On Neighborhood-Helly Graphs

Marina Groshaus ${ }^{\text {a }}$, Min Chih Lin ${ }^{\text {b }}$, Jayme L.Szwarcfiter ${ }^{\text {c }}$
${ }^{a}$ Departamento de Computación, Universidad de Buenos Aires, Argentina, and Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina.
${ }^{b}$ Instituto de Cálculo and Departamento de Computación, Universidad de Buenos Aires, Argentina, and Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina.
${ }^{c}$ Inst Matemática, COPPE and NCE, Universidade Federal do Rio de Janeiro, Brazil, and Instituto Nacional de Metrologia, Qualidade e Tecnologia, Brazil.

Abstract

A family \mathcal{F} of subsets of some set is intersecting when sets of \mathcal{F} pairwise intersect. The family \mathcal{F} is Helly when every intersecting subfamily of it contains a common element. In this paper we examine the families of vertex neighborhoods of a graph, with the aim of determining whether or not they are Helly, and also whether or nor they are hereditary Helly, that is, each of the induced subgraphs of the graph is Helly. We examine the cases where the neighborhoods are all open, or all closed, or mixed, that is, some open and some closed. For mixed neighborhoods there are two different kinds of choice of the neighborhood of each vertex to be considered: fixed or arbitrary choice. By fixed mixed neighborhood, we mean that the choice, open or closed, for the neighborhood of a vertex is known in advance, that is part of the input. On the other hand, an arbitrary choice implies that the choice can be made along the process. For the cases of open, closed and fixed mixed neighborhoods, we describe characterizations, both for the neighborhoods to be Helly and hereditary Helly. The characterizations are of two types: based on the concept of extensions, or, for the hereditary cases, by forbidden induced subgraphs. Polynomial time recognition algorithms follow directly from the characterizations. In contrast, for arbitrary mixed neighborhoods, we prove that it is NP-complete to decide whether the family of neighborhoods is Helly or hereditary Helly.

Keywords: Complexity, Extensions, Helly property, NP-hardness

1. Introduction

Denote by G a finite simple graph, with vertex set $V(G)$ and edge set $E(G)$. We use n and m to denote $|V(G)|$ and $|E(G)|$. A complete set is a subset $V^{\prime} \subseteq V(G)$ formed by pairwise adjacent vertices. A triangle is a complete set of size 3 and a subset of vertices is a co-triangle when it is a triangle in \bar{G}, the complement of G. Denote by $N\left(v_{i}\right)=\left\{v_{j} \in V(G) \mid\left(v_{i}, v_{j}\right) \in E(G)\right\}$, and $N\left[v_{i}\right]=N\left(v_{i}\right) \cup\left\{v_{i}\right\}$, the open and closed neighborhoods of G, respectively. The degree of a vertex $v_{i}, d\left(v_{i}\right)$, is $\left|N\left(v_{i}\right)\right|$ and the maximum degree of G is denoted by Δ. For $V^{\prime} \subseteq V(G), G\left[V^{\prime}\right]$ is the subgraph of G induced by V^{\prime}. Let \mathcal{F} be a family of subsets

[^0]of some set. Say that \mathcal{F} is intersecting when the subsets of \mathcal{F} pairwise intersect. On the other hand, when every intersecting subfamily of \mathcal{F} has a common element then \mathcal{F} is a Helly family.

The Helly property in the context of graphs and hypergraphs has been considered in many papers. Among them, we can mention $[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24$, $25,26,27,28,29,30,31,33,34,35,36]$.

A graph G is open neighborhood-Helly (closed neighborhood-Helly) when its family of open neighborhoods (closed neighborhoods) is Helly. Finally, G is hereditary open neighborhood-Helly (hereditary closed neighborhood-Helly) when every of its induced subgraphs is open neighborhood-Helly (closed neighborhoodHelly).

Different characterizations were given for these graph classes and most of them lead to polynomial-time recognition algorithms: closed neighborhood-Helly graphs [15, 25]; open neighborhood-Helly graphs [25]; hereditary closed neighborhood-Helly graphs [26]; hereditary open neighborhood-Helly graphs [26].

A natural extension of these classes is the case where the neighborhoods are not necessarily all open or all closed, that is they are of some mixed type. In this situation, there is a partition of the vertices, according how each neighborhood is to be considered, open or closed. Such a partition can be fixed or variable. Say that G is fixed mixed neighborhood-Helly when for a given partition of its vertices, into open and closed, the corresponding neighborhoods satisfy the Helly property. On the other hand, G is arbitrary mixed neighborhood-Helly when there exists some partition of the vertices which turns the neighborhoods to be Helly. Accordingly, define the concepts of fixed hereditary mixed neighborhood-Helly and arbitrary hereditary mixed neighborhood-Helly.

In this work, we describe characterizations, based on the concept of extensions, for the classes of neighborhood-Helly graphs: open, closed and mixed, both fixed and arbitrary. In addition, we also describe characterizations for their corresponding hereditary classes. As a consequence, we can obtain naturally polynomial time recognition algorithms for the classes into consideration, except for two cases. The exceptions are those of the arbitrary mixed classes. We prove that it is NP-complete to recognize arbitrary mixed neighborhood-Helly graphs and arbitrary hereditary mixed neighborhood-Helly graphs. The NPcompleteness remains even for graphs of maximum degree 4 .

We describe two different types of characterizations, those based on the concept of extensions, and, for hereditary classes, forbidden subgraph characterizations.

In Section 2, we present some terminology relevant to this work, open neighborhoods and closed neighborhoods are respectively considered in Sections 3 and 4, whereas fixed and arbitrary mixed neighborhoods are the subjects of Sections 5 and 6, respectively.

2. Preliminaries

First, we describe additional notation and definitions.
In the case of mixed neighborhoods, we may employ the notation $N\{v\}$ to mean that the neighborhood
to be considered for vertex v, open or closed, is not determined.
Denote by $N[v, w]$ the intersection of $N[v]$ and $N[w]$, i.e. $N[v, w]=N[v] \cap N[w]$. On the other hand, we define the universal set of v, w as: $U[v, w]=\{u \in V(G) / N[v, w] \subseteq N[u]\}$. The universal set of u, v, w is defined as: $U[u, v, w]=U[u, v] \cap U[v, w] \cap U[u, w]$.

Define the extension of vertices u, v, w, as $E(u, v, w)=N[u, v] \cup N[v, w] \cup N[u, w]$, whenever $N[u, v]$, $N[v, w], N[u, w] \neq \emptyset$, and $E(u, v, w)=\emptyset$ otherwise.

A chord of cycle C is an edge of the graph between two vertices v_{i}, v_{j} not consecutive in C. If v_{i}, v_{j} are at distance two in C then the edge $v_{i} v_{j}$ is called a short chord.

There is a polynomial-time general algorithm to check the Helly property for a family of subsets of polynomial size, based on the following characterization.

Theorem 2.1. [5] Let \mathcal{F} be a family of subsets of some set U. Given three different elements $u, v, w \in U$, let $\mathcal{F}_{\{u, v, w\}}$ be the subfamily of \mathcal{F} formed by the sets containing at least two of these three elements. \mathcal{F} is Helly if and only if for every triple $\{u, v, w\} \subseteq U, \bigcap S \neq \emptyset$, where $S \in \mathcal{F}_{\{u, v, w\}}$.

3. Open Neighborhood

Open neighborhood-Helly graphs have been characterized in terms of extensions.

Theorem 3.1. [25] A graph G is open neighborhood-Helly if and only if it does not contain triangles, and for every 3-independent set $\{u, v, w\}$ there exists a vertex $z \in V(G)$ such that the extension $E(u, v, w) \subseteq N[z]$, i.e, $U(u, v, w) \neq \emptyset$ or $E(u, v, w)=\emptyset$.

