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a b s t r a c t

In order to test if orally supplied Euglena sp. cells modulate the physiological status of bivalves during
bioremediation procedures, we evaluated the effect of Euglena gracilis diet on the immune response,
oxidative balance and metabolic condition of Diplodon chilensis exposed to sewage water pollution.
Mussels were fed for 90 days with E. gracilis (EG) or Scenedesmus vacuolatus (SV, control diet), and then
exposed for 10 days at three sites along the Pocahullo river basin: 1) an unpolluted site, upstream of the
city (control, C); 2) upstream (UpS) and 3) downstream (DoS) from the main tertiary-treated sewage
discharge, in the city of San Martín de los Andes, Northwest Patagonia, Argentina. Our results show that
the total hemocyte number decreases while pollution load increases along the river course for both, EG
and SV mussels. Phagocytic activity is higher in EG mussels than in SV ones under all conditions. Reactive
oxygen species (ROS) production in hemocytes increases with the increase in the pollution load, being
significantly higher for EG mussels than for SV ones at DoS; no changes are observed for total oxyradical
scavenging capacity (TOSC). Hemocytes' viability is increased for E. gracilis diet at C and remains un-
changed in this group of mussels when exposed at the polluted sites. Lysosomal membrane stability is
higher in EG mussels than in SV ones for all conditions, although it is decreased at polluted sites
compared with that at C. Antioxidant (catalase) and detoxifying (gluthatione S-transferase) defenses are
generally lower in gills and digestive gland of EG mussels than in SV ones. Lipid peroxidation (TBARS) is
evident in gills of EG mussels at C, and in digestive gland of the same group, at all the sites. Gill mass
factor (GF) is affected by the E. gracilis diet; it is increased at C and decreased at polluted sites when
compared with that of SV ones. Digestive gland mass factor (DGF) is higher in EG mussels than in SV
ones. In D. chilensis, continuous and long term feeding with E. gracilis cells favors immune response and
reduces the damage caused by sewage pollution exposure on hemocytes. Nevertheless, diet and
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transplantation procedures may produce negative effects on the oxidative balance of gills and digestive
gland and should be taken into account for bioremediation strategies.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Euglena spp. cells are being considered as a promising dietary
complement to be used in aquaculture activities [1,2]. These uni-
cellular flagellates are able to synthesize and accumulate high
amounts of paramylon, a b-1,3 glucan, which has been reported as
an efficient immunostimulant for the rainbow trout [3,4] and for
fingerlings of the fish Labeo rohita [5]. Orally supplied paramylon
extracted from Euglena gracilis, enhances antioxidant responses in
rat liver after carbon tetrachloride injection [6]. In addition, the
high content of proteins in Euglena spp. cells promotes growth rates
in farmed crustaceans and fish [3,7e9], while polyphenols, flavo-
noids, tannins, b-carotene, vitamin C and E may be present in these
cells as a source of vitamins and antioxidant compounds, contrib-
uting to a healthy general status [2]. In hemocytes of bivalves,
exposure to b-glucans increases nitric oxide production, peroxidase
and antibacterial activity and phagocytosis during in vitro and
injection-based experiments [10e13]. New evidence has been
recently published for the immunostimulant effect of orally sup-
plied E. gracilis cells on bivalves exposed to Escherichia coli [14].

Filtering bivalves are proposed as useful bioremediation tools
against anthropogenic pollution, containing metals, organic matter,
bacteria, algae and nutrients, eg. Refs. [15e17]. In particular, the
freshwater mussel Diplodon chilensis is able to filter high amounts
of particulate organic matter, coliform bacteria and algae, reducing
microorganism and nutrient loads from eutrophicated and bacteria
polluted water bodies [18e22]. Regarding this, Sabatini et al. [21]
have found that D. chilensis may clear Escherichia coli, a typical
bacterium found in sewage water, at a rate of 0.510 ± 0.036 L h�1

per gram of dry soft tissue mass (DTM), while Bianchi et al. [22]
report that enteric bacteria are efficiently removed from sewage
polluted water at a rate of 0.155 ± 0.01 L h�1 per gram of DTM.
However, it has been shown that exposure to E. coli may cause
hemocyte damage [14] and increased lipid peroxidation in gills and
digestive gland of this bivalve [14,21].

