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1. YETTER-DRINFELD MODULES OF DIMENSION 3

1.1. The setting. Let I' be an abelian group. In this Section we consider
Ve ﬁ;yp, dim V' = 3, such that the corresponding braided vector space is
not of diagonal type. So, V is not semisimple and we have two possibilities
that we discuss in §1.1.1 and ?7.

1.1.1. A block and a point. V =V, (x1,n)®kys, where g1,92 € T, x1, X2 € r
and n: T — k is a (x1, x1)-derivation. Here V,, (x1,7) € [LYD is indecom-
posable with basis (7;);c1, and action given by (??); while k32 € fLYD is
irreducible with base (z3). Also (g1) # 0, otherwise V would be of diagonal
type, and then we may suppose that 7(g1) = 1 by normalizing z;. Let

a4i; = x;(9:); i,j € ly; €= qu; a = q3;'1(g2)-
Then the braiding is given in the basis (z;)ier, by

€r1 @ x1 (exg + 1) @21 qrazs ® 21
(1_1) (C(% ® xj))i7j61[3 = €x] R X9 (exg + x1) K x2 q1223 @ X2
@171 @ x5 qo1(T2 + ar1) @ T3 gaox3 ® 3

Let Vi =V, (x1,7n), Vo = kg2, If €2 = 1, then
(1.2) c|2V1®V2 =1id <= q¢i2¢o1 = 1 and a = 0.
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The scalar g12g21 will be called the interaction between the block and the
point. The interaction is

weak if g12g21 =1, mild if 1221 = —1,  strong if gi2g21 ¢ {£1}.

So ¢? is determined by the interaction and the (somewhat hidden) pa-

VieVs
rameter a. We introduce a normalized version of a, called the ghost:
—2a, e€=1,
(1.3) g = {
a, e=—1.

If 4 € N, then we say that the ghost is discrete.

Theorem 1.1. Let V' be a braided vector space with braiding (1.1). Assume
that GKdim B(V') < co. Then V is as in Table 1.

TABLE 1. Nichols algebras of a block and a point with finite GKdim

interaction € q22 9 ( ), § GKdim
weak | +1| 1or ¢ Gy 0 B(V(e, 1))2B(kzs) 3
—{1} 2

1 1 discrete |  B(£(1,9)), 1.2.1 943
-1 discrete | B(£(—1,%)), 1.2 2
€ G4 1 B(£(w,¥9)), 1.2 2

-1 1 discrete | B(£-(1,9)), 1. 2 3 943

-1 discrete | B(£_-(—-1,9)), 1.24 | ¥4 +2
mid | -1 = 1 B(¢)), 1.2.6 2

1.2. The Nichols algebras with finite GKdim. Here we describe a pre-
sentation by generators and relations and exhibit an explicit PBW basis of
the Nichols algebras in Theorem 1.1. We denote the braided vector space
with braiding (1.1) by

£(q22,9), if the interaction is weak, e=1;

£ (q22,9), if the interaction is weak, e=—1;

¢, if the interaction is mild, e=qp=-1, ¥9=1

Recall the relations of the Jordan and super Jordan planes:
1
(?7) Tox1 — T1T9 + f:c%,

2
(?7) i,

(??) ToX12 — X129 — T1X12.
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Lemma 1.2. Assume that €2 = g2, = 1. In B(£(q22,%)), or correspondingly
B_(£(g22,9))

(1.4) Z2a|+1 = 0,

(1.5) 2241 = 4219222t+1%¢ t € No,t < |2al,
(1.6) 22 =0 t € No, €'qop = —1.
(1.7) D3(2Y) = g gBom gzl n,t € Ny, e'goa = 1.

Lemma 1.3. Let B be a quotient algebra of T(V). Assume that x1x3 =
q122371, and either

(a) (7?), or else
(b) (77), 21223 = qipx3212

hold in B. Then for all n € Ny, x1z, = €"qrozpx1 and x122, = q%anxn.
Lemma 1.4. Let B be a quotient algebra of T(V).
(1) Assume that (1.5) holds in B. Then for 0 <t < k < 2|al,

t+k

2
(18) 202k — e ahTtamaz = S vk(G) zeen_jzy  for some v (j) € k.
§=0

(ii) Assume that 22 = 0 in B for t € Ny such that e'qey = —1. Then
24241 = §21G222t4+12¢ 1 B.

