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Abstract The swap body vehicle routing problem (SB-VRP) is a generalization of the classi-
cal vehicle routing problemwhere a particular structure as well as several operational aspects
for the trucks composing the fleet are considered. This research has been motivated by the
VeRoLog Solver Challenge 2014, organized together by VeRoLog and PTV group, aiming
to motivate the study of real-world logistic problems. A truck can carry either only one swap
body or, in addition, an extra trailer with an extra swap body. For the latter, special depots,
called swap locations, can be used to drop and pickup the swap bodies. These operations
may affect the feasibility and the cost of a route, and therefore the overall operational cost. In
this paper, we propose a cluster-first route-second heuristic for the SB-VRP. Computational
experiments are conducted over the benchmark instances proposed for the competition, sim-
ulating a practical environment by considering limited resources and execution time. The
results obtained are of very good quality, where our approach ended as runner-up in the
final set of instances and performs similarly to the other algorithms in the remaining cases,
showing its potential to be applied in practice.
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1 Introduction

Vehicle routing problem (VRP) is one of the most important and studied problems in logistic
and transportation literature.Many variants covering different aspects of real-world situations
define problems with particular characteristics. Toth et al. (2014) and Golden et al. (2008)
provide a very detailed and extensive survey including practical applications of the VRP as
well as the proper algorithms to tackle them.

The EURO Working Group on vehicle routing and logistics (VeRoLog), in collaboration
with PTV Group, proposed the VeRoLog Solver Challenge 2014, aimed to develop and
compare solution approaches of participants from the academic and professional sector for a
specific variant of theVRP, called swapbodyVRP (SB-VRP). TheSB-VRP is a generalization
of the VRP that considers a homogeneous fleet which consists of trucks, semi-trailers and
swap bodies, as well as special locations, called swap locations. The swap locations represent
special depots where the swap bodies can be coupled and decoupled. In addition, some
customers can only be visited by trucks having a particular configuration, i.e., carrying only
one swap body.

Problems having a similar structure as the SB-VRP have been considered in the literature,
which are reviewed in the next section. Regarding the SB-VRP, several algorithms have
been proposed within the context of the competition. To the best of our knowledge, the
only published approaches are the one by Huber and Geiger (2014), Lum et al. (2015) and
recently Absi et al. (2015). Huber and Geiger (2014) describe the heuristic developed for the
competition and report the results obtained over the test instances provided by the organizers.
They consider an iterated local search (ILS). An initial solution is constructed randomly, and
then a sequence of intra and inter tour local search operators are applied.Whenever the current
solution cannot be improved, it is perturbed by removing complete routes and reconstructing
new ones. One distinctive decision is that, for constructing a route, they consider having at
most two subtours.

Lum et al. (2015) follow a different approach. The SB-VRP instance is transformed into
a classical VRP, where an initial solution is obtained by developing a simulated annealing
(SA) using a standard algorithm for the VRP provided in VRPH (Groer 2012). Then, since
this solution may be of poor quality, a post-processing stage and a variable neighborhood
descent (VND) exploiting five specifically designed local search operators are considered
to obtain the final solution. The results are good in general, also evaluated on the instances
provided up to the preselection stage, where 10 of the overall 27 teams classified for the final
round.

Absi et al. (2015) propose a relax-and-repair approach. In thefirst phase, a relaxation of the
SB-VRP is considered by discarding accessibility constraints and solving an heterogeneous-
fleet VRP (H-VRP), where the different types of trucks cover the feasible configurations
allowed by the SB-VRP. For this phase, a parallel memetic algorithm is considered. Since
the outcome can be an infeasible SB-VRP solution, a repair procedure is considered to try to
recover from infeasibility incurred by customers that can be visited only by trucks carrying
only one swap body. Finally, a post-optimization procedure is executed where all feasible
routes identified along the first two phases are considered in a set-partitioning problem in
order to select the best ones covering all customers.
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The purpose of this paper is to contribute to the development of algorithms and approaches
for the SB-VRP by describing the details of our approach in the context of the competition,
where a real-world context is simulated by providing a particular running environment and
limited computation time to solve real-world instances. We first point out some basic proper-
ties regarding the SB-VRP and then describe our approach, that ranked in the second position
of the final round of the VeRoLog Solver Challenge 2014 (Heid et al. 2014). Two different
clustering techniques are explored and evaluated computationally, obtaining as a result an
improved version of the algorithm. We also make an explicit comparison with the results
obtained by Huber and Geiger (2014), Lum et al. (2015) and Absi et al. (2015), and analyze
the results obtained to provide further details of the behavior of our approach.

The rest of the paper is organized as follows. In Sect. 2 we include a literature review
of problems related to the SB-VRP and describe some observations and remarks regarding
the characteristics of the problem. Then, in Sect. 3 we describe our metaheuristic approach.
Finally, in Sect. 4 we present the computational results over the benchmark instances used
in the competition and in Sect. 5 we draw some conclusions and propose future research
directions.