For hereditary open neighborhood-Helly graphs, we describe two characterizations. The first is by forbidden induced subgraphs.

Theorem 3.2. [26] Let G be a graph. Then G is hereditary open neighborhood-Helly if and only if G does not contain C_{6} nor triangles as induced subgraphs.

Next, we formulate a characterization of hereditary open neighborhood-Helly graphs in terms of extensions.

Theorem 3.3. A graph G is hereditary open neighborhood-Helly if and only if it does not contain triangles and for every triple of pairwise non-adjacent vertices u, v, w such that $N[u, v], N[v, w], N[u, w] \neq \emptyset$ then either $E(u, v, w) \subseteq N[u], E(u, v, w) \subseteq N[v]$ or $E(u, v, w) \subseteq N[w]$, i.e $U(u, v, w) \cap\{u, v, w\} \neq \emptyset$ or $E(u, v, w)=\emptyset$.

Proof Let G be a hereditary open neighborhood-Helly graph. By Theorem 3.2, G has no triangles. Then, we analyze the case u, v, w are non adjacent vertices. Suppose that the Theorem is not true for the triple of non adjacent vertices u, v, w, where $N[u, v], N[v, w], N[u, w] \neq \emptyset$. Then, there exist vertices x, y, z such that: $x \in N[u, v], x \notin N[w], y \in N[u, w], y \notin N[v]$ and $z \in N[v, w], z \notin N[u]$.

Figure 1: Forbidden induced subgraphs for hereditary closed neighborhood-Helly graphs

If it is this situation, any of $x y, x z$ and $y z$ is an edge of G, then the graph contains a triangle. Otherwise, u, v, w, x, y, z induce the graph C_{6}. Either cases contradict Theorem 3.2.

Conversely, we prove that a graph that satisfies the conditions of the Theorem, does not contain a C_{6} as an induced subgraph. By contrary, suppose that G contains vertices u, x, v, y, z, w inducing a cycle. Consider the triple u, v, w of non-adjacent vertices. It follows that $N[u, w]$ is not included in $N[v], N[v, w]$ is not included in $N[u]$, and $N[u, v]$ is not included in $N[w]$. That is, $E(u, v, w)$ is contained in neither $N[u]$, $N[v]$ nor $N[w]$, contradicting the hypothesis \square

4. Closed Neighborhood

In this section, we describe characterizations of closed neighborhood-Helly graphs and hereditary closed neighborhood-Helly graphs.

The theorem below characterizes closed neighborhood-Helly graphs, in terms of extensions.

Theorem 4.1. A graph G is closed neighborhood-Helly if and only if for every u, v, w there exists a vertex $z \in V(G)$ such that the extension $E(u, v, w) \subseteq N[z]$, i.e, $U(u, v, w) \neq \emptyset$ or $E(u, v, w)=\emptyset$.

Proof It follows directly from Theorem 2.1. \square

This theorem is a special case of Theorem 5.1.
In what follows, we describe characterizations of hereditary closed neighborhood-Helly graphs. The first one is by forbidden induced subgraphs.

Theorem 4.2. [26] A graph G is hereditary closed neighborhood-Helly if and only if it does not contain C_{4}, C_{5}, C_{6} nor the Hajós graph as induced subgraphs.

Next, we present a characterization in terms of extensions.

Theorem 4.3. A graph is hereditary closed neighborhood-Helly graph if and only if for every triple u, v, w such that $N[u, v], N[v, w], N[u, w] \neq \emptyset$, then either $E(u, v, w) \subseteq N[u], E(u, v, w) \subseteq N[w]$ or $E(u, v, w) \subseteq$ $N[v]$, i.e., $U(u, v, w) \neq \emptyset$ or $E(u, v, w)=\emptyset$.

Proof Let G be a hereditary closed neighborhood-Helly graph. Consider u, v, w such that $N[u, v], N[v, w]$, $N[u, w] \neq \emptyset$. Examine the neighborhoods of u, v, w.

Case 1: $\{u, v, w\}$ induces a triangle:
Suppose that the Theorem is not true for u, v, w. Then, there exist vertices x, y, z such that: $x \in N[u, v]$, $x \notin N[w], y \in N[u, w], y \notin N[v]$ and $z \in N[v, w], z \notin N[u]$. First, consider the situation where there is no edge between x, y, z. Then $\{u, v, w, x, y, z\}$ induces an Hajós graph which contradicts Theorem 4.2. Hence, at least one of $x y, x z, y z$ is edge of G, this implies the existence of the subgraph C_{4}. Again, this contradicts Theorem 4.2.

Case 2: $\{u, v, w\}$ induces a P_{3} :
Consider u, w as the non-adjacent vertices. Suppose that $N[u, w]$ is not included in $N[v]$. Then, there is a vertex $x \in N[u, w]$ such that u, x, w, v induces the graph C_{4}, what is a contradiction, according to Theorem 4.3. We conclude that $N[u, w] \subseteq N[v]$. Hence $E(u, v, w) \subseteq N[v]$.

Case 3: $\{u, v, w\}$ induces a $\overline{P_{3}}$:
Let u be the isolated vertex of the $\overline{P_{3}}$. Suppose that $N[u, w]$ is not included in $N[v]$ and let $x \in N[u, w]$, $x \notin N[v]$. Analogously, if $N[u, v]$ is not included in $N[w]$, consider $y \in N[u, v], y \notin N[w]$. Then, depending on whether x, y are adjacent or not, vertices v, w, x, y or v, w, x, u, y form the graph C_{4} or C_{5} respectively, a contradiction, by Theorem 4.3. It follows that either $N[u, w] \subseteq N[v]$ or $N[u, v] \subseteq N[w]$. Hence $E(u, v, w) \subseteq$ $N[v]$ or $E(u, v, w) \subseteq N[w]$.

Finally, consider the case where u, v, w form an independent set. Suppose that the Theorem is not true for u, v, w. Then, there exist vertices x, y, z such that: $x \in N[u, v], x \notin N[w], y \in N[u, w], y \notin N[v]$ and $z \in N[v, w], z \notin N[u]$. First, examine the situation where $x y, x z, y z$ are edges of G. Then $u, v, w \in E(x, y, z)$. We can then apply Case 1 and conclude that $N[x], N[y]$ or $N[z]$ contains $E(x, y, z)$, contradicting $x \notin N[w]$, $y \notin N[v]$ or $z \notin N[u]$, respectively. The next alternatives, where one or two of the pairs $x y, x z, y z$ are edges of G, imply the existence of the subgraphs C_{5} or C_{4}, respectively. In the remaining case, $\{x, y, z\}$ induces an independent set, meaning that $\{u, x, v, z, w, y\}$ induces the graph C_{6}. Either cases contradicts Theorem 4.2.

Conversely, we prove that a graph that satisfies the conditions of the Theorem, can not contain any of the graphs C_{4}, C_{5}, C_{6} nor the Hajós graph as induced subgraphs. We choose a convenient triple of vertices u, v, w, as follows. Suppose G contains an induced C_{4}. Let u, v, w be any consecutive vertices of this cycle. Suppose C_{5} is an induced subgraph of G. Choose u, v, w to be vertices of C_{5} that induce the complement of P_{3}. Finally, for both C_{6} and the Hajós, consider the triple u, v, w of non adjacent vertices. In every case, it follows that $N[u, w]$ is not included in $N[v], N[v, w]$ is not included in $N[u]$, and $N[u, v]$ is not included in $N[w]$. Consequently, it follows from the hypothesis, that G does not contain any of the graphs C_{4}, C_{5}, C_{6} nor the Hajós graph. by Theorem 4.2, G is hereditary closed neighborhood-Helly. \square

5. Fixed Mixed Neighborhood

In this section, we consider fixed neighborhood-Helly graphs. For a graph G, there is a fixed partition $O \cup C=V(G)$ of its vertex set, where the neighborhoods of O and C are to be considered as open and closed, respectively. The aim is to determine whether such neighborhoods satisfy the Helly Property. Usually in figures of this section and the next section, the vertices of O are colored with white color and the vertices of C with black color. Sometimes, there are vertices which can belong to any partition (O or C). In this case, they are colored with gray color.

