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1. Yetter-Drinfeld modules of dimension 3

1.1. The setting. Let Γ be an abelian group. In this Section we consider
V ∈ kΓ

kΓYD, dimV = 3, such that the corresponding braided vector space is
not of diagonal type. So, V is not semisimple and we have two possibilities
that we discuss in §1.1.1 and ??.

1.1.1. A block and a point. V = Vg1(χ1, η)⊕kχ2
g2 , where g1, g2 ∈ Γ, χ1, χ2 ∈ Γ̂

and η : Γ → k is a (χ1, χ1)-derivation. Here Vg1(χ1, η) ∈ kΓ
kΓYD is indecom-

posable with basis (xi)i∈I2 and action given by (??); while kχ2
g2 ∈ kΓ

kΓYD is
irreducible with base (x3). Also η(g1) 6= 0, otherwise V would be of diagonal
type, and then we may suppose that η(g1) = 1 by normalizing x1. Let

qij = χj(gi), i, j ∈ I2; ε = q11; a = q−1
21 η(g2).

Then the braiding is given in the basis (xi)i∈I3 by

(c(xi ⊗ xj))i,j∈I3 =

 εx1 ⊗ x1 (εx2 + x1)⊗ x1 q12x3 ⊗ x1

εx1 ⊗ x2 (εx2 + x1)⊗ x2 q12x3 ⊗ x2

q21x1 ⊗ x3 q21(x2 + ax1)⊗ x3 q22x3 ⊗ x3

 .(1.1)

Let V1 = Vg1(χ1, η), V2 = kχ2
g2 . If ε2 = 1, then

c2
|V1⊗V2 = id ⇐⇒ q12q21 = 1 and a = 0.(1.2)
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The scalar q12q21 will be called the interaction between the block and the
point. The interaction is

weak if q12q21 = 1, mild if q12q21 = −1, strong if q12q21 /∈ {±1}.

So c2
|V1⊗V2 is determined by the interaction and the (somewhat hidden) pa-

rameter a. We introduce a normalized version of a, called the ghost :

(1.3) G =

{
−2a, ε = 1,

a, ε = −1.

If G ∈ N, then we say that the ghost is discrete.

Theorem 1.1. Let V be a braided vector space with braiding (1.1). Assume
that GKdimB(V ) <∞. Then V is as in Table 1.

Table 1. Nichols algebras of a block and a point with finite GKdim

interaction ε q22 G B(V ), § GKdim
weak ±1 1 or /∈ G∞ 0 B(V(ε, 1))⊗B(kx3) 3

∈ G∞ − {1} 2
1 1 discrete B(L(1,G )), 1.2.1 G + 3

−1 discrete B(L(−1,G )), 1.2.2 2
∈ G′3 1 B(L(ω,G )), 1.2.5 2

−1 1 discrete B(L−(1,G )), 1.2.3 G + 3
−1 discrete B(L−(−1,G )), 1.2.4 G + 2

mild −1 −1 1 B(C1), 1.2.6 2

1.2. The Nichols algebras with finite GKdim. Here we describe a pre-
sentation by generators and relations and exhibit an explicit PBW basis of
the Nichols algebras in Theorem 1.1. We denote the braided vector space
with braiding (1.1) by

L(q22,G ), if the interaction is weak, ε = 1;

L−(q22,G ), if the interaction is weak, ε = −1;

C1, if the interaction is mild, ε = q22 = −1, G = 1.

Recall the relations of the Jordan and super Jordan planes:

x2x1 − x1x2 +
1

2
x2

1,(??)

x2
1,(??)

x2x12 − x12x2 − x1x12.(??)
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Lemma 1.2. Assume that ε2 = q2
22 = 1. In B(L(q22,G )), or correspondingly

B−(L(q22,G ))

z|2a|+1 = 0,(1.4)

ztzt+1 = q21q22zt+1zt t ∈ N0, t < |2a|,(1.5)

z2
t = 0 t ∈ N0, ε

tq22 = −1.(1.6)

∂3(zn+1
t ) = µtq

nt
21q

n
22n ytz

n
t , n, t ∈ N0, ε

tq22 = 1.(1.7)

Lemma 1.3. Let B be a quotient algebra of T (V ). Assume that x1x3 =
q12x3x1, and either

(a) (??), or else
(b) (??), x12x3 = q2

12x3x12

hold in B. Then for all n ∈ N0, x1zn = εnq12znx1 and x12zn = q2
12znx12.

Lemma 1.4. Let B be a quotient algebra of T (V ).