In our previous work [14], feeding with E. gracilis cells has been
evaluated in D. chilensis in order to improve its physiological re-
sponses against E. coli. The cited work brought promising results
concluding that E. gracilis can be used as a nutritional and immune
protective diet complement, suitable for filtering bivalves. Never-
theless, the variety of pollutants found in sewage water may have a
different effect compared with those of the isolated bacteria. It has
been reported that organic and inorganic pollutants contained in
domestic effluents may cause alterations in the physiological status
of bivalves, modifying cellular immune responses and viability
[23e26] and causing genotoxic effects [27]. In addition, oxidative
stress and detoxification mechanisms are increased while growth
rate is altered in bivalves exposed to sewage polluted aquatic en-
vironments [26]. Similar results were obtained for wild and caged
D. chilensis exposed to sewage water pollution in the field
[21,22,28]. Thus, in order to test whether orally supplied Euglena sp.
cells modulate the physiological status of bivalves during biore-
mediation procedures, we evaluated the effect of E. gracilis diet on
the immune response, oxidative balance and metabolic condition
of D. chilensis, after field exposure to different concentrations of
sewage water pollution in a North-Patagonian river.
2. Materials and methods

2.1. Mussel collection and handling

Mussel collection, experimental feeding and field exposure
were performed during the non-reproductive season of D. chilensis
(May to August, 2012) in order to avoid physiological changes due
to reproductive status [29]. Adult D. chilensis (n ¼ 60;
68.13 ± 0.66 mm shell length) were collected by a diver from 1.5 m
depth at an unpolluted area in the north coast of Lacar lake (Yuco,
40� 100 S, 71� 310 3000 W). Mussels were immediately transported to
the laboratory and placed in aerated tanks (150 individuals per m2)
containing dechlorinated tap water.
2.2. Strains

Lyophilized cells of E. gracilis (UTEX 753 strain, from the Culture
Collection of Algae of Texas University, USA) and of the green algae
Scenedesmus vacuolatus (BAFC CA4 strain from Laboratory of
Phycology, Departamento de Biodiversidad y Biología Experi-
mental, Facultad de Ciencias Exactas y Naturales, Universidad de
Buenos Aires) used in this work correspond to the same cultures
previously used by Bianchi et al. [14]. Both experimental diets were
set at 0.133 mg of lyophilized cells per mussel per feeding event,
and each mussel received a ration of 0.128 mg paramylon per
feeding, contained in lyophilized E. gracilis cells [14].
2.3. Experimental feeding

During 21 days of acclimation in laboratory, individuals were fed
three times a week with S. vacuolatus. After acclimation, mussels
were sorted into two groups: SV (n ¼ 30), fed with S. vacuolatus
(control diet) and EG (n ¼ 30), fed with E. gracilis. Experimental
diets were supplied three times a week for 90 days, performing
water changes before each feeding. During this period, temperature
was kept at 11.5 ± 1.0 �C.
2.4. Field exposure

After experimental feeding, both SV and EGmussels were sorted
into six groups (n ¼ 5 per group), which were placed into six cages
(iron structure covered with plastic mesh) at a final density of 87
individuals per m2. Two cages with SV or EGmussels were placed at
each of three sites along the Pocahullo river basin, which crosses
suburban and urban areas of San Martín de los Andes city, North-
west Patagonia, Argentina (40�0902400S; 71�2100900W). The sites
were set as follows: C: upstream control, at a site with no signifi-
cant sewage pollution (40� 70 7,400 S; 71� 140 14.200 W); UpS: 40 m
upstream from the main tertiary-treated sewage discharge but
downstream from diffuse discharge of untreated effluents (septic
tank infiltrations and horse-cattle farming) and point source dis-
charges of suburban primary treated sewage (40�09032,100S;
71�21040.900W); and DoS: 20m downstream from themain tertiary-
treated sewage discharge (40�100S; 71�2006000W). After 10 days of
exposure, individuals were collected and transported in the cold to
the laboratory, for immediate processing.
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2.5. Water quality

