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a b s t r a c t

In many applications of regression analysis, there are covariates that are measured with
errors. A robust family of estimators of the parametric and nonparametric components of a
structural partially linear errors-in-variablesmodel is introduced. The proposed estimators
are based on a three-step procedure where robust orthogonal regression estimators are
combined with robust smoothing techniques. Under regularity conditions, it is proved
that the resulting estimators are consistent. The robustness of the proposal is studied by
means of the empirical influence functionwhen the linear parameter is estimated using the
orthogonalM-estimator. A simulation study allows to compare the behaviour of the robust
estimators with their classical relatives and a real example data is analysed to illustrate the
performance of the proposal.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Two important branches of regression analysis arise from parametric and nonparametric models. The fully parametric
models are readily interpretable, but they can be severely affected by misspecification. On the other hand, nonparametric
models are very flexible to assess the relationship among variables, but they suffer from the well known curse of
dimensionality. In the last decades semiparametric models, that amalgamate these two branches, have deserved a lot of
attention. They take the best and avoid the worst of the parametric and nonparametric models. Among them, partially
linear models have been extensively studied in the last years. Let (y, xt, t) be the observation in a subject or experimental
unit, where y is the response that is related to the covariates (xt, t) ∈ Rp

× R. The partially linear model assumes that

y = xtβ + g (t)+ e,

where the error e is independent of the covariates (xt, t). By means of a nonparametric component, partially linear models
are flexible enough to cover many situations; indeed, they can be a suitable choice when one suspects that the response
y linearly depends on x, but that it is nonlinearly related to t . An extensive description of the different results obtained in
partially linear regression models can be found in Härdle et al. (2000). Among the robust literature, we find He et al. (2002)
that considerM-type estimates for repeated measurements using B-splines and Bianco and Boente (2004) who introduce a
kernel-based stepwise procedure to define robust estimates under a partially linear model.
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In practice, however, there often exist covariate measurement errors. This is a common situation in economics, medicine
and social sciences. Errors-in-variables (EV) models have drawn a lot of attention and generated a wide literature, surveyed
in Fuller (1987) and Carroll et al. (1995). The effect of measurement errors is well-known, indeed they can cause biased and
inconsistent parameter estimators. Two approaches are adopted in order to overcome these difficulties according to the
nature of the problem: the functional and structuralmodelling. In the functional model it is assumed that the covariates are
deterministic, while in the structuralmodel, which is treated in this paper, the covariates are considered as randomvariables.
In our setting, we assume that we cannot observe x directly, but instead we observe a surrogate variable v which is related
to x through the equation v = x + ex. In other words, the response and the vector of covariates x are observed with errors,
while the scalar variable t is observable, that is, we assume the partially linear errors-in-variables (PLEV) model given by

y = βtx + g(t)+ e,
v = x + ex, (1)

where the vector of measurement errors

ϵ =


e
ex


(2)

is independent of (xt, t).
In order to correct for measurement error, some additional information or data is usually required. In the classical

approach, at this point, there are two variants. In the first one, it is assumed that the covariance matrix of the measurement
errors, 6ex , is known and the approach is a correction for attenuation. Following these ideas, Liang et al. (1999) adapt
the estimators of Severini and Staniswalis (1994), which combine local smoothers and linear parametric techniques, by
including an attenuation term based on 6ex that enables to adjust the regression coefficients for the effects of measurement
error. If 6ex were unknown, the estimation of the covariance matrix could be possible when replicates are available. In the
second variant, it is assumed that the ratio between the variance of the error model e and the measurement errors ex is
known. This assumption allows for identification of the model. In this case, Liang et al. (1999) propose to estimate β by total
least squares method.

Even when in practice the feasibility of any of these conditions depends on the problem, in general, in the robust
framework assumptions involving the existence of first or secondmoments of the errors are avoided and replaced byweaker
conditions on the errors distribution, such as symmetry. So, in this paper, we will extend the second variant by assuming
that the vector of errors ϵ follows a spherically symmetric distribution,which is a standard assumption in errors-in-variables
models. In this case, if ϵ has a density, it is of the form φ(∥u∥) for some non-negative function φ. Spherical symmetry implies
that e and each component of ex have the same distribution. Cui and Kong (2006) justify this assumption by noticing that
in some situations the response y and the covariate x are measured in the same way or, even more, the response and the
non-observable covariate are two methods that measure the same quantity. As motivating example, we can consider the
problem of predicting cholesterol serum level (CS) from a previous register of CS and age, which corresponds to the case
of the real dataset we analyse below. First, it is sensible to assume that both cholesterol serum variables (the response and
the covariate) are affected by an error, justifying to fit an EV model. Second, since both measures are of the same nature, it
seems natural to assume that the errors of the response and the covariate follow the same distribution, making reasonable
the sphericity assumption.

Among the literature in partially linear EV models, we can highlight the contribution of several authors. As mentioned,
Liang et al. (1999) introduce a semiparametric version of the parametric correction for attenuation, while He and Liang
(2000) consider consistent regression quantile estimates of β. Partially linear models with measurement errors have been
also studied byMa and Carroll (2006), who propose locally efficient estimators in semiparametricmodels, Liang et al. (2007)
that consider missing not at random responses, Pan et al. (2008) who deal with longitudinal data and by Liang and Li (2009)
who focus on variable selection. As mentioned, we deal with the case in which variable t is observable. Measurement errors
in both the parametric and the non-parametric part represent a much more complicated problem and would deserve a
different approach, that is beyond the scope of this paper. In the classical setting, Liang (2000) and Zhu and Cui (2003), who
deal with an unobservable variable t in the context of a partially linear model, consider deconvolution techniques to handle
this type of situations.

However, if the smoothers involved in the estimation process are not resistant to outliers, then the resulting estimators
can be severely affected by a relatively small fraction of atypical observations. The same can be asserted with respect to the
estimation of the regression parameter when it is estimated by total least squares or least squares corrected for attenuation.
For this reason, in this paper we consider an intuitively appealing way to obtain robust estimators for model (1) with
spherically symmetric errors,which combines robust univariate smootherswith robust parametric estimators for a linear EV
model. It is expected that the good robustness properties of estimates for linear EVmodels, such asM-orthogonal estimators
or weighted orthogonal estimators introduced by Zamar (1989) and Fekri and Ruiz-Gazen (2004), respectively, combined
with local smoothers, such as local medians or local M-type estimators, would result in estimators with good robustness
properties aswell. Inwhat follows,we introduce a three-stepprocedure that yields robust and consistent estimators.Wealso
derive the empirical influence function of the proposal when M-orthogonal estimators are used to estimate the regression
parameter. The simulation results show that, regardless of the presence of outliers in the sample, the proposed estimators of
the parametric and nonparametric components are very stable, making clear the advantage of using this kind of procedures.
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The outline of the paper is as follows. In Section 2 we remind the classical estimators and the three-step procedure for
robust estimation in the partially linear EV model is outlined. In Section 3 we prove the consistency of the proposal. In
Section 4 we derive the empirical influence function in order to study the sensitivity of the parametric component of the
model to outlying observations in the case in which the linear parameter is estimated using the orthogonal M-estimator.
The robustness and performance for finite samples of the proposal are studied by means of a numerical study in Section 5
and a real data set is analysed in Section 6. Proofs are relegated to Appendix A.