The following theorem characterizes fixed mixed neighborhood-Helly graphs, based on extensions.

Theorem 5.1. A graph G is mixed neighborhood-Helly for a bipartition $V(G)=O \cup C$ if and only if for every extension $E(u, v, w)$, there exists a vertex $z \in V(G)$ such that $E(u, v, w) \subseteq N\{z\}$, i.e. $U[u, v, w] \neq \emptyset$ or $E(u, v, w)=\emptyset$.

Proof Let $S=\left\{v_{1}, v_{2}, v_{3}\right\} \subseteq V(G)$ and $E\left(v_{1}, v_{2}, v_{3}\right)$ its extension. If $E\left(v_{1}, v_{2}, v_{3}\right)=\emptyset$, there is nothing to do. Otherwise, since each vertex of $E\left(v_{1}, v_{2}, v_{3}\right)$ is adjacent to a pair of vertices of S, it is clear that the family of the neighborhoods of vertices of $E\left(v_{1}, v_{2}, v_{3}\right)$ intersect. By hypothesis, since G is mixed neighborhood-Helly, there is a vertex z which belongs to every neighborhood of the family which implies $E(u, v, w) \subseteq N\{z\}$. Note that $x \in N\{y\}$ is equivalent to $y \in N\{x\}$ because either $x=y$ or $x y \in E$.

Conversely, let G be a graph satisfying the hypothesis. By way of contradiction, assume that G is not mixed neighborhood-Helly. For $v_{i} \in V(G)$, denote by $N_{i}=N\left\{v_{i}\right\}$ the neighborhood of v_{i}.

Let $\mathcal{N}=\left\{N_{1}, N_{2}, \ldots, N_{l}\right\}, l \geq 3$, be a minimal subfamily of neighborhoods of G which is not Helly. Then $l \geq 3$. We know that, for each $i=1, \ldots, l, \mathcal{N} \backslash\left\{N_{i}\right\}$ is a Helly family, and therefore has a non empty intersection.

Consider $w_{i} \in \cap_{j \neq i} N_{j}$, and examine $E\left(w_{1}, w_{2}, w_{3}\right)$. Since $w_{i} \in N\left\{v_{j}\right\}$ for $i \neq j, v_{j} \in N\left[w_{i}\right]$. Then $N\left[w_{1}, w_{2}\right] \neq \emptyset, N\left[w_{2}, w_{3}\right] \neq \emptyset$ and $N\left[w_{3}, w_{1}\right] \neq \emptyset$. It follows $E\left(w_{1}, w_{2}, w_{3}\right) \neq \emptyset$. By hypothesis, there is a vertex z such that $E\left(w_{1}, w_{2}, w_{3}\right) \subseteq N\{z\}$.

Observe that for every $k \in\{1, \ldots, l\}, v_{k} \in N\left[w_{1}, w_{2}\right], v_{k} \in N\left[w_{2}, w_{3}\right]$ or $v_{k} \in N\left[w_{3}, w_{1}\right]$. Consequently, $v_{k} \in E\left(w_{1}, w_{2}, w_{3}\right)$. Since $E\left(w_{1}, w_{2}, w_{3}\right) \subseteq N\{z\}, z$ belongs to N_{k} for $1 \leq k \leq l$, which is a contradiction. Consequently, G is indeed mixed neighborhood-Helly.

Next, we consider hereditary fixed mixed neighborhood-Helly graphs. First, we describe some necessary conditions for minimal non hereditary fixed mixed neighborhood-Helly graphs. A graph G is minimal non hereditary fixed mixed neighborhood-Helly graph if all its induced subgraphs are mixed neighborhood-Helly except itself.

Lemma 5.2. If a graph G with a fixed bipartition $O \cup C=V(G)$ is minimal non hereditary mixed neighborhoodHelly graph then any universal vertex must belong to O.

Figure 2: Minimal non hereditary fixed mixed neighborhood-Helly graphs with at most 4 vertices

Figure 3: Some non fixed mixed neighborhood-Helly graphs with 5 vertices

Proof If a universal vertex v belongs to C, then v is a common vertex for any family of neighborhoods. Hence, G is mixed neighborhood-Helly which is a contradiction.

The following lemma describes some non hereditary fixed mixed neighborhood-Helly graphs with at most 4 vertices.

Lemma 5.3. H_{1}, H_{2} or H_{3} (see Figure 2) are not mixed neighborhood-Helly graphs.

Proof For each graph, consider \mathcal{N} as the family of all neighborhoods. Clearly, \mathcal{N} is an intersecting family having no common vertices.

Lemma 5.4. $G_{1}, G_{2}, G_{3}, G_{4}$ and G_{5} (see Figure 3) are not mixed neighborhood-Helly graphs.

Proof There is an intersecting family of neighborhoods \mathcal{N} having no common vertices for each graph of Figure 3.

For G_{1} and $G_{2}: \mathcal{N}=\left\{N\left[v_{1}\right], N\left\{v_{2}\right\}, N\left\{v_{4}\right\}\right\}$.
For G_{3}, G_{4} and $G_{5}: \mathcal{N}=\left\{N\left\{v_{1}\right\}, N\left\{v_{2}\right\}, N\left\{v_{3}\right\}, N\left\{v_{4}\right\}, N\left\{v_{5}\right\}\right\}$.

Figure 4: Graph F

The following lemma is useful to prove Theorem 5.7.

Lemma 5.5. Let G be a cycle $v_{1}, v_{2}, \ldots, v_{6}$, such that v_{i} is not adjacent to $v_{i+3} \bmod 6$ which means this cycle can have only short chords.
(a) If G is mixed-neighborhood-Helly graph for a bipartition $V(G)=O \cup C$, then G is isomorphic to F (see Figure 4).
(b) If G is hereditary mixed-neighborhood-Helly graph for a bipartition $V(G)=O \cup C$, then G is isomorphic to F^{*} (see Figure 5).

Proof Suppose G is a mixed neighborhood-Helly graph for some bipartition of vertices $O \cup C=V(G)$. Consider $\left\{N\left\{v_{1}\right\}, N\left\{v_{3}\right\}, N\left\{v_{5}\right\}\right\}$. It is an intersecting family of neighborhoods, independently of the partition $O \cup C$. Then, it must have a common vertex v. Because, $v_{1} v_{4}, v_{2} v_{5}, v_{3} v_{6} \notin E(G)$, it follows that $v \in\left\{v_{1}, v_{3}, v_{5}\right\}$. The latter implies that v must be a closed vertex. Without loss of generality, let $v=v_{1}$. The latter implies that v_{1} is a closed vertex and $v_{1} v_{3}, v_{1} v_{5} \in E(G)$

Similarly, we known that $\left\{N\left\{v_{2}\right\}, N\left\{v_{4}\right\}, N\left\{v_{6}\right\}\right\}$ is an intersecting family. Since $v_{1} v_{3} \in E(G)$, we conclude that the enlarged family $\left\{N\left[v_{1}\right], N\left\{v_{2}\right\}, N\left\{v_{4}\right\}, N\left\{v_{6}\right\}\right\}$ is also intersecting. Therefore, the corresponding neighborhoods have a common vertex. The only possible alternatives for a common vertex are v_{2} or v_{6}. Wihout loss of generality, suppose $v_{2} \in N\left\{v_{i}\right\}$ for $i=1,2,4,6$. Then v_{2} is a closed vertex and $v_{2} v_{4}, v_{2} v_{6} \in E(G)$.

