
Case-based Reasoning for Web Service
Discovery and Selection

Alan De Renzis, Martin Garriga, Andres Flores, Alejandra Cechich1,2

GIISCo Research Group
Faculty of Informatics, UNComa University

Nuequen, Argentina

Alejandro Zunino3

ISISTAN Research Institute
UNICEN University

Tandil, Buenos Aires, Argentina

Abstract

Web Service discovery and selection deal with the retrieval of the most suitable Web Service, given a
required functionality. Addressing an effective solution remains difficult when only functional descriptions
of services are available. In this paper, we propose a solution by applying Case-based Reasoning, in which
the resemblance between a pair of cases is quantified through a similarity function. We show the feasibility
of applying Case-based Reasoning for Web Service discovery and selection, by introducing a novel case
representation, learning heuristics and three different similarity functions. We also experimentally validate
our proposal with a dataset of 62 real-life Web Services, achieving competitive values in terms of well-known
Information Retrieval metrics.

Keywords: Web services, Service Selection, Service Discovery, Case-based Reasoning, Service Oriented
Application.

1 Introduction

Service-Oriented Computing (SOC) has seen an ever increasing adoption by provid-

ing support for building distributed, inter-organizational applications in heteroge-

neous environments [14]. Mostly, the software industry has adopted SOC by using

Web Service technologies. A Web Service is a program with a well-defined interface

that can be located, published, and invoked by using standard Web protocols [5].

1 This work is supported by projects: PICT 2012-0045 and UNCo–Reuse(04-F001).
2 Email: {alanderenzis,martin.garriga,andres.flores,alejandra.cechic}@fi.uncoma.edu.ar
3 Email: alejandro.zunino@isistan.unicen.edu.ar

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 321 (2016) 89–112

1571-0661/© 2016 The Authors. Published by Elsevier B.V.

www.elsevier.com/locate/entcs

http://dx.doi.org/10.1016/j.entcs.2016.02.006

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:alanderenzis@fi.uncoma.edu.ar
mailto:alejandro.zunino@isistan.unicen.edu.ar
http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2016.02.006
http://dx.doi.org/10.1016/j.entcs.2016.02.006
http://www.sciencedirect.com
http://creativecommons.org/licenses/by-nc-nd/4.0/

However, a broadly use of the SOC paradigm requires efficient approaches to

allow service discovery, selection, integration and consumption from within applica-

tions [29]. Currently, developers are required to manually search for suitable services

to then provide the adequate “glue-code” for their assembly into a service-oriented

application [9]. Even with a wieldy candidates list, a skillful developer must de-

termine the most appropriate service for the consumer application. This implies

a prohibitive effort into discovering services, analyzing the suitability of retrieved

candidates (i.e., service selection) and identifying the set of adjustments for the final

integration of a selected candidate service.

In this work we make use of Case-based Reasoning (CBR) [1]– from the Ar-

tificial Intelligence (AI) field – to overcome the aforementioned problems in Web

Service Discovery and Selection. A Case-based Reasoner solves problems by using

or adapting solutions from old recurrent problems [35]. Sometimes called similar-

ity searching systems, the most important characteristic of CBR systems is the

effectiveness of the similarity function used to quantify the degree of resemblance

between a pair of cases [25].

Our proposal models a Case-based Reasoner for Service Selection, where the

main contribution is threefold. We define a case representation capturing informa-

tion in Web Services functional descriptions (typically WSDL). Moreover, we draw

a parallel among the key steps in CBR and the problem of Web Service Discovery

and Selection. Finally, we provide three implementations for the similarity function,

concerning structural and semantic aspects from functional service descriptions.

The rest of the paper is organized as follows. Section 2 details the service

selection process. Section 3 presents the application of CBR in the context of service

selection. Section 4 details the alternatives for the similarity function. Section 5

presents the experimental validation of the approach. Section 6 discusses related

work. Conclusions and future work are presented afterwards.

2 Service Selection

During development of a Service-oriented Application, some of the comprising soft-

ware pieces could be fulfilled by the connection to Web Services. In this case, a

list of candidate Web Services could be obtained by making use of any service dis-

covery registry. Nevertheless, even with a wieldy candidates’ list, a developer must

be skillful enough both to determine the most appropriate service and to shape

the adaptation artifacts for seamless integration of the selected service. Therefore,

a reliable and practical support is required to make those decisions. For this, in

previous work [12, 16] we defined an approach for service selection.

The service selection method is based in an Interface Compatibility assessment

of the candidate Web Services and the (potentially partial) specification of the

required functionality – depicted in Figure 1. The procedure matches the required

interface IR and the interface (IS) provided by a candidate service S (previously

discovered). All available information from the two interfaces is gathered to be

assessed at semantic and structural levels. The semantic assessment makes use

A. De Renzis et al. / Electronic Notes in Theoretical Computer Science 321 (2016) 89–11290

Fig. 1. Interface Compatibility Scheme

of the WordNet lexical database [30] for identifiers evaluation, by means of terms

separation, stop words removing, stemming and terms similarity (synonymy and

hypo/hyperonymy). The structural evaluation considers data types equivalence

and subtyping.

The outcome of these evaluations is an Interface Matching list where each opera-

tion from IR may have a correspondence with one or more operations from IS. In ad-

dition, two appraisal values are calculated: compatibility gap (concerning functional

aspects), and adaptability gap – which reflects the required effort for integrability

of the selected service.

3 Case-based Reasoning for Service Selection

This work extends the Interface Compatibility Scheme by means of a CBR method-

ology [1]. The main goal is to capture the knowledge obtained from successive

service selections as a set of cases in the form of problem-solution pairs. Figure 2

shows the CBR approach (adapted from [1]).

Let be a knowledge base KB containing an initial set of cases. Each case consists

of a pair (problem, solution): the problem is a description of certain functionality,

and the associated solution is the candidate service that fulfills such functional-

ity. A new case C is a problem part (required functionality) that has to be paired

with its corresponding solution (candidate service). For this, the first step com-

pares C with all the problem parts in KB, according to a similarity function. The

outcome of this step is the most similar case to C (retrieved case) – i.e., the pair

(functionality, service) with the most similar functionality w.r.t. C.

Then, the retrieved case is reused to generate the solved case, by combining its

solution part with the new case C as the problem part. The solved case is then a

pair (required functionality, service). At this point, the solved case is returned

as the suggested solution, which can be revised by expert users. If the suggested

solution succeed in the revision, it then becomes a confirmed solution (tested case).