2. Estimators

In this section we consider the estimation of β and g in a partially linear EV model, where for 1 ≤ i ≤ n

yi = βtxi + g(ti)+ ei,
vi = xi + exi. (3)

2.1. Classical approach

Assume that (y, xt, vt, t) is a random vector with the same distribution as (yi, xti , v
t
i , ti), i.e., that satisfies (1) and (2). In

the classical approach, it is assumed that E (ϵ) = 0 and the existence of higher order moments of ϵ and x. In this case, taking
conditional expectation in (1), we have that

E(y|t = τ) = βtE(x|t = τ)+ g(τ ),

E(v|t = τ) = E(x|t = τ), (4)

resulting that g(τ ) = νo(τ )− βtν(τ ), where νo(τ ) = E(y|t = τ) and ν(τ ) =

ν1(τ ), . . . , νp(τ )

t with νj(τ ) = E(vj|t = τ)
for 1 ≤ j ≤ p. From (1) and (4), we obtain that

y − νo(τ ) = βt(x − ν(τ ))+ e,
v − ν(τ ) = x − ν(τ )+ ex, (5)

which reduces to a linear EV model. The regression parameter β can be estimated through the total least squares estimator
that corresponds to perform orthogonal regression.

Let us remind the definition of the total least squares estimator in the simplest case of a linear EV model, where we
observe zti = (yi, vti ), 1 ≤ i ≤ n, such that

yi = βtxi + ei,
vi = xi + exi. (6)

In this case, zi = zi + ϵi, where ϵti = (ei, etxi) is as in (2) and the vectors zti = (βtxi, xti ) belong to a hyperplane Hβ , with
Hb = {z = (r, xt) : r = xtb}. The orthogonal regression method looks for the p-dimensional hyperplane that provides the
best fit to z1, . . . , zn, i.e., the total least squares estimator minimizes

n
i=1

∥zi −ΠHb(zi)∥2, (7)

whereΠHb is the orthogonal projector on Hb.
Estimators of νo(τ ) and ν(τ ) can be plugged in Eq. (5) prior to the estimation of the regression parameter. For this purpose,

consider the weights

ωi(τ ) =
K

 ti−τ
h


n

j=1
K


tj−τ
h

 , (8)

then, according to the classical approach, the conditional expectations can be estimated through

νo,ls(τ ) =

n
i=1

ωi(τ )yi and νj,ls(τ ) =

n
i=1

ωi(τ )vij, (9)

where K is a kernel function, i.e., a nonnegative integrable function on R and h is the bandwidth parameter. The classical
estimator of β can be based on the total least squares method replacing in (7) zi by the residual vectors

zi =


yi −νo,ls(ti)
vi −νls(ti)


,

where the vectorνls(τ ) has componentsνj,ls(τ ).
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2.2. Proposal

Unlike the classical model, in the robust setting nomoment conditions are assumed, thus, resembling Bianco and Boente
(2004), we prefer to consider robust conditional location functionals. More precisely, consider local robust scale functionals
corresponding to y|t = τ and vj|t = τ , so(τ ) and sj(τ ), respectively. Define the related functionals νj(τ ), 0 ≤ j ≤ p as the
solution of

EFo


ψ1


y − νo(τ )

so(τ )

 t = τ


= 0 and EFj


ψ1


vj − νj(τ )

sj(τ )

 t = τ


= 0, 1 ≤ j ≤ p, (10)

where ψ1 is an odd, increasing, bounded and continuous function and EFo and EFj , j = 1, . . . , p, denote the expectations
respect to Fo(y|t = τ) and Fj(v|t = τ), the (cumulative) distribution functions of y|t = τ and vj|t = τ , respectively. We
propose to estimate these conditional location functionals by using a robust smoothing and the regression parameter by
means of a robust regression estimator. This prompts the following three-step procedure.

• Step 1: Estimate νo(τ ) and νj(τ ) through a robust conditional location estimator. Denoteνo(τ ) andνj(τ ) the obtained
estimates andν(τ ) =

ν1(τ ), . . . ,νp(τ )t.
• Step 2: Consider the residual variablesyi = yi−νo(ti),xi = xi−ν(ti) andvi = v−ν(ti). Estimate the regression parameter

of the linear regression EV model in the residualsyi,xi andvi through a robust and consistent estimator. Denoteβ the
obtained estimator.

• Step 3: Define the estimate of the regression function g asg(τ ) = νo(τ )−βtν(τ ).
In Step 1 local medians or local M-type estimators can be considered. Take weights ωi(τ ) as in (8). Then, local M-type

estimators, νo(τ ) and νj(τ ), are defined as the location M-estimators related to the empirical conditional distribution
functionsFo(y|t = τ) andFj(v|t = τ) defined as

Fo(y|t = τ) =

n
i=1

ωi(τ )I(−∞,y](yi), (11)

Fj(v|t = τ) =

n
i=1

ωi(τ )I(−∞,v](vij). (12)

It is worth noticing thatFo(y|t = τ) andFj(v|t = τ) estimate the distribution of y|t = τ and vj|t = τ , that were denoted
above as Fo(y|t = τ) and Fj(v|t = τ), respectively. Thus, localM-type estimators are the solutions of

n
i=1

ωi(τ )ψ1


yi −νo(τ )so(τ )


= 0 and

n
i=1

ωi(τ )ψ1


vij −νj(τ )sj(τ )