On the other hand, if $v_{4} v_{6}$ or $v_{3} v_{5}$ are edges of G, then the intersecting family $\left\{N\left[v_{1}\right], N\left[v_{2}\right], N\left\{v_{3}\right\}\right.$, $\left.N\left\{v_{4}\right\}, N\left\{v_{5}\right\}, N\left\{v_{6}\right\}\right\}$ does not have a common vertex which is a contradiction. Consequently, $v_{4} v_{6}, v_{3} v_{5} \notin$ $E(G)$.

Next, suppose v_{4} is a closed vertex. With this assumption, $\left\{N[1], N[v 2], N\left\{v_{3}\right\}, N\left[v_{4}\right], N\left\{v_{5}\right\}\right\}$ form an intersecting family with no common vertex, a contradiction. Therefore, v_{4} must be open. By symmetry, v_{5} also must be open.

Figure 5: Graph F^{*}

In this situation, $\left\{N\left[v_{1}\right], N\left[v_{2}\right], N\left\{v_{3}\right\}, N\left(v_{4}\right), N\left\{v_{6}\right\}\right\}$ and $\left\{N\left[v_{1}\right], N\left[v_{2}\right], N\left\{v_{3}\right\}, N\left(v_{5}\right), N\left\{v_{6}\right\}\right\}$ are two maximal intersecting families, each one containing a common vertex. Therefore, G is isomorphic to F.

If G is also hereditary mixed neighborhood-Helly graph using the same bipartition $V(G)=O \cup C$ then v_{3} and v_{6} must be open vertices. Suppose v_{3} is a closed vertex. Then $\left\{v_{3}, v_{4}, v_{5}, v_{6}, v_{1}\right\}$ induces a subgraph that matches to G_{2} which is not a mixed neighborhood-Helly graph, a contradiction. Hence, v_{3} must be an open vertex. By symmetry, v_{6} also must be a open vertex. Therefore, G is isomorphic to F^{*}.

Finally, we prove that F^{*} is hereditary mixed neighborhood-Helly graph. Suppose that F^{*} is non hereditary mixed neighborhood-Helly graph, then F^{*} contains some minimal non hereditary mixed neighborhoodHelly graph as induced subgraphs. F^{*} is mixed neighborhood-Helly graph because F is so, and F^{*} does not contain H_{1}, H_{2} nor H_{3}. In consequence, the minimal non hereditary mixed neighborhood-Helly induced subgraphs of F^{*} must have exactly 5 vertices. There are 3 non isomorphic induced subgraphs of 5 vertices.
$F^{*} \backslash\left\{v_{2}\right\}$: In this case, consider an intersecting family of neighborhoods \mathcal{N} having no common vertices. If $N\left(v_{4}\right) \notin \mathcal{N}$, then v_{1} is a common vertex for \mathcal{N} which is a contradiction. Hence, $N\left(v_{4}\right) \in \mathcal{N}$. In this situation, $N\left(v_{3}\right), N\left(v_{5}\right) \notin \mathcal{N}$ meaning $\mathcal{N}=\left\{N\left[v_{1}\right], N\left(v_{4}\right), N\left(v_{6}\right)\right\}$ and v_{5} is a common vertex for \mathcal{N}. Again, this is a contradiction. In consequence, $F^{*} \backslash\left\{v_{2}\right\}$ is a mixed neighborhood-Helly graph.
$F^{*} \backslash\left\{v_{3}\right\}$: Again, consider an intersecting family of neighborhoods \mathcal{N} having no common vertices. If $N\left(v_{4}\right) \notin$ \mathcal{N}, then v_{1} is a common vertex for \mathcal{N} which is a contradiction. Hence, $N\left(v_{4}\right) \in \mathcal{N}$. In this situation, $N\left(v_{5}\right) \notin \mathcal{N}$ and v_{2} is a common vertex for \mathcal{N}, a contradiction. Consequently, $F^{*} \backslash\left\{v_{3}\right\}$ is a mixed neighborhood-Helly graph.
$F^{*} \backslash\left\{v_{4}\right\}$: In this case, v_{1} is a closed universal vertex. By Lemma 5.2, $F^{*} \backslash\left\{v_{4}\right\}$ is not a minimal non hereditary mixed neighborhood-Helly graph.

We conclude that F^{*} does not contain any minimal non hereditary mixed neighborhood-Helly induced subgraph which means F^{*} is a hereditary mixed neighborhood-Helly graph.

Figure 6: Graphs of Corollary 5.6 Case (1)

Corollary 5.6. Let G be a cycle $v_{1}, v_{2}, \ldots, v_{6}$, such that v_{i} is not adjacent to $v_{i+3 \bmod 6}$. If G is not hereditary mixed-neighborhood-Helly graph for a bipartition $V(G)=O \cup C$, then G is isomorphic to some of the following graphs.

1. G has at most three short chords for any arbitrary bipartition $O \cup C$ (see Figure 6).
2. G has at least five short chords for any arbitrary bipartition $O \cup C\left(G_{14}\right.$ and G_{15} of Figure 7).
3. G has exactly four short chords, we consider two cases:
(a) G has not exactly two adjacent degree 4 vertices for any arbitrary bipartition $O \cup C\left(G_{16}\right.$ and G_{17} of Figure 7).
(b) G has exactly two adjacent degree 4 vertices and it is not isomorphic to $F^{*}\left(G_{18}, G_{19}\right.$ and G_{20} of Figure 8).

The following is a characterization of fixed hereditary mixed neighborhood-Helly graphs, by forbidden induced subgraphs.

Theorem 5.7. G is hereditary mixed neighborhood-Helly for a bipartiton $V(G)=O \cup C$ if and only if G does not contain an induced subgraph isomorphic to $H_{1}, H_{2}, H_{3}, G_{1}, G_{2}, \ldots, G_{20}$.

Proof By Lemmas 5.3 and 5.4 and Corollary 5.6, $H_{1}, H_{2}, H_{3}, G_{1}, G_{2}, \ldots, G_{20}$ are not hereditary mixed neighborhood-Helly graphs and if G contains some of them as induced subgraphs then G is not hereditary mixed neighborhood-Helly graph.

Figure 7: Graphs of Corollary 5.6 Cases (2) and (3.a)

Figure 8: Graphs of Corollary 5.6 Case (3.b)

Conversely, G does not contain an induced subgraph isomorphic to $H_{1}, H_{2}, H_{3}, G_{1}, G_{2}, \ldots, G_{20}$ and suppose that G is not hereditary mixed neighborhood-Helly for a bipartiton $V(G)=O \cup C$. Without loss of generality, we can assume that G is a minimal non hereditary mixed neighborhood-Helly graph. Then, there is a minimal intersecting family of neighborhoods of $G, \mathcal{N}=\left\{N\left\{v_{1}\right\}, N\left\{v_{2}\right\}, \ldots, N\left\{v_{m}\right\}\right\}$, which is not Helly. Clearly, $m \geq 3$. Consider the subfamily $\mathcal{N} \backslash\left\{N\left\{v_{i}\right\}\right\}, 1 \leq i \leq m$ and let w_{i} be the common vertex of this subfamily. Clearly, $w_{i} \notin N\left\{v_{i}\right\}(1 \leq i \leq m)$ and $w_{i}, w_{j}(1 \leq i<j \leq m)$ are different vertices since there is no common vertex for the family \mathcal{N}. Hence, if $v_{i}=w_{j}(1 \leq i, j \leq m)$ then $v_{i} \in O$ iff $i=j\left(v_{i} \in C\right.$ iff $i \neq j)$. We consider the size of $\left\{v_{1}, v_{2}, v_{3}, w_{1}, w_{2}, w_{3}\right\}$.