1.2.1. The Nichols algebra B(£(1,%)). Recall that z, = (ad.z2)"x3.

Proposition 1.5. Let 4 € N. The algebra B(£(1,9)) is presented by gen-
erators xy,xe, x3 and relations (77),

(1.9) T1x3 = Q12 T3T1,

(1.10) Zi4g =0,

(1.11) 2tZt+1 = (214922 Zt+1%t, 0<t<¥9.
The set

B = {a"x5?257 .. 2" 2% : mi,nj € No}
is a basis of B(£(1,9)) and GKdimB(£(1,¥)) =3+ ¢9.

Proof. Relations (1.9), (1.10) are 0 in B(£(1,%¥)) being annihilated by 0;,
i =1,2,3, and (1.11) holds by Lemma 1.2. Hence the quotient B of T'(V)
by (?77?), (1.9), (1.10) and (1.11) projects onto B(£(1,%)). Then (1.8) holds
in B.
We claim that the subspace I spanned by B is a right ideal of B. Indeed,
o [xy C I follows by Lemma 1.3,
o Ixo C I since 2wy = €'qo1 (w22t — 2441), so we use (1.10), (1.8),
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and Iz C I by definition. Since 1 € I, B is spanned by B.

To prove that B ~ B(£(1,¥)), it remains to show that B is linearly
independent in B(£(1,%)). For, suppose that there is a non-trivial linear
combination S of elements of B in B(£(1,%¥)), say of minimal degree. Now

mi,mso Ng niy . no\ __ >oni mi—1_mo neg ni _nog
(" ay P2y . 2" ) = miqiz " al" T ay Py 2 0,
my1 _mo N ny . no\ __ ZTL mi m2—1 N niy . no
Oz (2" ay P2y . 20" 20°) = maqiz " g 2y L 2

since 01, 02 are skew derivations, so we apply Lemma 7?7 and 02(z;) = 0.
Then such linear combination does not have terms with m, or mqy greater
than 0. Let & be maximal such that z.*...2]"2;° has non-zero coeffi-

cient in S for some k > 1, and for such k fix the maximal ng. By (1.7),

ykzZ’“_l ... 21" 2, has non-zero coefficient in 93(S), and J3(S) is also a non-

trivial linear combination of elements of B, a contradiction. Then B is a
basis of B(£(1,%)) and B = B(£(1,¥)). The computation of GKdim follows
from the Hilbert series at once. O

1.2.2. The Nichols algebra B(£(—1,%9)).

Proposition 1.6. Let 4 € N. The algebra B(£(—1,9)) is presented by
generators x1, T2, x3 and relations (77), (1.9), (1.10) and

(1.12) 22 =0, 0<t<9.
The set
B = {a1"xy?2,7 ... 2" 2,° : n; € {0,1},m; € Ng}
is a basis of B(£(—1,9)) and GKdim B(£(—-1,9)) = 2.
1.2.3. The Nichols algebra B(£_(1,9)).

Proposition 1.7. Let 4 € N. The algebra B(£_(1,9)) is presented by
generators x1, T2, x3 and relations (?7), (7?), (1.9) and

(1.13) Z14+29 = 0,

(1.14) 1270 = Gio 2012,

(1.15) 251 =0, 0<k<9,
(1.16) 29k 22k4+1 = 421422 22k+1%2k; 0<k<9¥9.

The set

m m m, n n n
B = {a"aPay 2507 .. 2" 2" : ma, ngpq1 € {0, 1}, ma, m3, ngy, € No}

is a basis of B(£_(1,%)) and GKdimB(£_(1,¥)) =% + 3.
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1.2.4. The Nichols algebra B(£_(—1,9)).