(i) Assume that (1.5) holds in B. Then for 0 ≤ t < k ≤ 2|a|,

ztzk − εtkqk−t21 q22zkzt =

t+k
2∑
j=0

νtk(j) zt+k−jzj , for some νtk(j) ∈ k.(1.8)

(ii) Assume that z2
t = 0 in B for t ∈ N0 such that εtq22 = −1. Then

ztzt+1 = q21q22zt+1zt in B.

1.2.1. The Nichols algebra B(L(1,G )). Recall that zn = (adcx2)nx3.

Proposition 1.5. Let G ∈ N. The algebra B(L(1,G )) is presented by gen-
erators x1, x2, x3 and relations (??),

x1x3 = q12 x3x1,(1.9)

z1+G = 0,(1.10)

ztzt+1 = q21q22 zt+1zt, 0 ≤t < G .(1.11)

The set

B = {xm1
1 xm2

2 znG
G . . . zn1

1 zn0
0 : mi, nj ∈ N0}

is a basis of B(L(1,G )) and GKdimB(L(1,G )) = 3 + G .

Proof. Relations (1.9), (1.10) are 0 in B(L(1,G )) being annihilated by ∂i,

i = 1, 2, 3, and (1.11) holds by Lemma 1.2. Hence the quotient B̃ of T (V )
by (??), (1.9), (1.10) and (1.11) projects onto B(L(1,G )). Then (1.8) holds

in B̃.
We claim that the subspace I spanned by B is a right ideal of B̃. Indeed,

• Ix1 ⊆ I follows by Lemma 1.3,
• Ix2 ⊆ I since ztx2 = εtq21(x2zt − zt+1), so we use (1.10), (1.8),
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and Ix3 ⊆ I by definition. Since 1 ∈ I, B̃ is spanned by B.

To prove that B̃ ' B(L(1,G )), it remains to show that B is linearly
independent in B(L(1,G )). For, suppose that there is a non-trivial linear
combination S of elements of B in B(L(1,G )), say of minimal degree. Now

∂1(xm1
1 xm2

2 znG
G . . . zn1

1 zn0
0 ) = m1 q

∑
ni

12 xm1−1
1 xm2

2 znG
G . . . zn1

1 zn0
0 ,

∂2(xm1
1 xm2

2 znG
G . . . zn1

1 zn0
0 ) = m2 q

∑
ni

12 xm1
1 xm2−1

2 znG
G . . . zn1

1 zn0
0 ,

since ∂1, ∂2 are skew derivations, so we apply Lemma ?? and ∂2(zt) = 0.
Then such linear combination does not have terms with m1 or m2 greater
than 0. Let k be maximal such that znkk . . . zn1

1 zn0
0 has non-zero coeffi-

cient in S for some k ≥ 1, and for such k fix the maximal nk. By (1.7),

ykz
nk−1
k . . . zn1

1 zn0
0 has non-zero coefficient in ∂3(S), and ∂3(S) is also a non-

trivial linear combination of elements of B, a contradiction. Then B is a

basis of B(L(1,G )) and B̃ = B(L(1,G )). The computation of GKdim follows
from the Hilbert series at once. �

1.2.2. The Nichols algebra B(L(−1,G )).

Proposition 1.6. Let G ∈ N. The algebra B(L(−1,G )) is presented by
generators x1, x2, x3 and relations (??), (1.9), (1.10) and

z2
t = 0, 0 ≤t ≤ G .(1.12)

The set

B = {xm1
1 xm2

2 znG
G . . . zn1

1 zn0
0 : ni ∈ {0, 1},mj ∈ N0}

is a basis of B(L(−1,G )) and GKdimB(L(−1,G )) = 2.

1.2.3. The Nichols algebra B(L−(1,G )).

Proposition 1.7. Let G ∈ N. The algebra B(L−(1,G )) is presented by
generators x1, x2, x3 and relations (??), (??), (1.9) and

z1+2G = 0,(1.13)

x12z0 = q2
12 z0x12,(1.14)

z2
2k+1 = 0, 0 ≤k < G ,(1.15)

z2kz2k+1 = q21q22 z2k+1z2k, 0 ≤k < G .(1.16)

The set

B = {xm1
1 xm2

12 x
m3
2 zn2G

2G . . . zn1
1 zn0

0 : m1, n2k+1 ∈ {0, 1},m2,m3, n2k ∈ N0}

is a basis of B(L−(1,G )) and GKdimB(L−(1,G )) = G + 3.
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1.2.4. The Nichols algebra B(L−(−1,G )).

Proposition 1.8. Let G ∈ N. The algebra B(L−(−1,G )) is presented by
generators x1, x2, x3 and relations (??), (??), (1.9), (1.13), (1.14) and

z2
2k = 0, 0 ≤k ≤ G ,(1.17)

z2k−1z2k = q21q22z2kz2k−1, 0 <k ≤ G .(1.18)

The set

B = {xm1
1 xm2

12 x
m3
2 zn2G

2G . . . zn1
1 zn0

0 : m1, n2k ∈ {0, 1},m2,m3, n2k−1 ∈ N0}

is a basis of B(L−(−1,G )) and GKdimB(L−(−1,G )) = G + 2.