At the time of mussel collection, water samples (n ¼ 3) were
collected at each site and transported in the cold to the laboratory.
Water temperature (T �C), pH and dissolved oxygen (DO mg L�1)
were recorded at each site. Fecal coliform bacteria concentration
(FC) wasmeasured according to theMost Probable Numbermethod
(MPN/100 mL) [30]. Chlorophyll a was recovered from filtered
samples (Whatman GFF, 0.45 mm pore) by acetone extraction and
its concentration (Chla mg L�1) was calculated according to Lich-
tenthaler [31]. Particulate organic matter (POM mg L�1) was
measured in ashen filtered samples and calculated according to
Juhel et al. [32]. Nitrate (NO3

� mg L�1) was measured by a cadmium
reductionmethod (HACHmethod 8192) and nitrite (NO2

� mg L�1) by
a diazotization method (HACH method 8507). Phosphate
(PO4

�3 mg L�1) was measured by the ascorbic acid method [30].
Sulphate (SO4

�2 mg L�1) was measured by a turbidimetric method
[30] and turbidity (FAU) by Attenuated Radiation Method (HACH
Method 10047). Total cooper (Cu) content was determined by the
bicinchoninic acid method (HACH Method 8506) and expressed as
mg L�1. Total iron (Fe) was determined by the FerroZine Method
(HACH Method 8147) and expressed as mg L�1. Absorbance mea-
surements were carried out with a HACH DR/4000
spectrophotometer.

2.6. Hemocyte response

Hemolymph (2 mL) was withdrawn from the mussels' adductor
muscle (n ¼ 6, for each diet and site) using a sterile syringe. He-
molymph aliquots were placed on ice into sterile microcentrifuge
tubes and analyzed within 1 h from collection.

2.6.1. Immune response and cytotoxicity
Total and viable hemocytes were counted using a Neubauer's

chamber. Viable and nonviable cells were discriminated by the
Trypan Blue exclusion method as described in Bianchi et al. [14].
Total hemocytes were expressed as cells mL�1 of hemolymph and
hemocyte viability was presented as proportion of total hemocytes
[23]. Hemocyte phagocytic activity was evaluated using Congo red
stained Saccharomyces cerevisiae cells, as described in Bianchi et al.
[14]. Phagocytic activity was calculated as phagocyted yeast cells/
viable hemocytes (n ¼ 300 for each mussel), observed in duplicate
under light microscopy (100 e 400 �).

Lysosomal membrane stability was evaluated in hemocytes by
the Neutral Red Retention Time method (NRRT), as described in
Bianchi et al. [14]. Results were expressed as neutral red retention
time 50% (NRRT 50%, min), denoting the time at which 50% of the
cells were stained, using a light microscope at 400 � for observa-
tion [33].

2.6.2. ROS and TOSC
Hemocytes were recovered by centrifugation (500 � g for

20 min), washed and re-suspended in anticoagulant solution (3 g
glucose and 0.36 g trisodium citrate L�1, 60 mOsm L�1, pH 7). ROS
and TOSC were measured in a Qubit fluorometer at 485/530 nm,
using 20,70-dichlorofluorescin diacetate (H2DCF-DA) as substrate
[22]. ROS content was referred to a H2O2 standard curve and results
were expressed as meq H2O2 10�6 viable cells. TOSC was calculated
from the relative area between the curves obtained with and
without the addition of ABAP (peroxyl radical source) and referred
to 106 viable cells.

2.7. Tissue response

Gills and digestive gland were extracted, weighted (g) and
separately homogenized (Omni 1000 motorized homogenizer at
20,000 rpm) in cold phosphate buffer (100mmol L�1, pH 7.0) 1:5 w/
v, containing 0.2 mmol L�1 phenylmethylsulfonil fluoride (Sigma).
Supernatants were obtained after centrifugation (11,000 � g for
15 min at 4 �C, Ependorf AG, Minispin centrifuge) and used for
biochemical analysis. Since protein content in tissue samples varied
significantly among treatments (Section 3.3.2), results for enzyme
activities, and TBARS content were referred to grams of wet tissue
mass (WTM) and not to protein concentration.