= 0,

andso andsj, 1 ≤ j ≤ p, are local robust scale estimates. The score function ψ1 can be chosen as the Huber or the bisquare
ψ-functions; the scalesso andsj can be taken as the localmad, that is, themadwith respect to the distributionsFo(y|t = τ)

andFj(v|t = τ), 1 ≤ j ≤ p, defined in (11) and (12).
Once the residual variables yi = yi − νo(ti) and vi = vi − ν(ti) are computed, the regression parameter can be

estimated by means of any robust method that yields consistent estimators in the framework of linear regression with
measurement errors. Possible choices are the orthogonal regression M-estimates due to Zamar (1989) and the robust
weighted orthogonal regression estimators proposed by Fekri and Ruiz-Gazen (2004). We briefly remind the definition of
both families of estimators in the case of a linear EV model. In order to robustify the total least squares estimator, Zamar
(1989) proposes to use a bounded loss function in the least squares criterion instead of the square loss function. To be more
precise, assume a linear model with measurement errors where we observe zi = zi + ϵi, with zi ∈ Hβ as described above.
Since zi ∈ Hβ , we have that

ri
1 + ∥β∥2

−
βtxi

1 + ∥β∥2
= 0,

so the model can be reparametrized as

atzi = 0,

where a = (a0, a1, . . . , ap)t, with a0 = 1/

1 + ∥β∥2, −aj/a0 = βj, j = 1, . . . , p. For this new parametrization of the

model, Zamar (1989) considers the orthogonal regressionM-estimator which solves the minimization problem

min
∥a∥=1

n
i=1

ρ


atzi
sn


, (13)

where ρ is a bounded loss function and sn is some robust estimate of the residuals scale σ .
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On the other hand, the robust weighted orthogonal regression estimator in a linear EV model introduced by Fekri and
Ruiz-Gazen (2004) minimizes

n
i=1

η(∥zi − µn∥
2
6

−1
n
) ∥zi −ΠHb(zi)∥2, (14)

where η is a weight function, ∥zi − µn∥
2
6

−1
n

= (zi − µn)
t6−1

n (zi − µn) and µn and 6n are multivariate robust estimators
of location and scatter, respectively. Note that the total least squares estimator obtained in (7) corresponds to η ≡ 1.
The robust estimators of multivariate position and dispersion can be chosen among different robust families of estimates;
M-, S-andMCD estimators are possible choices.

Therefore, robust estimators of β can be obtained in Step 2 replacing in (13) or (14) zi byzi = (yi −νo(ti), vti −ν(ti)t).
Note that if themodelwere a purely linear regressionmodelwith errors-in-variables, Step 1 and 3would be not necessary

and the proposal would reduce just to Step 2, going down to the orthogonal robust method chosen to estimate the linear
component. Besides, if there were no measurement errors, in Step 2 an ordinary regression robust estimator, such as
GM- or MM-estimators could be used and hence, the proposal would result in the procedure introduced by Bianco and
Boente (2004).

3. Consistency

We will assume a set of conditions in order to derive the consistency of the proposed estimators for the regression
parameter and the nonparametric function g .

H1. ψ1 is an odd function, strictly increasing, bounded and continuous differentiable, such that zψ ′

1(z) ≤ ψ1(z).
H2. Fo(y|t = τ) and Fj(v|t = τ), 1 ≤ j ≤ p, are symmetric around νo(τ ) and νj(τ ), respectively.
H3. For any compact set C ⊂ R, the density ft of t is bounded on C and inft∈C ft(τ ) > 0.
H4. Fo(y|t = τ) and Fj(v|t = τ), 1 ≤ j ≤ p, are continuous functions in t and satisfy the following equicontinuous

condition

∀ε > 0 ∃ δ > 0/|a − b| < δ ⇒ sup
τ∈C

max
0≤j≤p


|Fj(a|t = τ)− Fj(b|t = τ)|


< ε for any compact set C.

H5. The kernel K : R → R is nonnegative, bounded and Lipschitz function such that
K(z) dz = 1,


|z|K(z) dz < ∞ and |z|K(z) → 0 if |z| → ∞.

H6. The sequence h = hn verifies hn → 0, nhn → ∞ and nhn/log n → ∞.

Under this set of conditions, Theorem 3.3 of Boente and Fraiman (1991) implies the strong uniform convergence of the
local M-estimators. More precisely, assumption H1 is on the score function, which is chosen by the user, and is standard in
the context of robustness. The fact that the score function ψ1 is odd, strictly increasing, bounded and continuous ensures
the uniqueness of νi(τ ), introduced in (10), when the conditional distribution Fi(·|t = τ) is symmetric. As noted in Boente
and Fraiman (1990) and Härdle (1984), among other possibilities, the score function ψ(u) = arctan(u) verifies these four
conditions and satisfies H1. When so(τ ) and sj(τ ) are the MAD of the conditional distribution of y|t = τ and vj|t = τ ,
respectively, H2–H4 state regularity conditions of the marginal density of t and the conditional distribution functions, that
imply that for any compactC infτ∈C sj(τ ) > 0 and supτ∈C sj(τ ) < ∞, for 0 ≤ j ≤ p.H5 andH6 refer to the rate of convergence
of the smoothing parameter and restrictions over the class of kernel functions to be chosen.

For the sake of completeness we remind the following two lemmas, which are proved in Bianco and Boente (2004). They
are needed to derive the consistency of the proposed estimators that is stated in Theorem 3.1 and Corollary 3.1.

Lemma 3.1. Assume that H1–H6 hold. Then, for any compact set C we have that supτ∈C |νj(τ )− νj(τ )|
c.s.

−→ 0, 0 ≤ j ≤ p.

Lemma 3.2. Let (ri,ut
i , ti)

t
∈ Rp+2, 1 ≤ i ≤ n be independent random vectors distributed over (Ω,A,P ) such that (ri,ut

i )
have common distribution P. Let ηo(τ ) andη(τ ) = (η1(τ ), . . . ,ηp(τ ))t be random functions such that for any compact set
C ⊂ R

sup
τ∈C

|ηj(τ )| c.s.
−→ 0, 0 ≤ j ≤ p.

Denote Pn and Qn the following empirical measures over Rp+1

Pn(A) =
1
n

n
i=1

IA(ri,ui) and Qn(A) =
1
n

n
i=1

IA(ri +ηo(ti),ui +η(ti)),
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where A ⊂ Rp+1 is a Borel set. Therefore,

(a) for any bounded and continuous function f : Rp+1
→ R we have that

|EQn(f )− EPn(f )|
c.s.

−→ 0,

(b) Π(Qn, P)
c.s.

−→ 0, whereΠ stands for the Prohorov distance.

The following theorem states that, under regularity conditions, the uniform convergence over compact sets of the local
estimators of Step 1 and the continuity of the regression functional related to the estimation procedure in Step 2, implies
the consistency of the resulting regression estimatorβ.
Theorem 3.1. Let (yi, xti , v

t
i , ti), 1 ≤ i ≤ n be a random sample of vectors that satisfy model (3) and P the distribution of

(yi − νo(ti), vti − ν(ti)t), where νo(τ ) and ν(τ ) are defined in H2, with νo(τ ) = βtν(τ )+ g(τ ). Assume thatνj(τ ), 0 ≤ j ≤ p,
are estimators of νj(τ ) such that for any compact set C ⊂ R

sup
τ∈C

|νj(τ )− νj(τ )|
c.s.

