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In order to achieve the second-order advantage, second-order data per sample is usually required, e.g.,
kinetic-spectrophotometric data. In this study, instead of monitoring the time evolution of spectra
(and collecting the kinetic-spectrophotometric data) replicate spectra are used to build a virtual second
order data. This data matrix (replicate mode � k) is rank deficient. Augmentation of these data with stan-
dard addition data [or standard sample(s)] will break the rank deficiency, making the quantification of
the analyte of interest possible. The MCR-ALS algorithm was applied for the resolution and quantitation
of the analyte in both simulated and experimental data sets. In order to evaluate the rotational ambiguity
in the retrieved solutions, the MCR-BANDS algorithm was employed. It has been shown that the reliabil-
ity of the quantitative results significantly depends on the amount of spectral overlap in the spectral
region of occurrence of the compound of interest and the remaining constituent(s).

� 2013 Elsevier B.V. All rights reserved.
Introduction

The problem of the appearance of unknown interference(s) is
common in chemical analysis. In most cases, analysts have to deal
with natural samples such as biological matrices, pharmaceuticals
and environmental specimens, which are far from simplicity. To
cope with these issues, many sophisticated instrumentations
which provide multidimensional (multi-way) data have been
developed. Multi-way data include second-order (matrices) or
third-order (three-mode arrays) data for a single sample, which
can be organized in a three- or four-way array, respectively, for a
group of samples. For these data one mode refers to the composi-
tional variation of the system and the others are related to the
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variation in the collected responses in the instrumental modes.
When the number of data modes increase, different data-process-
ing and mathematical algorithms are required for the convenient
study of the collected data [1]. A calibration model constructed
using multi-way measurements makes the quantitation of the ana-
lyte of interest possible in new samples containing unknown com-
ponent(s) which do not take part in the calibration data set [2–7].
This property is known as the second-order advantage [8]. How-
ever univariate calibration, which employs a single response per
sample (known as zero order data) or multivariate calibration
e.g. collecting a vector data for a sample (known as 1st order data),
are not usually able to quantitate the analyte of interest in the
presence of unknown and non-calibrated component(s) [8]. This
means that the first-order calibration may compensate for interfer-
ences only if they are included in the calibration set. This explains
why a large number of samples are needed in first-order calibra-
tion in comparison with second-order calibration, which can be
performed using a few standards (in an extreme case, with only
a single calibration sample). Second-order data are provided by ad-
vanced hyphenated instrumentations such as two-dimensional
NMR, capillary electrophoresis or chromatographic systems cou-
pled to mass spectroscopy or diode-array detectors, whereas
first-order instrumental data can be measured using fairly simple
equipments employing spectroscopic, chromatographic and vol-
tammetric tools.

Analyte quantitation using first-order multivariate data in the
presence of unexpected components (to achieve the second-order
advantage) is a very recent subject and to the best of our knowl-
edge only a few reports exist in the literature [9–13]. It has been
shown that the correlation-constrained MCR-ALS version facili-
tates the analyte quantitation in the presence of unexpected inter-
ferences using first-order data [9–13]. MCR-ALS with the proposed
correlation constraint has been applied to resolution and quantifi-
cation of mixtures of metal ions with overlapping voltammetric
peaks [9]. Also the determination of the major components in com-
plex mixtures using first-order spectrophotometric data [10,11],
quantification of industrial mixtures from the vinyl acetate mono-
mer process using near infrared spectroscopic data [12] and uri-
nary quantification of nicotine in the presence of metabolite
cotinine and the alkaloid anabasine using surface enhanced Raman
spectroscopy [13] have been presented recently. In the latter case
[13], standard addition in combination with the MCR-ALS method
has been employed to deal with matrix effects and non-calibrated
interferences in the quantification of nicotine present in human
urine.

In the presence of analyte-background interactions, chemical
analysis can be further complicated by matrix effects [14]. When
the sensitivity of the calibration depends on the matrix composi-
tion, quantitative predictions using pure standards may be ex-
pected to be biased. This problem can only be solved by the
standard addition method. A proper calibration model should re-
flect the complexity of the matrix composition, otherwise poor
predictions may result when using calibration curves obtained
from pure standards [15].

Kinetic-spectroscopic second-order data have been employed
recently for analyte quantitation in the presence of non-calibrated
interferences, achieving the second-order advantage [16]. In some
particular kinetic-spectral experiments, the kinetics of all constitu-
ents are identical, so the selectivity in the time direction is zero. In
these cases, the second-order advantage can be achieved, however,
by augmenting the data matrices in the direction of time, creating
selectivity in the augmented direction and using extended MCR-
ALS with correspondence restrictions [16].

