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Abstract

A family F of subsets of some set is intersecting when sets of F pairwise intersect. The family F is Helly

when every intersecting subfamily of it contains a common element. In this paper we examine the families

of vertex neighborhoods of a graph, with the aim of determining whether or not they are Helly, and also

whether or nor they are hereditary Helly, that is, each of the induced subgraphs of the graph is Helly. We

examine the cases where the neighborhoods are all open, or all closed, or mixed, that is, some open and some

closed. For mixed neighborhoods there are two different kinds of choice of the neighborhood of each vertex

to be considered: fixed or arbitrary choice. By fixed mixed neighborhood, we mean that the choice, open or

closed, for the neighborhood of a vertex is known in advance, that is part of the input. On the other hand,

an arbitrary choice implies that the choice can be made along the process. For the cases of open, closed

and fixed mixed neighborhoods, we describe characterizations, both for the neighborhoods to be Helly and

hereditary Helly. The characterizations are of two types: based on the concept of extensions, or, for the

hereditary cases, by forbidden induced subgraphs. Polynomial time recognition algorithms follow directly

from the characterizations. In contrast, for arbitrary mixed neighborhoods, we prove that it is NP-complete

to decide whether the family of neighborhoods is Helly or hereditary Helly.

Keywords: Complexity, Extensions, Helly property, NP-hardness

1. Introduction

Denote by G a finite simple graph, with vertex set V (G) and edge set E(G). We use n and m to denote

|V (G)| and |E(G)|. A complete set is a subset V ′ ⊆ V (G) formed by pairwise adjacent vertices. A triangle

is a complete set of size 3 and a subset of vertices is a co-triangle when it is a triangle in G, the complement

of G. Denote by N(vi) = {vj ∈ V (G)|(vi, vj) ∈ E(G)}, and N [vi] = N(vi) ∪ {vi}, the open and closed

neighborhoods of G, respectively. The degree of a vertex vi, d(vi), is |N(vi)| and the maximum degree of G

is denoted by ∆. For V ′ ⊆ V (G), G[V ′] is the subgraph of G induced by V ′. Let F be a family of subsets
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of some set. Say that F is intersecting when the subsets of F pairwise intersect. On the other hand, when

every intersecting subfamily of F has a common element then F is a Helly family.

The Helly property in the context of graphs and hypergraphs has been considered in many papers.

Among them, we can mention [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,

25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36].

A graph G is open neighborhood-Helly (closed neighborhood-Helly) when its family of open neighbor-

hoods (closed neighborhoods) is Helly. Finally, G is hereditary open neighborhood-Helly (hereditary closed

neighborhood-Helly) when every of its induced subgraphs is open neighborhood-Helly (closed neighborhood-

Helly).

Different characterizations were given for these graph classes and most of them lead to polynomial-time

recognition algorithms: closed neighborhood-Helly graphs [15, 25]; open neighborhood-Helly graphs [25];

hereditary closed neighborhood-Helly graphs [26]; hereditary open neighborhood-Helly graphs [26].

A natural extension of these classes is the case where the neighborhoods are not necessarily all open

or all closed, that is they are of some mixed type. In this situation, there is a partition of the vertices,

according how each neighborhood is to be considered, open or closed. Such a partition can be fixed or

variable. Say that G is fixed mixed neighborhood-Helly when for a given partition of its vertices, into open

and closed, the corresponding neighborhoods satisfy the Helly property. On the other hand, G is arbitrary

mixed neighborhood-Helly when there exists some partition of the vertices which turns the neighborhoods

to be Helly. Accordingly, define the concepts of fixed hereditary mixed neighborhood-Helly and arbitrary

hereditary mixed neighborhood-Helly.

In this work, we describe characterizations, based on the concept of extensions, for the classes of

neighborhood-Helly graphs: open, closed and mixed, both fixed and arbitrary. In addition, we also describe

characterizations for their corresponding hereditary classes. As a consequence, we can obtain naturally

polynomial time recognition algorithms for the classes into consideration, except for two cases. The ex-

ceptions are those of the arbitrary mixed classes. We prove that it is NP-complete to recognize arbitrary

mixed neighborhood-Helly graphs and arbitrary hereditary mixed neighborhood-Helly graphs. The NP-

completeness remains even for graphs of maximum degree 4.

We describe two different types of characterizations, those based on the concept of extensions, and, for

hereditary classes, forbidden subgraph characterizations.

In Section 2, we present some terminology relevant to this work, open neighborhoods and closed neigh-

borhoods are respectively considered in Sections 3 and 4, whereas fixed and arbitrary mixed neighborhoods

are the subjects of Sections 5 and 6, respectively.

2. Preliminaries

First, we describe additional notation and definitions.

In the case of mixed neighborhoods, we may employ the notation N{v} to mean that the neighborhood
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to be considered for vertex v, open or closed, is not determined.

Denote by N [v, w] the intersection of N [v] and N [w], i.e. N [v, w] = N [v] ∩N [w]. On the other hand,

we define the universal set of v, w as: U [v, w]= {u ∈ V (G)/N [v, w] ⊆ N [u]}. The universal set of u, v, w is

defined as: U [u, v, w]= U [u, v] ∩ U [v, w] ∩ U [u,w].

Define the extension of vertices u, v, w, as E(u, v, w)= N [u, v] ∪ N [v, w] ∪ N [u,w], whenever N [u, v],

N [v, w], N [u,w] 6= ∅, and E(u, v, w) = ∅ otherwise.

A chord of cycle C is an edge of the graph between two vertices vi, vj not consecutive in C. If vi, vj are

at distance two in C then the edge vivj is called a short chord.