A. De Renzis et al. / Electronic Notes in Theoretical Computer Science 321 (2016) 89–112 91

Fig. 2. Case-based Reasoning for Service Selection

If it fails, the case is discarded.

Finally, the last step decides whether or not to include the confirmed solution

(tested case) in KB. The learning case decision can rely upon different criteria. In

this approach, we use a threshold value (th) over the similarity function: if the

similarity function returns a value higher than the threshold, then the case is added

to the KB.

In the following sections, we describe the application of CBR concepts to Web

Service discovery and selection.

3.1 Case Representation

First, it is essential to define an adequate case representation in the context of

service selection. We have used an object-oriented (OO) case representation, where

the cases are represented as object collections described by a set of attribute-value

pairs. Object-oriented representations are appropriate for complex domains where

different case structures may occur [7]. Figure 3 shows the OO case representation

structure for service selection. As stated earlier, the Case class is divided into two

parts – namely Problem and Solution.

The Problem part captures the required functionality to be fulfilled by a can-

didate service. The required functionality is composed of three simple attributes

and a collection of a complex attribute. The simple attributes are Service name

(String), Category (String), and Operations number (a positive integer including

zero). The complex attribute is Operations, which represents the required opera-

tions. Each Operation contains two attributes – Operation name and Return type

(Simple or Complex type) – and two collections of complex attributes – Parameters

and Exceptions. Parameter contains two attributes: parameter name and param-

eter type (Simple or Complex type). Exceptions contains a simple attribute: Type

A. De Renzis et al. / Electronic Notes in Theoretical Computer Science 321 (2016) 89–11292

Fig. 3. Object-oriented Case representation

(String).

The Solution part is a simple String attribute Candidate Service that represents

the name of the service associated to the problem description.

3.2 Case Retrieval

New cases are given as input to the Case-based Reasoner (Figure 2) in the form of

a required functionality – i.e., a problem part (Pn) . To find a solution to a new

case, the first step calculates the similarity function (DIST) as a distance between

the new case and each case in the knowledge base KB – according to Formula 1,

extracted from [25]. For each attribute in the case representation, we have defined

specific similarity functions sim and weights wi (where the sum of all weights wi is

1) – that are presented in the following sections.

DIST (CN , CC) =
n∑
1

(wi ∗ simi(C
N
i , CC

i)) (1)

where CN is a new case to evaluate and CC is the candidate case in KB.

Service name and Category

The Service name and category evaluation consists in comparing the String

values of these attributes between the new case under analysis and the problem part

of each case in the KB. Similarity is calculated using an algorithm for Identifiers

evaluation which considers semantics of terms in identifiers – discussed in detail

in Section 4.2. The given weight for service name and category attributes is low

(w = 0.1) as they do not directly express functional aspects.

Operations number

The operations number evaluation consists in comparing the numerical value

for such attribute between the new case under analysis and the problem part of

each case in the KB. Similarity is calculated according to Formula 2. Candidate

services (solutions) in the KB with fewer operations than the required functionality

(problem) are considered as incompatible, being discarded as potential solutions.

A. De Renzis et al. / Electronic Notes in Theoretical Computer Science 321 (2016) 89–112 93

The given weight for this attribute is higher (w = 0.3) as it directly expresses a

functional aspect (i.e., the number of required operations).

Sim(#opN ,#opC) =

{
#opN <= #opC 1

otherwise 0
(2)

where #opN and #opC are the values of the operation number attribute in

the new case and a candidate case of the KB respectively

Operations

The operations evaluation calculates similarity between this complex attribute

in the new case, and the analogous attribute in the problem part of each case in KB.

Since the main criterion of our service selection approach is functional similarity, this

attribute presents the highest weight (w = 0.6) and the most complex similarity

function in this Case-based Reasoner. Details of the similarity function for the

operations attribute are presented in Section 4.

3.3 Case Reuse and Revision

We use the first nearest neighbor (1-NN) strategy for case adaptation, which implies

that the most similar case is chosen as the best solution [38]. Therefore, the solution

part into the new case will be the solution part (S) – i.e., the candidate service –

of the most similar retrieved case according to Formula 1.

The solved case is then returned as the suggested solution (Figure 2), and can

be revised by expert users. Expert users are people with high knowledge about the

domain and the service-oriented application under construction. Thus, an expert

user decides if the solution is suitable for the target application or relevant for the

underlying domain. Otherwise, the solved case is rejected. Relevant cases can then

be part of the KB ’s initial state. Experts feedback is not mandatory but necessary

to improve the reasoner performance and to determine the threshold value according

to the state (i.e., the number of cases) of the KB at a given time.

3.4 Case Retraining

At this point, the Case-based Reasoner has compared the new case against the

problem part of all the cases in the KB and (expectedly) has found a solution

in terms of the attribute similarity presented in the previous sections. Also, the

solution had been revised and acknowledged as valid by expert users – i.e., it is a

confirmed solution (tested case). The next step consists in deciding if the tested

case will be added to the KB.

On the one hand, too many retrained cases can generate noise in the evaluation,

decreasing the performance of the reasoner in the long term. On the other hand, if no

new cases are added, no learning occurs, so the reasoner will not be capable to deal

with new cases. In order to prevent these problems, we have defined a threshold

value (th) over the similarity function (DIST). The threshold value determines

A. De Renzis et al. / Electronic Notes in Theoretical Computer Science 321 (2016) 89–11294

whether or not a new case is retrained (learned case) in the KB. If the similarity

function returns a value higher than the threshold, then the case is added to the

KB as a new meaningful case, otherwise it is discarded.

The goal is to prevent the uncontrollable growth of the KB while improving the

performance of the reasoner. The threshold value is a configurable constant that

depends on the reasoner implementation and the initial number of cases. If the

initial number of available cases is low (e.g., with regard to the total number of

services in a given domain), the threshold value will also be settled low, allowing

the reasoner to add new cases and to enrich the KB. If the number of available cases

grows in a certain moment, the threshold value can be increased to add only new

cases with a significant similarity.

