filtration. Math. Z. 243 (2003), 145-154.
[AHS] Andruskiewitsch, N., Heckenberger, I., Schneider, H.-J., The Nichols algebra of a semisimple Yetter-Drinfeld module, Amer. J. Math. 132 (2010), 1493-1547.
[AS1] N. Andruskiewitsch, H.-J. Schneider, Pointed Hopf algebras, New directions in Hopf algebras, MSRI series Cambridge Univ. Press; 1-68 (2002).
[AS2] \qquad . A characterization of quantum groups. J. Reine Angew. Math. 577 (2004) 81-104.
[AS3] , On the classification of finite-dimensional pointed Hopf algebras, Ann. Math. 171, 375-417, (2010).
[ASc] N. Andruskiewitsch, C. Schweigert, The unrolled quantum double of a finitedimensional Nichols algebra of diagonal type, in preparation.
[An1] I. Angiono. Basic quasi-Hopf algebras over cyclic groups. Adv. Math. 225 (2010), 3545-3575.
[An2] \qquad . A presentation by generators and relations of Nichols algebras of diagonal type and convex orders on root systems, J. Europ. Math. Soc. 17 (2015), 2643-2671.
[An3] \qquad
[An4] . Distinguished pre-Nichols algebras. arXiv:1405.6681.
$[\mathrm{C}+]$ L. Carbone, S. Chung, C. Cobbs, R. McRae, D. Nandi, Y. Naqvi, D. Penta, Classification of hyperbolic Dynkin diagrams, root lengths and Weyl group orbits. J. Phys. A: Math. Theor. 43 (2010) (15): 155209.
[D+] E. E. Demidov, Yu. I. Manin, E. E. Mukhin, D. V. Zhdanovich, Nonstandard quantum deformations of $G L(n)$ and constant solutions of the Yang-Baxter equation. Common trends in mathematics and quantum field theories (Kyoto, 1990). Progr. Theoret. Phys. Suppl. No. 102 (1990), 203-218 (1991).
[FG] D. Flores de Chela, J. A. Green, Quantum Symmetric Algebras. Algebras and Representation Theory 4 (2001), 55-76.
[G] M. Graña, A freeness theorem for Nichols algebras. J. Algebra 231 (2000), 235-257.
[Gr] M. Gromov, Groups of polynomial growth and expanding maps. Inst. Hautes Études Sci. Publ. Math. 1981 (2000), 53-73.
[GH] M. Graña, I. Heckenberger, On a factorization of graded Hopf algebras using Lyndon words. J. Algebra 314 (2007), 324-343.
[Gu] R. Günther, Crossed products for pointed Hopf algebras. Comm. Algebra, 27 (1999), 4389-4410.
[G] D. I. Gurevich, The Yang-Baxter equation and the generalization of formal Lie theory. Dokl. Akad. Nauk SSSR 288 (1986), no. 4, 797-801.
[H1] I. Heckenberger. The Weyl groupoid of a Nichols algebra of diagonal type, Inventiones Math. 164, 175-188 (2006).
[H2] . Classification of arithmetic root systems, Adv. Math. 220 (2009), 59-124.
[Dr] Drinfeld, V. G. Quantum groups, Proc. Int. Congr. Math., Berkeley 1986, Vol. 1, 798-820 (1987).
[EG] Etingof, Pavel; Gelaki, Shlomo Quasisymmetric and unipotent tensor categories. Math. Res. Lett. 15, No. 5-6, 857-866 (2008).
$[\mathrm{K}]$ V. Kac, Infinite-dimensional Lie algebras. Third edition. Cambridge University Press, Cambridge, 1990. xxii+400 pp.
[KL] G. Krause, T. Lenagan, Growth of algebras and Gelfand-Kirillov dimension. Revised edition. Graduate Studies in Mathematics, 22. American Mathematical Society, Providence, RI, 2000. x+212 pp
[LM] A. Yu. Lazarev, M. V. Movshev, Quantization of some Lie groups and algebras. Russian Math. Surveys 46 (1991), no. 6, 225-226.
[Mo] S. Montgomery, Hopf algebras and their action on rings, CBMS Regional Conference Series 82 (1993).
[O] C. Ohn, A *-product on $S L(2)$ and the corresponding nonstandard quantum $U(s l(2))$, Lett. Math. Phys. 25 (1992), 85-88.
[R] M. Rosso, Quantum groups and quantum shuffles. Invent. Math. 133 (1998), 399416.
[S] H.J. Schneider, Normal basis and transitivity of crossed products for Hopf algebras, J. Algebra 152 (1992) 289-312.
[U] S. Ufer, PBW bases for a class of braided Hopf algebras. J. Algebra 280 (2004), 84-119.
[Y] H. Yamane, epresentations of a Z/3Z-quantum group. Publ. Res. Inst. Math. Sci. 43 (2007), 75-93
[WZZ] W. Wu, S. Zhang, Y.-Z. Zhang, Finite dimensional Nichols algebras over finite cyclic groups, Journal of Lie Theory 24 (2014) 351-372.
[Z] S. Zakrzewski, A Hopf star-algebra of polynomials on the quantum SL(2, R) for a unitary R-matrix, Lett. Math. Phys. 22, 287-289 (1991).

FaMAF-CIEM (CONICET), Universidad Nacional de Córdoba, Medina Allende s/n, Ciudad Universitaria, 5000 Córdoba, República Argentina.

E-mail address: (andrus|angiono)@mate.uncor.edu