In the present study, which was inspired by the Ref. [16], we
aimed to avoid the time-consuming kinetic experiments and gain
the second-order advantage using first-order data by recording a
spectrum for each sample and its replicates. Usually, as mentioned,
in order to achieve the second-order advantage second-order data,
e.g., kinetic-spectrophotometric data are required. In this study, in-
stead of monitoring the spectra versus time (collecting kinetic-
spectrophotometric data) spectral replicates are used to build a
replicated spectrophotometric data matrix (i.e. replicate num-
ber � k). The constructed data matrices are rank deficient. Aug-
mentation of these data with standard addition samples or a few
external standard test samples will break the rank deficiency prob-
lem and make the quantification of the analyte of interest possible.
These data are the same as if the kinetics of all sample constituents
were identical employing the second-order kinetic-spectroscopic
measurements.

In this work we used the standard addition method, which al-
lows to overcome the matrix effects. This means that when each
sample arrives at the laboratory, the experimentalist has to per-
form several measurements and experimental sample preparation
activities. Although with external calibration, calibration only
needs to be performed once, the standard addition method is
unavoidable when it is necessary to overcome the matrix effects.
Conventional standard addition in conjunction with the MCR-ALS
approach has been employed to quantitate the analyte of interest
in the presence of unexpected interference components. Avoiding
tedious procedures of complex sample pretreatments, minimizing
analyte loss and therefore increasing precision in the results are
the advantages provided by the standard addition method. Finally,
in order to evaluate the extent of rotational ambiguity in the re-
trieved solutions, the MCR-BANDS algorithm was applied. The cal-
ibration curves were built, similarly to the traditional standard
addition method, using the recovered concentration profiles as a
function of standard concentrations. In order to demonstrate the
applicability of the proposed method, several simulated examples,
a number of synthetic binary mixtures and spiked samples includ-
ing human urine and blood serum samples were analyzed using
the proposed method.
Experimental procedure

Reagents

All experiments were performed using analytical reagent grade
chemicals. Malachite green (MG), crystal violet (CV), HCl and
methanol were obtained from Merck (Darmstadt, Germany) and
were used without any purification. Pure paracetamol (PC) and
ibuprofen (IB) were provided from an Iranian pharmaceutical com-
pany. To perform binary mixture analysis, individual standard
solutions of MG and CV (20 lg mL�1) were prepared by dissolving
appropriate amounts in distilled water. Also, standard solutions of
100 lg mL�1 each of PC and IB were prepared by dissolving appro-
priate amount of these compounds in a 0.1 mol L�1 HCl–methanol
mixture (1:3). Different aliquots of the standard solutions of MG
and CV, and also of PC and IB within the linear calibration range
were transferred into 10 mL voltammetric flasks and completed
to the volume with distilled water and a 0.1 mol L�1 HCl–methanol
mixture (1:3), respectively. Urine and blood serum samples were
prepared by spiking these samples with appropriate amounts of
the stock solution of PC.
Apparatus

A model T80+ UV–Vis double-beam spectrophotometer with a
PG mode (China) with 1-cm quartz cells (volume 5 mL) was em-
ployed for spectrophotometric measurements.
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Theoretical background and the proposed method

Multivariate curve resolution techniques are powerful ap-
proaches promoted to tackle many chemical problems that could
not be solved otherwise. The common purpose of all multivariate
resolution methods is to transform the raw experimental measure-
ments into useful information. MCR-ALS is a well known second-
order algorithm that uses an alternative approach to iteratively
find the concentration profiles and instrumental responses [17–
21]. Bilinear decomposition of the initial mixture data matrix D
into the product of concentration profiles (C) and pure spectra
(ST) according to Beer’s law can be expressed as:

D ¼ CST þ E ¼
XN

i¼1

cisT
i þ E ¼ D� þ E ð1Þ

where E is the residual data matrix not explained by the model,
which should ideally be close to the experimental error, and D� is
the noiseless approximation to the data matrix. The iterative ALS
optimization procedure to find the matrices of concentration pro-
files and pure spectra, which optimally fits the experimental data
matrix D, starts with initial estimates of either C or ST profiles
[22,23]. During the optimization, several constraints may be applied
depending on the characteristics of the system under study [17,24–
26].