4 Operations Similarity

As we stated earlier, operation similarity is the key attribute for assessing new cases

against the potential candidate services, included as cases in the KB. The opera-

tions similarity evaluation accounts semantic and structural aspects extracted from

operation definitions. Structural aspects involve data types equivalence (subtyp-

ing), while semantic aspects involve concepts from terms and identifiers. We have

defined three implementations for operations similarity that mainly differ in their

semantic basis. This resulted in three different similarity functions for operations

evaluation. In the following sections we describe the similarity evaluation for each

element in operations: identifiers, operation name (evaluated as a special case of

identifiers), parameters, return type, and exceptions.

4.1 Case Study

A simple case study has been outlined to illustrate key steps of our proposal. We

considered the Car Rental domain, where the required features are portrayed ac-

cording to the OO case representation (Figure 3). Thus Figure 4a shows a new case

(newCase), which contains the description of a proposed service named RentaCar.

Such interface defines three operations and three complex data types. Note that

the solution part of the newCase is not instantiated since the case has not been

evaluated.

The functionality of the required interface will be fulfilled by engaging a third-

party Web Service. The case in the KB candidateCase contains the representation

of the service CarRentalBrokerService. The candidateCase defines four opera-

tions and three complex data types – as shown in Figure 4b.

Both cases were built by adapting real Web Services 4 , 5 from the Car Rental

domain to illustrate our proposal.

4 http://goo.gl/MC7uXh
5 http://goo.gl/LL0k0w

A. De Renzis et al. / Electronic Notes in Theoretical Computer Science 321 (2016) 89–112 95

http://goo.gl/MC7uXh
http://goo.gl/LL0k0w

(a) New case instantiation

(b) Candidate case instantiation

Fig. 4. Object cases representation for the Car Rental example

4.2 Identifiers Evaluation

To evaluate semantic aspects the similarity functions compare terms and identifiers

from operations. We implemented three alternatives for these functions. The first

two make use of WordNet [30]. WordNet is a domain-independant lexical database

of the english language that is structured as a lexical tree. WordNet groups terms

in synsets (synonym sets) that represent the same lexical concept. Several relation-

ships connect different synsets, such as hypo/hyperonyms, holonyms/meronyms and

antonyms. All hierarchies ultimately go up the root node {entity}. The WordNet

A. De Renzis et al. / Electronic Notes in Theoretical Computer Science 321 (2016) 89–11296

Table 1
Rules for Decomposing Identifiers

Notation Rule Source Result

Java Beans Splits when changing text case getZipCode get Zip Code

Special symbols Splits when either “ ” or “-” occurs get Quote get Quote

structure can be accessed through different Java libraries, each one implementing

different metrics and features [15]. Particularly, in this work we used JWI 6 (in the

first similarity function) and JWNL 7 (in the second similarity function). These

libraries are among the most complete and easy to use for WordNet lexical tree

manipulation [15].

The third alternative for the similarity function is based upon DISCO [22], a

pre-computed database of collocations and distributionally similar words. DISCO’s

Java library 8 allows to retrieving the semantic similarity between arbitrary words.

The similarities are based on the statistical analysis of very large text collections

(e.g., Wikipedia), through co-occurrence functions. For each word, DISCO stores

the first and second order vectors of related words using a Lucene index [19]. To

determine the similarity between two words, DISCO retrieves the corresponding

word vectors from the index and computes the similarity based in co-occurrences.

Following we describe the similarity functions implemented using JWI, JWNL

and DISCO. To determine the similarity between two identifiers, these implemen-

tations share two preliminary common steps. Thus, two identifiers are initially

pre-processed through term separation and stop words removal [12]:

Term Separation

Identifiers are normally restricted to a sequence of one or more letters in ASCII

code, numeric characters and underscores (“ ”) or hyphens (“-”). The algorithm

supports the rules in Table 1 – i.e., the usual programming naming conventions –

plus a semantic level to consider identifiers that do not follow those conventions.

The Term Separation step analyzes the identifiers, recognizing potential terms (up-

percase sequences and lowercase sequences). Then, WordNet is used to analyze all

the potential terms and determines the most adequate term separation. The term

separation step is crucial to consider the correct terms as input to the semantic

analysis.

Example. Let be the identifier GDSCode from the Car Rental domain. This

identifier does not strictly follow the Java Beans notation. An initial analysis iden-

tifies an uppercase sequence (GDSC), and a lowercase sequence (ode). Then, the

sequence C + ode = Code is given as input to WordNet. As it is an existing word

in the WordNet dictionary, Code is considered as a term and GDS as an acronym

6 http://projects.csail.mit.edu/jwi/
7 http://web.stanford.edu/class/cs276a/projects/docs/jwnl/overview
8 http://www.linguatools.de/disco/disco-api-1.4/

A. De Renzis et al. / Electronic Notes in Theoretical Computer Science 321 (2016) 89–112 97

http://projects.csail.mit.edu/jwi/
http://web.stanford.edu/class/cs276a/projects/docs/jwnl/overview
http://www.linguatools.de/disco/disco-api-1.4/

(an abbreviation of Global Distribution System) that is also considered as a term.

Stop Words Removal

Stop words are meaningless words that are filtered out prior to, or after, pro-

cessing natural language data (text) [3]. We defined a stop words list containing

articles, pronouns, prepositions, words from other stop words lists and each letter

of the alphabet. The terms lists obtained from the previous step are analyzed to

remove any occurrence of a word belonging to the stop words list.

Example. Let consider the identifier AgencyHandledBy which corresponds to

a field in the Data Type AgencyData of the Car Rental example. According to

the Java Beans notation, the identifier is decomposed in three terms: [Agency,

Handled, By]. As ’By’ belongs to the stop words list, it is removed from the

terms list.

4.2.1 JWI-based Identifiers Evaluation

The JWI implementation comprises three main additional steps: stemming, terms

lists semantic comparison and identifiers compatibility calculation.

Stemming is the process for reducing words to their stem, base or root form. Due

to common problems of standard syntactical stemmers [39], we adapted the semantic

stemmer provided by WordNet. The Stemming step receives as input a terms list.

For each term in the list is verified that it belongs to the WordNet dictionary. If

it does so, the corresponding stems are added to the result list. Otherwise, the

original term is added to the result list, considered as an abbreviation or acronym.