There is a polynomial-time general algorithm to check the Helly property for a family of subsets of

polynomial size, based on the following characterization.

Theorem 2.1. [5] Let F be a family of subsets of some set U . Given three different elements u, v, w ∈ U ,

let F{u,v,w} be the subfamily of F formed by the sets containing at least two of these three elements. F is

Helly if and only if for every triple {u, v, w} ⊆ U ,
⋂
S 6= ∅, where S ∈ F{u,v,w} .

3. Open Neighborhood

Open neighborhood-Helly graphs have been characterized in terms of extensions.

Theorem 3.1. [25] A graph G is open neighborhood-Helly if and only if it does not contain triangles, and

for every 3-independent set {u,v,w} there exists a vertex z ∈ V (G) such that the extension E(u, v, w) ⊆ N [z],

i.e, U(u, v, w) 6= ∅ or E(u, v, w) = ∅.

For hereditary open neighborhood-Helly graphs, we describe two characterizations. The first is by

forbidden induced subgraphs.

Theorem 3.2. [26] Let G be a graph. Then G is hereditary open neighborhood-Helly if and only if G does

not contain C6 nor triangles as induced subgraphs.

Next, we formulate a characterization of hereditary open neighborhood-Helly graphs in terms of exten-

sions.

Theorem 3.3. A graph G is hereditary open neighborhood-Helly if and only if it does not contain triangles

and for every triple of pairwise non-adjacent vertices u, v, w such that N [u, v], N [v, w], N [u,w] 6= ∅ then either

E(u, v, w) ⊆ N [u], E(u, v, w) ⊆ N [v] or E(u, v, w) ⊆ N [w], i.e U(u, v, w) ∩ {u, v, w} 6= ∅ or E(u, v, w) = ∅.

Proof Let G be a hereditary open neighborhood-Helly graph. By Theorem 3.2, G has no triangles. Then,

we analyze the case u, v, w are non adjacent vertices. Suppose that the Theorem is not true for the triple of

non adjacent vertices u, v, w, where N [u, v], N [v, w], N [u,w] 6= ∅. Then, there exist vertices x, y, z such that:

x ∈ N [u, v], x /∈ N [w], y ∈ N [u,w], y /∈ N [v] and z ∈ N [v, w], z /∈ N [u].
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C4 C5 C6 Hajós

Figure 1: Forbidden induced subgraphs for hereditary closed neighborhood-Helly graphs

If it is this situation, any of xy, xz and yz is an edge of G, then the graph contains a triangle. Otherwise,

u, v, w, x, y, z induce the graph C6. Either cases contradict Theorem 3.2.

Conversely, we prove that a graph that satisfies the conditions of the Theorem, does not contain a

C6 as an induced subgraph. By contrary, suppose that G contains vertices u, x, v, y, z, w inducing a cycle.

Consider the triple u, v, w of non-adjacent vertices. It follows that N [u,w] is not included in N [v], N [v, w]

is not included in N [u], and N [u, v] is not included in N [w]. That is, E(u, v, w) is contained in neither N [u],

N [v] nor N [w], contradicting the hypothesis �

4. Closed Neighborhood

In this section, we describe characterizations of closed neighborhood-Helly graphs and hereditary closed

neighborhood-Helly graphs.

The theorem below characterizes closed neighborhood-Helly graphs, in terms of extensions.

Theorem 4.1. A graph G is closed neighborhood-Helly if and only if for every u, v, w there exists a vertex

z ∈ V (G) such that the extension E(u, v, w) ⊆ N [z], i.e, U(u, v, w) 6= ∅ or E(u, v, w) = ∅.

Proof It follows directly from Theorem 2.1.�

This theorem is a special case of Theorem 5.1.

In what follows, we describe characterizations of hereditary closed neighborhood-Helly graphs. The first

one is by forbidden induced subgraphs.

Theorem 4.2. [26] A graph G is hereditary closed neighborhood-Helly if and only if it does not contain C4,

C5, C6 nor the Hajós graph as induced subgraphs.

Next, we present a characterization in terms of extensions.
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Theorem 4.3. A graph is hereditary closed neighborhood-Helly graph if and only if for every triple u, v, w

such that N [u, v], N [v, w], N [u,w] 6= ∅, then either E(u, v, w) ⊆ N [u], E(u, v, w) ⊆ N [w] or E(u, v, w) ⊆

N [v], i.e., U(u, v, w) 6= ∅ or E(u, v, w) = ∅.

Proof Let G be a hereditary closed neighborhood-Helly graph. Consider u, v, w such that N [u, v], N [v, w],

N [u,w] 6= ∅. Examine the neighborhoods of u, v, w.

Case 1: {u, v, w} induces a triangle:

Suppose that the Theorem is not true for u, v, w. Then, there exist vertices x, y, z such that: x ∈ N [u, v],

x /∈ N [w], y ∈ N [u,w], y /∈ N [v] and z ∈ N [v, w], z /∈ N [u]. First, consider the situation where there is no

edge between x, y , z. Then {u, v, w, x, y, z} induces an Hajós graph which contradicts Theorem 4.2. Hence,

at least one of xy,xz,yz is edge of G, this implies the existence of the subgraph C4. Again, this contradicts

Theorem 4.2.