−→ 0, 0 ≤ j ≤ p. (15)

Let β(G) be a regression functional for the linear EV model

z =


βtu
u


+


e
eu


, (16)

where z ∼ G, (e, etu) is independent of u. Assume that β(G) is continuous in P and provides Fisher-consistent estimators. IfPn(A) = 1/n
n

i=1 IA(yi,vi), whereyi = yi −νo(ti),vti = vti −ν(ti)t andβ = β(Pn), thenβ c.s.
−→ β.

As in the case of observable covariates x’s, in Theorem 3.1 it is required that H2 holds with νo(τ ) = βtν(τ ) + g(τ ). In
fact, if νo(τ )− ν(τ ) = h(τ ), then y− νo(τ )−βt(x− ν(τ )) = g(τ )− h(τ )+ ϵ, so g(τ )− h(τ ) should be 0 in order to obtain
Fisher-consistent estimators.

As a direct consequence of the previous results, we get the consistency of the nonparametric component g , as stated in
the following corollary.

Corollary 3.1. Let (yi, xti , v
t
i , ti), 1 ≤ i ≤ n, be independent random vectors that satisfy model (3). Let νj(τ ), 0 ≤ j ≤ p, be

estimators of νj(τ ) such that for any compact set C ⊂ R

sup
τ∈C

|νj(τ )− νj(τ )|
c.s.

−→ 0, 0 ≤ j ≤ p,

and suppose that the assumptions of Theorem 3.1 hold. Then, the estimator of the regression function g given by g(τ ) =νo(τ )−βtν(τ ) is uniformly convergent over compact sets.

4. Empirical influence curve

In this section we derive the empirical influence function of the regression parameter estimator when in Step 2 an
orthogonal M-estimator is used. The empirical influence function (EIF), introduced by Tukey (1977), is a useful measure
of the robustness of an estimator with respect to a single outlier. In fact, it reflects the effect on a given estimator of adding
an arbitrary datum to the sample, that may not follow the central model. Mallows (1974) considers a finite version of
the influence function defined by Hampel (1974) that is computed at the sample empirical distribution. Diagnostics for
identifying outliers can be developed from the empirical influence functions. Even when in parametric models the EIF has
been extensively used, it has received less attention in nonparametrics. Manchester (1996) introduces a graphicalmethod to
display sensitivity of a scatter plot smoother. Aït Sahalia (1995) presents a smoothed functional approach to nonparametric
kernel estimators, that Tamine (2002) uses to define a smoothed influence function in nonparametric regression assuming
a fixed smoothing parameter.

Following Boente and Rodriguez (2010), we compute an empirical influence function that addresses Manchester (1996)
approach and is close to the version of the EIF introduced by Mallows (1974). It corresponds to the influence function of the
functional under study computed for the empirical distribution and evaluated at each datum in the sample.

More precisely, letβ be the regression parameter estimator based on the original data set (yi, vti , ti), 1 ≤ i ≤ n. Denote
Pn the empirical measure that gives weight 1/n to each point in the sample, hence β = β(Pn). Let Pn,ε be the empirical
measure that gives mass (1 − ε)/n to each (yi, vti , ti), 1 ≤ i ≤ n and ε to the observation (y0, vt0, t0). That is, we have a
new sample with the original data set representing an 1− ε proportion and the new observation an ε proportion. Defineβε
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the regression parameter estimator for this new sample. We compute the empirical influence function ofβ at a given point
(y0, vt0, t0) as

EIF(β, (y0, vt0, t0)) = lim
ε→0

βε −β
ε

.

For simplicity, we will assume that the scale is known and equal to σ . In this case the orthogonal M-estimator in Step 2
is related to the minimization problem

min
∥a∥=1

n
i=1

ρ


atzi
σ


, (17)

withzi = (zi0, . . . ,zip)t,zi0 = yi −ν0(ti) andzij = vij −νj(ti), 1 ≤ j ≤ p andνj(τ ) obtained in Step 1. Leta be the solution
of (17).

Since EIF(β, (y0, vt0, t0)) =


∂βε/∂ε |ε=0, from the relationship between β and a, we get that

EIF(β, (y0, vt0, t0)) =
−1a0


−a∗a0 I


EIF(a, (y0, vt0, t0)),

wherea∗ contains the p last components ofa, i.e.,a∗
= (a1, . . . ,ap)t and EIF(a, (y0, vt0, t0)) is the empirical influence

function of the regression parameter after the reparametrization. Denote ψ = ρ ′, then if

A =
1
σ


I −aat 1

n

n
i=1

ψ ′

atzi
σ

zizti −
1
n

n
i=1

ψ

atzi
σ

 atzi I +azti  ,
andν∗(τ ) = (ν0(τ ),ν(τ )t), we have that

EIF(β, (y0, vt0, t0)) =
1a0


−a∗a0 I


A−1 

I −aat 
ψ

atz0z0 −
1
n

n
i=1

ψ ′
atziziatEIF(ν∗, (y0, vt0, t0))(ti)

−
1
n

n
i=1

ψ
atzi EIF(ν∗, (y0, vt0, t0))(ti)


, (18)

where EIF(ν∗, (y0, vt0, t0))(τ ) =

∂ν∗

ε(τ )/∂ε

|ε=0 andν∗

ε(τ ) is the vector of local M-estimators of Step 1 obtained in the
new sample.

To illustrate the behaviour of the estimators and to compare it with the classical ones, we consider the following model.
We generate a sample

yi = βtxi + sin

1
2
π ti


+ ei,

vi = xi + exi, (19)

for 1 ≤ i ≤ 100, where βt
= (1, 1), x ∼ N(µ,6), with µt

= (0, 0) and 6 = I2, t ∼ N(0, 2) and then truncated t so
that t ∈ [−6, 6]. Besides, we take ϵt = (e, etx) ∼ N(0, I3). We consider two situations. In the first one, we take a grid of
values (y0, vt0, t0) for t0 = −1, 0, 1, vt0 = (v0, v0) and (y0, v0) taking values on an equidistant grid on y0 ×v0 of size 41×21
on the rectangle [−10, 10] × [−5, 5]. In the second one, the only difference is that we take vt0 = (v0, 0). For each fixed
t0, we have computed the empirical influence function given by (18) at each point of this net of 861 points. We compute
the influence function of the classical and the robust estimators. The former corresponds to the choice ψ(u) = ψ1(u) = u,
while for the robust estimator we choose a score function in the family ψk(u) = arctan(u/k)/k with k = 0.55 for the
localM-estimators and for the orthogonalM-estimator we select a score function in the Tukey biweight family with tuning
constant c = 4.7. With k = 0.55 the localM-estimator achieves a 90% efficiency under normality, while, as noted in Zamar
(1989) with c = 4.7 the orthogonal M-estimator achieves an efficiency equal to 95% at the Gaussian linear regression and
errors-in-variables models. In the local estimates, we use Gaussian kernel weights with the optimal bandwidth hopt = 1.30
in the case of the classical estimator and hopt = 1.475 in the robust one. These values of the smoothing parameter
are based on the minimization of CV (h) and D(h), the classical and robust cross-validation criteria described in the next
section.