2 The SB-VRP

2.1 Problem definition

The SB-VRP is defined in Heid et al. (2014). We follow most of the notation introduced
by Huber and Geiger (2014) for the definition of the SB-VRP. The main distinctive feature
of the SB-VRP with respect to other well known problems from the VRP literature is the
characteristic of the fleet. An unlimited homogeneous fleet of vehicles consisting of trucks,
semi-trailers and swap-bodies start the operations at the depot v0. Two types of vehicles are
allowed to start at the depot, which are a single truck, carrying one swap body, or a train
composed by a truck, a semi-trailer and two swap-bodies. Swap-bodies are assumed to be
identical, each of them with a fixed capacity. Only swap-bodies can be loaded to a truck.

Consider a complete digraph G = (V, A), where V is the set of vertices and A the set of
arcs. Three different types of vertices are considered: vertex v0 represents the central depot,
a set of swap locations Vs = {sw1, . . . , swm}, where vehicles are allowed to perform certain
actions, and a set of customers Vc = {v1, . . . , vn}, where V = {v0} ∪ Vs ∪ Vc. Each arc
(i, j) ∈ E has associated a non-negative travel distance di j and a non-negative travel time
ti j . Customer vi ∈ Vc has an associated demand qi ≥ 0, which must be served by exactly
one vehicle, and an associated property indicating whether it can be visited only by a truck
or by a train as well. The latter accounts for certain customers located in areas where, due to
shunting constraints, vehicles carrying more than one swap body cannot access. The former
are usually called truck customers, while the latter are called train customers.

The swap locations can be optionally used by the vehicles—and they are the only places
where it is allowed—to perform certain actions with the swap bodies carried by a train. All
swap locations allow the same actions to be performed. Furthermore, there is no limit on the
number of times a vehicle can visit a swap location and no synchronization is required if two
or more vehicles intend to use the same swap location. The valid actions allowed are four:
park, pick-up, swap and exchange, where tpark, tpick, tswap and tex represent the time required
for each action, respectively. These actions modify temporarily the original setting of a train
by detaching, picking up and swapping a swap body carried by a train. Figure 1 describes
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Fig. 1 Swap actions. a Park, b pickup, c swap and d exchange

the behavior of each action. As a consequence, this allows a vehicle that started a route as a
train to adapt its structure and visit a truck customer. We name to these particular portions of
a route a subtour.

Only swap bodies can be loaded, each of them with a capacity Q. Therefore a single truck
has a capacity Q while a train has capacity 2Q. Transfers of swap bodies within a route are
not allowed, and the vehicle must return to the depot with the same swap bodies as originally
departed.

Regarding operational constraints, the demand for each customer must be satisfied by
exactly one visit of a vehicle, taking into account train limitations for truck customers. Each
route must not exceed the capacity of the vehicle. In this sense, it is important to remark that
it is not allowed to transfer load from one swap body to another one within a route and that
swap bodies cannot be exchanged among vehicles at swap locations. In addition, the route
duration, including the time spent at swap locations performing actions, must not exceed a
fixed maximum duration limit T .

The structure of the objective function includes several parameters, which allow the com-
pany to obtain a reasonable approximation of the real costs incurred during operations. There
are fixed costs f t and f s for the use of a truck and a semi-trailer, respectively, and there
are no costs related to the use of swap bodies. Variable costs ct trd and ct trt are considered for
the distance traveled and the time spent, respectively, for a truck. In addition, for trains, a
variable cost cssemi

d is considered for the total distance the semi-trailer is used. Note that, in
general, actions at swap locations can be used to visit a truck customer within a train route
but, also, to eventually reduce the cost of a route and of the overall solution by avoiding the
costs incurred when carrying a semi-trailer.

The SB-VRP consists in finding a set of feasible routes, covering each customer exactly
once and satisfying the operational constraints mentioned before, at minimum total cost. To
illustrate the characteristics of the problem, we provide in Fig. 2 a toy example with the basic
structure of a feasible solution for the SB-VRP. In this example we can observe a pure truck
route, a train route, and a train route with two subtours. For the latter, next to each portion of
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Fig. 2 Example of a feasible
solution

1,2
1

22,1

depot
swap location
truck cust.
train cust.

truck route
train route

the route it is indicated which swap bodies are carried. For this particular solution, the first
visit to the swap location is a park, the second one is a swap, and finally a pickup. Observe
also that it is not mandatory to visit all swap locations.

Finally, we make a practical remark on the information of the instances. As specified in
the problem definition in Heid et al. (2014), both the distance and travel times are the result
of a combination of the shortest path calculation including the distance and the driving times
and do not necessarily satisfy the triangle inequality. In addition, they are both considered
as asymmetric. However, input files provide for each location (depot, customer, and swap
location) the corresponding coordinates. We observe that they keep a relation with both the
distance and driving times. Our approach explicitly uses this information at the beginning of
the algorithm and, therefore, we assume this extra information to be part of the instance.