Case 2: {u, v, w} induces a P3:

Consider u,w as the non-adjacent vertices. Suppose that N [u,w] is not included in N [v]. Then, there is a

vertex x∈ N [u,w] such that u, x, w, v induces the graph C4, what is a contradiction, according to Theorem

4.3. We conclude that N [u,w] ⊆ N [v]. Hence E(u, v, w) ⊆ N [v].

Case 3: {u, v, w} induces a P3:

Let u be the isolated vertex of the P3. Suppose that N [u,w] is not included in N [v] and let x ∈ N [u,w],

x /∈ N [v]. Analogously, if N [u, v] is not included in N [w], consider y ∈ N [u, v], y /∈ N [w]. Then, depending

on whether x, y are adjacent or not, vertices v, w, x, y or v, w, x, u, y form the graph C4 or C5 respectively, a

contradiction, by Theorem 4.3. It follows that either N [u,w] ⊆ N [v] or N [u, v] ⊆ N [w]. Hence E(u, v, w) ⊆

N [v] or E(u, v, w) ⊆ N [w].

Finally, consider the case where u, v, w form an independent set. Suppose that the Theorem is not true

for u, v, w. Then, there exist vertices x, y, z such that: x ∈ N [u, v], x /∈ N [w], y ∈ N [u,w], y /∈ N [v] and

z ∈ N [v, w], z /∈ N [u]. First, examine the situation where xy, xz, yz are edges of G. Then u, v, w ∈ E(x, y, z).

We can then apply Case 1 and conclude that N [x], N [y] or N [z] contains E(x, y, z), contradicting x /∈ N [w],

y /∈ N [v] or z /∈ N [u], respectively. The next alternatives, where one or two of the pairs xy, xz,yz are edges

of G, imply the existence of the subgraphs C5 or C4, respectively. In the remaining case, {x, y, z} induces an

independent set, meaning that {u, x, v, z, w, y} induces the graph C6. Either cases contradicts Theorem 4.2.

Conversely, we prove that a graph that satisfies the conditions of the Theorem, can not contain any of

the graphs C4, C5, C6 nor the Hajós graph as induced subgraphs. We choose a convenient triple of vertices

u, v, w, as follows. Suppose G contains an induced C4. Let u, v, w be any consecutive vertices of this cycle.

Suppose C5 is an induced subgraph of G. Choose u, v, w to be vertices of C5 that induce the complement

of P3. Finally, for both C6 and the Hajós, consider the triple u, v, w of non adjacent vertices. In every case,

it follows that N [u,w] is not included in N [v], N [v, w] is not included in N [u], and N [u, v] is not included

in N [w]. Consequently, it follows from the hypothesis,that G does not contain any of the graphs C4, C5, C6

nor the Hajós graph. by Theorem 4.2, G is hereditary closed neighborhood-Helly.�
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5. Fixed Mixed Neighborhood

In this section, we consider fixed neighborhood-Helly graphs. For a graph G, there is a fixed partition

O∪C = V (G) of its vertex set, where the neighborhoods of O and C are to be considered as open and closed,

respectively. The aim is to determine whether such neighborhoods satisfy the Helly Property. Usually in

figures of this section and the next section, the vertices of O are colored with white color and the vertices of

C with black color. Sometimes, there are vertices which can belong to any partition (O or C). In this case,

they are colored with gray color.

The following theorem characterizes fixed mixed neighborhood-Helly graphs, based on extensions.

Theorem 5.1. A graph G is mixed neighborhood-Helly for a bipartition V (G) = O ∪ C if and only if for

every extension E(u, v, w), there exists a vertex z ∈ V (G) such that E(u, v, w) ⊆ N{z}, i.e. U [u, v, w] 6= ∅

or E(u, v, w) = ∅.

Proof Let S = {v1, v2, v3} ⊆ V (G) and E(v1, v2, v3) its extension. If E(v1, v2, v3) = ∅, there is nothing to do.

Otherwise, since each vertex of E(v1, v2, v3) is adjacent to a pair of vertices of S, it is clear that the family of

the neighborhoods of vertices of E(v1, v2, v3) intersect. By hypothesis, since G is mixed neighborhood-Helly,

there is a vertex z which belongs to every neighborhood of the family which implies E(u, v, w) ⊆ N{z}. Note

that x ∈ N{y} is equivalent to y ∈ N{x} because either x = y or xy ∈ E.

Conversely, let G be a graph satisfying the hypothesis. By way of contradiction, assume that G is not

mixed neighborhood-Helly. For vi ∈ V (G), denote by Ni = N{vi} the neighborhood of vi.

Let N = {N1, N2,...,Nl}, l ≥ 3, be a minimal subfamily of neighborhoods of G which is not Helly.

Then l ≥ 3. We know that, for each i = 1, ..., l, N \ {Ni} is a Helly family, and therefore has a non empty

intersection.

Consider wi ∈ ∩j 6=iNj , and examine E(w1, w2, w3). Since wi ∈ N{vj} for i 6= j, vj ∈ N [wi]. Then

N [w1, w2] 6= ∅, N [w2, w3] 6= ∅ and N [w3, w1] 6= ∅. It follows E(w1, w2, w3) 6= ∅. By hypothesis, there is a

vertex z such that E(w1, w2, w3) ⊆ N{z}.

Observe that for every k ∈ {1, . . . , l}, vk ∈ N [w1, w2], vk ∈ N [w2, w3] or vk ∈ N [w3, w1]. Consequently,

vk ∈ E(w1, w2, w3). Since E(w1, w2, w3) ⊆ N{z}, z belongs to Nk for 1 ≤ k ≤ l, which is a contradiction.

Consequently, G is indeed mixed neighborhood-Helly. �

Next, we consider hereditary fixed mixed neighborhood-Helly graphs. First, we describe some necessary

conditions for minimal non hereditary fixed mixed neighborhood-Helly graphs. A graph G is minimal non

hereditary fixed mixed neighborhood-Helly graph if all its induced subgraphs are mixed neighborhood-Helly

except itself.