Figs. 1 and 2 show that the classical estimator has unbounded influence function. In Fig. 1 we observe that when
vt0 = (v0, v0), the norm of the EIF has a moderate growth according to the values of y0 and v0 shrink to 0 and along
the first bisection axis of the rectangular area under study, while it increases very quickly in at least one of the corners
corresponding to the opposite diagonal. It is worth noticing that points with coordinates y0 → ∞ and v0 → −∞ or
y0 → −∞ and v0 → ∞, that is in the second and fourth quadrants of the considered rectangle, tend to lie far from the
expected value under the regression function, yielding high residuals. Therefore, they may have a potential bad influence
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Fig. 1. Norm of the empirical influence function, ∥EIF(a, (y0, vt0, t0))∥, for t0 = −1, 0 and 1 when vt0 = (v0, v0).

on any estimator. Figs. 1 and 2 exhibit that the norm of the EIF of the classical estimator is moderate just at the centre of the
rectangle, but it grows in the second and fourth quadrants. Fig. 2 also shows that the ∥EIF∥ tends to increase at the edges
of the rectangle under study when vt0 = (v0, 0). Therefore, the plots given indicate that the ∥EIF∥ of the classical estimator
increases when y0 → ∞ and v0 → −∞ or y0 → −∞ and v0 → ∞, making these points extremely influential. Besides,
the conclusions about the behaviour of the empirical influence function of the classical estimator are similar for the three
values of t0 considered.
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Fig. 2. Norm of the empirical influence function, ∥EIF(a, (y0, vt0, t0))∥, for t0 = −1, 0 and 1 when vt0 = (v0, 0).

On the other hand, the orthogonal M-estimator is expected to downweight observations with high residuals when the
score function ψ is bounded. The norm of the expected influence function of the robust estimator resembles the behaviour
of ∥EIF∥ of the classical estimator at the centre of the studied region and along the first bisection axis of this area, that
correspond to points with small or moderate residuals. However, even when the ∥EIF∥ increases rapidly when y0v0 < 0, as
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y0 → ∞ and v0 → −∞ or y0 → −∞ and v0 → ∞, the ∥EIF∥ stabilizes to a plateau, showing that bad influential points
on the second and fourth quadrants are downweighted.

5. Monte Carlo study

A Monte Carlo study was carried out to illustrate the behaviour of the proposed estimators and to compare them with
the classical ones under different models and contamination schemes. For the numerical experiment we revisit model (19)
whichwas inspired in the simulation study given in Zhu and Cui (2003) andwas adapted to our framework, where variable t
is assumed to be observable. The sine function in the nonparametric component challenges the ability of the estimators of g
to capture the characteristic oscillation of a trigonometric function. Regarding the covariates, we explore different designs in
order to compare the performance of the estimators either when covariates x and t are independent or dependent. Besides,
we consider two models for the regressor x. We present below the results concerning the case in which the coordinates
of x are independent. We also experiment with a model where the linear covariate x has a different covariance structure,
i.e., x has correlated components with different variance. The corresponding results are summarized in the Supplementary
material. The supplementary file also contains the R code implementing the proposal and an example script illustrating its
use (see Appendix B).

Henceforth, we consider the PLEV model given by (19), where β = (1, 1)t, x = (x1, x2)t ∼ N(µ,6), with µ = (0, 0)t

and 6 = I2. We analyse two situations, in the first one, we take t = (x1 + x2 + d)(
√
6/3), where d ∼ N(0, 1) and then

we truncate t so that t ∈ [−6, 6], leading to a design where the covariates are dependent, while in the second one, we
take t with the same marginal distribution as before, but independent of x. In these central models, denoted as C0, we take
ϵt = (e, etx) ∼ N(0, σ 2I3), σ = 0.3. We also consider four contaminated schemes

• C1 e ∼ 0.9N(0, σ 2)+ 0.1N(0, (10σ)2), that corresponds to enlarge the response errors.
• C2 e ∼ 0.9N(0, σ 2)+ 0.1N(0, (10σ)2) and ex ∼ 0.9N(0, σ 2I2)+ 0.1N(0, (10σ)2I2), that corresponds to independently

enlarge both kinds of errors.
• C3 ϵt = (e, etx) ∼ 0.9N(0, σ 2I3)+ 0.1N(0, (10σ)2I3), that jointly inflates both types of errors.
• C4 e ∼ 0.9N(0, σ 2)+ 0.1N(8, 0.012), that introduces asymmetric response errors.

Note that C1 and C4 have the extra effect of breaking the spherical symmetry of the errors distribution.
The classical estimator is computed using the Nadaraya–Watson estimatorsνj,ls(τ ), given in (9), and combining them

with the total least squares estimator of the regression parameter β. We denote TLS the resulting estimator of β. The robust
estimators are based on localM-estimators combined with robust estimators of the parameter β under the linear EVmodel.
More precisely, we use the Gaussian kernel weights with standard deviation 0.25/0.675 = 0.37 such that the interquartile
range is 0.5 for the classical and robust smoothing procedures. We compute the robust local M-estimates using the score
function based on arctan, that isψk(u) = 1/k arctan(u/k)with tuning constant k = 0.55, which gives a 90% efficiency with
respect to its linear relative under normality. Local medians are selected as initial estimates in the iterative procedure for
the computation of the localM-estimators.