1.2.5. The Nichols algebra B(L(ω, 1)).

Remark 1.9. As in the previous cases, (1.9) and

z2 = 0(1.19)

hold in B(L(ω, 1)). As q22 = ω ∈ G′3 we also have

z3
0 = 0.(1.20)

Let z1,0 := z1z0 − q12q22z0z1.

Remark 1.10. The following equations hold in B(L(ω, 1)) by Lemma ??

g1 · z1,0 = q2
12z1,0, g2 · z1,0 = q21q

2
22z1,0,(1.21)

∂1(z1,0) = ∂2(z1,0) = 0, ∂3(z1,0) = (1− q2
22)z1,0.(1.22)

Lemma 1.11. Let B be a quotient algebra of T (V ). Assume that (1.9),
(1.19) and (1.20) hold in B. Then the following relations also hold:

z1z1,0 = q12ω
2z1,0z1, z1,0z0 = q12ω

2z0z1,0,(1.23)

x2z1,0 = q2
12z1,0x2 + q12(1− ω)z2

1 , x1z1,0 = q2
12z1,0x1.(1.24)

Lemma 1.12. In B(L(ω, 1)),

z3
1 = z3

1,0 = 0.(1.25)

Proposition 1.13. Let ω ∈ G′3. The algebra B(L(ω, 1)) is presented by
generators x1, x2, x3 and relations (??), (1.9), (1.19), (1.20) and (1.25).
The set

B = {xm1
1 xm2

2 zn1
1 zn2zn3

0 : mi ∈ N0, 0 ≤ nj ≤ 2}

is a basis of B(L(ω, 1)) and GKdimB(L(ω, 1)) = 2.
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1.2.6. The Nichols algebra B(C1). Recall that fi = (adc x1)zi.

Remark 1.14. The following relations hold in B(C1):

x12z0 = q2
12z0x12,(1.26)

x2z1 + q12z1x2 = q12f0x2 +
1

2
f1,(1.27)

z2
i = 0, i = 0, 1,(1.28)

f2
1 = 0.(1.29)

Indeed (1.26) follows from the proof of Lemma ??, while (1.27), (1.28) and
(1.29) follows from the proof of Lemma ??.

Lemma 1.15. Let B be a quotient algebra of T (V ). Assume that (??), (??),
(1.26), (1.27), (1.28) and (1.29) hold in B. Then the following relations also
hold: f2

0 = 0,

x1f0 = −q12f0x1, x1f1 = q12f1x1,(1.30)

x2f0 + q12f0x2 = −f1, x2f1 = −q12f1x2,(1.31)

z1z0 = −q12z1z0, f1f0 = q12f0f1,(1.32)

f1z0 + q2
12z0f1 = −2q12f0z1, f0z0 = −q12z0f0,(1.33)

f1z1 − q2
12z1f1 = −2q12f0z1, f0z1 = −z1f0,(1.34)

x12f0 = q2
12f0x12, x12f1 = q2

12f1x12,(1.35)

x12z1 − q2
12z1x12 = 2x2f1 − x1f1 − 2x12f0.(1.36)

Proposition 1.16. The algebra B(C1)) is presented by generators x1, x2, x3

and relations (??), (??), (1.26), (1.27), (1.28) and (1.29). The set

B = {xm1
1 xm2

12 x
m3
2 fn1

1 fn2
0 zn3

1 zn4
0 : m1, ni ∈ {0, 1},m2,m3 ∈ N0}

is a basis of B(C1) and GKdimB(C1) = 2.

2. One block and several points

2.1. The setting. Let Γ be an abelian group. In this Section and the next
we consider V ∈ kΓ

kΓYD, dimV > 3, such that the corresponding braided
vector space is a direct sum of blocks and points, but we assume that the
underlying braided vector space is not of diagonal type. We seek to deter-
mine when GKdimB(V ) < ∞. By Theorem ??, we may assume that the
blocks are of the form V(ε, 2), with ε2 = 1. So, V is not semisimple and we
need to consider various possibilities:

• The direct sum of one block and several points.
• The direct sum of two blocks and possibly several points.