Proposition 1.8. Let 4 € N. The algebra B(£_(—1,%)) is presented by
generators x1,x2,x3 and relations (77), (?7), (1.9), (1.13), (1.14) and

(1.17) 23, =0, 0<k<9¥,
(1.18) Zok—122k = 2142272k %2k—1, 0<k<9.
The set

m m m; n n n
B = {a7" 23 a5 2557 ... 2" 2"t my,nog € {0, 1}, ma, m3,ngr—1 € No}

is a basis of B(£_-(—1,%)) and GKdimB(£_(-1,9)) =94 + 2.
1.2.5. The Nichols algebra B(£(w,1)).
Remark 1.9. As in the previous cases, (1.9) and
(1.19) 2 =0
hold in B(£(w,1)). As g2 = w € Gj we also have
(1.20) 28 = 0.
Let 210 := 2120 — q1242220%21.
Remark 1.10. The following equations hold in B(£(w, 1)) by Lemma ??

(1.21) 91 21,0 = 12210, 92 21,0 = §2143221,0,
(1.22) 01(21,0) = G2(210) = 0, d3(21,0) = (1 — g35) 21,0

Lemma 1.11. Let B be a quotient algebra of T(V). Assume that (1.9),
(1.19) and (1.20) hold in B. Then the following relations also hold:

2 2
(1.23) 21210 = Q12w 21,021, 21,020 = 12w~ 2021,0,

(1.24) T9210 = 1921072 + qr2(1 — w)27, T1210 = 1921071
Lemma 1.12. In B(£(w,1)),
(1.25) 3 =20y=0.

Proposition 1.13. Let w € Gj. The algebra B(£(w, 1)) is presented by
generators x1,x2,r3 and relations (?77), (1.9), (1.19), (1.20) and (1.25).
The set

B = {x]"xy"? 2" 2" 2 : m; € Ny,0 < n; <2}

is a basis of B(£(w, 1)) and GKdim B(£(w,1)) = 2.



6 ANDRUSKIEWITSCH; ANGIONO; HECKENBERGER

1.2.6. The Nichols algebra B(€1). Recall that f; = (ad.x1)z;.
Remark 1.14. The following relations hold in B(€;):

(1.26) T1220 = qi270T12,
1
(1.27) w221+ qr22122 = qu2for2 + 5 f1,
(1.28) 22 =0, i=0,1,
(1.29) =0

Indeed (1.26) follows from the proof of Lemma ??, while (1.27), (1.28) and
(1.29) follows from the proof of Lemma ?7.

Lemma 1.15. Let B be a quotient algebra of T(V'). Assume that (77?), (77),
(1.26), (1.27), (1.28) and (1.29) hold in B. Then the following relations also
hold: f2 =0,

(1.30) r1 fo = —qi2foz1, r1f1 = q2f171,
(1.31) z2fo + q2foxe = — fi, T2 f1 = —q2f172,
(1.32) 2120 = —q122120, fifo = q2fofi,
(1.33) frz0 + @iaz0.f1 = —2q12foz1, fozo = —qu220 fo,
(1.34) frz1 — ghafi = —2q12foz, foz1 = =21 fo,
(1.35) z12f0 = qiafor12, z12f1 = qiaf1212,
(1.36) w1921 — @P9z110 = 232 f) — 21 f1 — 2212 f0.

Proposition 1.16. The algebra B(€1)) is presented by generators x1,x2,x3
and relations (?7), (7?), (1.26), (1.27), (1.28) and (1.29). The set

B = {a"a{2ah [ fo? 212 20" s ma,ng € {0,1}, ma, m3 € Ny}

is a basis of B(€1) and GKdim B(¢;) = 2.

2. ONE BLOCK AND SEVERAL POINTS

2.1. The setting. Let I" be an abelian group. In this Section and the next
we consider V € Hg)ﬂ), dimV > 3, such that the corresponding braided
vector space is a direct sum of blocks and points, but we assume that the
underlying braided vector space is not of diagonal type. We seek to deter-
mine when GKdim B(V) < co. By Theorem ??, we may assume that the
blocks are of the form V(e,2), with €2 = 1. So, V is not semisimple and we
need to consider various possibilities:

e The direct sum of one block and several points.
e The direct sum of two blocks and possibly several points.