In both cases, for the smoothing procedures, we choose the bandwidth by means of suitable cross-validation criteria. To
describe these procedures, assume that (yi, xti , v

t
i , ti), 1 ≤ i ≤ n, follow model (3). The classical cross-validation criterion is

given by the minimization of

CV (h) =
1
n

n
t=1


yi −βt

h,ivi −gh,i (ti)2
, (20)

wheregh,i(τ ) = νo,h,i(τ )−βt
h,iνh,i(τ ),νo,h,i(τ ) andνh,i(τ ) are the smoothers obtained with all the data except (yi, xti , v

t
i , ti)

using bandwidth h and βh,i is obtained from the sample without the ith observation. However, the sensitivity to outliers
of the classical methods for the selection of the smoothing parameter is well known in nonparametric regression. For this
reason, as in Bianco and Boente (2007) for the robust estimators we consider a robust cross-validation criterion, that makes
a trade-off between robust measures of bias and variance. Following this approach, we consider the minimization of

D(h) = µ2
n


yi −βt

h,ivi −gh,i (ti) + σ 2
n


yi −βt

h,ivi −gh,i (ti) , (21)

where we take µn as the median andσn as the Huber τ -scale estimate. We consider the classical cross-validation criterion
for the classical estimators and the robust D(h) for our robust proposal.

The robust regression estimators are computed using both, the robustweighted orthogonal regression introduced in Fekri
and Ruiz-Gazen (2004) and the orthogonal regressionM-estimates as proposed in Zamar (1989). In the case of the weighted
orthogonal estimators, we consider three robust estimators of multivariate location and scatter:M-, S-andMCD estimators
with breakdown point equal to 0.45 for the first one and 0.5 for the two last estimators. We denote the resulting weighted
estimators of the regression parameter asWORM ,WORS andWORMCD. As proposed by Fekri and Ruiz-Gazen (2004), we take
hard rejection weights which correspond to the indicator function η ≡ I[0,c], where c is the 97.5% quantile of a distribution
χ2
p+1. With respect to the orthogonal regression M-estimator, it was computed by means of the algorithm introduced in
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Table 1
Simulation summary: 10% trimmed mean squared error for the estimators of the regression parameter β,
independent case.

TLS WORMCD WORM WORS MOR

C0 0.0053 0.0097 0.0104 0.0098 0.0062
C1 0.2737 0.0135 0.0136 0.0126 0.0203
C2 0.2674 0.0151 0.0150 0.0145 0.0268
C3 0.3372 0.0104 0.0108 0.0102 0.0155
C4 18.0127 0.0106 0.0112 0.0102 0.0139

Table 2
Simulation summary: median of MedSE(g), independent case.

TLS WORMCD WORM WORS MOR

C0 0.0265 0.0399 0.0402 0.0398 0.0389
C1 0.0589 0.0505 0.0514 0.0509 0.0516
C2 0.0793 0.0615 0.0615 0.0615 0.0621
C3 0.0781 0.0582 0.0583 0.0583 0.0582
C4 0.7746 0.0946 0.0951 0.0940 0.0954

Table 3
Simulation summary: 10% trimmed mean squared error for the estimators of g , independent case.

TLS WORMCD WORM WORS MOR

C0 0.0491 0.0814 0.0816 0.0815 0.0809
C1 0.1172 0.1090 0.1088 0.1087 0.1105
C2 0.1897 0.1423 0.1424 0.1423 0.1447
C3 0.1876 0.1312 0.1312 0.1310 0.1315
C4 1.5745 0.2434 0.2435 0.2433 0.2442

Zamar (1989) using the Tukey biweight loss function with tuning constant c = 4.7, yielding the MOR estimator for the
regression component of the simulated models.

We report on the simulation results based on 1000 replications of samples of size n = 100 of each of the described
schemes. Fig. 3 gives the boxplots of the estimates of the regression parameters β1 and β2 for the two designs. Due to
the difference in location and scale between the classical and the robust estimators under contamination, in order to
enable a suitable visualization the vertical axis of these boxplots is restricted. Thus, the chosen vertical range is [−1, 3]
for C1 and C2 and [−10, 10] for C3 and C4, even though the classical method yields estimates beyond these bounds. In
uncontaminated samples the classical estimator shows its advantagewith respect to the robust estimators, while the robust
ones do not exhibit an important loss of efficiency. From this Figure the sensitivity of the classical estimator to the selected
contaminations becomes evident. Under contaminations C1 and C4 the classical estimator has a poor performance, mainly
with respect to bias, while under contaminations C2 and C3 it becomes very unstable. On the contrary, the robust estimators
are very stable in most situations. Robust estimates may have heavy tailed distribution for finite samples and from Fig. 3
this seems to be the case of the orthogonal M-estimators, at least under C1 and C2 in the dependent design. This behaviour
of robust estimators has been already described, for example in Maronna and Yohai (2010) and Croux et al. (2010). For this
reason, as all these authors pointed out, an α-trimmed mean squared error is more representative since it is less influenced
by a few extreme values. Hence, we compute the 10% trimmed mean squared error (MSE) of the regression estimates as
summary measure, which are reported in Tables 1 and 4 for the independent and dependent designs, respectively. On the
other hand, the performance of an estimateg of the nonparametric component g is measured using the 10% trimmedmean
squared error, that are summarized in Tables 3 and 6 and also by means of the median squared error computed as

MedSE(g) = median

[g(ti)− g(ti)]2


,

shown in Tables 2 and 5.
Tables 1–6 show that, as expected, at the uncontaminated schemes the classical estimators achieve the lowest square

errors for both components, the parametric and nonparametric one. However, in general terms, even when there is some
loss of efficiency, the behaviour of the robust estimators is satisfactory. Focusing on the parametric component, under any
of the considered contaminations, the performance of the classical estimator is very poor. Indeed, Tables 1 and 4 show that
the MSE of the regression parameter increases more than fifty times under contamination and things seem to be worse
under the dependent structure between the x and t than under the independent design. The robust estimators are much
more stable in all considered circumstances, indeed, they are still being reliable even under the more severe contamination
schemes. For instance, the asymmetric contamination on the response errors C4, that seems to have a devastating effect on
the classical estimator of the linear and nonparametric components, is much more harmless for all the robust estimators.

Regarding the estimation of the nonparametric component, in order to give a full picture of the performance of both
classical and robust estimators, Figs. 4 and 5 display the functional boxplots of the estimators of function g . Since variable
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Table 4
Simulation summary: 10% Trimmed mean squared error for the estimators of the regression parameter β,
dependent case.

TLS WORMCD WORM WORS MOR

C0 0.0097 0.0169 0.0177 0.0166 0.0112
C1 2.5142 0.0245 0.0243 0.0233 0.1764
C2 0.8932 0.0292 0.0280 0.0281 0.1434
C3 1.3543 0.0177 0.0194 0.0178 0.0341
C4 151.4738 0.0183 0.0200 0.0181 0.0279

Table 5
Simulation summary: median of MedSE(g), dependent case.