In this Section we deal with one block and several points. For a more
suggestive presentation, we introduce the notation

I2,θ = Iθ − {1}, I†θ = Iθ ∪ {3
2}, θ ∈ N.
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Let g1, . . . , gθ ∈ Γ, χ1, . . . , χθ ∈ Γ̂ and η : Γ → k a (χ1, χ1)-derivation.
Let Vg1(χ1, η) ∈ kΓ

kΓYD be the indecomposable with basis (xi)i∈I†1
and action

given by (??)– but with 3
2 instead of 2; while kχjgj ∈ kΓ

kΓYD is irreducible with
basis (xj), j ∈ I2,θ. Let

V = Vg1(χ1, η)⊕ kχ2
g2 ⊕ · · · ⊕ kχθgθ .

Thus (xi)i∈I†θ
is a basis of V . We suppose that V is not of diagonal type,

hence η(g1) 6= 0; we may assume that η(g1) = 1 by normalizing x1. Let

qij = χj(gi), i, j ∈ Iθ; aj = q−1
j1 η(gj), j ∈ Iθ.

Let bic be the largest integer ≤ i. Then the braiding in the basis (xi)i∈I†θ
is

c(xi ⊗ xj) =

{
qbicjxj ⊗ xi, i ∈ I†θ, j ∈ Iθ;
qbic1(x3

2
+ abicx1)⊗ xi, i ∈ I†θ, j = 3

2 .
(2.1)

Let ε := q11. Notice that B(Vg1(χ1, η) ⊕ kχjgj ) ↪→ B(V ) for all ∈ I2,θ, thus
we may apply the results from §5, 6. By Theorem ??, we may assume that
ε2 = 1, thus a1 = ε.

The interaction and the ghost between the block and the points are the
vectors

(q1hqh1)h∈I2,θ , G = (Gj)j∈I2,θ =

{
−2(aj)j∈I2,θ , ε = 1,

(aj)j∈I2,θ , ε = −1.
(2.2)

The interaction is strong if there exists h ∈ I2,θ such that q1hqh1 /∈ {±1};
when it is not strong, it is

weak if q1hqh1 = 1, ∀h ∈ I2,θ; mild, otherwise.

We say that the ghost is discrete if G ∈ NI2,θ
0 − {0}.

We can present our main object of interest in the language of braided
vector spaces. Given (qij)i,j∈Iθ , with q2

11 = 1, and G ∈ kI2,θ , we set a1 = ε =
q11 and consider the braided vector space (V, c) of dimension θ + 1, with a
basis (xi)i∈I†θ

and braiding given by (2.1). This braided vector space (V, c)

can be realized as a Yetter-Drinfeld module Vg1(χ1, η)⊕
⊕

j∈Iθ k
χj
gj over some

abelian group Γ as described above; for instance Γ = Zθ would do. Such a
realization will be called principal.

The braided subspace V1 spanned by x1, x3
2

is ' V(ε, 2), while V2 spanned

by (xi)i∈I2,θ is of diagonal type. Obviously,

V = V1 ⊕ V2.(2.3)

Let X be the set of connected components of the generalized Dynkin diagram
of the matrix q = (qij)i,j∈I2,θ . If J ∈ X , then we set J ′ = I2,θ − J ,

VJ =
∑
j∈J

kχjgj , GJ = (Gj)j∈J , interaction of J = (q1hqh1)h∈J .
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As before, J could have weak, mild or strong interaction.

Table 2. A block and several points, finite GKdim, weak
interaction, ε = 1; here ω ∈ G′3 and dJ = GKdimB(KJ)

VJ type GJ KJ dJ
1◦ A1 discrete (A1)GJ+1 GJ + 1

−1◦ A1 discrete (A1)GJ+1 0
ω◦ A1 1 A2 0

−1◦ −1 −1◦ . . .
−1◦ −1 −1◦ Aθ−1 (1, 0, . . . , 0) A3, θ = 3 0

Dθ, θ > 3

−1◦ −1 −1◦ A2 (2, 0) D4 0

−1◦ ω −1◦ super A (1, 0) g(2, 3) 0

−1◦ ω2 ω◦ super A (1, 0) super A 0
(0, 1) g(2, 3) 0

−1◦ ω ω2

◦ ω ω2

◦ super A (1, 0, 0) g(3, 3) 0

−1◦ ω ω2

◦ ω2 ω◦ super osp (1, 0, 0) g(3, 3) 0

−1◦ r−1 r◦ , r /∈ G∞ super A (1, 0) D(2, 1;α) 2

−1◦ r−1 r◦ , r ∈ G′N , N > 3 super A (1, 0) D(2, 1;α) 0

Theorem 2.1. Let V be a braided vector space with braiding (2.1). Assume
that ε = 1; then the interaction is weak. Then the following are equivalent:

(i) GKdimB(V ) <∞.

(ii) For J ∈ X , either GJ = 0, or else VJ is as in Table 4.