2.2 Literature review and relation with other problems

A similar problem to the SB-VRP is the truck and trailer routing problem (TTRP) which is,
to the best of our knowledge, introduced by Semet and Taillard (1993) and later considered
in Semet (1995). The TTRP shares some of the characteristics of the SB-VRP but, however,
presents the following differences:

– it considers a limited fleet, and trucks and trailers may have different capacities (i.e.,
carrying swap bodies with different capacities);

– actions can be performed at train customers, i.e., there are no swap locations;
– the actions allowed are park, pickup, and shifting demands loads, indicating that the

semi-trailer is leaved at a feasible location and the truck travels alone;
– there is no time limit on the duration of a route.

In the last few years, the TTRP has caught some attention in the scientific community and
several metaheuristic approaches for the problem are proposed in the related literature. Chao
(2002) proposes a tabu search method which is applied to 21 instances having between 50
and 200 customers, with different configurations. Scheuerer (2006) builds upon this paper
and proposes two new construction heuristics, which are evaluated in a similar framework as
in Chao (2002). The results obtained over the 21 benchmark instances showed the approach
to be effective, obtaining better solutions in all cases. Lin et al. (2009) consider a Simulated
Annealing heuristic that improved the best solution found by Scheuerer (2006) in 17 of
the 21 instances, and showing mixed results regarding the average results. These results
are slightly improved in a follow-up paper in Lin et al. (2010). Caramia and Guerriero
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(2010) propose a two-stage Matheuristic, assigning customers to routes at first, and then
optimizing each route locally. Villegas et al. (2011) develop a greedy randomized adaptative
search procedure (GRASP) with a path-relinking strategy for the problem, outperforming the
previous approaches and reducing the variability in the results. Finally, Derigs et al. (2013)
propose a framework for the TTRP that can be adapted to manage other variants, i.e. time
windows and the case without load transfer. They make an important observation regarding
the instances, claiming that some of them as well as the definition of the problem overlook
several important aspects.

Gerdessen (1996) considered the vehicle routing problem with trailers (VRPT), having a
similar structure as the TTRP and with applications in the distribution of dairy products in
rural areas. In this problem there are no accessibility constraints but, however, the difference
relies in the service time required to serve a customer.

Regarding generalizations of the TTRP, Tan et al. (2006) consider the TTVRP, a multi-
objective optimization problemwhere trucks can be used to pickup and deliver goods and are
required to visit exchange points in order to select the correct trailer type. They propose an
ILP formulation and the problem is tackled using an evolutionary algorithm. Computational
results are shown for instances having at most 132 jobs (customers) considering two differ-
ent objectives: route cost and the number of trucks used. Drexl (2013) studies the VRP with
trailers and transhipments (VRPTT), a very general problemwhich captures several synchro-
nization aspects regarding time, load and spatial constraints. A formal framework including
the definition of a particular network for such problems is discussed. Recently, Drexl (2011)
studies the generalized TTRP(GTTRP), in which swap locations (called transhipment loca-
tions) are considered. Vehicles are also allowed to transfer their loads and trailers can be
dropped and picked up by another compatible truck.

2.3 Properties and remarks for the SB-VRP

We begin by pointing out a few observations regarding the SB-VRP, mainly focused on limits
and characteristics imposed by the operational constraints, which are later incorporated in
our algorithm.

The first observation concerns the use of swap locations, both in terms of the feasibility
as well as the cost of a solution. Consider the two routes in Fig. 3, visiting the same set
of locations. In Fig. 3a, the customers visited next to the swap location are close, while in
Fig. 3b the same swap location is next tomore remote customers. The presence of amaximum
travel time duration T for a route clearly limits the possibility of visiting a swap location to
perform a sequence of activities. In addition, even when the maximum duration of a route
is not exceeded, obtaining a significant decrease in the cost of the route will depend on the
relation between the values ct trd and cssemi

d . Assuming that the distance and travel time keeps

(a) (b)

Fig. 3 Examples of routes. a Swap location next to close customers, b swap location next to far customer
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a relation with respect to their relative location, the route shown in Fig. 3b is larger (both in
time and distance) compared with the one in Fig. 3a.

This simple analysis shows that for some cases, limiting the use of a swap location could
represent a good alternative to reduce the size of certain local search neighborhoods, if the
customers to be visited immediately after/before it are close enough, without losing many
feasible solutions. Indeed, as explained later, we consider for each customer only a restricted
list containing a predefined subset of the (closest) swap locations.