Lemma 5.2. If a graph G with a fixed bipartition O∪C = V (G) is minimal non hereditary mixed neighborhood-

Helly graph then any universal vertex must belong to O.
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H1 H2 H3

Figure 2: Minimal non hereditary fixed mixed neighborhood-Helly graphs with at most 4 vertices
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v3v4

v5
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Figure 3: Some non fixed mixed neighborhood-Helly graphs with 5 vertices

Proof If a universal vertex v belongs to C, then v is a common vertex for any family of neighborhoods.

Hence, G is mixed neighborhood-Helly which is a contradiction. �

The following lemma describes some non hereditary fixed mixed neighborhood-Helly graphs with at

most 4 vertices.

Lemma 5.3. H1,H2 or H3 (see Figure 2) are not mixed neighborhood-Helly graphs.

Proof For each graph, consider N as the family of all neighborhoods. Clearly, N is an intersecting family

having no common vertices. �

Lemma 5.4. G1, G2, G3, G4 and G5 (see Figure 3) are not mixed neighborhood-Helly graphs.

Proof There is an intersecting family of neighborhoods N having no common vertices for each graph of

Figure 3.

For G1 and G2: N = {N [v1], N{v2}, N{v4}}.

For G3, G4 and G5 : N = {N{v1}, N{v2}, N{v3}, N{v4}, N{v5}}.

�
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v1

v2

v3 v4

v5

v6

Figure 4: Graph F

The following lemma is useful to prove Theorem 5.7.

Lemma 5.5. Let G be a cycle v1, v2, . . . , v6, such that vi is not adjacent to vi+3 mod 6 which means this cycle

can have only short chords.

(a) If G is mixed-neighborhood-Helly graph for a bipartition V (G) = O ∪C, then G is isomorphic to F (see

Figure 4).

(b) If G is hereditary mixed-neighborhood-Helly graph for a bipartition V (G) = O∪C, then G is isomorphic

to F ∗ (see Figure 5).

Proof Suppose G is a mixed neighborhood-Helly graph for some bipartition of vertices O ∪ C = V (G).

Consider {N{v1}, N{v3}, N{v5}}. It is an intersecting family of neighborhoods, independently of the par-

tition O ∪ C . Then, it must have a common vertex v. Because, v1v4, v2v5, v3v6 /∈ E(G), it follows that

v ∈ {v1, v3, v5}. The latter implies that v must be a closed vertex. Without loss of generality, let v = v1.

The latter implies that v1 is a closed vertex and v1v3, v1v5 ∈ E(G)

Similarly, we known that {N{v2}, N{v4}, N{v6}} is an intersecting family. Since v1v3 ∈ E(G), we

conclude that the enlarged family {N [v1], N{v2}, N{v4}, N{v6}} is also intersecting. Therefore, the corre-

sponding neighborhoods have a common vertex. The only possible alternatives for a common vertex are

v2 or v6. Wihout loss of generality, suppose v2 ∈ N{vi} for i = 1, 2, 4, 6. Then v2 is a closed vertex and

v2v4, v2v6 ∈ E(G).

On the other hand, if v4v6 or v3v5 are edges of G, then the intersecting family {N [v1], N [v2], N{v3},

N{v4}, N{v5}, N{v6}} does not have a common vertex which is a contradiction. Consequently, v4v6, v3v5 /∈

E(G).

Next, suppose v4 is a closed vertex. With this assumption, {N [1], N [v2], N{v3}, N [v4], N{v5}} form an

intersecting family with no common vertex, a contradiction. Therefore, v4 must be open. By symmetry, v5

also must be open.
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v1

v2

v3 v4

v5

v6

Figure 5: Graph F ∗

In this situation, {N [v1], N [v2], N{v3}, N(v4), N{v6}} and {N [v1], N [v2], N{v3}, N(v5), N{v6}} are two

maximal intersecting families, each one containing a common vertex. Therefore, G is isomorphic to F .

If G is also hereditary mixed neighborhood-Helly graph using the same bipartition V (G) = O ∪C then

v3 and v6 must be open vertices. Suppose v3 is a closed vertex. Then {v3, v4, v5, v6, v1} induces a subgraph

that matches to G2 which is not a mixed neighborhood-Helly graph, a contradiction. Hence, v3 must be an

open vertex. By symmetry, v6 also must be a open vertex. Therefore, G is isomorphic to F ∗.

Finally, we prove that F ∗ is hereditary mixed neighborhood-Helly graph. Suppose that F ∗ is non hered-

itary mixed neighborhood-Helly graph, then F ∗ contains some minimal non hereditary mixed neighborhood-

Helly graph as induced subgraphs. F ∗ is mixed neighborhood-Helly graph because F is so, and F ∗ does

not contain H1, H2 nor H3. In consequence, the minimal non hereditary mixed neighborhood-Helly induced

subgraphs of F ∗ must have exactly 5 vertices. There are 3 non isomorphic induced subgraphs of 5 vertices.

F ∗ \ {v2}: In this case, consider an intersecting family of neighborhoods N having no common vertices. If

N(v4) /∈ N , then v1 is a common vertex for N which is a contradiction. Hence, N(v4) ∈ N . In this

situation, N(v3), N(v5) /∈ N meaning N = {N [v1], N(v4), N(v6)} and v5 is a common vertex for N .

Again, this is a contradiction. In consequence, F ∗ \ {v2} is a mixed neighborhood-Helly graph.