Furthermore, if (ii) holds, then

GKdimB(V ) = 2 +
∑
J∈X

GKdimB(KJ).(2.4)

Theorem 2.2. Let V be a braided vector space with braiding (2.1). Assume
that ε = −1. Then the following are equivalent:

(i) GKdimB(V ) <∞.

(ii) For J ∈ X , either of the following holds:

(a) The interaction of J is weak and GJ = 0.

(b) The interaction of J is weak, J = {i}, Gi discrete and qii = ±1.

(c) The interaction of J is (−1, 1, . . . , 1), G = (1, 0, . . . , 0) and the Dynkin

diagram of VJ is
−1◦ −1 −1◦ . . .

−1◦ −1 −1◦ .
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Furthermore, if (ii) holds, then

GKdimB(V ) = 2 +
∑
J∈X

GKdimB(KJ).(2.5)

The meaning of KJ in Table 4 is explained in §?? below.

2.2. The Nichols algebras with finite GKdim. Let V = V1 ⊕ V2 as in
(2.3) and assume that the Dynkin diagram of V2 is connected, i.e. X =
{J}, where J = I2,θ. Assume that |J | > 1. We provide a presentation
by generators and relations and exhibit an explicit PBW basis of B(V ), cf.
Theorem ??.

The subspace V1⊕kx2 is a braided vector subspace of type either of type
B(L(−1, 2)) when V is of type L(A2, 2), or else B(L(ω, 1)) when V is of type
L(A(1|0)3;ω), or B(L(−1, 1)) for all the other cases. Thus the subalgebra
generated by V1 ⊕ kx2 is a Nichols algebra of the corresponding type.

Recall the defining relations of B(L(−1, 1)):

x3
2
x1 − x1x3

2
+

1

2
x2

1,(??)

x1x2 − q12 x2x1,(1.9)

(adc x3
2
)2x2,(1.10)

x2
2, x

2
3
2 2
.(1.12)

Remark 2.3. Let j ∈ I3,θ. As q1jqj1 = 1 and Gj = 0,

x1xj = q1jxjx1, x3
2
xj = q1jxjx3

2
.(2.6)

Table 3. V = V (1, 2)⊕ V2, weak int., G = (1, 0, . . . , 0)

V2 V

−1◦ −1 −1◦ . . .
−1◦ −1 −1◦ L(Aθ−1), θ > 2

−1◦ −1 −1◦ , G = (2, 0) L(A2, 2)

−1◦ r−1 r◦ ; r ∈ k× L(A(1|0)1; r)

−1◦ ω −1◦ ; ω ∈ G′3 L(A(1|0)2;ω)

ω◦ ω2 −1◦ ; ω ∈ G′3 L(A(1|0)3;ω)

−1◦ ω ω2

◦ ω ω2

◦ ; ω ∈ G′3 L(A(2|0)1;ω)

−1◦ ω ω2

◦ ω2 ω◦ ; ω ∈ G′3 L(D(2|1);ω)
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2.2.1. The Nichols algebra B(L(Aθ−1)).

Proposition 2.4. The algebra B(L(Aθ−1)) is presented by generators x1, . . .
and relations (??),

x1x3 = q12 x3x1,(2.7)

z1+G = 0,(2.8)

ztzt+1 = q21q22 zt+1zt, 0 ≤t < G .(2.9)

The set

B = {xm1
1 xm2

2 znG
G . . . zn1

1 zn0
0 : mi, nj ∈ N0}

is a basis of B(L(Aθ−1)) and GKdimB(L(Aθ−1)) = 2.

2.2.2. The Nichols algebra B(L(A2, 2)).

Proposition 2.5. The algebra B(L(A2, 2)) is presented by generators x1, . . .
and relations (??),

x1x3 = q12 x3x1,(2.10)

z1+G = 0,(2.11)

ztzt+1 = q21q22 zt+1zt, 0 ≤t < G .(2.12)

The set

B = {xm1
1 xm2

2 znG
G . . . zn1

1 zn0
0 : mi, nj ∈ N0}

is a basis of B(L(A2, 2)) and GKdimB(L(A2, 2)) = 2.

2.2.3. The Nichols algebra B(L(A(1|0)1; r)). Let r be a root of unity of order
N ≥ 3. The subalgebra generated by x2, x3 is a Nichols algebra of type
A(1|0)1. Thus,

(adc x3)2x2 = 0, xN3 = 0.(2.13)

Let W be the braided vector space with basis y1, y2, y3 and Dynkin

diagram
−1◦ r−1 r◦ r−1 −1◦ . By [An3], B(W ) is presented by generators

y1, y2, y3 and relations

(adc y2)2y1, (adc y2)2y3, (adc y1)y3, y2
1, y2

3, yN2 , yN123.(2.14)

The set

BW = {yn1
1 yn12

12 yn123
123 y

n2
2 yn23

23 yn3
3 : n1, n12, n23, n3 ∈ {0, 1}, 0 ≤ n2, n123 < N}

is a basis of B(W ).