1. $\left|\left\{v_{1}, v_{2}, v_{3}, w_{1}, w_{2}, w_{3}\right\}\right|=3$. In this case, $v_{1}=w_{j}$ for some $j \in\{1,2,3\}$.
(a) $j=1$, then $v_{1} \in O$. There are only two alternatives.
i. $v_{2}=w_{2}$ and $v_{3}=w_{3}$. Clearly, $v_{2}, v_{3} \in O$ and $\left\{v_{1}, v_{2}, v_{3}\right\}$ induces an H_{1}, a contradiction.
ii. $v_{2}=w_{3}$ and $v_{3}=w_{2}$. Clearly, $v_{2}, v_{3} \in C$ and $\left\{v_{1}, v_{2}, v_{3}\right\}$ induces an H_{2}, a contradiction.
(b) $j \neq 1$, then $v_{1} \in C$. Without loss of generality, $j=2$, which means v_{1} and v_{2} are not adjacent vertices. If $v_{2}=w_{3}$ then v_{2} must be a neighbor of v_{1}, a contradiction. Hence, $v_{2}=w_{1}$ and $v_{3}=w_{3}$. Therefore, $v_{2} \in C, v_{3} \in O$ and $\left\{v_{1}, v_{2}, v_{3}\right\}$ induces an H_{2}, a contradiction.
2. $\left|\left\{v_{1}, v_{2}, v_{3}, w_{1}, w_{2}, w_{3}\right\}\right|=4$. Without loss of generality, $v_{1}=w_{j}$ for some $j \in\{1,2,3\}$.
(a) $j=1$, then $v_{1} \in O$. There is some vertex $v_{i}=w_{j}, i, j \in\{2,3\}$, w.l.o.g., we can assume $v_{2}=w_{j}$.
i. $v_{2}=w_{2}$ and $v_{3} \neq w_{3}$. Clearly, $v_{2} \in O$ and $\left\{v_{1}, v_{2}, v_{3}\right\}$ induces a K_{3}. Hence, $v_{3} \in C$, otherwise $\left\{v_{1}, v_{2}, v_{3}\right\}$ induces an H_{1} which is a contradiction. As $N\left(w_{3}\right) \cap\left\{v_{1}, v_{2}, v_{3}\right\}=\left\{v_{1}, v_{2}\right\}$, $\left\{v_{1}, v_{2}, w_{3}\right\}$ induces an H_{1} if $w_{3} \in O$ or $\left\{v_{1}, v_{3}, w_{3}\right\}$ induces an H_{2} if $w_{3} \in C$. In any case, there is a contradiction.
ii. $v_{2}=w_{3}$ and $v_{3} \neq w_{2}$. Clearly, $v_{2} \in C, N\left(v_{2}\right) \cap\left\{v_{1}, w_{2}, v_{3}\right\}=\left\{v_{1}\right\}$ and $\left\{v_{1}, w_{2}, v_{3}\right\}$ induces a K_{3}. If $w_{2}, v_{3} \in O$ then $\left\{v_{1}, w_{2}, v_{3}\right\}$ induces an H_{1} which is a contradiction. Hence, $w_{2} \in C$ or $v_{3} \in C$. Therefore, $\left\{v_{1}, v_{2}, w_{3}\right\}$ or $\left\{v_{1}, v_{2}, v_{3}\right\}$ induces an H_{2}. Again, we have a contradiction.
(b) $j \neq 1$, then $v_{1} \in C$. Without loss of generality, $j=2$, which means $v_{3}, w_{3} \in N\left(v_{1}\right)$ and $v_{2}, w_{1} \notin N\left(v_{1}\right)$. There are two alternatives.
i. $v_{3}=w_{3}$. This is a symmetric case of (2.a.ii).
ii. $v_{2}=w_{1}$. Clearly, $v_{2} \in C$ and $\left\{v_{1}, v_{3}, v_{2}, w_{3}\right\}$ induces a C_{4}. If $v_{3}, w_{3} \in C$ then $\left\{v_{1}, v_{3}, v_{2}, w_{3}\right\}$ induces an H_{3} which is a contradiction. Hence, $v_{3} \in O$ or $w_{3} \in O$ which implies $\left\{v_{1}, v_{3}, v_{2}\right\}$ or $\left\{v_{1}, w_{3}, v_{2}\right\}$ induces a H_{2}. Again, this is a contradiction.
3. $\left|\left\{v_{1}, v_{2}, v_{3}, w_{1}, w_{2}, w_{3}\right\}\right|=5$. Without loss of generality, $v_{1}=w_{j}$ for some $j \in\{1,2,3\}$.
(a) $j=1$, then $v_{1} \in O$. Clearly, $\left\{v_{2}, v_{3}, w_{2}, w_{3}\right\} \subseteq N\left(v_{1}\right)$ and $\left\{v_{1}, v_{2}, w_{3}\right\}\left(\left\{v_{1}, v_{3}, w_{2}\right\}\right)$ induces a K_{3}. Hence, $v_{2} \in C$ or $w_{3} \in C\left(v_{3} \in C\right.$ or $\left.w_{2} \in C\right)$. Otherwise, there is an induced H_{1}. On the other hand, $v_{2} w_{2}$ and $v_{3} w_{3}$ are not edges of G. If $v_{2}, w_{2} \in C\left(v_{3}, w_{3} \in C\right)$ then $\left\{v_{1}, v_{2}, w_{2}\right\}$ ($\left.\left\{v_{1}, v_{3}, w_{3}\right\}\right)$ induces an H_{2}. Hence, the only valid alternatives are:
i. $v_{2}, v_{3} \in C$. In this case, $v_{2} v_{3}$ must be an edge of G, otherwise, $\left\{v_{1}, v_{2}, v_{3}\right\}$ induces an H_{2}, a contradiction. Then, $\left(v_{1}, w_{2}, v_{3}, v_{2}, w_{3}, v_{1}\right)$ is a 5 -cycle and $\left\{v_{1}, w_{2}, v_{3}, v_{2}, w_{3}\right\}$ induces a subgraph which is isomorphic to $G_{4}\left(w_{2} w_{3}\right.$ is not an edge of $\left.G\right)$ or $G_{5}\left(w_{2} w_{3}\right.$ is an edge of $\left.G\right)$ taking v_{1} as as the distinguished open vertex in G_{4} or G_{5}. This is a contradiction.
ii. $w_{2}, w_{3} \in C$. It is symmetric to above case.
(b) $j \neq 1$, then $v_{1} \in C$. Without loss of generality, $j=2$, which means $v_{3}, w_{3} \in N\left(v_{1}\right)$ and $v_{2}, w_{1} \notin$ $N\left(v_{1}\right)$. Clearly, $\left(v_{1}, w_{3}, v_{2}, w_{1}, v_{3}, v_{1}\right)$ is a 5 -cycle and $\left\{v_{1}, w_{3}, v_{2}, w_{1}, v_{3}\right\}$ induces a subgraph which is isomorphic to $G_{1}\left(w_{3} w_{1}\right.$ and $v_{2} v_{3}$ are not edges of $\left.G\right), G_{2}$ (exactly one of $w_{3} w_{1}$ and $v_{2} v_{3}$ is an edge of $G)$ or $G_{3}\left(w_{3} w_{1}\right.$ and $v_{2} v_{3}$ are edges of $\left.G\right)$ taking v_{1} as the distinguished closed vertex in G_{1}, G_{2} or G_{3}. This is a contradiction.
4. $\left|\left\{v_{1}, v_{2}, v_{3}, w_{1}, w_{2}, w_{3}\right\}\right|=6$. Clearly, $\left(v_{1}, w_{3}, v_{2}, w_{1}, v_{3}, w_{2}, v_{1}\right)$ is a 6 -cycle which can have only short chords. If G has only 6 vertices, since G is not hereditary mixed neighborhood-Helly graph then by Corollary 5.6, G must be isomorphic to $G_{6}, G_{7}, \ldots, G_{19}$ or G_{20} which is a contradiction. Therefore, G has more than 6 vertices and $\left\{v_{1}, v_{2}, v_{3}, w_{1}, w_{2}, w_{3}\right\}$ induces a proper induced subgraph G^{\prime} of G. Since G