2.7.1. Enzyme activities
GST activity was estimated using 1-chloro-2,4-dinitrobenzene

and reduced glutathione as substrates [34]. One GST Unit was
defined as the quantity of enzyme that catalyzes the production of
1 mmol of GS-DNB per min at 25 �C. Results were expressed as U
GST g�1 WTM. CAT activity was estimated by recording the hy-
drolysis of H2O2 [35]. One CAT Unit was defined as the amount of
enzyme needed to catalyze the hydrolysis of 1 mmol of H2O2 per
min at 25 �C. Results were expressed as U CAT g�1 WTM.

2.7.2. Lipid peroxidation
Lipid peroxidation was estimated by the thiobarbituric acid

reactive substances method (TBARS) [36]. Results were expressed
as mmol of TBARS g�1 WTM.

2.8. Metabolic condition

Mussels' metabolic condition was assessed using morphometric
factors. Gill and digestive gland mass factor (GF, DGF) were calcu-
lated according to Bianchi et al. [14]. Thewet mass (g) of each organ
was divided by the shell length3 and multiplied by 100. Protein
content for each tissue was measured according to Bradford [37],
using a bovine seroalbumin standard curve. Results were expressed
as mg of protein g�1 WTM.

2.9. Statistical analysis

Data were presented as mean ± standard error of the mean
(SEM). Normal distribution and homogeneity of variance were
checked by Kolmogorov-Smirnov test and Levene test, respectively.
One-way ANOVA and Newman-Keuls post hoc comparisons were
applied to identify differences among physic-chemical and bacte-
riological data among sites. Two-way ANOVA (diet � site) and
Newman-Keuls post hoc comparisons were used to identify differ-
ences between dietary groups (SV, EG) and among the different
sites in the river (C, UpS, DoS). When statistical assumptions were
not met, data were previously transformed by Log10 or Log10
(x þ 1), when appropriate.

3. Results

3.1. Water quality

Water physic-chemical and bacteriological analyses reveal an
increase in the pollution load along the river course (Table 1).
Concentrations of fecal coliforms (FC), NO3

�, PO4
�3, SO4

�2, total Fe,
and turbidity values increase significantly as follows: C ˂ UpS ˂ DoS
(p < 0.05 for all comparisons). The NO2

� and POM contents are
increased in the polluted sites (UpS, DoS) compared with those in
the control site (p < 0.05; p < 0.001, respectively for both sites).
Total Cu concentrations are higher in DoS than in C (p < 0.001). pH
values decrease significantly in both polluted sites respect to the
control (p < 0.001), while DO values increase under pollution
conditions (p < 0.001). No significant changes are observed inwater
temperature (T�).



Table 1
Physic-chemical and bacteriological water quality at sampling sites in Pocahullo river basin. C: control, with no significant sewage pollution; UpS: upstream from the
tertiary-treated sewage discharge; DoS: downstream from the tertiary-treated sewage discharge. Results for temperature (�C), pH, dissolved oxygen (DO), turbidity, fecal
bacteria coliform (FC), chlorophyll a (Chla), nitrate (NO3

�), nitrite (NO2
�), phosphate (PO4

�3), sulphate (SO4
�2), particulate organic matter (POM), total iron (Fe) and cooper

(Cu) are expressed as mean ± SEM (n ¼ 3). Different characters denote significant differences among sites (p between 0.0001 and 0.05).

C UpS DoS

T (�C) 4.90 ± 0.03 4.01 ± 0.07 4.43 ± 0.07
pH 6.90 ± 0.03a 6.54 ± 0.05b 6.19 ± 0.06c
DO (mg L�1) 11.20 ± 0.06a 12.43 ± 0.03b 12.33 ± 0.03b
Turbidity (FAU) 5.6 ± 0.3a 10.0 ± 0.6b 14.0 ± 0.6c
FC (MPN/100 mL) 15 ± 4a 2350 ± 375b 7000 ± 1155c
Chla (mg L�1) 0.49 ± 0.10a 2.79 ± 0.37b 3.30 ± 0.15c
NO3