In this Section we deal with one block and several points. For a more
suggestive presentation, we introduce the notation

Ioo =T — {1}, Ih =Ty U {3}, 0 N.
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Let g1,...,90 € T, x1,---, X0 € I and n: T — ka (x1,x1)-derivation.

Let Vy, (x1,7) € ELYD be the indecomposable with basis (2i);cp1 and action
1
given by (??)- but with 2 instead of 2; while kg’ € FLYD is irreducible with
basis (), j € I29. Let
V=Vyu(x1,n) &k @ kg
Thus (ac,)Z ct is a basis of V. We suppose that V is not of diagonal type,
0

hence 7(g1) # 0; we may assume that 7(g1) = 1 by normalizing x;. Let

ij = X3 (9i); i, 7 € Ibp; aj = q;,'n(g;), J €I

Let [i]| be the largest integer < i. Then the braiding in the basis (:cz)z ct 18
6
q1i|;T5 @ T, iEH;,j € Ip;

2.1 oo ® 1) = et
(2.1) ( J) {C]LZJI(C&; —I-CLUJ.CUl) Qw;, 1€ HT7 j= %

Let € := qi1. Notice that B(V,, (x1,n) @ ky’) < B(V) for all € LI, thus
we may apply the results from §5, 6. By Theorem 77, we may assume that
€2 =1, thus a; = e.

The interaction and the ghost between the block and the points are the

vectors

—2a;)ien ., e=1,
(2.2) (910901 ) ety o, G = (Y)jer,, = (a7)jers o
(aj)jelyy, — €=—L

The interaction is strong if there exists h € Iy ¢ such that gipgn1 ¢ {£1};
when it is not strong, it is

weak if qpqp1 = 1, Vh € Iz ¢; mild, otherwise.
We say that the ghost is discrete if 4 € NHOZ’H —{0}.

We can present our main object of interest in the language of braided
vector spaces. Given (gij)ijer,, With ¢3; =1, and & € k'2¢, we set a1 = € =
¢11 and consider the braided vector space (V,¢) of dimension 6 + 1, with a
basis (;), ;i and braiding given by (2.1). This braided vector space (V,¢)

0
can be realized as a Yetter-Drinfeld module Vg, (x1,7) ®€D;j, ky? over some

abelian group I' as described above; for instance I' = Z? would do. Such a
realization will be called principal.
The braided subspace V; spanned by x1, x3 is ~ V(e, 2), while V5 spanned
2

by (Zi)iel,, is of diagonal type. Obviously,
(2.3) V=Vaol.

Let X be the set of connected components of the generalized Dynkin diagram
of the matrix q = (¢ij)i jer, - If J € &, then we set J' =Ty — J,

Vy = Zk?j, G =(9)jer, interaction of J = (q1nqn1)neJ-
jedJ
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As before, J could have weak, mild or strong interaction.

TABLE 2. A block and several points, finite GKdim, weak
interaction, € = 1; here w € G4 and 9; = GKdim B(K)

VJ type gj KJ 05
1
o Aq discrete (Al)gJ+1 G5 +1
—1
o Aq discrete (A)9a+1 0
S A 1 Ay 0
-1 -1 -1 -1 -1 -1
o o ) o Ag_1 (1,0,...,0) | 43,0=3 0
Dy, 0 >3
-1 -1 -1
o o A (2,0) Dy 0
—1 -1
o —2 o super A (1, O) 9(2,3) 0
1 2
o = U(SJ super A (1, O) super A 0
(0,1) 9(2,3) 0
—1 2 2
o Y % ¥ % super A (1, 0, 0) 9(3,3) 0
—1 2 2
o d % w g super 0sp (1, 0, 0) 9(3,3) 0
—1 7’71 s
o o, r ¢ Geo super A (1,0) D(2,1;a) 2
1 -1
o = (7; , T E G ,N >3 | super A (1,0) D(2,1;a) 0

Theorem 2.1. Let V' be a braided vector space with braiding (2.1). Assume
that € = 1; then the interaction is weak. Then the following are equivalent:

(i) GKdim B(V) < co.