We also analyze how capacities are handled in a train. Operational constraints establish
that transfers of load between swap bodies are not allowed, evenwhen they belong to the same
train. However, as stated in the definition, it is valid to load the quantity for one customer on
the two swap bodies—and it must be visited by the train—and the order of the swap bodies
is not relevant. We therefore consider the following result.

Remark 1 Let r = 〈v0, i1, . . . , ik, v0〉 be a feasible sequence of vertices visited by a train.
Define �r ⊆ Vc the set of customers visited while carrying the two swap bodies and �r

l ⊆ Vc
the subset of customers visited while carrying only swap body l, l = 1, 2. Then, r is feasible
in terms of capacity iff

∑

v∈�r
l

qv ≤ Q, l = 1, 2 (1)

∑

v∈�r

qv +
∑

v∈�r
1∪�r

2

qv ≤ 2Q. (2)

These two conditions can be easily translated into an straightforward algorithm that in
O(|r |) can check the feasibility of a route in terms of the capacity constraints. Therefore,
capacity can be handled more generally in terms of feasibility and previous decisions regard-
ing which swap body serves to each customer do not restrict traditional operations when
altering the structure, order and/or composition of a route.

Finally, we make an observation regarding the first operation at a swap location of a route.
Based on the definition of each operation, it is reasonable (and indeed happens in all test
instances provided) that tpark ≤ tex, given that an exchange can be seen as a park followed
by a swap. Under this scenario, the following result holds.

Remark 2 If tpark ≤ tex, then the first action at the first swap location visited by a route, if
any, should be a park.

The rationale behind this remark is very intuitive. The main difference between park
and exchange operations is which swap body is selected for a simple subtour. Since we are
considering the first action at the first swap location and customers allocated before in the
route are visited by the train with the two swap bodies, it is possible to simply invert the
role of each swap body in the rest of the tour and use the result in Remark 1 to allocate the
corresponding capacities. If tpark ≤ tex, the overall time for the route is reduced, without
affecting the feasibility, and the cost of the route is improved as well.

3 Proposed approach

In this sectionwe provide the details of the approach developed for the competition, including
two basic greedy algorithms which are quite intuitive and were first considered as initial
approaches as well as to provide a baseline for our evaluation. In addition, an alternative
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clustering method is considered, which is later evaluated and compared with the original
approach in Sect. 4. It is important to remark that some of the decisions taken regarding
the structure of the algorithm are driven by the context imposed by the competition, where
limited resources and time are available to solve real-world instances.

3.1 General comments

We now proceed to describe a few decisions made during the development of the solution
method for the competition, which somehow affect the different parts of the approach. The
first one involves the feasibility check in terms of capacity. Following the result in Remark 1,
we consider a straightforward algorithm to determine whether a particular operation (i.e.,
insertion, exchange, etc.) is feasible or not in terms of the total capacity. This allows us to
avoid handling explicitly which swap bodies satisfy the demand of each customer, providing
as well a more general framework in this regard.

We also take into account the observationmade in Sect. 2.3 regarding the proximity among
customers and swap locations. Therefore, we define for each customer vi ∈ Vc a restricted
set of swap locations, Ŝl(vi ), to capture this effect. Given a swap location sw j ∈ Vs , the
following (heuristic) weighted cost incurred when traveling arcs (sw j , vi ) and (vi , sw j )

using only a truck is

ĉvi sw j = ĉsw j vi = α
(
ct trd × (

dvi sw j + dv j swi

)) + (1 − α)
(
ct trt × (

tvi sw j + tv j swi

))
(3)

Then, we define Ŝl(vi ) as the K closest swap locations to vi according to the weighted
cost ĉ. The motivation behind this definition is to capture swap locations which are likely to
be feasible and also incurring in a small cost when accessing to them. Indeed, we observed
on preliminary computational experiments that considering these sets instead of all the swap
locations reduces significantly the computation times of certain routines, while obtaining
similar results.

3.2 Constructive heuristics

These two greedy algorithms could represent a very first approach for the SB-VRP, and
were used for comparison purposes. In addition, a straightforward extension of the greedy
approach presented in Sect. 3.2.2 is used as the constructive step in a GRASP metaheuristic,
as described later in the document.

3.2.1 Greedy naive

The first heuristic we consider is a simple heuristic which iteratively inserts unassigned ver-
tices into the partial solution following a greedy criterion, while in case no feasible insertion
can be made it forces the opening of a new route. This heuristic does not account for swap
locations, but it is used to provide a baseline for comparison purposes. In Algorithm 1 we
show the sketch of the greedy naive (GN) heuristic.

We note the two cases described in Step 2, when opening a new route. Firstly, when
considering a truck customer the only alternative is to open a simple route since swap locations
are not considered. For a train customer, however, both types of routes can be considered.
Due to the greedy selection criterion based on the cost incurred, only truck routes would be
opened. Therefore, to reduce the final number of routes we decided to open single routes only
when necessary. On preliminary computational results, this particular distinction produced
better results, incurring in overall smaller fixed and variable costs.
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Algorithm 1 Greedy naive (GN) heuristic
Input: SB-VRP instance.
Output: Feasible solution.