� (mg L�1) 0.025 ± 0.003a 0.038 ± 0.005b 0.050 ± 0.003c
NO2

� (mg L�1) 0.0031 ± 0.0005a 0.0052 ± 0.0001b 0.0048 ± 0.0006b
PO4

�3(mg L�1) 0.052 ± 0.003 a 0.153 ± 0.004b 0.201 ± 0.001c
SO4

�2 (mg L�1) 0.20 ± 0.03a 0.30 ± 0.03b 0.50 ± 0.03b
POM (mg L�1) 4.86 ± 0.41a 14.53 ± 0.55b 16.94 ± 0.94b
Fe (mg L�1) 0.072 ± 0.001a 0.087 ± 0.001b 0.083 ± 0.001c
Cu (mg L�1) 0.01567 ± 0.00003a 0.01967 ± 0.00003ab 0.03667 ± 0.00003b
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3.2. Hemocyte response

3.2.1. Immune response
Hemocyte total number in D. chilensis hemolymph decreases

along the river course, being significantly lower in DoS than in C
(site effect, p < 0.05) (Fig 1a). Phagocytic activity is increased, by
36% at C and 65% at DoS, in EG mussels respect to SV ones (diet
effect, p < 0.05) (Fig 1b).
3.2.2. ROS and TOSC
Diet � site interaction is significant for hemocyte ROS produc-

tion (p < 0.05). This variable increases significantly in both groups
of mussels at UpS and DoS compared to those at C (p < 0.001) and
shows almost two-fold higher values in EGmussels than in SV ones
at DoS (p < 0.01) (Fig 2a). No differences among sites or between
diets are observed for TOSC (Fig 2b).
3.2.3. Cytotoxicity
Although statistically significant (diet � site interaction

p < 0.05), hemocyte viability changes are not higher than 2% (Fig
3a). Lysosomal membrane stability, measured as neutral red
retention time 50%, is about 81% higher in EG mussels than in SV
ones (diet effect, p < 0.001), and decreases in mussels exposed at
UpS and DoS when compared with C (site effect, p < 0.001) (Fig 3b).
Fig. 1. Hemocyte total number (a) and phagocytic activity (b) in Diplodon chilensis previous
pollution at Pocahullo river basin, for 10 days. C: upstream control, with no significant
downstream from the tertiary-treated sewage discharge. Results are expressed as mean ± S
denotes p < 0.05 between diets in (b).
3.3. Tissue response

3.3.1. Enzyme activities and lipid peroxidation
Gill GST activity is lower in EG mussels than in SV ones (diet

effect, p < 0.001), and shows no site effect (Fig 4a). Diet � site
interaction is significant for gill CAT activity (p < 0.05). This variable
is increased only in SV mussels at UpS compared with the same
group at the other sites and with EG mussels at the three sites
(p < 0.01) (Fig 4b). Gill TBARS content also shows significant
diet � site interaction (p < 0.01). This variable is increased in SV
mussels at the polluted sites (DoS and UpS) compared with the
same group at C (p < 0.01). TBARS content is slightly higher (about
15%) than in SV ones at the control site (p < 0.05) and is lower in EG
than in SV mussels at UpS (p < 0.05) (Fig 4c).

Digestive gland GST (Fig 4d) and CAT (Fig 4e) activities are lower
in EG mussels than in SV ones by about 19% and 18%, respectively
(diet effect, p < 0.05 for both variables), while TBARS content (Fig
4f) is higher in EG than in SV by about 16% (diet effect, p < 0.05).
In addition, GST activity in this organ is lower in mussels exposed at
DoS than in those exposed at the other sites (p < 0.05). In the
digestive glands of mussels exposed to both polluted sites, CAT
activity decreases while TBARS content increases when compared
with those at C (p < 0.001 for both variables).
ly fed with Scenedesmus vacuolatus (SV) or Euglena gracilis (EG) and exposed to sewage
sewage pollution; UpS: upstream from the tertiary-treated sewage discharge; DoS:
EM. Different characters denote significant differences among sites in (a) (p < 0.05). *



Fig. 2. Hemocyte reactive oxygen species (ROS) production (a) and total oxyradical scavenging capacity (TOSC) (b) in Diplodon chilensis previously fed with Scenedesmus vacuolatus
(SV) or Euglena gracilis (EG) and exposed to sewage pollution at Pocahullo river basin, for 10 days. C: upstream control, with no significant sewage pollution; UpS: upstream from the
tertiary-treated sewage discharge; DoS: downstream from the tertiary-treated sewage discharge. Results are expressed as mean ± SEM. Different characters denote significant
differences among bars (p < 0.01).