(ii) For J € X, either 95 =0, or else Vj is as in Table 4.

Furthermore, if (ii) holds, then
(2.4)

Theorem 2.2. Let V' be a braided vector space with braiding (2.1). Assume

that e = —1. Then the following are equivalent:

(i) GKdim B(V) < co.

(ii) For J € X, either of the following holds:

(a)
(b)
()

. .o -1 -1
diagram of Vj is o

The interaction of J is weak and 45 = 0.
The interaction of J is weak, J = {i}, ¥; discrete and q;; = +1.
The interaction of J is (—1,1,...,1), 9 = (1,0,...,0) and the Dynkin

-1 -1 -1
o o

GKdim B(V) =2+ > GKdim B(K).
Jex
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Furthermore, if (ii) holds, then

(2.5) GKdimB(V) =2+ > GKdim B(K).
JeXx

The meaning of K ; in Table 4 is explained in §77 below.

2.2. The Nichols algebras with finite GKdim. Let V = V; ® V5 as in
(2.3) and assume that the Dynkin diagram of V5 is connected, i.e. X =
{J}, where J = I35. Assume that |J| > 1. We provide a presentation
by generators and relations and exhibit an explicit PBW basis of B(V'), cf.
Theorem ?7.

The subspace V; @ kzs is a braided vector subspace of type either of type
B(£(—1,2)) when V is of type £(As2,2), or else B(£(w, 1)) when V is of type
L£(A(1|0)3;w), or B(L£(—1,1)) for all the other cases. Thus the subalgebra
generated by Vi @ kxs is a Nichols algebra of the corresponding type.

Recall the defining relations of B(£(—1,1)):

1
(?7) r3T1 — 1123 + fx%,
2 2 2
(1-9> T1T2 — q12 X271,
(1.10) (adex3)xa,
2
(1.12) 3, x2§2.

2
Remark 2.3. Let j € l39. As q1j¢gj1 =1 and ¥; =0,

(2.6) 3311']' = qumjxl, x;xj = quxj:(};.
2 2

TABLE 3. V =V (1,2) @ V3, weak int., 4 = (1,0,...,0)

7 Vv
oL .09 | £(4p),0>2
-1 7= (2,0) £(A2,2)

Py S £(A(1]0);7)
! o w e G £(A(1]0)2; w)
8 diwee | s
e @ w OQ;WGGé L£(A(2]0)1;w)
O %8 LeG, | L(DE);w)
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2.2.1. The Nichols algebra B(£(Agp—_1)).

Proposition 2.4. The algebra B(£(Ap—1)) is presented by generators x1, . ..
and relations (77),

(2.7) T1T3 = q12 T371,

(2.8) 2149 =0,

(2.9) ZtZ4+1 = 21422 Ft412t, 0<t<¥.
The set

B = {a"x]?2,7 .. 20" 20° :mi,n; € No}
is a basis of B(£(Ag_1)) and GKdim B(£(Ap_1)) = 2.
2.2.2. The Nichols algebra B(£(Az,2)).

Proposition 2.5. The algebra B(£(As,2)) is presented by generators xy,. ..
and relations (77),

(2.10) T12T3 = q12 13771,

(2.11) 21 =0,

(2.12) Zt2t4+1 = 421422 Zt4+1%t, 0<t<9¥9.
The set

B = {a"xf?z57 .. 2" 2% : mi,n; € No}
is a basis of B(£(A2,2)) and GKdim B(£(A9,2)) = 2.
2.2.3. The Nichols algebra B(£(A(1]0)1;7)). Let r be a root of unity of order

N > 3. The subalgebra generated by s, x3 is a Nichols algebra of type
A(1]0);. Thus,

2.13 ade 23)%z0 = 0, Y =0.
( 3

Let W be the braided vector space with basis y1, y2, y3 and Dynkin

-1 r71 T r71 -1

diagram o © o . By [An3], B(W) is presented by generators
Y1, Y2, y3 and relations

(2.14)  (adeyo)®y1,  (adewo)?ys, (adewi)ys, o3, 3, ys, yies.
The set

niz2, ni23, n2, n23

By = {y?lym Y1237 Y2 Yo3 3/;3 1M1,N12,N23,N3 € {0; 1}70 < ng,ni2g < N}
is a basis of B(W).