After generating both lists of stems, their compatibility is calculated considering

semantic information. This information is expressed as a vector of integers v =

{t, e, s, h1, h2} including: the total terms between both lists (t), the identical (exact)

terms (e), synonyms (s), hyperonyms (h1) and hyponyms (h2). For example, let be

the identifiers GetReservation and GetCurrentBooking extracted from the cases

of the Car Rental example in Section 4.1. According to the term lists semantic

comparison, these identifiers present:

• Four distinct terms: (Get, Reservation, Current, Booking)

• One exact (identical) term: Get

• One synonym: (Reservation, Booking)

• No hypo/hyperonyms

Using these values in the vector v as input, the Identifiers Compatibility Value is

calculated according to Formula 3.

ICV alue =
e+ s+ 0.5 ∗ (h1 + h2)

t− s
(3)

Example. Let be the identifiers GetReservation and GetCurrentBooking ex-

tracted from the interfaces of the Car Rental example, by replacing the values in

Formula 3 we obtain:

A. De Renzis et al. / Electronic Notes in Theoretical Computer Science 321 (2016) 89–11298

Fig. 5. Length between “compact” and “truck” in the WordNet hierarchy

ICV alue =
1 + 1 + 0.5 ∗ (0 + 0)

4− 1
=

2

3
= 0.66

Which indicates a compatibility value of 0.66 between the identifiers

GetReservation and GetCurrentBooking – considering that the maximum value

for ICV alue is 1, the obtained value indicates a moderate to strong compatibility

between the identifiers.

4.2.2 JWNL-based Identifiers Evaluation

The JWNL implementation calculates the compatibility value according to two main

additional steps: generation of the normalized depth matrix and term matching

maximization.

First, the Normalized Depth matrix (ND) is generated. The depth is defined as

the shortest path between two terms in the WordNet hierarchy. These values are

normalized by the maximum depth of the WordNet hierarchy (16). Formally, the

normalized depth is calculated according to Formula 4.

NormalizedDepth(ti, tj) =
2D − length(ti, tj)

2D
(4)

where length(ti, tj) = shortest path between ti, tj in the WordNet hierarchy, D is

the maximum tree depth (16)

Example. Figure 5 shows an excerpt of the WordNet hierarchy, showing different

types of vehicles. It shows that the length between the concepts compact and truck

is 3, and the length between compact and motor vehicle is 2. These values indicate

that compact and motor vehicle are more similar than compact and truck –

according to JWNL.

A. De Renzis et al. / Electronic Notes in Theoretical Computer Science 321 (2016) 89–112 99

Accounting this notion of length, lets consider the two identifiers GetReservation

and GetCurrentBooking (analyzed in Section 4.2.1). The ND matrix will be a

2x3 matrix containing the length between each pair of terms in the identifiers, as

shown in Table 2. Notice that ND(Reservation,Booking) = 1 since these terms

are synonyms in the WordNet hierarchy (their path length is zero).

Table 2
Normalized Depth matrix for the identifiers GetReservation and GetCurrentBooking

Get Current Booking

Get 1.00 0.56 0.72

Reservation 0.72 0.72 1.00

Higher is better. Maximum and minimum values are 1 and 0 respectively.

After calculating the ND matrix, the best term matching (among all possible pair-

wise combinations) must be selected – i.e., the combination of terms from both

terms lists that maximizes their compatibility. For each possible pair-wise term

assignment (ti, tj) between both lists, the similarity value is obtained from the

corresponding matrix cell NDij . The value of each possible term matching is the

sum of all pair-wise assignments that compose it (assignSum). The matching with

the highest value is obtained through the Hungarian method [23], as an instance of

the allocation problem.

Finally, the identifiers compatibility value (ICV alue) using JWNL is calculated

according to Formula 5, which weights the sum of the pair-wise assignments of terms

according to the maximum number of terms in the identifiers under analysis.

ICV alue =
assignSum

max(n,m)
(5)

where n and m are the number of terms in both terms lists.

Example. Considering the ND matrix shown in Table 2, the term matching

that maximizes the compatibility between the identifiers consists of the following

pair-wise assignments:

• [Get,Get], stored in the cell ND1,1 = 1.00

• [Reservation, Booking], stored in the cell ND2,3 = 1.00

Then, replacing the corresponding values in Formula 5, the compatibility value be-

tween identifiers GetReservation and GetCurrentBooking is calculated as follows:

ICV alue =
1 + 1

max(2, 3)
=

2

3
= 0.66

A. De Renzis et al. / Electronic Notes in Theoretical Computer Science 321 (2016) 89–112100

4.2.3 DISCO-based Identifiers Evaluation

The DISCO-based implementation calculates the compatibility value according to

two main steps: generation of the co-occurrences matrix and term matching maxi-

mization.

First, the Co-occurrences matrix (Co) is generated. This matrix contains the

similarity values between each term from both terms lists. These values are the

result of applying the co-occurrences similarity notion of DISCO, explained earlier.

After calculating the Co matrix, the best term matching (among all possible pair-

wise combinations) must be selected. Similarly to the JWNL-based implementation,

this step uses the Co matrix as input for the Hungarian algorithm. The matching

with the highest value will be the most compatible. Such matching is also obtained

through the Hungarian method – introduced in Section 4.2.2. Finally, the identifiers

compatibility value using DISCO is calculated according to Formula 5.

Example. Lets consider the pair of identifiers of the previous section – namely

GetReservation and GetCurrentBooking. The Co matrix will be a 2x3 matrix

containing the co-occurrence values between each pair of terms in the identifiers, as

shown in Table 3. Notice that, when using DISCO rather than WordNet, synonyms

do not present a co-occurrence value of 1 – as can be seen for the pair (Reservation,

Booking).

Table 3
Co-occurrences matrix for the identifiers GetReservation and GetCurrentBooking

Get Current Booking

Get 1.00 0.006 0.02

Reservation 0.01 0.01 0.1

Higher is better. Maximum and minimum values are 1 and 0 respectively.

Considering the Co matrix shown in Table 3, the term matching that maximizes the

compatibility between the identifiers consists of the following pair-wise assignments:

• [Get,Get], stored in the cell Co1,1 = 1.00

• [Reservation, Booking], stored in the cell Co2,3 = 0.1

Then, replacing the corresponding values in Formula 5, the compatibility value be-

tween identifiers GetReservation and GetCurrentBooking is calculated as follows:

ICV alue =
1 + 0.1

max(2, 3)
=

1.1

3
= 0.36

4.3 Return type

Data Type Equivalence

Conditions for data type equivalence involves the subsumes relationship or sub-

typing, which implies a direct subtyping in case of built-in types in the Java lan-

guage [18], as shown in Table 4. It is expected that types on operations from a

A. De Renzis et al. / Electronic Notes in Theoretical Computer Science 321 (2016) 89–112 101

new case have at least as much precision as types on operations from a candidate

service (case in the KB). For example, if opN ∈ newCase includes an int type, a

corresponding operation opC ∈ candidateService should not have a smaller type

(among numerical types) such as short or byte. However, the String type is a

special case, which is considered as a wildcard type since it is generally used in

practice by programmers to allocate different kinds of data [31]. Thus, we consider

String as a supertype of any other built-in type.