1. (Initialization) Let S = Vc the set of unassigned customers. Let R = ∅ be the set of routes representing
the (partial) solution.

2. (Evaluation) For each v ∈ S, compute the cost ĉirv incurred by inserting v in the position i of route r ∈ R,
if feasible. Consider also the cost ĉ0sv incurred by opening a new single route to visit v if it is a truck
customer, and the cost ĉ0tv of a new complete route to visit v if it is a train customer.

3. (Insertion) Select the vertex v∗ producing the least cost insertion ĉir
v∗ for position i in route r . If r is a new

route, set R = R ∪ {r} (where r is a single route or a train, depending on the choice). Insert v∗ in position
i of route r ∈ R. Set S = S\{v∗}.

4. (Termination) If S �= ∅, return to Step 2. Otherwise, return the solution and terminate the algorithm.

3.2.2 Greedy with swap locations

We now extend the idea described in the previous section to include actions and operations
at the swap locations. For this purpose, when attempting to insert a vertex into an existing
route, we will also try to begin a subtour or, if already within a subtour, try to perform a swap
action. In all cases, the feasibility of the solution in terms of capacity, duration and structure
of the swap activities is maintained.

We first show in Algorithm 2 a sketch of the insertions attempted for an unassigned vertex
into a particular position within an existing route in the current solution. Recall the notation
introduced in the previous section, where S denotes the set of unassigned vertices and R the
set of routes in the partial solution.

Algorithm 2 Vertex insertion evaluation
Input: SB-VRP instance, an unassigned vertex v ∈ S, route r ∈ R, position i = (va , vb) ∈ r
Output: Cost of the best insertion of vertex v, if any.

1. Evaluate the cost of the following insertions, if feasible:

– insert v alone between va and vb;
– if r is a train route and i is within a subtour, let sw be the active swap location. Evaluate inserting the

sequences 〈sw, v〉 and 〈v, sw〉;
– if r is a train route and when traversing i the vehicle carries both swap bodies, evaluate inserting a

single subtour composed by the sequence 〈sw, v, sw〉, for sw ∈ Vs ∩ Ŝl(v).

2. If at least one of the previous attempts is feasible, return the cost of the best one.

In Algorithm 3 we show the details of a greedy heuristic that incorporates the use of swap
locations, which we name G-SL. The main idea behind the algorithm is similar to GN, except
for two minor differences. When attempting to insert a vertex into an existing route we call
Algorithm 2 to consider the use of swap locations. Secondly, contrary to GN, new routes are
opened only when no feasible insertion in the actual routes is possible, despite eventually
opening a new route could incur in a smaller cost. This is expected to increase the chances
of using swap locations in the solution.
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Algorithm 3 Greedy with swap locations (G-SL) heuristic

Input: SB-VRP instance.
Output: Feasible solution.

1. (Initialization) Let S = Vc be the set of unassigned customers. Let R = ∅ be the set of routes representing
the (partial) solution.

2. (Vertex insertion) For each unassigned vertex v ∈ S, route r ∈ R, and position i = (va , vb) evaluate the
insertions as described in Algorithm 2. If at least one feasible insertion can be done, select and perform
the best one. Let v∗ be the vertex involved, update S = S\{v∗} and go to Step 4.

3. (Route extension) If no feasible insertion has been found in the previous step, attempt an insertion in a
new route. When considering a train route, attempt insertion using Algorithm 2 as in the previous step.
Select and perform the best insertion. Let v∗, r∗ be the selected vertex and the new route, respectively. Set
S = S\{v∗} and R = R ∪ {r∗}.

4. (Termination) If S �= ∅, return to Step 2. Otherwise, return the solution and terminate the algorithm.

3.3 Local search operators

In this section we provide some details regarding the local search operators considered, the
way in which they are adapted to the SB-VRP and which is the neighborhood we consider.
The possible movements are the following:

1. Exchange For every two customers vi , v j ∈ Vc allocated in different routes, exchange
their positions.

2. Relocate For every customer vi ∈ Vc, remove it from its current position and attempt to
insert it in every other position of the current solution.

3. Restricted Or-Opt Within a route, each sequence of consecutive customers having size
l = 1, 2, 3 is removed and several insertions are attempted in the remaining positions of
the route. Let s be the sequence of customers, with vsi and vsf the beginning and the end
of the sequence, respectively. Let also r∗ ∈ R be the route obtained by removing s and
let i ∈ r∗ be an arc. Then, we attempt the following insertions at i :

– insert s and its reverse, noted rev(s),
– if i belongs to a subtour, with sw ∈ Vs the active swap location, test the sequences

〈sw, s〉, 〈s, sw〉, 〈sw, rev(s)〉 and 〈rev(s), sw〉,
– if i belongs to a train sector of the route, for each sw ∈ Ŝl(vsi ) ∩ Ŝl(vsf ) attempt to

insert the complete subtours 〈sw, s, sw〉 and 〈sw, rev(s), sw〉 by performing a park.