It is well known that the main source of uncertainty associated
with the solutions obtained by MCR methods (like for any other
factor analysis-based methods) are the ambiguities of the recov-
ered profiles. When ambiguity exists, a band of feasible solutions
instead of a unique profile will be obtained for a compound. Ambi-
guities (intensity and rotational) can be mathematically repre-
sented by the following equation:

D� ¼ Cold � ST
old ¼ ðCold � T�1Þ � ðT� ST

oldÞ ¼ Cnew � ST
new ð2Þ
Fig. 1. MCR-ALS in conjunction with standard addition method for quantitative analysis
constituents is identical. Step A: Setting repeatedly the spectrophotometric data vector fo
samples followed by MCR-ALS decomposition. Step C: MCR-BANDS analysis and calculati
Quantitative analysis by plotting standard addition calibration curve.
where T is any non-singular invertible matrix which is responsible
for rotation in Eq. (4). Imposing appropriate constraints can consid-
erably reduce the number of possible solutions or the number of
possible T matrices.

Since several different degrees of overlap will be applied to the
simulated systems in this paper, to calculate the degree of spectral
overlap between the compound of interest and interference the
following expression was used:

S12 ¼
jjsT

1 � s2jj
jjs1jj jjs2jj

ð3Þ

where s1 and s2 are the spectra related to the analyte and interfer-
ence, respectively.

In order to evaluate the accuracy of the proposed method, the
prediction error of analyte concentrations in the mixtures was cal-
culated as the relative standard error (RSE) of the prediction
concentrations:

RSEð%Þ ¼
PN

j¼1ðbCj � CjÞ
2

XN

j¼1

ðCjÞ2

0
BBBB@

1
CCCCA

1=2

� 100 ð4Þ

where N is the number of samples, Cj the real concentration of the
component in the jth mixture and bCjis the estimated concentration.

Relative error of prediction (REP) for quantitative measure-
ments in analyte concentrations was calculated according the fol-
lowing equation:

REPð%Þ ¼ ðCfound � CtrueÞ
Ctrue

� 100 ð5Þ

where Ctrue is considered the known concentration value for analyte
and Cfound is the prediction concentration.
of the analyte in the presence of interferences, considering the kinetics of all sample
r a sample under each other. Step B: Column-wise augmentation of standard added
ng the maximum and minimum band boundaries of the retrieved solutions. Step D:
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The data arranging strategy

A graphical description of the proposed method is presented in
Fig. 1, and further expanded below.
Construction of a data matrix
Absorbance for a series of samples prepared according to the

standard addition method was measured within a given wave-
length range and a data vector (spectrum) was obtained (first-
order data) for each sample. Each of these vectors provides the
spectrum of a mixed sample. Then, the row data vector for every
standard added sample was arranged repeatedly below each other
(arbitrarily, 5 replications per sample) and a virtual second-order
data matrix was created. This kind of data arrangement may be
considered as a second-order kinetic-spectroscopic data matrix
where the kinetic mode (row direction) represents an invariant
reaction rate during the time. A particular case occurs when the
kinetics of all sample constituents are identical and as a conse-
quence there is no selectivity in the time mode.
Column-wise augmentation of the standard addition data matrices
By successive standard addition of an analyte, the concentra-

tions of the remaining components (interferences) remain constant
and introduce linear dependency between interference concentra-
tions in the samples mode (replicate mode). Therefore the individ-
ual virtual data matrix and its standard addition data
(replicate � k) are rank deficient. It is possible to break the linear
dependency by augmenting the data matrices in the rank deficient
direction. This was carried out by organizing the individual data
matrices corresponding to each standard added sample under the
data matrix of unknown sample (column-wise augmentation).
Then, the number of components was simply estimated by singular
value decomposition of augmented matrices, which implies the
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Fig. 2. Simulated spectra for three component systems with different degrees of overlap
analyte of interest, the dashed line and the dotted line indicate the interferences.
presence of two components including the analyte of interest
and the interference(s).
MCR-ALS analysis
As mentioned the iterative ALS optimization starts with the ini-

tial estimates of either C or ST. In general, the use of chemically
meaningful estimates is an essential factor that can help not only
to rapid convergence of the results but also to decrease the ambi-
guity of the solutions. Different methods can be used to find suit-
able initial estimates to start the MCR-ALS. Based on the strategy
used for data construction in this work, after augmentation there
will be two components, one for analyte of interest and the other
for linear combination of the interferents. Pure spectrum of the
analyte along with the purest cumulative spectrum of the interfer-
ents were used as initial estimate. The purest cumulative spectrum
can be obtained by pure variable selection methods such as orthog-
onalization or subtraction of the analyte spectrum from that of
mixture (taking into account the non-negativity constraint). Other
pure variable selection methods such as SIMPLISMA can be used
alternatively [25,27].