TLS WORMCD WORM WORS MOR

C0 0.0155 0.0273 0.0273 0.0271 0.0267
C1 0.6399 0.0370 0.0374 0.0364 0.0720
C2 0.1457 0.0484 0.0474 0.0476 0.0654
C3 0.1197 0.0408 0.0421 0.0425 0.0432
C4 33.3647 0.0591 0.0594 0.0580 0.0626

Table 6
Simulation summary: 10% trimmed mean squared error for the estimators of g , dependent case.

TLS WORMCD WORM WORS MOR

C0 0.0368 0.0660 0.0664 0.0660 0.0628
C1 1.5359 0.0908 0.0901 0.0898 0.1918
C2 0.5775 0.1289 0.1272 0.1277 0.2228
C3 0.7538 0.1089 0.1099 0.1082 0.1195
C4 79.9371 0.1751 0.1775 0.1752 0.1849

t is random and it is highly concentrated in the interval I = [−2.5, 2.5], in order to obtain comparable estimations of
g , we consider a grid of equally spaced points τj, j = 1, . . . , 100 in I. Thus, in each replication we estimate g(τj) with
each procedure using the optimal bandwidth obtained with the corresponding cross-validation criterion. In the functional
boxplots, the area in magenta represents the central region, the dotted red lines correspond to outlying curves and the red
line to the true nonparametric function g . In general terms, the functional boxplots show the stability of the robust estimates
of g and the strong effect of the considered contaminations on the classical estimators of the nonparametric function. The
impact of the contaminations seems to be less pronounced in the independent design than in the dependent one. The effect
of the contaminations on the classical estimates is reflected either in the presence of a great number of outlying curves or in
the enlargement of the width of the bars of the boxplots or in the trend of these bars. As alreadymentioned, the asymmetric
contamination C4 breaks down the classical estimator under dependency, indeed a spurious trend appears in the classical
estimators of g andmost of the estimated curvesgTLS do not follow the same direction than the true function g , which is not
completely included in the magenta central area. This is also evident from Tables 3 and 6 that show that the trimmed MSE
of the classical estimate of g increases more than thirty times when the covariates are independent andmore two thousand
times when x and t are related under C4. With respect to the robust estimates, despite the fact that a few outlying curves
appear, the central region in magenta of all the boxplots does always contain the true function g andmost curves follow the
pattern introduced by the sine function.

The results in the Supplementary material go in the same direction to those described herein (see Appendix B). The
dependent structure among the linear covariates, introduced through the covariance matrix, strengthens the effect of the
contaminations on the classical estimators, evenwhen x and t are independent, while the robust ones remain being reliable.

6. Example: LA data

Afifi and Azen (1979) consider an epidemiological heart disease study on LA County based on 200 employees. Among
other variables, age and serum cholesterol levels in 1950 and 1962 were recorded. Buonaccorsi (2010) considers the
regression of serum cholesterol level in 1962 (CS62) on age (Age) and serum cholesterol in 1950 (CS50), assuming that
(CS50) and (CS62) are measured with error, while Age is measured without error.

The left panel of Fig. 6 presents a kernel fit of the response variable CS62 on Age and the right one, the scatter plot of CS62
versus CS50. They show a linear pattern between the two serum cholesterol variables and a nonlinear relationship between
CS62 and Age, so taking into account all these considerations, we fit to the LA data a partially linear EV model. Initially,
we compute three estimation procedures: a naive classical method, as if there were no errors-in-variables, based on least
squares, the classical estimates based on total least squares described above and the proposed estimator using the weighted
orthogonal regression estimator based on S-multivariate estimates of location and scatter as described in Section 5. For this
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Fig. 6. LA data: On the left panel kernel fit of CS62 on Age and on the right panel scatter of CS50 versus CS62.

Fig. 7. LA data: In the left panel, the line in red corresponds toβTLS , the line in black to the naiveβLS , the line in blue toβROB , while the line in green toβ−7
TLS .

In the right panel, the curve in red plots the classicalgTLS , while the curve in blue plotsgROB and the curve in green representsg−7
TLS . (For interpretation of

the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 7
Estimators of the regression parameter for the LA data.βLS βTLS βROB β−7

TLS

0.3953 0.6808 0.8727 0.8689

last estimator, we consider hard rejection weights, which correspond to the indicator function η ≡ I[0,c], where c is the 99%
quantile of a distribution χ2

2 .
In a first stage, we select the smoothing parameter for the classical and robust procedures. We consider the classical

cross-validation criterion CV (h) given in (20) for the classical estimators and the robust D(h) defined in (21) for our robust
proposal. The classical CV (h) is minimized at h = 17 and D(h) at h = 20. The classical and robust estimators of β obtained
using these bandwidths are reported in Table 7 as TLS and ROB, respectively. The naive least squares estimator computed as
if there were no error measurements is also reported and it is labelled as LS.

In a second step, we look for those observations downweighted by the weighted orthogonal estimator, they correspond
to observations 23, 39, 41, 77, 88, 115 and 137 that are identified as possible outliers. They are plotted in blue in the left
panel of Fig. 7, where we show the obtained fits that look remarkably different from each other.



62 A.M. Bianco, P.M. Spano / Computational Statistics and Data Analysis 106 (2017) 46–64

Finally, we remove from the sample these seven identified outliers and we repeat the classical approach based on total
least squares with the remaining data. The corresponding estimators areβ−7

TLS andg−7
TLS , whose fits are represented in green in

Fig. 7 together with the classical and robust fits computed from the whole sample. Table 7 shows that the detected atypical
points influence the classical estimation procedure. The classical estimators obtained after removing the outliers and the
proposed robust estimators computed with the whole sample lead to similar fits as it is shown in Fig. 7.
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Appendix A

Proof of (18). Let aε be the estimator in the reparametrized form for the new sample. Since EIF(β, (y0, vt0, t0)) =
∂βε/∂ε |ε=0 =


∂β/∂a (∂aε/∂ε) |ε=0, we have that

EIF(β, (y0, vt0, t0)) =
−1a0


−a∗a0 I


EIF(a, (y0, vt0, t0)),

wherea∗
= (a1, . . . ,ap)t and EIF(a, (y0, vt0, t0)) is the empirical influence function of the regression parameter after the

reparametrization.
Note thataε is the solution of

min
a

1 − ε

n

n
i=1

ρ


atzi,ε
σ∥a∥


+ ερ


atz0,ε
σ∥a∥


, (A.1)

withzi,ε = (yi, vti )−ν∗

ε(ti), 0 ≤ i ≤ n, whereν∗

ε(τ ) are obtained from the new sample. Then,aε satisfies
I −

aε
∥aε∥ atε

∥aε∥
 

(1 − ε)

n

n
i=1

ψ

 atεzi,ε
σ∥aε∥

zi,ε + ε ψ

atεz0,ε
σ∥aε∥

z0,ε = 0.