Figure 9: Minimal non fixed mixed neighborhood-Helly graphs with 5 vertices
is a minimal non hereditary mixed neighborhood-Helly graph, G^{\prime} is a hereditary mixed neighborhoodHelly graph and it must be isomorphic to F^{*} by Lemma 5.5. It is clear that exactly one of v_{1}, v_{2} and v_{3} is a closed vertex. Without loss of generality, we assume $v_{1} \in C$. As $v_{1} \in N\left[v_{1}\right] \cap N\left(v_{2}\right) \cap N\left(v_{3}\right)$, there is some $4 \leq i \leq m$ such that $v_{1} \notin N\left\{v_{i}\right\}$ because \mathcal{N} has not a common vertex. It is clear that $w_{1}, w_{2}, w_{3} \in N\left(v_{i}\right),\left(v_{i}, w_{2}, v_{1}, v_{2}, w_{1}, v_{i}\right)$ is a 5 -cycle and $\left\{v_{i}, w_{2}, v_{1}, v_{2}, w_{1}\right\}$ induces $G_{1}\left(v_{i} v_{2}\right.$ and $w_{1} w_{2}$ are not edges of G), G_{2} (exactly one of $v_{i} v_{2}$ and $w_{1} w_{2}$ is an edge of G) or $G_{3}\left(v_{i} v_{2}\right.$ and $w_{1} w_{2}$ are edges of G) taking v_{1} as the distinguished closed vertex in G_{1}, G_{2} or G_{3}. This is a contradiction.

Consequently, G must be hereditary mixed neighborhood-Helly graph.

The family of forbidden induced subgraphs of Theorem 5.7 is not minimal, which implies there is another characterization forbidding a proper minimal subset $\mathcal{H} \subset \mathcal{F}$. Clearly, \mathcal{H} is formed by all minimal non hereditary fixed mixed neighborhood-Helly graphs. In this sense, H_{1}, H_{2} and H_{3} are members of this subset because H_{1} and H_{2} are smallest members of \mathcal{F} and H_{3} does not have H_{1} nor H_{2} as induced subgraphs. Next lemmas describe the other members of \mathcal{H}.

Lemma 5.8. Minimal non hereditary fixed mixed neighborhood-Helly graphs with 5 vertices are exactly $H_{4}=$ $G_{1}^{\prime}, H_{5}=G_{2}^{\prime}$ and $H_{6}=G_{4}^{\prime}$ where G_{i}^{\prime} meaning that it is derived from G_{i} (see Figure 9).

Proof It is easy to see that H_{4}, H_{5} and H_{6} are all graphs from $\left\{G_{1}, G_{2}, G_{3}, G_{4}, G_{5}\right\}$ which do not contain any H_{1}, H_{2} nor H_{3} as induced subgraphs.

Lemma 5.9. The minimal non hereditary fixed mixed neighborhood-Helly graphs with 6 vertices are exactly $H_{7}=G_{6}^{1}, H_{8}=G_{6}^{2}, H_{9}=G_{7}^{1}, H_{10}=G_{8}^{1}, H_{11}=G_{9}^{1}, H_{12}=G_{10}^{1}, H_{13}=G_{11}^{1}, H_{14}=G_{13}^{1}$ and $H_{15}=G_{16}^{1}$ where G_{i}^{j} meaning that it is derived from G_{i} (see Figure 10).

Proof It is easy to see that $H_{7}, H_{8}, \ldots, H_{15}$ are all graphs from $\left\{G_{6}, G_{7}, \ldots, G_{20}\right\}$ which do not contain any $H_{1}, H_{2}, H_{3}, G_{1}, G_{2}, G_{3}, G_{4}$ nor G_{5} as induced subgraphs.

As a consequence, we have the following minimal characterization by forbidden induced subgraphs.

Corollary 5.10. G is hereditary mixed neighborhood-Helly for a bipartiton $V(G)=O \cup C$ if and only if G does not contain an induced subgraph isomorphic to $H_{1}, H_{2}, \ldots, H_{15}$.

Figure 10: Minimal non fixed mixed neighborhood-Helly graphs with 6 vertices

The following theorem gives another characterization for hereditary mixed neighborhood-Helly graphs based on extensions.

First, we call a 3 -set $S=\{u, v, w\}$ as valid if S does not induce a P_{3} where u, w are non-adjacent open vertices and v is closed.

Theorem 5.11. A graph G is a fixed hereditary mixed neighborhood-Helly for a bipartition $V(G)=O \cup C$ if and only if for every extension $E(u, v, w)$ where $\{u, v, w\}$ is a valid 3-set, there exists a vertex $z \in\{u, v, w\}$ satisfying $E(u, v, w) \subseteq N\{z\}$, i.e. $U[u, v, w] \cap\{u, v, w\} \neq \emptyset$ or $E(u, v, w)=\emptyset$.

The proof is ommited, as it follows from similar arguments as presented troughout the paper.

6. Arbitrary Mixed Neighborhood-Helly Graphs

In this section we study the arbitrary mixed neighborhood-Helly (ARBITRARY MNH) problem. It consists of deciding whether a graph is mixed neighborhood-Helly (MNH) for some partition of its vertices, into open and closed neighborhoods. In addition, we also study the hereditary arbitrary mixed neighborhoodHelly (ARBITRARY HMNH) problem, which consists of deciding if there exists a bipartition of the vertices of a given graph G, into open and closed neighborhoods, such that G is mixed neighborhood-Helly for any induced subgraph of it. We employ a similar notation as in the last section. That is, when applying the

Helly property, assume a bi-coloring of the vertices of G using colors black, white, such that black vertices correspond to those whose neighborhoods are to be considered as closed, while the white ones are those with open neighborhoods.

We prove that both the above problems are NP-complete using a reduction from a special version of 3-SAT, called $3-S A T_{2+1}$. The $3-S A T_{2+1}$ problem consists of determining if the variables of a given boolean formula written in a conjunctive normal form, having 2 or 3 literals per clause, where each literal is an occurrence of some variable x_{i} (positive literal) or its negation $\neg x_{i}$ (negative literal), can be assigned values true or false, in such a way that the formula is true. In this restricted instance, each variable x_{i} occurs at most 3 times, twice positive and once negative. Without loss of generality, we assume that each variable x_{i} appears at most once in each clause. NP-completeness of such problem follows from [32].

Lemma 6.1. If a graph G is mixed neighborhood-Helly then the bi-coloring of its vertices must satisfy the following conditions.
(a) $G\left[\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}\right]$ is an induced C_{5} of G and at least 4 of these vertices have degree exactly 2. Then the color of all of them is white.
(b) $G\left[\left\{v_{1}, v_{2}, v_{3}\right\}\right]$ is an induced P_{3} of G and it is not part of an induced diamond. If the color of v_{2} (middle vertex of P_{3}) is white, then v_{1} or v_{3} must have color white.
(c) $G\left[\left\{v_{1}, v_{2}, v_{3}\right\}\right]$ is an induced triangle of G and it is not part of an induced K_{4}. Then at least one of these 3 vertices must have color black.