F ∗ \ {v3}: Again, consider an intersecting family of neighborhoodsN having no common vertices. If N(v4) /∈

N , then v1 is a common vertex for N which is a contradiction. Hence, N(v4) ∈ N . In this situation,

N(v5) /∈ N and v2 is a common vertex for N , a contradiction. Consequently, F ∗ \ {v3} is a mixed

neighborhood-Helly graph.

F ∗ \ {v4}: In this case, v1 is a closed universal vertex. By Lemma 5.2, F ∗ \ {v4} is not a minimal non

hereditary mixed neighborhood-Helly graph.

We conclude that F ∗ does not contain any minimal non hereditary mixed neighborhood-Helly induced

subgraph which means F ∗ is a hereditary mixed neighborhood-Helly graph. �
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Figure 6: Graphs of Corollary 5.6 Case (1)

Corollary 5.6. Let G be a cycle v1, v2, . . . , v6, such that vi is not adjacent to vi+3 mod 6. If G is not

hereditary mixed-neighborhood-Helly graph for a bipartition V (G) = O ∪C, then G is isomorphic to some of

the following graphs.

1. G has at most three short chords for any arbitrary bipartition O ∪ C (see Figure 6).

2. G has at least five short chords for any arbitrary bipartition O ∪ C (G14 and G15 of Figure 7).

3. G has exactly four short chords, we consider two cases:

(a) G has not exactly two adjacent degree 4 vertices for any arbitrary bipartition O∪C (G16 and G17

of Figure 7).

(b) G has exactly two adjacent degree 4 vertices and it is not isomorphic to F ∗ (G18, G19 and G20 of

Figure 8).

The following is a characterization of fixed hereditary mixed neighborhood-Helly graphs, by forbidden

induced subgraphs.

Theorem 5.7. G is hereditary mixed neighborhood-Helly for a bipartiton V (G) = O ∪ C if and only if G

does not contain an induced subgraph isomorphic to H1, H2, H3, G1, G2, . . . , G20.

Proof By Lemmas 5.3 and 5.4 and Corollary 5.6, H1, H2, H3, G1, G2, . . . , G20 are not hereditary mixed

neighborhood-Helly graphs and if G contains some of them as induced subgraphs then G is not hereditary

mixed neighborhood-Helly graph.
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Figure 7: Graphs of Corollary 5.6 Cases (2) and (3.a)
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Figure 8: Graphs of Corollary 5.6 Case (3.b)

Conversely, G does not contain an induced subgraph isomorphic to H1, H2, H3, G1, G2, . . . , G20 and

suppose that G is not hereditary mixed neighborhood-Helly for a bipartiton V (G) = O ∪ C. Without loss

of generality, we can assume that G is a minimal non hereditary mixed neighborhood-Helly graph. Then,

there is a minimal intersecting family of neighborhoods of G, N = {N{v1}, N{v2}, . . . , N{vm}}, which is

not Helly. Clearly, m ≥ 3. Consider the subfamily N \{N{vi}}, 1 ≤ i ≤ m and let wi be the common vertex

of this subfamily. Clearly, wi /∈ N{vi} (1 ≤ i ≤ m) and wi, wj (1 ≤ i < j ≤ m) are different vertices since

there is no common vertex for the family N . Hence, if vi = wj (1 ≤ i, j ≤ m) then vi ∈ O iff i = j (vi ∈ C

iff i 6= j). We consider the size of {v1, v2, v3, w1, w2, w3}.

1. |{v1, v2, v3, w1, w2, w3}| = 3. In this case, v1 = wj for some j ∈ {1, 2, 3}.

(a) j = 1, then v1 ∈ O. There are only two alternatives.

i. v2 = w2 and v3 = w3. Clearly, v2, v3 ∈ O and {v1, v2, v3} induces an H1, a contradiction.

ii. v2 = w3 and v3 = w2. Clearly, v2, v3 ∈ C and {v1, v2, v3} induces an H2, a contradiction.

(b) j 6= 1, then v1 ∈ C. Without loss of generality, j = 2, which means v1 and v2 are not adjacent

vertices. If v2 = w3 then v2 must be a neighbor of v1, a contradiction. Hence, v2 = w1 and

v3 = w3. Therefore, v2 ∈ C, v3 ∈ O and {v1, v2, v3} induces an H2, a contradiction.

2. |{v1, v2, v3, w1, w2, w3}| = 4. Without loss of generality, v1 = wj for some j ∈ {1, 2, 3}.
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(a) j = 1, then v1 ∈ O. There is some vertex vi = wj , i, j ∈ {2, 3}, w.l.o.g., we can assume v2 = wj .

i. v2 = w2 and v3 6= w3. Clearly, v2 ∈ O and {v1, v2, v3} induces a K3. Hence, v3 ∈ C, otherwise

{v1, v2, v3} induces an H1 which is a contradiction. As N(w3) ∩ {v1, v2, v3} = {v1, v2},

{v1, v2, w3} induces an H1 if w3 ∈ O or {v1, v3, w3} induces an H2 if w3 ∈ C. In any

case, there is a contradiction.

ii. v2 = w3 and v3 6= w2. Clearly, v2 ∈ C, N(v2)∩ {v1, w2, v3} = {v1} and {v1, w2, v3} induces a

K3. If w2, v3 ∈ O then {v1, w2, v3} induces an H1 which is a contradiction. Hence, w2 ∈ C or

v3 ∈ C. Therefore, {v1, v2, w3} or {v1, v2, v3} induces an H2. Again, we have a contradiction.