MCR-ALS was implemented on the augmented data matrix
comprising an unknown sample and those of the standard addi-
tion which is simply Daug = Caug ST + Eaug, where the augmented
data matrix (Daug) is of size I � J (I equals X-times repeated spec-
trum below each other � the number of standard added samples
and J is the number of wavelengths), the columns indicate the
concentration variations in the standard added samples and
the rows involve the absorption spectrum for each sample. Bilin-
ear decomposition of the data matrix Daug into the matrix of
concentration profiles Caug (size I � N) and pure spectra ST (size
N � J), where N represents the number of components, achieved
according to the MCR-ALS approach. For our case N equals 2.
According to the nature and structure of the data, non-negativity
for both concentration and spectral profiles and equality for the
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: (A) data set 1, (B) data set 2, (C) data set 3 and (D) data set 4. The solid line is the
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analyte spectrum were imposed as suitable constraints. The
number of iterative cycles was set in a way that convergence
was fulfilled in each case.
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Evaluation of rotational ambiguity
After the MCR-ALS decomposition, the extent of rotational

ambiguity remaining in the retrieved profiles was investigated.
Concentration and spectral profiles as the initial input values were
submitted to the MCR-BANDS program. During the optimization,
the constraints implemented in the previous MCR-ALS procedure
were used herein. Optimization was carried out and maximum
and minimum band boundaries of concentration and spectral pro-
files were obtained. The differences between the maximum and
minimum component relative contribution optimization function
(f max

n � f min
n ) were calculated as a criterion of the rotational ambi-

guity for the analyte concentration profiles [28,29].
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Quantitative analysis
The calibration curves were built, similarly to the conventional

standard addition method. The relative concentration values in
matrix C to each addition were plotted versus the standard concen-
tration. Extrapolation of the calibration curve, i.e., the intercept of
the calibration line with the abscissa, gave the concentration of
analyte in the sample.
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Fig. 3. (A) Spectrum, (B) concentration profiles (solid line is the analyte, dashed and
dotted lines indicate the interferences) and (C) simulated standard added data
matrix.
Data and modeling

Simulated data

In order to evaluate the performance of the proposed method,
it was employed to analyze several simulated data. Four data
sets with different degrees of spectral overlap were prepared.
The spectrum for the analyte was intentionally constructed so
that the degrees of spectral overlap gradually increased from
data set 1 to data set 4, as presented in Fig. 2(A–D). Spectral
overlap for the simulated data sets 1, 2, 3 and 4 were calculated
0.23, 0.61, 0.87 and 0.96, respectively, using Eq. (3). For every
sample, several successive additions of the analyte were done,
while concentrations of the other two components (interfer-
ences) were kept constant in all the samples according to the
standard addition model. The data sets were generated from
noiseless UV–Vis spectral and concentration profiles. To built
up a data matrix, the spectrum (row vector) corresponding to
each standard added sample was repeated five times (this num-
ber is arbitrary) below each other. Simulated spectral profiles,
concentration profiles and the constructed data matrix are
shown in Fig. 3(A–C), respectively. Each simulated sample con-
tained three chemical components two interferents and one as
the analyte of interest. The constructed data matrix was used
for subsequent calculations.
Binary synthetic mixture analysis

To demonstrate the analytical applicability of the proposed
method, binary mixtures of malachite green (MG) and crystal
violet (CV), which were assumed alternatively as the analyte
and the unknown interference, and also of paracetamol (PC) in
the presence of ibubrophen (IB) as an interference were created.
The absorption spectra of the mixture samples were recorded
within the wavelength range of 350–700 nm for MG and CV
and 200–310 nm for PC and IB with the increment of 1 nm
against the appropriate solvent blank. The data were processed
as the simulated data sets, with the spectrum corresponding to
each standard added sample repeated five times below each
other.

Real samples

The wide applicability of the proposed method was investi-
gated. Human urine and blood serum samples spiked with PC were
analyzed for this purpose. The absorption spectra of the spiked
samples were recorded within the wavelength range of 200–
310 nm with the increment of 1 nm. The spectrum corresponding
to each standard added sample repeated five times below each
other and the data were processed as the simulated data sets.

Software

All simulations and initial estimates prior to MCR-ALS algo-
rithm were carried out using MATLAB (version 7.10.0 R2010a)
computer environment. Data processing was done in Microsoft
Excel for Windows. MCR-ALS was performed with the graphical
user-friendly interface provided by Tauler [21]. Calculations re-
lated to rotational ambiguities were implemented using MCR-
BANDS graphical user interface [28].