Table 4
Subtype Equivalence

opN type opC type

char string

byte short, int, long, float, double, string

short int, long, float, double, string

int long, float, double, string

long float, double, string

double string

Complex Data Types

Complex data types imply a special treatment in which the comprising fields

must be equivalent one-to-one with fields from a counterpart complex type. This

means, each field of a complex type from an operation opN ∈ newCase must match

a field from the complex type in opC ∈ candidateService – though extra fields from

newCase may be initially left out of any correspondence.

The return type similarity value is calculated according to the following cases:

• Ret = 3: Equal Return Type.

• Ret = 2: Equivalent Return Type (Subtyping, String or Complex types).

• Ret = 1: Non-equivalent complex types or precision loss.

• Ret = 0: Not compatible .

Example. Figure 6 shows the field-to-field equivalence (considering only data types)

for two complex types of the Car Rental example, which contains information about

booking cancellation rates. The three fields of the CancelInformation type have

a one-to-one correspondence with three fields of the CancellationCoverRate. The

dotted arrows indicate a likely correspondence between the String types. For this

example the return type similarity value is Ret = 2.

A. De Renzis et al. / Electronic Notes in Theoretical Computer Science 321 (2016) 89–112102

Fig. 6. Equivalence of Complex Data types for the CarRental example

4.4 Parameters evaluation

The algorithm for Parameters Evaluation consists of calculating three matrices:

Type (T), Name (N) and Compatibility (Comp). For the three matrices, the cell

Mij represents the compatibility value between the i-th parameter of opN and the

j-th parameter of opC – where opN is an operation of the required functionality

(new case) and opC is an operation of a candidate service (case in the KB).

In the T matrix, the notions of structural data type equivalence and subtyp-

ing are used to assess parameter types. The goal of the T matrix is to store the

relationship between all pairs of parameter types from both operations. A cell Tij

contains the compatibility value between the i-th parameter’s type of opN and the

j-th parameter’s type of opC , according to Formula 6.

⎧⎪⎨
⎪⎩
Type(Pi) = Type(Pj) Tij = 2

Type(Pi) <: Type(Pj) Tij = 1.5

otherwise Tij = 1

(6)

where <: represents the sutyping relationship

The N matrix contains the compatibility values between the name of each pa-

rameter from opN and the name of each parameter from opC . The underlying

rationale is similar to the T matrix. The cell Nij contains the compatibility value

between the i-th parameter’s name of opN and the j-th parameter’s name of opC .

This value is the result of applying the Identifiers Evaluation Algorithm presented

in Section 4.2. Therefore, these values depend on the chosen similarity function

implementation – from the three alternatives.

Then, the Compmatrix is generated from the T and N matrices. The goal of the

Comp matrix is to store the compatibility value between all parameter pairs from

operations opN and opC , considering structural and semantic aspects – collected in

the T matrix and the N matrix respectively. Each cell Compij stores the product

between Tij and Nij . Thus: Compij = Tij ∗Nij .

After calculating the Comp matrix, the best parameter matching (among all

possible pair-wise combinations) must be selected – i.e., the combination of pa-

rameters from opN and opC that maximizes their compatibility. This step applies

the Hungarian algorithm to calculate the best pair-wise parameters assignments –

similarly to the term matching maximization in JWNL-based Identifiers Evaluation

(Section 4.2).

A. De Renzis et al. / Electronic Notes in Theoretical Computer Science 321 (2016) 89–112 103

4.5 Exceptions

Structural conditions for exceptions are evaluated as follows. First, any operation

opN may define default exceptions – i.e., using the Exception type – or ad-hoc

exceptions. Likewise, an operation opC from a candidate case may define a fault

(the WSDL name for non-standard outputs of operations) as a message including

an specific attribute. The exceptions similarity value is calculated according to the

following cases:

• Exc = 1: opN and opC have equal amount, type and order for exception.

• Exc = 2: opN and opC have equal amount and type for exception into the list.

• Exc = 3: if nonempty opN exception list then nonempty opC exceptions list.

• Exc = 0: opN and opC exceptions are not compatible.

In fact, in the context of Web Services, faults definitions have not become a common

practice [8]. However, the Case-based Reasoner considers this simple schema to

analyze exceptions.

Example. Lets consider the following operations for obtaining rates for Car

Rental, according to different vehicles and conditions (from the cases presented in

Section 4.1):

• getCarFee(requiredCarSupplements: CarSupplements): Fee
throws unavailableSupplementsException;

• getRate(currencyCode: String, vehicleTypeId: long,
AutomaticGearPreference:
boolean): Rate throws vehicleNotFoundException,
rateNotFoundException;

If we consider getCarFee as opN ∈ newCase and getRate as opC ∈ candidateCase

respectively, the exceptions analysis shows that the required operation throws an

exception that may have two likely exceptions (form different types) in the candidate

service’s operation – as defined in case (2).

4.6 Similarity value

The similarity value between two cases (CN , CC) is calculated according to For-

mula 7.

sim(CN , CC) =

∑N
i=1(Max(simOp(opNi , CC))

N
(7)

where N is the number of operations in CN , and simOp is the best equivalence
value simOpV alue(opNi , opCj) for all op

C
j in CC

The value for operation similarity (simOpV alue) between an operation opN and

a potentially compatible operation opC is calculated according to Formula 8.

simOpV alue(opNi , opCj) = Ret+ Exc+Name+ Par (8)

A. De Renzis et al. / Electronic Notes in Theoretical Computer Science 321 (2016) 89–112104

Table 5
Operations matching for the Car Rental cases

RentaCar (newCase) CarRentalBrokerService (candidateCase) simOpV alue*

getReservation getCurrentBooking 7.3

getCarFee getRate 2.4

cancelReservation cancelBooking 6.4

sim(newCase, candidateCase) 5.4

* Higher is better

Table 6
Summary of the required calculations

Attribute Weight* Evaluation Result**

service name (Formula 3): sN 0.1 ICV alue(CarRental, CarRentalBrokerService) 0.5

category (Formula 3): cat 0.1 ICV alue(Business,Business) 1

operations number (Formula 2):#op 0.3 sim(3, 4) 1

operations (Formula 7): ops 0.6 sim(CarRental, CarRentalBrokerService) 5.4

* The sum of all weights is 1. The higher the weight the more important the attribute.