Remark 2.6. By Lemma ?? K is isomorphic to W as braided vector spaces.
Moreover there exists an algebra isomorphism ¢ : B(W) — K such that

V(Y1) = 32,2, Y(Y2) = 73, ¥(y3) = T2. Let

21 = [93%273?3]c = (y12), zy = [x%27x23]c = ¥ (y123)-
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Thus, in B(£(g22,%)),
(2.15) zh =0,
and the set

n n n, n. n
Bg = {x312212223x34x2§x2 :ny,n9,n5,n6 € {0,1},0 < ng,ny < N}

is a basis of K.

Lemma 2.7. Let B be a quotient algebra of T(V'). Assume that (1.10),
(1.12), (2.6), (2.13), (2.15) hold in B. Then there exists an algebra map

¢ B(W) — B such that ¢(y1) = x%,z, d(y2) = x3, P(y3) = 2.

Proof. Let ¢ : T(W) — B be the algebra map defined as ¢ on the y;’s. We
claim that ¢ annihilates all the relations in (2.14), and the Lemma follows.
The second and the sixth relations are annihilated by (2.13) while the last is
(2.15). The fourth and the fifth relations are annihilated because of (1.12),
and for the third relation we apply Lemma 1.4 (ii). Finally,

6 ((adey2)*y1) = (ade $3)2$% 5 = Q§1(adc$%)(adc x3)°m9 = 0,

where we use (2.6) and (2.13). O

Proposition 2.8. The algebra B(£(A(1]0)1;7)) is presented by generators
T, 1€ ]Ig, and relations (77), (1.9), (1.10), (1.12), (2.6), (2.13), (2.15).
The set

m m n n n mn. n,
B = {2} Lyt z{?zy3wstxnfan® 1y, na, ns, ne € {0,1},
2 2
0<ng,ng <N,m; € ND}

is a basis of B(£(A(1]0)1;7)) and GKdim B(L(A(1|0)1;7)) = 2.

Proof. The set B is a basis because of the isomorphism B(£(A(1]0)1;7)) ~
K#B(V1) as in §77, and Remark 2.6. The computation of GKdim follows
from the Hilbert series at once.

Relations (?7), (1.9), (1.10), (1.12), (2.6), (2.13), (2.15) hold as we have
discussed at the beginning of the subsection. Hence the quotient B of T(V)
by these relations projects onto B(£(A(1|0)1;7)).

We claim that the subspace I spanned by B is a left ideal of B. Indeed,
x11 C I by definition, and z31 C I by (??). By Lemma 2.7,

2

13¢(Bw) = ¢(y2Bw) C ¢(Bw), w%2¢(BW) = ¢(y1Bw) C ¢(Bw)
r26(Bw) = ¢(ysBw) C ¢(Bw).
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AsI= ) ka"z'y?¢(Bw), we have that

mi,m2 2

x3l = Z ]k:cgacrf“svg1 Z k2™ m2x3¢(BW) cl,

mi,m2 mi,m2

xol = Z k xox]" x32¢(BW)

mi,m32
= ) ka" m2x2¢(BW)+kxm1 z'2 1:1:32¢>(BW) cl,
mi,m2 2

by (2.6), (1.12). Since 1 € I, B is spanned by B. Thus B = B(£(1,¥)) since
B is a basis of B(£(1,9)). O

Dudas: donde fijar la notacion y;,.,, = (adc¥i,)Yi,..y,? como
trabajar con otros sistemas de raices mas complejos?