4. Restricted 2-Opt For the SB-VRP, a train route using one or more swap locations could
easily fall into an infeasible solution. Since the 2-Opt operator needs to revert a subpath
in the route, if a swap location is contained in such subpath it is necessary, at least, to
define how this is handled. Furthermore, truck customers visited within a subtour could
be easily moved outside to a train section of the route, violating one of the operational
constraints. Therefore, we decided to apply the 2-Opt operator in an intra-route fashion,
and within subpaths where the composition of the truck does not change. That is: within
each subtour and on subpaths conformed by consecutive vertices visited by a train, if
any. To clarify, in case no swap locations are present in a route, the operator behaves as
in its standard definition. In addition, this adaptation allows us to obtain a faster operator
since some moves are omitted.

5. Route downgrade For each train route such that the total demand of all visited customers
does not exceed Q, remove the swap locations (if any) and create a new simple truck
route that visits the customers in the same order and carrying only one swap body.
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These operators are applied in the order they are presented, in a best improvement fashion,
and our implementation moves from one operator to the next one when no improvement can
be found. This sequence is applied iteratively until no better solution can be achieved by any
of the operators.

We make a brief discussion regarding some of the operators presented below. Firstly, we
remark that the Or-Opt we consider, although restricted to a route, includes the evaluation as
a possible movement not only the reverse of a sequence but, in addition, the insertion within a
subtour or even the possibility of starting a newonewithin a train route. Themotivation for this
decision is to allow new subtours to be created, both aiming to visit truck-only customers and
also to eventually reduce the overall cost of the tour. With respect to the downgrade route, we
experimentally observed that this is a common situation after exploring the neighborhood. To
facilitate the use of swap locations in a train route, we execute it only at the end of the process.

3.4 Shaking procedure

To escape from local optimum solutions, one of the alternatives considered is to apply a
shaking procedure to the solution and restart the search from the new generated solution.
For this purpose, given a feasible solution for the SB-VRP, each customer is removed from
the solution with uniform probability p ∈ (0, 1). Let L be the list of removed customers. To
reconstruct a feasible solution we shuffle L and its vertices are sequentially considered and
inserted into the restricted solution in the position and route incurring in the smallest cost
increment.

3.5 GRASP

Another alternative considered to escape from a local optimum is to randomize the construc-
tion phase, as proposed by the well known GRASP (see, e.g., Feo and Resende 1995). For
each initial solution, a local search procedure is executed in order to improve the solution.
Therefore, we adapt and include into this scheme the procedures described before.

For the construction phase, we develop a straightforward adaptation of Algorithm 3, where
instead of returning the best feasible insertion we construct a restricted candidate list having
the best rclsi ze insertions. To decide which insertion is performed, we randomly select one
of the elements in the list. We further add another random decision to the heuristic to decide
which type of route to open. Unless all the remaining unassigned customers are required to
be visited by a train (i.e., Q < qv ≤ 2Q, for all unassigned v ∈ Vc), a single truck route is
open with uniform probability pr and a train route with probability 1 − pr , pr ∈ (0, 1). We
consider generating a maximum of nitconst initial solutions.

Regarding the improvement phase, we consider an ILS combining the neighborhood
defined in Sect. 3.3 and the shake procedure from Sect. 3.4. Starting from a feasible solution,
we explore the neighborhood until no improvement can be found, apply the shaking procedure
and repeat the process. The shaking procedure is applied always using the best solution
obtained from the last constructed solution until the limit of nitils consecutive iterations
without improvements is reached. After reaching this limit, if possible, we start over again
with the constructive phase. The sketch for the overall procedure is shown in Algorithm 4.

3.6 Cluster-first route-second: competition approach

We point out the last decision concerning our strategy for the challenge, where the evaluation
is performed considering large size instanceswith approximately 500 customers and150 swap
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Algorithm 4 GRASP heuristic for the SB-VRP

Input: SB-VRP instance, nitconst, nitils, f objective function
Output: Feasible solution.

1. (Initialization) Set i t = 0 and zbest = ∞.

2. (Construction phase) If i t ≥ nitconst, go to Step 5. Otherwise, construct a feasible solution using the greedy
randomized heuristic. Set xcur as the solution. Define i tils = 0 and i t = i t + 1.

3. (ILS) Explore the neighborhood defined in Sect. 3.3. Let x̂ be the solution obtained. If f (x̂) ≤ f (xbest),
update xbest = x̂ .