** Higher is better.

Example.

Lets consider the full cases of the Car Rental case study, presented in Section 4.1.

Table 5 shows, for each required operation opN ∈ newCase, the operation opC ∈
candidateCase with higher compatibility (according to their adapOpV alue) in the

interface of the candidate Web Service. Calculations were done using the WordNet

semantic basis accessed through the JWI library.

As the higher (better) sim value is 8, the obtained sim value (5.4) can be

considered as moderate to high.

After obtaining the similarity value for operations, we can calculate the distance

between the cases presented in 4 according to the Formula 1. Table 6 shows a

summary of the required calculations to obtain the distance value.

Let be new case CN = CarRental and candidate case CC =

CarRentalBrokerService the distance between the cases is:

DIST (CN , CC) = 0, 1 ∗ sN + 0, 1 ∗ cat+ 0, 3 ∗#op+ 0, 6 ∗ ops
DIST (CN , CC) = 0, 1 ∗ 0, 5 + 0, 1 ∗ 1 + 0, 3 ∗ 1 + 0, 6 ∗ 5, 4

A. De Renzis et al. / Electronic Notes in Theoretical Computer Science 321 (2016) 89–112 105

DIST (CN , CC) = 3, 69

5 Experimental evaluation

This section describes the experimental evaluation of the CBR for service selection

presented in the previous sections. The goal of the experiments is to measure

the overall performance of the three alternative implementations of the CBR for

service selection in comparative terms. We adopted an empirical, automatized and

widely used methodology [6, 16, 28, 36]. Our hypothesis is that CBR for service

selection could increase visibility of the most relevant services for certain required

functionality.

5.1 Experiment configuration

The considered data-set consisted in 62 services extracted from the data-set of [20].

We have generated (through a tool developed in our group) one case for each ser-

vice to settle the initial KB, according to the Object-oriented case representation

presented in Section 3.1.

First, we extracted operation signatures from the 62 relevant services. Each

new case consisted of three operations representing required functionality. Then, we

applied interface mutation techniques [17] to generate 506 new cases (only problem

part). We applied three mutation operators 9 to each operation signature:

• Encapsulation – where a random number of parameters are encapsulated as fields

of a new complex data type.

• Flatten – where a random number of complex parameters are flattened generating

as many parameters as fields in the complex type.

• Upcasting – where the return type and/or a random number of parameters are

upcasted either to a direct supertype or to the wildcard String type.

5.2 Case-based Reasoning Execution

To execute the CBR for service selection, we have defined one scenario consider-

ing three implementations according to the similarity functions presented in Sec-

tion 4, and the 506 new cases generated by mutating operation signatures. Consid-

ering traditional techniques of service retrieval and selection, we also populated the

EasySOC service registry [10] with the relevant services, and then queried such reg-

istry with the operation signatures. EasySOC leverages Vector Space Model (VSM)

and Web Service query-by-example (WSQBE) to represent Web Service descriptions

and queries.

The three versions of the CBR for service selection were executed to rank the

retrieved cases. Finally, the results of each new case are measured in terms of two

9 https://code.google.com/p/querymutator/

A. De Renzis et al. / Electronic Notes in Theoretical Computer Science 321 (2016) 89–112106

https://code.google.com/p/querymutator/

well-known Information Retrieval metrics: recall and precision-at-n.

5.3 Results

Considering the results list as the first 10 retrieved cases for each query, we compared

the results according to precision-at-n and recall.

Precision-at-n

Indicates in which position are retrieved the relevant services, at different cut-off

points. For example, if the top five documents are all relevant to a query and the

next five are all non-relevant, precision-at-5 is 100%, while precision-at-10 is 50%.

In this case, precision-at-n has been calculated for each query with n in [1–10].

Recall

Formally, Recall is defined as:

Recall =
Relevant

R
Where Relevant is the number of relevant services includes in the results list and

R is the number of relevant services for a given query.

In particular, for this experiment the numerator of the Recall formula could be

0 or 1 – when the relevant service is/is not included within the results respectively

– and the denominator (Retrieved) is always 10.

Figure 7a depicts the cumulative average precision-at-n (with n=[1,10]) for the

three implementations of the CBR approach (JWI-, JWNL- and DISCO-based) and

the EasySOC registry. The CBR for service selection obtained precision values over

90% for the first position of the results (with n = 1) with any implementation. Also,

the difference among the precision-at-n of the three CBR implementations was not

significant. The CBR for service selection outperformed EasySOC registry between

20% and 40% for the first positions of the results lists (with n=[1,4]).

Figure 7b shows Recall results for the three implementations of the CBR-based

service selection and the EasySOC registry. The results show that the CBR for

service selection presents high recall values – over 98% – independently of the un-

derlying implementation. This means that the relevant case for the given problem is

almost always retrieved. The CBR for service selection outperformed recall results

for EasySOC by about a 10%, although the EasySOC presented highly competitive

values (over 85%) for recall as well.

5.4 Discussion

The results of the experiments have shown that our CBR for service selection ap-

proach achieves a high precision and recall with the three alternative implemen-

tations of the similarity function. Comparison with a service discovery registry

(EasySOC) presented encouraging results as well. This confirms our hypothesis, as

A. De Renzis et al. / Electronic Notes in Theoretical Computer Science 321 (2016) 89–112 107

(a) Precision-at-n

(b) Recall

Fig. 7. Results for the CBR implementations and EasySOC

CBR increased visibility of relevant services during service selection. This is sig-

nificant since users tend to select higher ranked search results, regardless to their

actual relevance [2]. The overall performance of the approach with multi-operation

queries suggest the suitability for matching complex required functionality with

many candidate services. In this direction, the reasoner could be extended to the

A. De Renzis et al. / Electronic Notes in Theoretical Computer Science 321 (2016) 89–112108

Web Service Composition (WSC) problem, by means of case adaptation using the

K-nearest neighbors (K-NN) strategy [38]. Finally, the threshold value over the

similarity function can be used to fine-tune the reasoner, according to the size of

the initial KB and the domain. In this experiment, an average of 57% of the solved

cases was added to the KB as new cases – i.e., 288 of the 506 queries.