Remark 2.6. By Lemma ?? K1 is isomorphic to W as braided vector spaces.
Moreover there exists an algebra isomorphism ψ : B(W ) → K such that
ψ(y1) = x3/2,2, ψ(y2) = x3, ψ(y3) = x2. Let

z1 = [x3
2 2
, x3]c = ψ(y12), z2 = [x3

2 2
, x23]c = ψ(y123).
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Thus, in B(L(q22,G )),

zN2 = 0,(2.15)

and the set

BK = {xn1
3
2 2
zn2

1 zn3
2 xn4

3 xn5
23x

n6
2 : n1, n2, n5, n6 ∈ {0, 1}, 0 ≤ n3, n4 < N}

is a basis of K.

Lemma 2.7. Let B be a quotient algebra of T (V ). Assume that (1.10),
(1.12), (2.6), (2.13), (2.15) hold in B. Then there exists an algebra map
φ : B(W )→ B such that φ(y1) = x3

2 ,2
, φ(y2) = x3, φ(y3) = x2.

Proof. Let φ : T (W ) → B be the algebra map defined as φ on the yi’s. We
claim that φ annihilates all the relations in (2.14), and the Lemma follows.
The second and the sixth relations are annihilated by (2.13) while the last is
(2.15). The fourth and the fifth relations are annihilated because of (1.12),
and for the third relation we apply Lemma 1.4 (ii). Finally,

φ
(
(adc y2)2y1

)
= (adc x3)2x3

2 ,2
= q2

31(adc x3
2
)(adc x3)2x2 = 0,

where we use (2.6) and (2.13). �

Proposition 2.8. The algebra B(L(A(1|0)1; r)) is presented by generators

xi, i ∈ I†θ, and relations (??), (1.9), (1.10), (1.12), (2.6), (2.13), (2.15).
The set

B = {xm1
1 xm2

3
2

xn1
3
2 2
zn2

1 zn3
2 xn4

3 xn5
23x

n6
2 : n1, n2, n5, n6 ∈ {0, 1},

0 ≤ n3, n4 < N,mi ∈ N0}

is a basis of B(L(A(1|0)1; r)) and GKdimB(L(A(1|0)1; r)) = 2.

Proof. The set B is a basis because of the isomorphism B(L(A(1|0)1; r)) '
K#B(V1) as in §??, and Remark 2.6. The computation of GKdim follows
from the Hilbert series at once.

Relations (??), (1.9), (1.10), (1.12), (2.6), (2.13), (2.15) hold as we have

discussed at the beginning of the subsection. Hence the quotient B̃ of T (V )
by these relations projects onto B(L(A(1|0)1; r)).

We claim that the subspace I spanned by B is a left ideal of B̃. Indeed,
x1I ⊆ I by definition, and x3

2
I ⊆ I by (??). By Lemma 2.7,

x3φ(BW ) = φ(y2BW ) ⊂ φ(BW ), x3
2 2
φ(BW ) = φ(y1BW ) ⊂ φ(BW )

x2φ(BW ) = φ(y3BW ) ⊂ φ(BW ).
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As I =
∑

m1,m2

kxm1
1 xm2

3
2

φ(BW ), we have that

x3I =
∑
m1,m2

kx3x
m1
1 xm2

3
2

φ(BW ) =
∑
m1,m2

kxm1
1 xm2

3
2

x3φ(BW ) ⊂ I,

x2I =
∑
m1,m2

kx2x
m1
1 xm2

3
2

φ(BW )

=
∑
m1,m2

kxm1
1 xm2

3
2

x2φ(BW ) + kxm1
1 xm2−1

3
2

x3
2 2
φ(BW ) ⊂ I,

by (2.6), (1.12). Since 1 ∈ I, B̃ is spanned by B. Thus B̃ = B(L(1,G )) since
B is a basis of B(L(1,G )). �

Dudas: donde fijar la notacion yi1...yk = (adc yi1)yi2...yk? como
trabajar con otros sistemas de raices mas complejos?

2.2.4. The Nichols algebra B(L(A(1|0)2;ω)).

Proposition 2.9. The algebra B(L(A(1|0)2;ω)) is presented by generators
x1, . . . and relations (??),

x1x3 = q12 x3x1,(2.16)

z1+G = 0,(2.17)

ztzt+1 = q21q22 zt+1zt, 0 ≤t < G .(2.18)

The set

B = {xm1
1 xm2

2 znG
G . . . zn1

1 zn0
0 : mi, nj ∈ N0}

is a basis of B(L(A(1|0)2;ω)) and GKdimB(L(A(1|0)2;ω)) = 2.