Table 1
Results obtained by applying MCR-ALS and MCR-BANDS analysis to the simulated data sets 1 and 2.

Simulated concentrationa Predicted concentration Recovery (%) REP (%)b Feasible bandc

Simulated data set 1
0 0 – – 0
0.3 0.3 100 0 0.0462
0.6 0.6 100 0 0.0937
0.9 0.9 100 0 0.1419
1.2 1.2 100 0 0.1904
1.5 1.5 100 0 0.2389
1.8 1.8 100 0 0.2870
2.1 2.1 100 0 0.3346
2.4 2.4 100 0 0.3815
Mean recovery 100
RSE (%)d 0

Simulated data set 2
0 0 – – 0
0.2 0.1989 99.44 �0.55 0.0544
0.4 0.3992 99.79 �0.20 0.1097
0.6 0.5994 99.91 �0.10 0.1651
0.8 0.7997 99.96 �0.04 0.2201
1 1 100.0 0 0.2740
1.2 1.2003 100.0 +0.02 0.3269
Mean recovery 99.85
RSE (%) 0.081

a The concentration of interference components were fixed at 1 (in arbitrary unit) during all simulation as standard addition modeling.
b Relative error of prediction (Eq. (5)).
c Corresponds to the difference between f max

n � f min
n .

d Relative standard error of prediction (Eq. (4)).
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Results and discussion

Simulated data

As illustrated in the previous section, four data sets with differ-
ent degrees of spectral overlap were simulated and analyzed. For
data set 1, nine successive additions of the analyte were made
and a data matrix of size 50 (5 replications per sample � 10 stan-
dard addition mode) � 201 (number of wavelengths) was ob-
tained. MCR-ALS decomposition of the data matrix was done
using the initial estimate explained in the third step of the pro-
posed method. A set of solutions C (50 � 2) and ST (2 � 201) were
obtained and used as initial inputs for the MCR-BANDS program. In
both procedures, non-negativity constraints for concentration and
spectral profiles and equality constraint for the analyte spectrum
were imposed. In each case, one of the standard added data matri-
ces was removed (five out of fifty) and the new data matrix was
analyzed. Quantitative analysis was performed for every sample
as illustrated in the fifth step of the proposed method. In Table 1
(upper part), the obtained results for data set 1 are given.

MCR-BANDS results for three samples with the simulated con-
centrations of 0, 0.3 and 0.6 (in arbitrary units) for the analyte and
constant concentration of 1 for both interferences are shown in
Fig. 4. Maximum and minimum band boundaries for the analyte
concentration profiles imply the range of feasible solutions
ðf max

n and f min
n Þ where the maximum band boundaries (continuous

blue line) coincide with the red dotted line of the initial profiles.
As can be seen from Fig. 4, with increasing the analyte concentra-
tion, the range of feasible concentration profiles also increases,
while the lower concentration level (minimum band boundary)
remains invariant and equals to zero concentration. Therefore,
the upper level (maximum band boundary) defines the analyte
concentration. Extrapolation of the standard addition calibration
curve for the upper boundary determines the analyte concentra-
tion in each sample. Acceptable recoveries were obtained which
indicate that the results are accurate.
Likewise, other three data sets were built up and analyzed with
MCR-ALS and MCR-BANDS programs. Tables 1 (lower part) and 2
collect the results for all data sets 2, 3 and 4, respectively. In each
case, relative standard error (RSE), quantitation error and also the
differences between the maximum and minimum optimization
function values were calculated. The same as data set 1, for these
data sets the lower concentration level was invariant and equal
to zero concentration. The extrapolation of the standard addition
calibration curve for the upper level ascertained the analyte con-
centrations in samples.

From the obtained results for the analyte quantitation in four
simulated data systems it can be concluded that with increasing
the degrees of spectral overlap between the analyte and interfer-
ences, the value of relative error in the predicted concentrations
for the upper boundary increases, whereas for the lower one it
always equals �100%. For data set 1, the proposed method yields
excellent recoveries. This may be due to the fact that the degree
of spectral overlap between the analyte and interferences is
small (0.23 as calculated from the Eq. (3)). Also for the case of
data sets 2 and 3, with degrees of overlap 0.61 and 0.87, respec-
tively, satisfactory quantitation results were obtained. However,
analysis of data set 4 led to apparently worse recoveries. In fact,
the latter data set provides the opportunity to test an extreme
spectral overlap effect, where the spectrum for the compound
of interest is completely embedded in the sample background
and there is no selective region for it. This may be ascribed to
the fact that the analyte spectrum becomes mixed up with those
of the interferences and the analyte contribution is not totally
removed from the rest of the mixture. As a consequence, the
proposed method overestimates the concentration of the analyte.