As limitations, we can mention that the results can be specific for this experi-

ment, and cannot be merely generalized to other experimental configurations. The

dataset was relatively small (62 services), and the threshold values were fine-tunned

by trial and error in the experimental scenario. In real scenarios, it would be wise

to account the expert feedback from the Case Revision step to adjust the threshold

value. Finally, the initial set of cases and solutions in a real scenario has to be

manually built, which can be time consuming and also need expert feedback.

6 Related Work

6.1 Case-based Reasoning for Web Services

AI has contributed significantly to the Web Services field, either in the form of

planning [4, 32, 34], abstraction and refinement techniques [21], or case based rea-

soning [24, 26].

The work in [24] presents an approach for WSC using CBR. This approach

combines CBR with semantic specifications of services in the OWL-S language [27]

to firstly reduce the search space of Web Services (i.e., improve service discovery),

and then build an abstract composite process. Authors assume that Web Service

providers are in charge of semantically annotating functional service descriptions

according to the OWL-S ontology. However, this hardly occurs in practice, and

most domains currently lack a descriptive ontology [6]. Our work exploits the most

possible information in the (always available) service functional descriptions, to

build the case representation.

The work in [26] also applies CBR for WSC. Similarly to our work, CBR is

applied for service discovery, as a crucial step in the composition process. This

approach requires knowing a priori a set of relationships between the services that

compose the KB – e.g., dependence, substitutability and independency. However,

this approach is strongly dependant of the Universal Description, Discovery and

Integraton (UDDI) registry, that lacks a broad adoption in the industry [11]. Our

approach is not tied to any particular discovery registry.

6.2 Structural-semantic service selection

Web Service similarity is addressed in [37] as a key solution to find relevant sub-

stitutes for failing Web Services. The approach calculates lexical and semantic

similarity between identifiers comprising service names, operations, input/output

messages, parameters, and documentation. To compare message structures and

complex XML schema types, authors make use of schema matching. However, a

straightforward comparison of complex types can be performed without dealing with

A. De Renzis et al. / Electronic Notes in Theoretical Computer Science 321 (2016) 89–112 109

the complexity of an XML schema [16].

The Woogle search engine for Web Services is presented in [13]. Based on similar-

ity search, Woogle returns similar Web Services for a given query based on operation

parameters as well as operations and services descriptions. Authors introduced a

clustering algorithm for grouping descriptions in a reduced set of terms. After that,

similarity between terms is measured using a classical IR metric such as TF/IDF.

The provided solution is limited to evaluating similarity using semantic relations

between clustered terms.

The work in [33] extends UDDI with UDDI Registry By Example (URBE), a

Web Service retrieval algorithm for substitution purpose. The approach considers

the relationships between the main elements composing a service specification (port-

Type, operation, message, and part) and, if available, semantic annotations. The

weak point of the approach is, as we stated earlier, that providers do not annotate

their services often in practice, even when introducing annotations provides a more

accurate description of the service.

7 Conclusions and Future Work

This paper presented the application of CBR to the problem of service discovery and

selection. This approach leverages the semantic and structural information gathered

from always-available functional descriptions of services. Also, the approach com-

bines notions of CBR with the use of WordNet and DISCO as lightweight semantic

basis. This results in a Case-based Reasoner capable of increasing the visibility of

relevant services to fulfill certain required functionality – the relevant service was

returned as suggested solution in about a 90% of the cases.

The proposed scheme was tested for three different similarity functions, which

shown similar performance by considering the whole semantic and structural infor-

mation available from services. However, it is mandatory to define and fine-tune

adequately the threshold values to circunscribe the growing of the knowledge base.

This can be done at runtime, accounting feedback from domain-experts and service-

experts. As future work, we plan to extend our reasoner to the WSC field, by

combining different cases as a solution for complex required functionality [26].

References

[1] Agnar Aamodt and Enric Plaza. Case-based reasoning; foundational issues, methodological variations,
and system approaches. AI COMMUNICATIONS, 7(1):39–59, 1994.

[2] E. Agichtein, E. Brill, S. Dumais, and R. Ragno. Learning User Interaction Models for Predicting Web
Search Result Preferences. In 29th Annual ACM SIGIR International Conference on Research and
Development in Information Retrieval, pages 3–10. ACM Press, 2006.

[3] Marcelo Armentano, Daniela Godoy, Marcelo Campo, and Anaĺıa Amandi. Nlp-based faceted search:
Experience in the development of a science and technology search engine. Expert Syst. Appl.,
41(6):2886–2896, 2014.

[4] Piergiorgio Bertoli, Marco Pistore, and Paolo Traverso. Automated composition of web services via
planning in asynchronous domains. Artificial Intelligence, 174(3):316–361, 2010.

[5] M. Bichler and K.J. Lin. Service-Oriented Computing. Computer, 39(3):99–101, 2006.

A. De Renzis et al. / Electronic Notes in Theoretical Computer Science 321 (2016) 89–112110

[6] Djelloul Bouchiha, Mimoun Malki, Abdullah Alghamdi, and Khalid Alnafjan. Semantic web service
engineering: Annotation based approach. Computing and Informatics, 31(6):1575–1595, 2012.

[7] Frans Coenen. Data mining: past, present and future. The Knowledge Engineering Review, 26(01):25–
29, 2011.

[8] M. Crasso, J. M. Rodriguez, A. Zunino, and M. Campo. Revising WSDL Documents: Why and How.
IEEE Internet Computing, 14(5):48–56, 2010.

[9] M. Crasso, A. Zunino, and M. Campo. A survey of approaches to web service discovery in service-
oriented architectures. Journal of Database Management (JDM), 22(1):102–132, 2011.

[10] Marco Crasso, Cristian Mateos, Alejandro Zunino, and Marcelo Campo. Easysoc: Making web service
outsourcing easier. Information Sciences, 259:452 – 473, 2014.

[11] Yue Dai, Yongxin Feng, Yuntao Zhao, and Yingchun Huang. A method of uddi service subscription
implementation. In Software Engineering and Service Science (ICSESS), 2014 5th IEEE International
Conference on, pages 661–666. IEEE, 2014.