2.2.5. The Nichols algebra B(L(A(1|0)2;ω)).

Proposition 2.10. The algebra B(L(A(1|0)2;ω)) is presented by generators
x1, . . . and relations (??),

x1x3 = q12 x3x1,(2.19)

z1+G = 0,(2.20)

ztzt+1 = q21q22 zt+1zt, 0 ≤t < G .(2.21)

The set

B = {xm1
1 xm3

3 znG
G . . . zn1

1 zn0
0 : mi, nj ∈ N0}

is a basis of B(L(A(1|0)3;ω)) and GKdimB(L(A(1|0)3;ω)) = 2.
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2.2.6. The Nichols algebra B(L(A(2|0)1;ω)).

Proposition 2.11. The algebra B(L(A(2|0)1;ω)) is presented by generators
x1, . . . and relations (??),

x1x3 = q12 x3x1,(2.22)

z1+G = 0,(2.23)

ztzt+1 = q21q22 zt+1zt, 0 ≤t < G .(2.24)

The set

B = {xm1
1 xm2

2 znG
G . . . zn1

1 zn0
0 : mi, nj ∈ N0}

is a basis of B(L(A(2|0)1;ω)) and GKdimB(L(A(2|0)1;ω)) = 2.

2.2.7. The Nichols algebra B(L(D(2|1);ω)).

Proposition 2.12. The algebra B(L(D(2|1);ω)) is presented by generators
x1, . . . and relations (??),

x1x3 = q12 x3x1,(2.25)

z1+G = 0,(2.26)

ztzt+1 = q21q22 zt+1zt, 0 ≤t < G .(2.27)

The set

B = {xm1
1 xm2

2 znG
G . . . zn1

1 zn0
0 : mi, nj ∈ N0}

is a basis of B(L(D(2|1);ω)) and GKdimB(L(D(2|1);ω)) = 2.

2.2.8. The Nichols algebra B(Cn).

Lemma 2.13. Let IJ = (−1, 1, . . . , 1), GJ = (1, 0, . . . , 0), n ≥ 3, with

Dynkin diagram
−1◦ −1 −1◦ . . .

−1◦ −1 −1◦ . Then GKdimB(V ) =∞.

Proof. We may assume that n = 2. Fix J = {2, 3}, B = B(V1⊕VJ), and set
u = [x3

2 23
, x2]c, v = [x1, u]c ∈ B. As ∂2(x3

2 23
) = 0, we have

∂2(u) = ∂2(x3
2 23

x2 + q12q32x2x3
2 23

) = x3
2 23

+ q12q32g2 · x3
2 23

= x3
2 23

+ q12q32q21q22q23(x3
2 23

+ x123) = −x123.

As x1, x2, x3 span a braided vector space of Cartan type A3, we have that
[x123, x2]c = x2

1 = 0. From the first relation,

g1 · u = q2
12q13(−u+ [x123, x2]c) = −q2

12q13 u,

and from the second, x1x123 = −q12q13 x123x1, so

∂2(v) = ∂2(x1u+ q2
12q13ux1) = x1∂2(u) + q2

12q13∂2(u)g2 · x1

= −x1x123 + q12q13 x123x1 = 2q12q13 x123x1.
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Thus v 6= 0. As x2
2 = (adc x3

2
)x3 = 0,

∆(x3
2 23

) = x3
2 23
⊗ 1 + 2x3

2 2
⊗ x3 + (2x3

2
+ x1)⊗ x23 + 1⊗ x3

2 23
,

∆(u) = u⊗ 1− 2x12 ⊗ x3x2 + 1⊗ u,
∆(v) = v ⊗ 1 + 4q12x12x1 ⊗ x3x2 + 2q12x12 ⊗ x3x12 + 1⊗ v,

so v is a primitive element in Bdiag. Let B̃1 be the subalgebra of Bdiag

generated by v and the xi’s. and B̃2 the Nichols algebra whose degree one
part is isomorphic (as a braided vector space) to ku ⊕ V . Arguing as in

Theorem ??, let B̃2 be the graded braided Hopf algebra associated to the
natural Hopf algebra filtration of B̃1, where the generators v and xi have
degree one. Let B̃3 be the Nichols algebra quotient of B̃2. Then

GKdim B̃3 ≤ GKdim B̃2 ≤ GKdim B̃1 ≤ GKdimBdiag = GKdimB(V ).

The Dynkin diagram of the degree one part of B̃3 is of Cartan type D
(1)
4

(with vertices labeled by −1), so GKdim B̃3 =∞ by Theorem ??, and then
GKdimB(V ) =∞. �

Lemma 2.14. Let IJ = (−1, 1, . . . , 1), GJ = (1, 0, . . . , 0), n ≥ 3, with

Dynkin diagram
−1◦ −1 −1◦ . . .