4. (Evaluation) If f (x̂) ≤ f (xcur), xcur = x̂ , i tils = 0 and return to Step 3. If i tils > nitils, go to Step 2.
Otherwise, shake solution xcur, set i tils = i tils + 1 and return to Step 3.

5. (Termination) Return solution xbest and f (xbest).

locations. For this type of instance, the execution time of both the constructive algorithms
as well as the local search operators can be considerably increased. To tackle this issue, for
example, Lum et al. (2015) restrict the set of neighbors of each vertex during the search.
We adopted a similar strategy regarding the swap locations. However, for the remaining we
decided to follow a cluster-first route-second approach, which takes into account the upper
limit on the running time for the program established by the organizers.

Given the complete instance, we divide the vertices (customers and swap locations) into
at most ncl clusters using k-means taking as input the coordinates of the vertices, for some
value ncl set a priori. Once each cluster has been determined, they are treated independently
for a certain amount of time and, at the end, the best solutions found for each cluster form a
complete and feasible solution for the instance.

The procedure is as follows. Let Tmax be the time limit for running the algorithm and ncl
the number of clusters. Since our program for the competition runs in a single thread and
executes sequentially, we assign at most 2/3 of Tmax to optimize the clusters independently,
where this time is distributed among the cluster proportionally with respect to the number
of customers. Each optimization is carried out using the GRASP procedure described in
Sect. 3.5. When each cluster has either finished the procedure or reached the upper limit
established, we dedicate the remaining 1/3 of the time to optimize the merged solution by
executing the ILS procedure described in the previous section. When the overall time limit
is reached, the best solution found during the process is reported.

Based on limited preliminary experiments, we established the following parameters for
the algorithm. Firstly, we observed that dividing the instance in at most four clusters provided
good results. For the CFRS-vsc, we set nitconst = 50 and nitils = 150. This configuration
aims to provide the following behavior: for small and medium instances, when exploring the
search space starting from the best solution stops finding improvements, then we start over by
recomputing an initial solution. However, for large instances, exploring the neighborhoods
is time consuming and we prefer to restrict our attention to the ILS. Indeed, with the time
limits imposed by the competition, this is the standard behavior of the GRASP procedure.
For the weighted cost, we set α = 0.5. Within the greedy randomized, the probability of
opening a single truck route is set to pr = 0.2, rclsi ze = 5, we consider the K = 10
closest customers and p = 0.15 as the probability of removing a customer in the shaking
procedure if the instance (or cluster) has n ≥ 200, p = 0.3 if 50 ≤ n < 200, and p = 0.5
otherwise. For the rest of the paper, we name CFRS-vsc to the method described in this
section.
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3.7 Alternative clustering and general scheme

Evenwhen the k-means approach represents a significant improvement, in particular for large
instances, we observed that in some cases it may produce a smaller number of clusters than
expected (due to a random centroid initialization) since some clusters disappear. In addition,
the partition is not necessarily balanced with respect to the size of the clusters. Although this
is somehow considered when we proportionally assign the time to each cluster with respect
to the number of customers, we further include an alternative clustering method.

The method is the so-called angular clustering, where customers (and swap locations as
well) are scanned and added to a cluster according to their angle with respect to the depot.
The procedure is similar to the one described in Gillett and Miller (1974). The coordinates
provided for each vertex in the input files are taken as the ones to compute the angle. For each
vertex we compute the angle respect to the depot, which are then sorted increasingly. Finally,
k clusters are constructed aiming to have approximately n/k customers, which results in a
balanced partition.

Regarding the general approach, we consider different configurations for some of the
parameters aiming to evaluate the impact of the clustering phase. Firstly, the parameter
k and its impact is evaluated experimentally in the next section. In addition, we consider
an implementation where each cluster is tackled separately in an independent thread for
Tmax, instead of using a proportion of the time for each cluster. Finally, we considered
different settings for Tmax to asses the impact of this parameter within the approach. With
this experiments we can provide an insight regarding the cluster-first route-second approach,
which is complimentary to the approaches and investigations proposed for the SB-VRP.

4 Computational experiments

The methods described in the previous section have been implemented in C++, using
g++ 4.8.4 and an Ubuntu Linux 14.04 LTS as operating system. The experiments are
run on a Workstation with an Intel Core i7-2600 3.4GHz CPU and 16Gb of RAM. We
remark that this configuration is slightly different from the one used in the competition (i.e.,
the operating system used for the competition was Windows). Although it was possible to
use four processors, the version of our program submitted to the competition runs in a single
thread. Themulti-thread version of themethods has been implemented usingOpenMP (Open
MP Architecture Review Board 2011). The time limit Tmax used both in the competition and
as well in our experiments is 600s. Themethods use always all the time available, although in
some cases, particularly in small instances, the best solution is found early in the execution.