Fig. 3. Hemocyte viability (a) and lysosomal membrane stability (NRRT 50%) (b) in Diplodon chilensis previously fed with Scenedesmus vacuolatus (SV) or Euglena gracilis (EG) and
exposed to sewage pollution at Pocahullo river basin, for 10 days. C: upstream control, with no significant sewage pollution; UpS: upstream from the tertiary-treated sewage
discharge; DoS: downstream from the tertiary-treated sewage discharge. Results are expressed as mean ± SEM. Different characters (lower case) denote significant differences
among bars (p < 0.05) in (a); among sites (upper case) in (b). *** denotes p < 0.001 between diets in (b).
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3.3.2. Metabolic condition
Diet � site interaction is significant for GF (p < 0.05). This var-

iable is higher in EG mussels transplanted to C (p < 0.05) and lower
in those at UpS and DoS (p < 0.05, for both), compared with SV
mussels (Fig. 5a). DGF is about 18% higher in EG mussels than in SV
ones (diet effect, p < 0.05) (Fig. 5b).

Gill protein content is increased in mussels of both groups
exposed at DoS, compared with those at C and UpS (p < 0.05)
(Fig. 6a). No significant changes are observed for this variable in
digestive gland (Fig. 6b).
4. Discussion

This work is the first field study on the modulating effects of
orally supplied Euglena sp. cells on physiological responses of bi-
valves to anthropogenic pollution. Because of the scarce anteced-
ents available, we discuss our present results based mostly on our
previous work at laboratory conditions [14]. Nevertheless, the dif-
ference between exposure times from both studies should be taken
into account (5 vs. 10 days).
4.1. Water quality

Sewage discharges are characterized by the presence of high
loads of fecal bacteria and organic matter, which may increase
water turbidity and lead to the eutrophication of water bodies
[38,39]. Accordingly, concentrations of FC, NO2

�, PO4
�3, NO3

� and
POM, and turbidity values obtained in Pocahullo river basin are
higher in the polluted sites (UpS, DoS) than in the control. With the
exception of NO2

� and POM, the levels of all these variables are
increased by the point discharge of the main tertiary treatment
plant of SanMartín de los Andes City. In particular, FC concentration
is more than two-fold higher in the DoS than in the UpS. The graded
differences observed in these indicators indicate that mussels
caged in the three sites chosen for the study have been exposed to
relevantly different levels of sewage water pollution. Concentra-
tions of other pollutants, such as SO4

�2, total Fe and Cu, are also
increased at polluted sites compared with the control but show
little variation between both polluted sites. Fe and Cu are
commonly found in sewage waste and can be accumulated and
remobilized from sediment to water; e.g. in turbid rivers or during
resuspension events near effluent discharges [40]. Finally, pH and
OD levels are decreased and increased, respectively, from the
control to the polluted sites. However, these statistical differences



Fig. 4. Glutathione S-transferase (GST) and catalase (CAT) activities, and lipid peroxidation (TBARS) in gills (aec) and digestive gland (def) of Diplodon chilensis previously fed with
Scenedesmus vacuolatus (SV) or Euglena gracilis (EG) and exposed to sewage pollution at Pocahullo river basin, for 10 days. C: upstream control, with no significant sewage pollution;
UpS: upstream from the tertiary-treated sewage discharge; DoS: downstream from the tertiary-treated sewage discharge. Results are expressed as mean ± SEM. Different characters
(lower case) denote significant differences (p < 0.05) among bars in (b) and (c), and between sites (upper case) in (d) (p < 0.05), (e) (p < 0.001) and (f) (p < 0.001). Significant diet
effects are denoted by * p < 0.05 and ***p < 0.001.
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are not expected to be physiologically relevant, since the recorded
values are within the normal range for North Patagonian Andean
water bodies [41].