Random noise was added to the simulated data sets in order to
test the method more rigorously. A random homosadistic noise of
±0.005 absorbance unit was added to each matrix and then the
procedure was followed as explained above where the concentra-
tion of analyte of interest in the noisy data was predicted. For data
sets 1, 2 and 3, there was a good agreement between simulated and



Fig. 4. MCR-BANDS results for the data set 1 with simulated concentrations of (a) 0
(b) 0.3 and (c) 0.6 (in arbitrary units) for the analyte and constant concentration of 1
(in arbitrary unit) for both interferences. Red dotted lines indicate the initial profiles
and the solid blue lines are the calculated band boundaries. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

Table 2
Results obtained by applying MCR-ALS and MCR-BANDS analysis to the simulated
data sets 3 and 4.

Simulated
concentrationa

Predicted
concentration

Recovery
(%)

REP
(%)b

Feasible
bandc

Simulated data set 3
0 0 – – 0.0002
0.3 0.3004 100.1 +0.13 0.0476
0.6 0.6008 100.1 +0.13 0.0958
0.9 0.9013 100.1 +0.14 0.1438
1.2 1.1996 99.97 �0.03 0.1914
1.5 1.5000 100.0 0 0.2381
1.8 1.8004 100.0 +0.02 0.2838
Mean recovery 100.06
RSE (%)d 0.058

Simulated data set 4
0 1.3347 – – 0.0915
0.4 1.7427 435.7 +335.6 0.1201
0.8 2.1323 266.5 +166.5 0.1483
1.2 2.5330 211.1 +111.1 0.1769
1.6 2.9339 183.4 +83.37 0.2053
2 3.3347 166.7 +66.74 0.2337
2.4 3.7355 155.6 +55.64 0.2620
Mean recovery 236.5
RSE (%) 92.58

a The concentration of interference components were fixed at 1 and 1.5 (in
arbitrary units) during all simulation as standard addition modeling.

b Relative error of prediction (Eq. (5)).
c Corresponds to the difference between f max

n � f min
n .

d Relative standard error of prediction (Eq. (4)).

Table 3
Results obtained by applying MCR-ALS and MCR-BANDS analysis to the simulated
noised data sets 1 and 2.

Simulated
concentrationa

Predicted
concentration

Recovery
(%)

REP
(%)b

Feasible
bandc

Simulated data set 1
0 0 – – 0
0.3 0.3 100 0 0.0462
0.6 0.6 100 0 0.0935
0.9 0.9 100 0 0.1418
1.2 1.2 100 0 0.1901
1.5 1.5 100 0 0.2386
1.8 1.8 100 0 0.2866
2.1 2.1 100 0 0.3339
2.4 2.4 100 0 0.3815
Mean recovery 100
RSE (%)d 0

Simulated data set 2
0 0 – – 0
0.2 0.1989 99.44 �0.55 0.0541
0.4 0.3997 99.93 �0.08 0.1096
0.6 0.5980 99.67 �0.33 0.1664
0.8 0.8096 101.2 +0.01 0.2218
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predicted concentrations which shows the applicability of the
method for noisy systems. The results are given in Tables 3 and 4.
1 1.0070 100.7 +0.70 0.2747
1.2 1.1828 98.57 +1.43 0.3240
Mean recovery 99.92
RSE (%) 1.10

a The concentration of interference components were fixed at 1 (in arbitrary unit)
during all simulation as standard addition modeling.

b Relative error of prediction (Eq. (5)).
c Corresponds to the difference between.
d Relative standard error of prediction (Eq. (4)).
Binary synthetic mixture analysis

In order to illustrate the proposed method with experimental
examples, quantitation of binary mixtures of MG and CV, which
were assumed alternately as an analyte and unknown interference,
and also PC in the presence of IB as interference were performed.
Malachite green and crystal violet determination
Beer’s law was obeyed in the concentration range 0.2–

1.8 lg mL�1 for MG and CV using standard solutions. As Fig. 5
shows, the absorption spectra of MG and CV overlapped in the
wavelength region of 450–650 nm. The degree of spectral overlap
was calculated 0.53. Quantitation analysis of this binary system
was carried out through eight successive additions of the analyte,
while the concentration of CV and MG, assumed as interference
components, respectively, were fixed at 1 lg mL�1 in all samples.
A two-way data matrix of size 45 � 351 (5 replications per sam-
ple � 9 standard addition mode and 351 wavelengths) was con-
structed. The number of components, estimated using singular
value decomposition, was two, as expected. Initial estimation
obtained from subtraction of the pure analyte spectrum from the
first spectrum of the standard added data matrix was used. Under