Wemay choose the estimate to have length equal to one, so it verifies that
I −aεatε


(1 − ε)

n

n
i=1

ψ

atεzi,ε
σ

zi,ε + ε ψ

atεz0,ε
σ

z0,ε = 0.

Now, differentiating with respect to ε we have that

0 =

I −aεatε


−

1
n

n
i=1

ψ

atεzi,ε
σ

zi,ε + ψ

atεz0,ε
σ

z0,ε +
(1 − ε)

n

n
i=1


I −aεatε 1

σ
ψ ′

atεzi,ε
σ

zi,εzti,ε ∂aε∂ε
−
(1 − ε)

n

n
i=1

ψ

atεzi,ε
σ

 atεzi,εI +aεzti,ε ∂aε∂ε +
(1 − ε)

n

n
i=1


I −aεatε 1

σ
ψ ′

atεzi,ε
σ

zi,εatε ∂zi,ε∂ε

+
(1 − ε)

n

n
i=1


I −aεatεψ atεzi,ε

σ


∂zi,ε
∂ε

+ ε
∂

∂ε


ψ

atεz0,ε
σ

z0,ε .
Thus, evaluating at ε = 0 we get that

0 =

I −aat 

−
1
n

n
i=1

ψ

atzi
σ

zi + ψ

atz0
σ

z0

+


1
n

n
i=1


I −aat 1

σ
ψ ′

atzi
σ

zizti −
1
n

n
i=1

ψ

atzi
σ

 atziI +azti 

EIF(a, (y0, vt0, t0))

−
1
n

n
i=1


I −aat 1

σ
ψ ′

atzi
σ

ziatEIF(ν∗, (y0, vt0, t0))(ti)

−
1
n

n
i=1


I −aatψ atzi

σ


EIF(ν∗, (y0, vt0, t0))(ti).
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Therefore, we have that

0 =

I −aatψ atz0

σ

z0
+


1
n

n
i=1


I −aat 1

σ
ψ ′

atzi
σ

zizti −
1
n

n
i=1

ψ

atzi
σ

 atzi I +azti 

EIF(a, (y0, vt0, t0))

−

I −aat 

1
n

n
i=1

1
σ
ψ ′

atzi
σ

ziatEIF(ν∗, (y0, vt0, t0))(ti)+
1
n

n
i=1

ψ

atzi
σ


EIF(ν∗, (y0, vt0, t0))(ti)


.

From this expression, if we denote A =
1
σ
(I −aat) 1

n

n
i=1 ψ

′

atzi
σ

zizti −
1
n

n
i=1 ψ

atzi
σ

 atzi I +azti , we get that

EIF(a, (y0, vt0, t0)) = −A−1 
I −aat 

ψ

atz0
σ

z0 −
1
σ

1
n

n
i=1

ψ ′

atzi
σ

ziatEIF(ν∗, (y0, vt0, t0))(ti)

−
1
n

n
i=1

ψ

atzi
σ


EIF(ν∗, (y0, vt0, t0))(ti)


.

Hence, we need an expression for EIF(ν∗, (y0, vt0, t0))(τ ) in order to compute the empirical influence function. For each
component j, 0 ≤ j ≤ p we have that

0 =
(1 − ε)

n

n
i=1

K

ti − τ

h


ψ1


zji −νj,ε(τ )sj,ε(τ )


+ εK


t0 − τ

h


ψ1


zj0 −νj,ε(τ )sj,ε(τ )


. (A.2)

Differentiating (A.2) with respect to ε and evaluating at ε = 0, we obtain

0 = −
1
n

n
i=1

K

ti − τ

h


ψ1


zji −νj(τ )sj(τ )


+ K


t0 − τ

h


ψ1


zj0 −νj(τ )sj(τ )


−

1
n

n
i=1

K

ti − τ

h


ψ ′

1


zji −νj(τ )sj(τ )


1sj(τ )EIF(νj, (y0, vt0, t0))(τ )

−
1
n

n
i=1

K

ti − τ

h


ψ ′

1


zji −νj(τ )sj(τ )


zji −νj(τ )s2j (τ ) EIF(sj, (y0, vt0, t0))(τ ),

and so

EIF(νj, (y0, vt0, t0))(τ ) =


1
n

n
i=1

K

ti − τ

h


ψ ′

1


zji −νj(τ )sj(τ )


1sj(τ )

−1 
K


t0 − τ

h


ψ1


zj0 −νj(τ )sj(τ )



− EIF(sj, (y0, vt0, t0))(τ ) 1
n

n
i=1

K

ti − τ

h


ψ ′

1


zji −νj(τ )sj(τ )


zji −νj(τ )s2j (τ )



=


1
n

n
i=1

K

ti − τ

h


ψ ′

1


zji −νj(τ )sj(τ )


1sj(τ )

−1 
K


t0 − τ

h


ψ1


zj0 −νj(τ )sj(τ )


.

Finally, if we denotea∗
= (a1, . . . ,ap)t, we have that

EIF(β, (y0, vt0, t0)) =
1a0


−a∗a0 I


A−1 

I −aat 
ψ

atz0z0 −
1
n

n
i=1

ψ ′
atziziatEIF(ν∗, (y0, vt0, t0))(ti)

−
1
n

n
i=1

ψ
atzi EIF(ν∗, (y0, vt0, t0))(ti)


.

Proof of Theorem 3.1. We have that

Pn(A) =
1
n

n
i=1

IA(yi −νo(ti), vi −ν(ti)).
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Hence, since (15) holds, from Lemma 3.2 we get that

|EPn(f )− EPn(f )|
c.s.

−→ 0,

where

Pn(A) =
1
n

n
i=1

IA(yi − νo(ti), vi − ν(ti)),

and thus,

Π(Pn, P) c.s.
−→ 0.

Since β(G) is continuous in P ,β = β(Pn) c.s.
−→ β(P).

It only remains to show that β(P) = β. Since (yi, xti , v
t
i , ti), 1 ≤ i ≤ n, satisfy (1) and g(τ ) = νo(τ )− βtν(τ ), we get that

zi =


yi − νo(ti)
vi − ν(ti)


=


βt(xi − ν(ti))
xi − ν(ti)


+


ei
exi


.

Therefore, zi, 1 ≤ i ≤ n, follow model (16) with β = β and hence, β(P) = β.

Appendix B. Supplementary material

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.csda.2016.09.002.
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