4.2. Hemocyte response

Hemocyte number in hemolymph of D. chilensis decreases in
both dietary groups (SV, EG) in response to the increase of pollution
load in Pocahullo river water. This is in accordance with the results
published by Akaishi et al. [23] in Mytilus edulis exposed to
increasing concentrations of untreated effluents, for 7 days. In
contrast, in our previous work testing the modulating effects of
dietary E. gracilis in D. chilensis exposed to E. coli for five days, no
changes were observed in the total number of hemocytes, neither
in SV nor in EG mussels [14]. This suggests that the decrease in this
variable may be responding to the presence of other kind of pol-
lutants, such as copper, which is present at higher concentrations in
the polluted sites of Pocahullo river [42] or to combined effects of
bacterial load and other pollutants. Alternatively, cellular migration
from circulating system to tissues in response to microorganism
invasion [43] and/or to damage produced by toxic exposure [44,45]
may be causing this decrease in the total number of hemocytes in
hemolymph. Previous results on increased accumulation of he-
mocytes in gills and mantle of D. chilensis after exposure to E. coli
[14] would support the latter hypothesis.

Phagocytic activity of hemocytes is expected to increase upon
microbiological stimuli, e.g. Refs. [46], while exposure to organic
and inorganic pollutants may have an inhibitory effect on this



Fig. 5. Gill factor (GF, a) and digestive gland factor (DGF, b) in Diplodon chilensis previously fed with Scenedesmus vacuolatus (SV) or Euglena gracilis (EG) and exposed to sewage
pollution at Pocahullo river basin, for 10 days. C: upstream control, with no significant sewage pollution; UpS: upstream from the tertiary-treated sewage discharge; DoS:
downstream from the tertiary-treated sewage discharge. Results are expressed as mean ± SEM. Different characters denote significant differences (p < 0.05) among bars. * denotes
p < 0.05 between diets in (b).

Fig. 6. Protein content in gill (a) and digestive gland (b) of Diplodon chilensis previously fed with Scenedesmus vacuolatus (SV) or Euglena gracilis (EG) and exposed to sewage
pollution at Pocahullo river basin, for 10 days. C: upstream control, with no significant sewage pollution; UpS: upstream from the tertiary-treated sewage discharge; DoS:
downstream from the tertiary-treated sewage discharge. Results are expressed as mean ± SEM. Different characters denote p < 0.05 between DoS and the other sites in (a).
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activity [47,48]. In this work, phagocytic activity in hemocytes of SV
mussels shows no change between control and polluted sites, after
10 days at Pocahullo river basin. In M. edulis, Akaishi et al. [23]
observed a concentration-dependent increase in phagocytic activ-
ity but only after 14 days of exposure to untreated municipal ef-
fluents. Phagocytic activity in D. chilensis fed with E. gracilis is
higher than that of SV mussels, in both control and polluted sites,
with a clear increasing trend in EGmussels at themost polluted site
(DoS). This improvement of phagocytic activity is comparable with
that obtained in our previous work with D. chilensis under control
and E. coli exposure conditions [14], and suggests a reinforcement
of the immune response by b-glucan [10]; in this case, by EG diet.

ROS production in hemocytes may rise in response to both,
activated immune response and as a product of the metabolism of
toxic products included in effluents [49,50]. In this work,D. chilensis
of both EG and SV groups show an increase in the cellular pro-
duction of ROS in response to the increase in the pollution load
along the river course. The effect of bacterial and fungal microbi-
ological stimuli [51], metals [49], pharmaceutical drugs [52] and
physiological stress caused by increased water turbidity [28], may
be triggering this response. In addition, ROS production in hemo-
cytes of EG mussels is higher than in those of SV ones at the most
polluted site (DoS). This could be indicating a higher capacity of
immune response activation, which correlates with the elevated
phagocytic activity, described above for EGmussels. In addition, the
total antioxidant capacity (TOSC) does not vary among sites in
hemocytes of either dietary group, which suggests that increased
ROS production in EG mussels is more likely related to an immu-
nological response than to redox imbalance.