350 400 450 500 550 600 650 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Wavelength (nm)

A
bs

or
ba

nc
e

Fig. 5. Absorption spectra for malachite green (solid line) and crystal violet (dashed
line). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 6. MCR-BANDS results for determination of MG and CV with concentrations of
(a) 0 (b) 0.2 and (c) 0.4 lg mL�1 for MG and constant concentration of 1 lg mL�1 for
CV. Red dotted lines indicate the initial profiles and the solid blue lines are the
calculated band boundaries. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Table 4
Results obtained by applying MCR-ALS and MCR-BANDS analysis to the simulated
noised data sets 3 and 4.

Simulated
concentrationa

Predicted
concentration

Recovery
(%)

REP
(%)b

Feasible
bandc

Simulated data set 3
0 0 – – 0
0.3 0.3032 101.0 +1.07 0.0480
0.6 0.6000 100.0 0 0.0955
0.9 0.8970 99.67 �0.33 0.1420
1.2 1.2021 100.2 +0.18 0.1910
1.5 1.4979 99.86 �0.14 0.2376
1.8 1.7924 99.58 �0.42 0.2824
Mean recovery 100.1
RSE (%)d 0.32

Simulated data set 4
0 1.2008 – – 0.0826
0.4 1.6064 401.6 +301.6 0.1112
0.8 2.0040 250.5 +150.5 0.1398
1.2 2.4453 203.8 +103.8 0.1713
1.6 2.8577 178.6 +78.61 0.2001
2 3.1960 159.8 +59.80 0.2255
2.4 3.5960 149.8 +49.83 0.2570
Mean recovery 224.0
RSE (%) 84.27

a aThe concentration of interference components were fixed at 1 and 1.5 (in
arbitrary units) during all simulation as standard addition modeling.

b Relative error of prediction (Eq. (5)).
c Corresponds to the difference between.
d Relative standard error of prediction (Eq. (4)).
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the enforcement of non-negativity constraints for concentration
and spectral profiles and equality constraint for analyte spectrum,
MCR-ALS decomposition was implemented. MCR-BANDS retrieved
profiles for the determination of MG which are shown in Fig. 6. As
for the simulated data, one of the standard added data matrices
was left out in each case, and the new data matrix was analyzed.
It should be noted that the lower concentration level was zero
for all cases and the upper level determined the analyte concentra-
tion in samples. Extrapolation of the standard addition calibration
curve for the upper level specified the analyte concentration in
each sample. Table 5 gives the recovery and relative standard error
of prediction for the determination of MG and CV. Comparing the
prediction performance of the proposed method for both examples
indicates that good recoveries are obtained for MG, which is in
excellent agreement with the actual content. This could have been
expected, because the extent of the selective spectral region for MG
is wider compared to that of the CV.

Paracetamol determination
Beer’s law was obeyed in the concentration range of 0.6–

11 lg mL�1 for PC in 0.1 mol L�1 HCl–methanol (1:3) mixture. As
Fig. 7 shows, the absorption spectra of PC and IB overlapped in
the wavelength region of 200–240 nm. In this case, the degree of
spectral overlap is 0.61. Quantitation analysis of PC was done by
five successive addition of the analyte, while the concentration of
IB, as interference, was fixed at 5 lg mL�1 in all samples. A two-
way data matrix of size 30 � 111 (5 replications per sample � 6
standard addition mode and 111 wavelengths) was constructed.
The data matrix was analyzed as before, and good quantification
results were obtained, which are presented in Table 6.
Real samples

Absorption spectra for paracetamol, blood serum and urine
samples are also presented in Fig. 7. The degree of spectral overlap
for PC in serum and urine samples are 0.65 and 0.85, respectively.
Quantitation analysis was carried out by five successive addition of
PC as the analyte of interest. A two-way data matrix of size
30 � 111 (5 replications per sample � 6 standard addition mode
and 111 wavelengths) was constructed. The data matrix was
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Fig. 7. Absorption spectra for paracetamol (1), ibuprofen (2), blood serum (3) and
urine samples (4).

Table 5
Obtained results for determination of MG and CV considered alternately as an analyte
and unknown interference by applying the proposed method.