[12] A. De Renzis, M. Garriga, A. Flores, A. Cechich, and A. Zunino. Semantic-structural assessment
scheme for integrability in service-oriented applications. In Computing Conference (CLEI), 2014 XL
Latin American, pages 1–11, Sept 2014.

[13] Xin Dong, Alon Halevy, Jayant Madhavan, Ema Nemes, and Jun Zhang. Similarity search for web
services. In Proceedings of the International Conference on Very Large Data Bases VLDB, pages
372–383. VLDB Endowment, 2004.

[14] J. Erickson and K. Siau. Web Service, Service-Oriented Computing, and Service-Oriented Architecture:
Separating hype from reality. Journal of BD Management, 19(3):42–54, 2008.

[15] Mark Alan Finlayson. Java libraries for accessing the princeton wordnet: Comparison and evaluation.
In Proceedings of the 7th Global Wordnet Conference, Tartu, Estonia, 2014.

[16] M. Garriga, A. Flores, C. Mateos, A. Zunino, and A. Cechich. Service selection based on a practical
interface assessment scheme. International Journal of Web and Grid Services, 9(4):369–393, October
2013.

[17] S. Gosh and A. P. Mathur. Interface Mutation. Software Testing, Verification and Reliability, 11:227–
247, 2001. http://www.interscience.wiley.com.

[18] J. Gosling, B. Joy, G. Steele, and G. Bracha. JavaTM Language Specification. Sun
Microsystems, Inc. Addison-Wesley, US, 3rd. edition, 2005. http://java.sun.com/docs/books/
jls/third edition/html/j3TOC.html.

[19] E. Hatcher, O. Gospodnetic, and M. McCandless. Lucene in Action. Manning Publications Greenwich,
CT, 2004.

[20] A. Heß, E. Johnston, and N. Kushmerick. Assam: A tool for semi-automatically annotating semantic
web services. In The Semantic Web–ISWC 2004, pages 320–334. Springer, 2004.

[21] Hyunyoung Kil, Wonhong Nam, and Dongwon Lee. Efficient abstraction and refinement for behavioral
description based web service composition. In IJCAI, pages 1740–1745, 2009.

[22] Peter Kolb. Experiments on the difference between semantic similarity and relatedness. Proceedings of
the 17th Nordic Conference on Computational Linguistics - NODALIDA’09, May 2009.

[23] Harold W. Kuhn. The hungarian method for the assignment problem. Naval Research Logistic
Quarterly, 2:83–97, 1955.

[24] Soufiene Lajmi, Chirine Ghedira, and Khaled Ghedira. Cbr method for web service composition. In
Advanced Internet Based Systems and Applications, pages 314–326. Springer, 2009.

[25] T. Warren Liao, Zhiming Zhang, and Claude R. Mount. Similarity measures for retrieval in case-based
reasoning systems. Applied Artificial Intelligence, 12(4):267–288, 1998.

[26] Benchaphon Limthanmaphon and Yanchun Zhang. Web service composition with case-based reasoning.
In Proceedings of the 14th Australasian database conference-Volume 17, pages 201–208. Australian
Computer Society, Inc., 2003.

[27] D. Martin, M. Burstein, D. McDermott, S. McIlraith, M. Paolucci, K. Sycara, D. McGuiness, E. Sirin,
and N. Srinivasan. Bringing semantics to web services with owl-s. World Wide Web, 10:243–277, 2007.

[28] C. Mateos, M. Crasso, A. Zunino, and J. L. Ordiales. Detecting WSDL bad practices in code–first Web
Services. International Journal of Web and Grid Services, 7(4):357–387, 2011.

A. De Renzis et al. / Electronic Notes in Theoretical Computer Science 321 (2016) 89–112 111

[29] R. McCool. Rethinking the Semantic Web. IEEE Internet Computing, 9(6):86–87, 2005.

[30] George Miller, Richard Beckwith, Christiane Fellbaum, Derek Gross, and Katherine Miller.
Introduction to Wordnet: An On-line Lexical Database. International Journal of Lexicography,
3(4):235–244, 1990.

[31] J. Pasley. Avoid XML Schema Wildcards For Web Service Interfaces. IEEE Internet Computing,
10(3):72–79, 2006.

[32] Marco Pistore, Annapaola Marconi, Piergiorgio Bertoli, and Paolo Traverso. Automated composition
of web services by planning at the knowledge level. In IJCAI, pages 1252–1259, 2005.

[33] Pierluigi Plebani and Barbara Pernici. Urbe: Web service retrieval based on similarity evaluation. IEEE
Transactions on Knowledge and Data Engineering, 21(11):1629–1642, 2009.

[34] J. Rao and X. Su. A survey of automated web service composition methods. In International Workshop
on Semantic Web Services and Web Process Composition (SWSWPC), pages 43–54, 2004.

[35] Christopher K Riesbeck and Roger C Schank. Inside case-based reasoning. Psychology Press, 2013.

[36] E. Stroulia and Y. Wang. Structural and Semantic Matching for Assessing Web-Services Similarity.
International Journal of Cooperative Information Systems, 14:407–437, 2005.

[37] O. Tibermacine, C. Tibermacine, and F. Cherif. Wssim: a tool for the measurement of web service
interface similarity. In Proceedings of the french-speaking Conference on Software Architectures
(CAL’13), Toulouse, France, May 2013.

[38] Ian Watson. Case-based reasoning is a methodology not a technology. Knowledge-based systems,
12(5):303–308, 1999.

[39] Peter Willett. The porter stemming algorithm: then and now. Program: electronic library and
information systems, 40(3):219–223, 2006.

A. De Renzis et al. / Electronic Notes in Theoretical Computer Science 321 (2016) 89–112112

	Introduction
	Service Selection
	Case-based Reasoning for Service Selection
	Case Representation
	Case Retrieval
	Case Reuse and Revision
	Case Retraining

	Operations similarity
	Case Study
	Identifiers Evaluation
	Return type
	Parameters evaluation
	Exceptions
	Similarity value

	Experimental evaluation
	Experiment configuration
	Case-based Reasoning Execution
	Results
	Discussion

	Related Work
	Case-based Reasoning for Web Services
	Structural-semantic service selection

	Conclusions and Future Work
	References