2.2.4. The Nichols algebra B(£(A(1]0)2;w)).

Proposition 2.9. The algebra B(£(A(1]|0)2;w)) is presented by generators
x1,... and relations (77),

(2~16) 1T3 = q12 321,

(2.17) z14y =0,

(2.18) ZtZt41 = 421422 Zt+1%t, 0<t<¥9.
The set

B = {a"xy?257 .. 2" 2% : mi,nj € No}
is a basis of B(£(A(1|0)2;w)) and GKdim B(£(A(1]|0)2;w)) = 2.
2.2.5. The Nichols algebra B(£(A(1|0)2;w)).

Proposition 2.10. The algebra B(£(A(1]0)2;w)) is presented by generators
x1,... and relations (?7),

(2.19) L1x3 = q12 L3721,

(2.20) 2149 = 0,

(2.21) RtZt+1 = (214922 Rt+1%t, 0<t< ¥.
The set

B = {a" a8 257 .. 2" 2% : my,nj € No}

is a basis of B(L£(A(1]0)3;w)) and GKdim B(£(A(1]|0)3;w)) = 2.
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2.2.6. The Nichols algebra B(£(A(2(0)1;w)).

Proposition 2.11. The algebra B(£(A(2(0)1;w)) is presented by generators
x1,... and relations (77),

(2.22) T1T3 = q12 T371,

(2.23) 214y =0,

(2.24) Zt2t4+1 = 21422 Zt4+1%t, 0<t<9¥.
The set

B = {a1"x5?257 .. 2" 2% : mi,nj € No}
is a basis of B(£(A(2|0)1;w)) and GKdim B(£(A(2[0)1;w)) = 2.
2.2.7. The Nichols algebra B(£(D(2|1);w)).

Proposition 2.12. The algebra B(£(D(2]1);w)) is presented by generators
x1,... and relations (77),

(2.25) T1T3 = q12 13771,

(2:26) 2149 = 0,

(2.27) Zt2t4+1 = 421422 Zt4+1%t, 0<t<9¥9.
The set

B = {a1"x5?257 .. 2" 2% : mi,nj € No}

is a basis of B(L(D(2|1);w)) and GKdim B(£(D(2|1);w)) = 2.

2.2.8. The Nichols algebra B(&,,).

Lemma 2.13. Let .%; = (—1,1,...,1), ¢9; = (1,0,...,0), n > 3, with
-1 -1 -1 -1 -1

o ... o0 o . Then GKdim B(V) = co.
Proof. We may assume that n = 2. Fix J = {2,3}, B= B(V1 & V}), and set

Dynkin diagram 3

u = [:c§23,x2]c,v = [z1,ul. € B. As 82(x§23) = 0, we have
2 2
Oa(u) = 32(96%23962 + q12Q32$2$%23) = T30 + q12G3292 - 30
= T3,, T 012432421422923(2 3 5, + T123) = —Z123.
2 )

As x1, 19, x3 span a braided vector space of Cartan type As, we have that
[2123, 2]c = 2 = 0. From the first relation,

2 2
g1 u = qi2q13(—u + [T123, T2]c) = —q2q13 U,
and from the second, x1T123 = —q12q13 £123T1, SO

D (v) = Ra(z1u + ¢laqrzuzy) = 1109(u) + ¢laq1302(w)ga - 71
= —212123 + 12413 123T1 = 2¢12G13 T12371.
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Thus v # 0. As 23 = (ad.z3)73 = 0,
2

723):x§23®1+2x§2®x3+(2x§ +21)Qr3+1®@x3
2 2 2 2 2
Alu)=u®1—2x19 @ x322 + 1 R u,

A(v) =v® 1+ 4qi2x1271 ® 322 + 2q12212 @ 3212 + 1 @ 0,

23’

so v is a primitive element in B4 Let B; be the subalgebra of Bdias
generated by v and the z;’s. and gg the Nichols algebra whose degree one
part is isomorphic (as a braided vector space) to ku @ V. Arguing as in
Theorem ??, let By be the graded braided Hopf algebra associated to the
natural Hopf algebra filtration of By, where the generators v and x; have
degree one. Let Bs be the Nichols algebra quotient of By. Then

GKdim B3 < GKdim By < GKdim B; < GKdim B4 = GKdim B(V).