Proof (a) Suppose that v_{i} is a black vertex, let v_{j} a neighbor of v_{i} in the induced C_{5} and v_{k} the unique vertex in the induced C_{5} such that $N\left(v_{k}\right) \cap\left\{v_{i}, v_{j}\right\}=\emptyset$. Clearly, the neighborhoods of these three vertices do not verify the Helly property which is a contradiction.
(b) Suppose that v_{1} and v_{3} are black vertices. Clearly, the neighborhoods of v_{1}, v_{2} and v_{3} do not verify the Helly property which is a contradiction.
(c) Suppose that v_{1}, v_{2} and v_{3} are white vertices. Clearly, the neighborhoods of v_{1}, v_{2} and v_{3} do not verify the Helly property which is a contradiction.

Let B be a given boolean formula, input to the $3-S A T_{2+1}$ problem. Let x_{1}, \ldots, x_{n} be the variables of B and C_{1}, \ldots, C_{k} its clauses. We construct a graph $G(B)$ as follows.

1. for every variable x_{i}, construct a subgraph G_{i}, called variable gadget, consisting of 7 vertices, three of them, a_{i}, b_{i}, c_{i} form a triangle (a_{i} is the positive pole of G_{i} and b_{i} the negative pole of G_{i}), c_{i} and the other 4 vertices form a C_{5} (see Figure 11).
2. for each clause C_{j}, add a triangle T_{j}

Figure 11: gadget G_{i} for variable x_{i}

- for each literal x_{i} or $\neg x_{i}$ of C_{j}, choose a different vertex v in T_{j}, create a new C_{5} with a distinguished vertex $w_{i, j}$ and add edges
$-v w_{i, j}$ and $a_{i} w_{i, j}$ if the literal is positive $\left(x_{i}\right)$
$-v w_{i, j}$ and $b_{i} w_{i, j}$ if the literal is negative $\left(\neg x_{i}\right)$

3. for each clause C_{j} of size two, there is a unique vertex v of T_{j} that still has degree 2 . In this case, add 4 new vertices to form a C_{5}, together with v.

See Figure 12, for a complete example. It is easy to see that:

- $G(B)$ has no induced K_{4} nor diamond.
- Every induced cycle in $G(B)$ has length 3,5 or at least 10 .
- In consequence, every 5 -cycle in $G(B)$ is an induced C_{5}.
- There are no 6 -cycles in $G(B)$.
- In every C_{5}, at least 4 of its vertices have degree exactly 2 in $G(B)$.
- The maximum degree among the vertices in $G(B)$ is 4 .

Lemma 6.2. If $G(B)$ is ARBITRARY MNH then B is satisfiable.

Proof Since $G(B)$ is ARBITRARY MNH, there is a bi-coloring for $G(B)$ that makes it mixed neighborhoodHelly. We assign convenient values to the variables x_{1}, \ldots, x_{n} as follow: x_{i} is true if and only if a_{i} is white vertex. Let us to prove that this assignment turns B to be true. That is, we have to prove that each clause C_{j} has the value true. Some vertex v of the triangle T_{j} corresponding to C_{j} must be black, by Lemma 6.1.(c). Clearly, v is not part of any induced C_{5} because in that case, v would be white, by Lemma 6.1.(a) since it is part of some induced C_{5}, a contradiction. Consequently, v must be a neighbor of some vertex $w_{i, j}$ by construction of $G(B)$ and $w_{i, j}$ is a white vertex because it is part of some induced C_{5}. As $w_{i, j}$ is the

Figure 12: Transformed graph for $B=C_{1} \wedge C_{2} \wedge C_{3} \wedge C_{4}, C_{1}=x_{1} \vee \neg x_{2} \vee x_{3}, C_{2}=\neg x_{3} \vee x_{4}, C_{3}=x_{1} \vee x_{2} \vee \neg x_{4}$ and $C_{4}=x_{2} \vee x_{3}$
middle vertex of some P_{3} and one extreme vertex of this P_{3} is v, by Lemma 6.1.(b), the other extreme vertex must be white. There are two possibilities for this extreme vertex:
(i) to be a_{i} when x_{i} is a literal of C_{j}. The value of x_{i} is true because a_{i} is a white vertex, implying that C_{j} is true.
(ii) to be b_{i} when $\neg x_{i}$ is a literal of C_{j}. Clearly, c_{i} is a white vertex, since it is part of an induced C_{5}. By Lemma 6.1.(c), a_{i} must be black. So, the value of x_{i} is false and $\neg x_{i}$ is true implying C_{j} is true.

In any of these cases, C_{j} always is true. In consequence, B is true using this assignment and B is satisfiable.

Corollary 6.3. If $G(B)$ is $A R B I T R A R Y$ HMNH then B is satisfiable.

Lemma 6.4. B is satisfiable then $G(B)$ is ARBITRARY HMNH.

Proof Consider an assignment true or false for the variables of B, such that the formula is satisfiable and call this assignment as V. We consider the following coloring for the vertices. If variable x_{i} is true then vertex b_{i} is black, and all the remaining vertices of G_{i} are white. If x_{i} is false, then a_{i} is black and the remaining are white. Further, for each clause C_{j}, a vertex v of its corresponding triangle T_{j} is black if and
only if v is a neighbor of some vertex $w_{i, j}$ and $w_{i, j}$ has a white neighbor in G_{i}. The remaining vertices of $G(B)$ are white.

We prove that the above colors makes $G(B)$ hereditary MNH. With this purpose, apply Theorem 5.7 and examine its forbidden induced subgraphs.

1. First, examine the triangles of G. There are two types of triangles:
(i) those formed by a_{i}, b_{i} and c_{i} in G_{i}. In this case, b_{i} or a_{i} is a black vertex because x_{i} is true or false in V.
(ii) a triangle T_{j} whose corresponding clause is C_{j}. As C_{j} is true in V, there is some true literal x_{i} $\left(\neg x_{i}\right)$ of C_{j}. In this case, $a_{i}\left(b_{i}\right)$ is a white neighbor of $w_{i, j}$ in G_{i} and there is a black neighbor v of $w_{i, j}$ in T_{j}.

Therefore, no triangle of $G(B)$ is formed by white vertices which implies that G does not have H_{1} as induced subgraphs.
2. $G(B)$ does not contain 6 -cycles, hence G does not have G_{6}, \ldots, G_{20} as induced subgraphs.
3. Every 5-cycle in $G(B)$ is an induced C_{5} and all its vertices are white vertices. Therefore, none of G_{1}, \ldots, G_{5} is an induced subgraph of $G(B)$.
4. $G(B)$ does not contain induced C_{4} s, hence H_{3} is not an induced subgraph of $G(B)$.
5. Two black vertices of $G(B)$ are either adjacent or at distance at least three, implying that no P_{3} of G has black extremes and a white middle vertex and H_{2} is not an induced subgraph of $G(B)$.

The above conditions imply that $G(B)$ does not contain any forbidden induced subgraph of Theorem 5.7. That is, $G(B)$ is hereditary MNH \square

Corollary 6.5. If B is satisfiable then $G(B)$ is $A R B I T R A R Y M N H$.

Theorem 6.6. ARBITRARY MNH and ARBITRARY HMNH are NP-complete.