(b) j 6= 1, then v1 ∈ C. Without loss of generality, j = 2, which means v3, w3 ∈ N(v1) and

v2, w1 /∈ N(v1). There are two alternatives.

i. v3 = w3. This is a symmetric case of (2.a.ii).

ii. v2 = w1. Clearly, v2 ∈ C and {v1, v3, v2, w3} induces a C4. If v3, w3 ∈ C then {v1, v3, v2, w3}

induces an H3 which is a contradiction. Hence, v3 ∈ O or w3 ∈ O which implies {v1, v3, v2}

or {v1, w3, v2} induces a H2. Again, this is a contradiction.

3. |{v1, v2, v3, w1, w2, w3}| = 5. Without loss of generality, v1 = wj for some j ∈ {1, 2, 3}.

(a) j = 1, then v1 ∈ O. Clearly, {v2, v3, w2, w3} ⊆ N(v1) and {v1, v2, w3} ({v1, v3, w2}) induces a

K3. Hence, v2 ∈ C or w3 ∈ C ( v3 ∈ C or w2 ∈ C). Otherwise, there is an induced H1. On

the other hand, v2w2 and v3w3 are not edges of G. If v2, w2 ∈ C (v3, w3 ∈ C) then {v1, v2, w2}

({v1, v3, w3}) induces an H2. Hence, the only valid alternatives are:

i. v2, v3 ∈ C. In this case, v2v3 must be an edge of G, otherwise, {v1, v2, v3} induces an H2,

a contradiction. Then, (v1, w2, v3, v2, w3, v1) is a 5-cycle and {v1, w2, v3, v2, w3} induces a

subgraph which is isomorphic to G4 (w2w3 is not an edge of G) or G5 (w2w3 is an edge of G)

taking v1 as as the distinguished open vertex in G4 or G5. This is a contradiction.

ii. w2, w3 ∈ C. It is symmetric to above case.

(b) j 6= 1, then v1 ∈ C. Without loss of generality, j = 2, which means v3, w3 ∈ N(v1) and v2, w1 /∈

N(v1). Clearly, (v1, w3, v2, w1, v3, v1) is a 5-cycle and {v1, w3, v2, w1, v3} induces a subgraph which

is isomorphic to G1 (w3w1 and v2v3 are not edges of G), G2 (exactly one of w3w1 and v2v3 is an

edge of G) or G3 (w3w1 and v2v3 are edges of G) taking v1 as the distinguished closed vertex in

G1, G2 or G3. This is a contradiction.

4. |{v1, v2, v3, w1, w2, w3}| = 6. Clearly, (v1, w3, v2, w1, v3, w2, v1) is a 6-cycle which can have only short

chords. If G has only 6 vertices, since G is not hereditary mixed neighborhood-Helly graph then by

Corollary 5.6, G must be isomorphic to G6, G7, . . . , G19 or G20 which is a contradiction. Therefore, G

has more than 6 vertices and {v1, v2, v3, w1, w2, w3} induces a proper induced subgraph G′ of G. Since G
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Figure 9: Minimal non fixed mixed neighborhood-Helly graphs with 5 vertices

is a minimal non hereditary mixed neighborhood-Helly graph, G′ is a hereditary mixed neighborhood-

Helly graph and it must be isomorphic to F ∗ by Lemma 5.5. It is clear that exactly one of v1, v2 and

v3 is a closed vertex. Without loss of generality, we assume v1 ∈ C. As v1 ∈ N [v1] ∩ N(v2) ∩ N(v3),

there is some 4 ≤ i ≤ m such that v1 /∈ N{vi} because N has not a common vertex. It is clear that

w1, w2, w3 ∈ N(vi), (vi, w2, v1, v2, w1, vi) is a 5-cycle and {vi, w2, v1, v2, w1} induces G1 (viv2 and w1w2

are not edges of G), G2 (exactly one of viv2 and w1w2 is an edge of G) or G3 (viv2 and w1w2 are edges

of G) taking v1 as the distinguished closed vertex in G1, G2 or G3. This is a contradiction.

Consequently, G must be hereditary mixed neighborhood-Helly graph. �

The family of forbidden induced subgraphs of Theorem 5.7 is not minimal, which implies there is

another characterization forbidding a proper minimal subset H ⊂ F . Clearly, H is formed by all minimal

non hereditary fixed mixed neighborhood-Helly graphs. In this sense, H1, H2 and H3 are members of this

subset because H1 and H2 are smallest members of F and H3 does not have H1 nor H2 as induced subgraphs.

Next lemmas describe the other members of H.

Lemma 5.8. Minimal non hereditary fixed mixed neighborhood-Helly graphs with 5 vertices are exactly H4 =

G′1, H5 = G′2 and H6 = G′4 where G′i meaning that it is derived from Gi (see Figure 9).

Proof It is easy to see that H4, H5 and H6 are all graphs from {G1, G2, G3, G4, G5} which do not contain

any H1, H2 nor H3 as induced subgraphs. �

Lemma 5.9. The minimal non hereditary fixed mixed neighborhood-Helly graphs with 6 vertices are exactly

H7 = G1
6, H8 = G2

6, H9 = G1
7, H10 = G1

8, H11 = G1
9, H12 = G1

10, H13 = G1
11, H14 = G1

13 and H15 = G1
16

where Gj
i meaning that it is derived from Gi (see Figure 10).

Proof It is easy to see that H7, H8, . . . ,H15 are all graphs from {G6, G7, . . . , G20} which do not contain any

H1, H2, H3, G1, G2, G3, G4 nor G5 as induced subgraphs. �

As a consequence, we have the following minimal characterization by forbidden induced subgraphs.