Taken
(lg mL�1)

Found
(lg mL�1)

Recovery
(%)

REP
(%)a

Feasible
bandb

Malachite green
0 0 – – 0
0.2 0.1987 99.40 �0.65 0.1501
0.4 0.3968 99.20 �0.80 0.2854
0.6 0.6045 100.7 +0.75 0.4172
0.8 0.7939 99.24 �0.76 0.5292
1 0.9904 99.04 �0.96 0.6329
1.2 1.1911 99.26 �0.74 0.7273
1.4 1.4022 100.2 +0.16 0.8203
Mean recovery 99.58
RSE (%)c 0.66

Crystal violet
0 0 – – 0
0.2 0.2006 100.3 +0.30 0.1019
0.4 0.3990 99.76 �0.25 0.1934
0.6 0.6026 100.4 +0.43 0.2830
0.8 0.7927 99.08 �0.91 0.3691
1 0.9810 98.10 �1.90 0.4498
1.2 1.1785 98.20 �1.79 0.5402
1.4 1.4151 101.1 +1.08 0.6108
Mean recovery 99.56
RSE (%) 1.41

a Relative error of prediction (Eq. (5)).
b Corresponds to the difference between f max

n � f min
n .

c Relative standard error of prediction (Eq. (4)).

Table 6
Obtained results for determination of PC in the presence of IB by applying the
proposed method.

Taken
(lg mL�1)

Found
(lg mL�1)

Recovery
(%)

REP
(%)a

Feasible
bandb

0 0.0101 – – 0
2 1.9494 97.47 �2.53 0.1051
4 4.3021 97.00 �7.55 0.2118
6 6.0606 101.0 +1.01 0.2339
8 7.6990 96.24 �3.76 0.2578
Mean recovery 97.93
RSE (%)c 3.96

a Relative error of prediction (Eq. (5)).
b Corresponds to the difference between f max

n � f min
n .

c Relative standard error of prediction (Eq. (4)).

Table 7
Results obtained by applying the proposed method to human blood serum and urine
samples spiked with PC.

Taken
(lg mL�1)

Found
(lg mL�1)

Recovery
(%)

REP
(%)a

Feasible
bandb

Serum
0 0.1224 – – 0.0038
2 2.1428 107.1 +7.14 0.0648
4 4.1633 104.1 +4.08 0.1274
6 6.1837 103.1 +3.06 0.1902
8 8.2041 102.6 +2.55 0.2525
Mean recovery 104.2
RSE (%)c 3.38

Urine
0 0.3438 – – 0.0197
2 2.3542 117.7 +17.7 0.1327
4 4.3750 109.4 +9.38 0. 2425
6 6.3854 106.4 +6.42 0.3469
8 8.3958 105.0 +4.95 0.4450
Mean recovery 109.6
RSE (%) 7.58

a Relative error of prediction (Eq. (5)).
b Corresponds to the difference between f max

n � f min
n .

c Relative standard error of prediction (Eq. (4)).
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analyzed as before, and the results are given in Table 7. Comparing
the prediction performance of the proposed method for both ser-
um and urine samples indicates that good recoveries are obtained
for quantitation of PC in serum samples. This could have been
expected, because the extent of the selective spectral region for
PC in serum samples is wider compared to that of the urine
samples.
Conclusion

The main objective of this study was to investigate the possibil-
ity of achieving the second-order advantage from first-order spec-
trophotometric data when the kinetics of all sample constituents
are identical. Instead of collecting two-way kinetic-spectrophoto-
metric data, virtual replicate � spectrophotometric data were used
in the present work. Standard addition in combination with the
MCR-ALS method was applied as an alternative to, circumvent
the matrix effect firstly and quantitation of the analyte in the pres-
ence of unknown interference components secondly. Despite a
band boundary of feasible solutions for analyte concentration pro-
files recovered from MCR-ALS, the maximum band boundary can
be used for determination of analyte concentrations while the min-
imum one is always invariant and equals to zero concentration. It
may be noted that successful analyte quantitation in the presence
of interference components (second-order advantage) based on the
proposed method, depends significantly on the degree of selectiv-
ity in the rows of the standard added data matrix. The degree of
selectivity, in turn, depends on the amount of overlap in the region
of occurrence for the compound of interest with the rest of constit-
uents (the spectra mode). With increasing degrees of spectral over-
lap between the analyte and interferences, the uncertainty for the
maximum band boundary also increases. This study showed that
the proposed method succeeded in the analyte quantitation in
interfering systems, where there is a minimum selective spectral
region for the analyte of interest.
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