The Dynkin diagram of the degree one part of Bs is of Cartan type Dfll)
(with vertices labeled by —1), so GKdim B3 = oo by Theorem ??, and then
GKdim B(V) = oc. O

Lemma 2.14. Let .%; = (=1,1,...,1), 95 = (1,0,...,0), n > 3, with

LS9 T Then GKdim B(V) = oo.

S -1
Dynkin diagram o

Proof. We may assume that n = 3. Fix J = {2,3,4}, B= B(V1 & V), and
set u = [:c§23,x2]c € B. As 82(x§23) = 0, we have
2 2

Oo(u) = 32($%23$2 + q12Q329E2$%23) = 90%23 + 1243292 90%23
=T3,,+ Q12Q32¢I21LJ22Q23(IE§23 + z123) = —Z123.
2 2

Thus u # 0. As 23 = (ad.x3)z3 = 0,
2

A(l’%zg) = 23

Alu) =u®1l—-2z12Q 2322 + 1 ® 1,

®1—|—2$§2®l‘3—|—(2$§ +21)®@x3+ 1R w3
2 2

x3
223 2

so u is a primitive element in Bdias, Let B be the subalgebra of Bdiag
generated by u, x4, and By the Nichols algebra whose degree one part is
isomorphic (as a braided vector space) to ku @ kzy. The Dynkin diagram

~ 1 -1 -1
of By is o

o , thus GKdim By = oc. Arguing as in Theorem 7?7,
GKdim B = ~o. O
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As x1, x3, x2 span a braided vector space of type €1, the following rela-

2
tions hold in B(&,):

(1.26) T3 = (I%ﬂﬂl% =0,

(1.27) x§x§2 + qlgxgzx% qlgzlgﬂzg + ;xlgz,
(?7) x;mlg 7561% % = azlxl%.

Lemma 2.15. The following relations hold in B(&,)):
(2.28) (ade ), 1<j—1,
(2.29) [Tai 11> Tiles 2<i<n-1,
(2.30) [y, T2]c,

(2.31) [x o % Z2c.

Proof. As x;, i € I, span a braided vector space of A,, type, (2.28) for i # %

and (2.29) hold in B(&,)); (2.28), i = 3, follows since q1j¢;1 = 1 ¥; = 0.
For (2.30), we claim that 0;([zg,,x2]c) = 0 for all j € I},. Indeed, it holds

for j 75 2,3 since 8j(l'53) = 8j(x2) =0. As 83($[33) = 2$52, 82(1‘53) = 0,
O53([5, T2]c) = 03(2p572 + q12G32722 ;) = 2q32(7 5,72 + q12727p,) = 0,
O2([7g;, T2]c) = Oa(wps w2 + q12G32727 ;) = (1 — q12432421G23) 73, = O.
(2.31) O

Lemma 2.16. For each o € Af{, set xo, with the same recursive definition
as Yo Then

(2.32) Y2 =0, ae Al - {a%}.
Proof.

(1.28) zi = $2%2 =0, i=0,1,
(1.29) T3y = xfgg =0, i=0,1,
(7?) z3 =0.

O

Proposition 2.17. The algebra B(&3)) is presented by generators x1, =3,
x2, 3 and relations (77), (77), (1.26), (1.27), (1.28) and (1.29). The set2
B = {a" a2 ah f1" fo? 212 20" s ma,ng € {0,1}, ma, m3 € Ny}

is a basis of B(€2) and GKdim B(¢;) = 2.

Proof. O
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TABLE 4. PBW generators of B(€s)

X

8
—
8

Tr12 | T2 1'13 X

5232 1523 23

o] [d%)

3
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,_.
polco
S}

T123 | T3 T3

5232

Z23

T3

&
|
8
W

8
,_.

8
—
polo

8

8
polce poleo

[y
N

8
NS][eM
no

8
—
©)

SNENERENERNERNE I |

8
I\

xT
1§232

z 3
1523

T123

T3
523

z3..
5232

x23

NEN

T3

IENENEENEENENERNEENENENERNERNERNIRNT

height 00 | 00 2 2 2 |2 777 777 2 777
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