Corollary 5.10. G is hereditary mixed neighborhood-Helly for a bipartiton V (G) = O ∪ C if and only if G

does not contain an induced subgraph isomorphic to H1, H2, . . . ,H15.
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Figure 10: Minimal non fixed mixed neighborhood-Helly graphs with 6 vertices

The following theorem gives another characterization for hereditary mixed neighborhood-Helly graphs

based on extensions.

First, we call a 3-set S = {u, v, w} as valid if S does not induce a P3 where u,w are non-adjacent open

vertices and v is closed.

Theorem 5.11. A graph G is a fixed hereditary mixed neighborhood-Helly for a bipartition V (G) = O∪C if

and only if for every extension E(u, v, w) where {u, v, w} is a valid 3-set, there exists a vertex z ∈ {u, v, w}

satisfying E(u, v, w) ⊆ N{z}, i.e. U [u, v, w] ∩ {u, v, w} 6= ∅ or E(u, v, w) = ∅.

The proof is ommited, as it follows from similar arguments as presented troughout the paper.

6. Arbitrary Mixed Neighborhood-Helly Graphs

In this section we study the arbitrary mixed neighborhood-Helly (ARBITRARY MNH) problem. It

consists of deciding whether a graph is mixed neighborhood-Helly (MNH) for some partition of its vertices,

into open and closed neighborhoods. In addition, we also study the hereditary arbitrary mixed neighborhood-

Helly (ARBITRARY HMNH) problem, which consists of deciding if there exists a bipartition of the vertices

of a given graph G, into open and closed neighborhoods, such that G is mixed neighborhood-Helly for any

induced subgraph of it. We employ a similar notation as in the last section. That is, when applying the
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Helly property, assume a bi-coloring of the vertices of G using colors black, white, such that black vertices

correspond to those whose neighborhoods are to be considered as closed, while the white ones are those with

open neighborhoods.

We prove that both the above problems are NP-complete using a reduction from a special version of

3-SAT, called 3 − SAT2+1. The 3 − SAT2+1 problem consists of determining if the variables of a given

boolean formula written in a conjunctive normal form, having 2 or 3 literals per clause, where each literal

is an occurrence of some variable xi (positive literal) or its negation ¬xi (negative literal), can be assigned

values true or false, in such a way that the formula is true. In this restricted instance, each variable xi occurs

at most 3 times, twice positive and once negative. Without loss of generality, we assume that each variable

xi appears at most once in each clause. NP-completeness of such problem follows from [32].

Lemma 6.1. If a graph G is mixed neighborhood-Helly then the bi-coloring of its vertices must satisfy the

following conditions.

(a) G[{v1, v2, v3, v4, v5}] is an induced C5 of G and at least 4 of these vertices have degree exactly 2. Then

the color of all of them is white.

(b) G[{v1, v2, v3}] is an induced P3 of G and it is not part of an induced diamond. If the color of v2 ( middle

vertex of P3) is white, then v1 or v3 must have color white.

(c) G[{v1, v2, v3}] is an induced triangle of G and it is not part of an induced K4. Then at least one of these

3 vertices must have color black.

Proof (a) Suppose that vi is a black vertex, let vj a neighbor of vi in the induced C5 and vk the unique

vertex in the induced C5 such that N(vk) ∩ {vi, vj} = ∅. Clearly, the neighborhoods of these three

vertices do not verify the Helly property which is a contradiction.

(b) Suppose that v1 and v3 are black vertices. Clearly, the neighborhoods of v1, v2 and v3 do not verify the

Helly property which is a contradiction.

(c) Suppose that v1, v2 and v3 are white vertices. Clearly, the neighborhoods of v1, v2 and v3 do not verify

the Helly property which is a contradiction.

�

Let B be a given boolean formula, input to the 3− SAT2+1 problem. Let x1, ..., xn be the variables of

B and C1, ..., Ck its clauses. We construct a graph G(B) as follows.

1. for every variable xi, construct a subgraph Gi, called variable gadget, consisting of 7 vertices, three of

them, ai, bi, ci form a triangle (ai is the positive pole of Gi and bi the negative pole of Gi), ci and the

other 4 vertices form a C5 (see Figure 11).

2. for each clause Cj , add a triangle Tj
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Figure 11: gadget Gi for variable xi

• for each literal xi or ¬xi of Cj , choose a different vertex v in Tj , create a new C5 with a distin-

guished vertex wi,j and add edges

– vwi,j and aiwi,j if the literal is positive (xi)

– vwi,j and biwi,j if the literal is negative (¬xi)

3. for each clause Cj of size two, there is a unique vertex v of Tj that still has degree 2. In this case, add

4 new vertices to form a C5, together with v.

See Figure 12, for a complete example. It is easy to see that:

• G(B) has no induced K4 nor diamond.

• Every induced cycle in G(B) has length 3, 5 or at least 10.

• In consequence, every 5-cycle in G(B) is an induced C5.

• There are no 6-cycles in G(B).

• In every C5, at least 4 of its vertices have degree exactly 2 in G(B).

• The maximum degree among the vertices in G(B) is 4.

Lemma 6.2. If G(B) is ARBITRARY MNH then B is satisfiable.