Exposure to sewage pollution has been shown to produce
deleterious effects on bivalve's hemocytes. Hemocytes of Mytilus
galloprovincialis exposed to landfill leachate for 4 days show
oxidative damage to lipids and genotoxic effects [27]. Moreover,
exposure to sewage pollution in the field causes loss of cellular
viability in Eliptio complanata [25]. It is noticeable that D. chilensis
fed with EG or SV maintain high levels (above 95%) of hemocyte
viability irrespectively of the pollution level; however, this is in
coincidence with the results obtained for mussels of this species
chronically exposed to sewage pollution [22]. On the other hand,
the lysosomal membrane stability decreases in polluted sites
compared to the control; however, this variable is always higher in
EG mussels than in SV ones, which indicates a protective effect of
EG diet on cellular integrity of hemocytes.

4.3. Tissue response

After transplantation to polluted sites, gill GST shows lower
activity in EG mussels than in SV ones, while CAT activity and
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damage to lipids (TBARS) show no consistent differences between
dietary groups nor among sites. These results suggest that E. gracilis
diet has not significant effects on the oxidative balance of gills,
when mussels are exposed to sewage water pollution. However, in
our previous workwith D. chilensis [14], challenge with E. coli in the
laboratory has produced an increase in gill GST and CAT activities,
compared with control mussels; although these activities remained
lower in EG mussels than in SV ones as in the control groups. These
differences between laboratory and field studies could be assigned
to transplant effects [28] or to inhibitory effects of other pollutants,
present in UpS and DoS sites, which would compensate a possible
stimulatory effect of the increased bacterial load.

In the digestive gland, feeding with E. gracilis produces a general
reduction of enzyme activity (GST, CAT) with a slight but significant
increment in lipid peroxidation levels, in all transplanted mussels.
This suggest transplant effects on antioxidant and detoxifying re-
sponses of EG mussels, when these are placed at control and
polluted sites of the river. Similar effects were observed in
D. chilensis transplanted to DoS for 30 days [28]. As it has been
discussed in our previous work [14], the exogenous antioxidants,
such as flavonoids, provided by E. gracilis cells [53]may increase the
digestive gland antioxidant capacity, leading to the negative mod-
ulation of the intrinsic antioxidant response. Therefore, the inter-
ruption of this diet would temporarily increase the susceptibility of
mussels to pro-oxidant conditions. Further studies, with more
prolonged exposure to the river conditions should be performed, in
order to assess whether the intrinsic antioxidant response can be
restored or oxidative damage progresses and becomes harmful.

4.4. Metabolic condition

Morphometric and biochemical parameters are frequently used
to assess the physiological and nutritional status of bivalves [21,54].
In this work, the GF is higher for EG mussels at control site but
decreases at polluted sites, while SV mussels do not show a
consistent trend. These results contrast with the augment in GF
observed in D. chilensis challenged with E. coli in a previous work
[14] and could be reflecting an impairment of inflammation pro-
cesses in gills of EG mussels under stressful conditions in the
Pocahullo river. Nevertheless, further testing is needed considering
that gill protein content is increased in mussels exposed at DoS,
suggesting the stimulation of metabolic responses or the loss of
water in this organ. DGF is favored by E. gracilis diet. In contrast,
mussels fed with this microorganism and challenged with E. coli
have previously shown no changes in DGF [14]. However, the
positive action of b-glucans on nutrient absorption [55] could be
allowing mussels to take advantage on food availability in the river.
In this way, E. gracilis diet could be stimulating digestive gland
growth and/or inflammation processes, although no changes were
observed in total protein content in this organ. Besides, the
decreasing trend observed in DGF of mussels exposed to the most
polluted site (DoS) may be explained by tissue damage exerted by
pollutants in the digestive gland, e.g. Refs. [56,57].

5. Conclusions

Exposure to sewage water pollution stimulates immune
response (phagocytic activity, ROS production), reduces hemocytes
lysosomal membrane stability and causes moderate oxidative
stress in gills and digestive gland of D. chilensis irrespectively of the
previous diet. However, continuous and long term feeding with
E. gracilis cells enhances this immune response, ameliorates the
damage to hemocytes and tends to favor nutritive status of
D. chilensis, which is reflected in the increase of digestive gland
relative mass. Nevertheless, the obtained results also indicate that
E. gracilis diet and transplantation procedures may produce nega-
tive effects on the oxidative balance of gills and digestive gland, and
this should be taken into account during the application of biore-
mediation strategies.
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