Proof For establishing that both problems belong to NP, let G be a graph and consider a coloring \mathcal{C} of the vertices of G, using colors black or white. By employing Theorem 5.7 or Corollary 5.10 and observing that the described forbidden subgraphs are of fixed size, we can check in polynomial time, whether \mathcal{C} makes the collection of the neighborhoods to be Helly or not. Consequently, the problem ARBITRARY HMNH is in NP. On the other hand, by employing Berge's algorithm [5], we can check in polynomial time, if the collection of neighborhoods, open or closed according to the colors, of the vertices of G satisfy the Helly property. Therefore ARBITRARY MNH also belongs to NP.

The reduction proof is from the $3-S A T_{2+1}$ problem. Let B be a given boolean formula, input to the $3-S A T_{2+1}$ problem and $G(B)$ its transformed graph.

As a consequence of Lemma 6.2 and Corollary $6.5, B$ is satisfiable if and only if $G(B)$ is ARBITRARY MNH and as a consequence of Lemma 6.4 and Corollary $6.3, B$ is satisfiable if and only if $G(B)$ is ARBITRARY HMNH which completes the proof \square

Acknowledgements

We thank the anonymous reviewers for their helpful comments.
The first author was partially supported by UBACyT Grant 20020120100058, and PICT ANPCyT Grants 2010-1970 and 2013-2205. The second author was partially supported by PICT ANPCyT Grants 2010-1970 and 2013-2205. The third author was partially supported by CNPq, CAPES and FAPERJ, research agencies.

References

[1] H. J. Bandelt, M. Farber and P. Hell. Absolute reflexive retracts and absolute bipartite retracts. Discrete Applied Mathematics, 44, 9-20, (1993).
[2] H. J. Bandelt and E. Pesch. Dismantling absolute retracts of reflexive graphs. European Journal of Combinatorics, 10, 210-220, (1989).
[3] H. J. Bandelt and E. Pesch. Efficient characterizations of n-chromatic absolute retracts. Journal on Combinatorial Theory Series B, 53, 5-31, (1991).
[4] H. J. Bandelt and E. Prisner. Clique graphs and Helly graphs. Journal on Combinatorial Theory Series $B, \mathbf{5 1}, 34-45,(1991)$.
[5] C. Berge. Graphes et Hypergraphes. Dunod, Paris, 1970. (Graphs and Hypergraphs, North-Holland, Amsterdam, 1973, revised translation).
[6] C. Berge. Hypergraphs. Gauthier-Villars, Paris, 1987.
[7] C. Berge and P. Duchet. A generalization of Gilmore's theorem. In M. Fiedler, editor, Recent Advances in Graph Theory, 49-55. Acad. Praha, Prague, 1975.
[8] B. Bollobás. Combinatorics. Cambridge University Press, Cambridge, 1986.
[9] A. Brandstädt, V. Chepoi, F. Dragan, and V. Voloshin. Dually chordal graphs. SIAM Journal on Discrete Mathematics, 11:3, 437-455, (1998).
[10] A. Brandstädt, V. B. Le and J. P. Spinrad. Graph classes: A survey. SIAM Monographs on Discrete Mathematics and Applications. Society for Industrial and Applied Mathematics, Philadelphia, PA, 1999.
[11] A. Bretto, S. Ubéda and J. Žerovnik. A polynomial algorithm for the strong Helly property. Information Processing Letters, 81, 55-57, (2002).
[12] J. Daligault, D. Gonï£jalves and M. Rao. Diamond-free circle graphs are Helly circle. Discrete Mathematics, 310, 845-849, (2010).
[13] M. C. Dourado, M. C. Lin, F. Protti and J. L. Szwarcfiter. Improved algorithms for recognizing p-Helly and hereditary p-Helly hypergraphs. Information Processing Letters, 108, 247-250, (2008).
[14] M. C. Dourado, F. Protti and J. L. Szwarcfiter. Complexity aspects of the Helly property: Graphs and hypergraphs. The Electronic Journal of Combinatorics, Dynamic Survey \#DS17 (2009).
[15] F. F. Dragan. Centers of Graphs and the Helly Property (in russian). Ph. D. Thesis, Moldava State University, Chisinǎu, 1989.
[16] F. F. Dragan. Domination in Helly graphs without quadrangles. Cybernet. System Anal. (Kiev), 6, 47-57 (in Russian), (1993).
[17] F. F. Dragan and A. Brandstädt. r-Dominating cliques in graphs with hypertree structure. Discrete Mathematics, 162, 93-108, (1996).
[18] F. F. Dragan, C. F. Prisacaru and V. D. Chepoi. Location problems in graphs and the Helly property. Diskretnája Matematica (Moscow), 4, 67-73 (in Russian), (1992).
[19] P. Duchet. Proprieté de Helly et problèmes de représentations. In Colloquium International CNRS 260, Problèmes Combinatoires et Théorie de Graphs, 117-118, Orsay, France, 1976. CNRS.
[20] P. Duchet. Hypergraphs. In R. L. Graham, M. Grötschel, and L. Lovász, editors, Handbook of Combinatorics, volume 1, 381-432, Amsterdam-New York-Oxford, 1995. Elsevier North-Holland.
[21] C. Flament. Hypergraphes arborés. Discrete Mathematics, 21, 223-226, (1978).
[22] F. Gavril. Algorithms on circular-arc graphs. Networks, 4, 357-369, (1974).
[23] M. C. Golumbic and R. E. Jamison. The edge intersection graphs of paths in a tree. Journal of Combinatorial Theory, Series B, 38, 8-22, (1985).
[24] M. Groshaus and J. L. Szwarcfiter. Biclique graphs and biclique matrices. Journal of Graph Theory, 63:1, 1-16, (2010).
[25] M. Groshaus and J. L. Szwarcfiter. Biclique-Helly graphs. Graphs and Combinatorics, 26:6, 633-645, (2007).
[26] M. Groshaus and J. L. Szwarcfiter. On hereditary Helly classes of graphs. Discrete Mathematics and Theoretical Computer Science, 10:1, 71-78, (2008).
[27] P. Hell. Rétractions de graphes. Ph.D. Thesis, Université de Montreal, 1972.
[28] B. Joeris, M. C. Lin, R. M. McConnell, J. Spinrad and J. L. Szwarcfiter. Linear time recognition of Helly circular-arc graphs and models. Algorithmica, 59:2, 215-239, (2011).
[29] M. C. Lin, F. J. Soulignac and J. L. Szwarcfiter. Normal Helly circular-arc graphs and its subclasses. Discrete Applied Mathematics, 161, 1037-1059, (2013).
[30] M. C. Lin and J. L. Szwarcfiter. Faster Recognition of Clique-Helly and Hereditary Clique-Helly Graphs. Information Processing Letters, 103:1, 40-43, (2007).
[31] T. A. Mckee and F. R. McMorris. Topics in Intersection Graph Theory. SIAM Monographs on Discrete Mathematics and Applications, Philadelphia, PA, 1999.
[32] C. H. Papadimitriou. Computational Complexity. Addison Wesley, 1994.
[33] E. Prisner. Hereditary clique-Helly graphs. Journal of Combinatorial Mathematics and Combinatorial Computing, 14, 216-220, (1993).
[34] E. Prisner. Graph Dynamics. Pitman Research Notes in Mathematics, Longman, 1995.
[35] J. L. Szwarcfiter. Recognizing Clique Helly Graphs. Ars Combinatoria, 45, 29-32, (1997).
[36] W. D. Wallis and G. H. Zhang. On maximal clique irreducible graphs Graphs. Journal of Combinatorial Mathematics and Combinatorial Computing, 8, 187-193, (1990).

[^0]: Email addresses: marinagroshaus@yahoo.es (Marina Groshaus), oscarlin@dc.uba.ar (Min Chih Lin), jayme@nce.ufrj.br (Jayme L.Szwarcfiter)

 Dedicated to Andreas Brandstädt