Proof Since G(B) is ARBITRARY MNH, there is a bi-coloring for G(B) that makes it mixed neighborhood-

Helly. We assign convenient values to the variables x1, . . . , xn as follow: xi is true if and only if ai is white

vertex. Let us to prove that this assignment turns B to be true. That is, we have to prove that each clause

Cj has the value true. Some vertex v of the triangle Tj corresponding to Cj must be black, by Lemma

6.1.(c). Clearly, v is not part of any induced C5 because in that case, v would be white, by Lemma 6.1.(a)

since it is part of some induced C5, a contradiction. Consequently, v must be a neighbor of some vertex wi,j

by construction of G(B) and wi,j is a white vertex because it is part of some induced C5. As wi,j is the
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Figure 12: Transformed graph for B = C1 ∧ C2 ∧ C3 ∧ C4, C1 = x1 ∨ ¬x2 ∨ x3, C2 = ¬x3 ∨ x4, C3 = x1 ∨ x2 ∨ ¬x4 and

C4 = x2 ∨ x3

middle vertex of some P3 and one extreme vertex of this P3 is v, by Lemma 6.1.(b), the other extreme vertex

must be white. There are two possibilities for this extreme vertex:

(i) to be ai when xi is a literal of Cj . The value of xi is true because ai is a white vertex, implying that Cj

is true.

(ii) to be bi when ¬xi is a literal of Cj . Clearly, ci is a white vertex, since it is part of an induced C5. By

Lemma 6.1.(c), ai must be black. So, the value of xi is false and ¬xi is true implying Cj is true.

In any of these cases, Cj always is true. In consequence, B is true using this assignment and B is satisfiable.

�

Corollary 6.3. If G(B) is ARBITRARY HMNH then B is satisfiable.

Lemma 6.4. B is satisfiable then G(B) is ARBITRARY HMNH.

Proof Consider an assignment true or false for the variables of B, such that the formula is satisfiable and

call this assignment as V . We consider the following coloring for the vertices. If variable xi is true then

vertex bi is black, and all the remaining vertices of Gi are white. If xi is false, then ai is black and the

remaining are white. Further, for each clause Cj , a vertex v of its corresponding triangle Tj is black if and
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only if v is a neighbor of some vertex wi,j and wi,j has a white neighbor in Gi. The remaining vertices of

G(B) are white.

We prove that the above colors makes G(B) hereditary MNH. With this purpose, apply Theorem 5.7

and examine its forbidden induced subgraphs.

1. First, examine the triangles of G. There are two types of triangles:

(i) those formed by ai, bi and ci in Gi. In this case, bi or ai is a black vertex because xi is true or false

in V .

(ii) a triangle Tj whose corresponding clause is Cj . As Cj is true in V , there is some true literal xi

(¬xi) of Cj . In this case, ai (bi) is a white neighbor of wi,j in Gi and there is a black neighbor v

of wi,j in Tj .

Therefore, no triangle of G(B) is formed by white vertices which implies that G does not have H1 as

induced subgraphs.

2. G(B) does not contain 6-cycles, hence G does not have G6, . . . , G20 as induced subgraphs.

3. Every 5-cycle in G(B) is an induced C5 and all its vertices are white vertices. Therefore, none of

G1, . . . , G5 is an induced subgraph of G(B).

4. G(B) does not contain induced C4s, hence H3 is not an induced subgraph of G(B).

5. Two black vertices of G(B) are either adjacent or at distance at least three, implying that no P3 of G

has black extremes and a white middle vertex and H2 is not an induced subgraph of G(B).

The above conditions imply that G(B) does not contain any forbidden induced subgraph of Theorem

5.7. That is, G(B) is hereditary MNH �

Corollary 6.5. If B is satisfiable then G(B) is ARBITRARY MNH.

Theorem 6.6. ARBITRARY MNH and ARBITRARY HMNH are NP-complete.

Proof For establishing that both problems belong to NP, let G be a graph and consider a coloring C of

the vertices of G, using colors black or white. By employing Theorem 5.7 or Corollary 5.10 and observing

that the described forbidden subgraphs are of fixed size, we can check in polynomial time, whether C makes

the collection of the neighborhoods to be Helly or not. Consequently, the problem ARBITRARY HMNH

is in NP. On the other hand, by employing Berge’s algorithm [5], we can check in polynomial time, if the

collection of neighborhoods, open or closed according to the colors, of the vertices of G satisfy the Helly

property. Therefore ARBITRARY MNH also belongs to NP.

The reduction proof is from the 3− SAT2+1 problem. Let B be a given boolean formula, input to the

3− SAT2+1 problem and G(B) its transformed graph.
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As a consequence of Lemma 6.2 and Corollary 6.5, B is satisfiable if and only if G(B) is ARBITRARY

MNH and as a consequence of Lemma 6.4 and Corollary 6.3, B is satisfiable if and only if G(B) is ARBI-

TRARY HMNH which completes the proof �
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Problèmes Combinatoires et Théorie de Graphs, 117–118, Orsay, France, 1976. CNRS.

[20] P. Duchet. Hypergraphs. In R. L. Graham, M. Grötschel, and L. Lovász, editors, Handbook of Combi-

natorics, volume 1, 381–432, Amsterdam-New York-Oxford, 1995. Elsevier North-Holland.

[21] C. Flament. Hypergraphes arborés. Discrete Mathematics, 21, 223–226, (1978).

[22] F. Gavril. Algorithms on circular-arc graphs. Networks, 4, 357–369, (1974).

[23] M. C. Golumbic and R. E. Jamison. The edge intersection graphs of paths in a tree. Journal of Combi-

natorial Theory, Series B, 38, 8–22, (1985).

[24] M. Groshaus and J. L. Szwarcfiter. Biclique graphs and biclique matrices. Journal of Graph Theory,

63:1, 1–16, (2010).

[25] M. Groshaus and J. L. Szwarcfiter. Biclique-Helly graphs. Graphs and Combinatorics, 26:6, 633–645,

(2007).

[26] M. Groshaus and J. L. Szwarcfiter. On hereditary Helly classes of graphs. Discrete Mathematics and

Theoretical Computer Science, 10:1, 71–78, (2008).

20
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