−1◦ −1 −1◦ . Then GKdimB(V ) =∞.

Proof. We may assume that n = 3. Fix J = {2, 3, 4}, B = B(V1 ⊕ VJ), and
set u = [x3

2 23
, x2]c ∈ B. As ∂2(x3

2 23
) = 0, we have

∂2(u) = ∂2(x3
2 23

x2 + q12q32x2x3
2 23

) = x3
2 23

+ q12q32g2 · x3
2 23

= x3
2 23

+ q12q32q21q22q23(x3
2 23

+ x123) = −x123.

Thus u 6= 0. As x2
2 = (adc x3

2
)x3 = 0,

∆(x3
2 23

) = x3
2 23
⊗ 1 + 2x3

2 2
⊗ x3 + (2x3

2
+ x1)⊗ x23 + 1⊗ x3

2 23
,

∆(u) = u⊗ 1− 2x12 ⊗ x3x2 + 1⊗ u,

so u is a primitive element in Bdiag. Let B̃1 be the subalgebra of Bdiag

generated by u, x4, and B̃2 the Nichols algebra whose degree one part is
isomorphic (as a braided vector space) to ku ⊕ kx4. The Dynkin diagram

of B̃2 is
1◦ −1 −1◦ , thus GKdim B̃2 = ∞. Arguing as in Theorem ??,

GKdimB =∞. �
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As x1, x3
2
, x2 span a braided vector space of type C1, the following rela-

tions hold in B(Cn):

x
1

3
2
x2 − q2

12x2x
1

3
2

= 0,(1.26)

x3
2
x3

2 2
+ q12x3

2 2
x3

2
= q12x12x3

2
+

1

2
x

1
3
2 2
,(1.27)

x3
2
x

1
3
2
− x

1
3
2
x3

2
= x1x

1
3
2
.(??)

Lemma 2.15. The following relations hold in B(Cn)):

(adc xi)xj , i < j − 1,(2.28)

[xαi−1 i+1 , xi]c, 2 ≤ i ≤ n− 1,(2.29)

[xβ3 , x2]c,(2.30)

[x
12

3
2
, x2]c.(2.31)

Proof. As xi, i ∈ In, span a braided vector space of An type, (2.28) for i 6= 3
2

and (2.29) hold in B(Cn)); (2.28), i = 3
2 , follows since q1jqj1 = 1 Gj = 0.

For (2.30), we claim that ∂j([xβ3 , x2]c) = 0 for all j ∈ I†n. Indeed, it holds
for j 6= 2, 3 since ∂j(xβ3) = ∂j(x2) = 0. As ∂3(xβ3) = 2xβ2 , ∂2(xβ3) = 0,

∂3([xβ3 , x2]c) = ∂3(xβ3x2 + q12q32x2xβ3) = 2q32(xβ2x2 + q12x2xβ2) = 0,

∂2([xβ3 , x2]c) = ∂2(xβ3x2 + q12q32x2xβ3) = (1− q12q32q21q23)xβ3 = 0.

(2.31) �

Lemma 2.16. For each α ∈ ∆q
+, set xα with the same recursive definition

as yα. Then

y2
α = 0, α ∈ ∆q

+ − {α3
2
}.(2.32)

Proof.

x2
2 = x2

3
2 2

= 0, i = 0, 1,(1.28)

x2
12 = x2

1
3
2 3

= 0, i = 0, 1,(1.29)

x2
1 = 0.(??)

�

Proposition 2.17. The algebra B(C2)) is presented by generators x1, x3
2

,

x2, x3 and relations (??), (??), (1.26), (1.27), (1.28) and (1.29). The set

B = {xm1
1 xm2

12 x
m3
2 fn1

1 fn2
0 zn3

1 zn4
0 : m1, ni ∈ {0, 1},m2,m3 ∈ N0}

is a basis of B(C2) and GKdimB(C2) = 2.

Proof. �
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Table 4. PBW generators of B(C2)

x1 x
1

3
2

x3
2

x
1

3
2 2

x3
2 2

x12 x2 x
1

3
2 232

x
1

3
2 23

x123 x3
2 23

x3
2 232

x23 x3

x1 � � � � � � � � � � � � � �
x

1
3
2

X �

x3
2

X X

x
1

3
2 2

X X

x3
2 2

X X

x12 X X
x2 X X

x
1

3
2 232

X

x
1

3
2 23

X

x123 X
x3

2 23
X

x3
2 232

X

x23 X X
x3 X X

height 2 ∞ ∞ 2 2 2 2 ??? ??? 2 ??? ∞ 2 2
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