Regarding the instances, we consider the ones provided by the organizers during the
competition. Three different sets of instances were initially made public: a small set, having
approximately 50 customers and 20 swap locations; a medium instance, with nearly 200
customers and 40 swap locations; and a large instance, having more than 500 customers and
100 swap locations. All instances have three different versions: a normal version, where the
type of customers is mixed; an all with trailer version, where all customers can be visited
by a train; and an all without trailer, where customers can only be visited by a single truck.
To identify each type of instance, we add a suffix n for normal, awt for all with trailer and
awot for all without trailer.

A first preselection round took place at the middle of the competition, where the best
ten teams classified for the final round. For this preselection, instances medium normal and
large normal where considered, as well as a new large instance with its two corresponding
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variants regarding the type of customers considered, giving a total of five instances. The
final round was similar, where two new large instances and their corresponding variants were
considered, giving a total of six instances. We refer the reader to Huber and Geiger (2014)
for more details regarding the instances up to the preselection.

The rest of this section is divided in two parts. Firstly, we report a summary of the
experiments conducted to evaluate some of the different parameters of the algorithm. From
the preliminary experiments we observed that one of the key components of the approach
is the clustering phase, mainly for large instances. Thus, experiments evaluating different
configurations are reported, aiming to provide an insight on the overall approach. Huber and
Geiger (2014) provide an extensive analysis for similar neighborhood operators as the ones
considered in this paper. Absi et al. (2015), among other results, conduct a set of experiments
in order to asses the impact of an implementation exploiting a multi-core machine. We also
report results in this direction and its impact when combined with the clustering approach.

Secondly, we compare the best configuration identified for our approach with the other
methods from the literature on all the instances available from the competition. In addition,
for the final instances, we also compare the results obtained with the greedy approaches
described in the previous section in order to provide a baseline.

Regarding the methods, for this section we consider the following:

– CFRS-vsc: method described in Sect. 3.6, which represents the submission to the com-
petition. Unless otherwise stated, we assume k = 4 and Tmax = 2/3 of the overall
execution time available, running on single thread.

– CFRS-ang: variant described in Sect. 3.7, where k stands for the number of clusters
considered.

For the results, we report average (Avg.) and best (Best) solutions found, as well as their
corresponding percentage gaps (%aG and%bG, respectively). Percentage gaps are computed
as 100× (OBJ−BKS)/BKS, whereOBJ stands for the value of the current solution and BKS
for the best known solution for the instance, which is based on results from the literature. For
the latter, we refer the reader to Absi et al. (2015).

4.1 Preliminary evaluation and parameters setting

For the preliminary experiments we considered a reduced set of instances, namely large and
preselection instances, and then the selected configuration is considered in the next section for
the complete set of instances. For each instance and combination of parameters the average
and best results over five runs are computed.

We begin by analyzing the impact of the number of clusters k on the approach submitted
to the competition, CFRS-vsc, in its single-thread version. Figure 4 shows the results with the
average%gap obtained by CFRS-vsc for k = 2, . . . , 12, for large and preselection instances.
The main message of the figure is that there is no clear tendency in all cases, specially for
the preselection instances. Indeed, this is related to the fact that the number of clusters is at
most k. However, we can observe that k = 4 provides good results in general. We remark that
for the original selection, only values of k ≤ 6 had been considered. A similar experiment
has been conducted for the multi-thread version of CFRS-vsc, which is reported later in this
section.

The same experiment has been initially conducted for the CFRS-ang, both in its single
and multi-thread version. The results showed in general to be slightly better to the ones
obtained with k-means clustering. Therefore, we decided to restrict the values of k to the
range which produced the best results, 4 ≤ k ≤ 8, and include Tmax as a parameter in the
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Fig. 4 Avg. %gaps for CFRS-vsc with different number of clusters. a kmeans, large, b kmeans, preselection

Table 1 Average %aG on large
and preselection instances for
CFRS-ang for different
combinations of k and Tmax

Tmax/k 4 5 6 7 8

0.67 2.77 2.82 2.76 2.74 2.56

0.70 2.76 2.83 2.78 2.62 2.45

0.80 2.75 2.95 2.76 2.62 2.44

0.90 2.52 2.83 2.72 2.64 2.39

0.95 2.47 2.75 2.77 2.66 2.44

experiments for the multi-thread version. We consider as possible combinations Tmax =
0.67, 0.7, 0.8, 0.9, 0.95, where 0.67 represents the original setting of 2/3 of the available
time. Table 1 shows the average %gap over the six instances for each combination of k and
Tmax.

The results over all instances show small differences among the combinations, although
we observe a little consistent advantage for k = 8, where the best combination is with
Tmax = 0.9. It is interesting to observe that for k = 4, 5 the gaps tend to decrease when Tmax

increases, and the best results are achieved with 0.95. However, for k = 6, 7, 8 results for
Tmax = 0.95 are slightly worse than for 0.9. This can be explained by the fact that solving
each cluster separately is clearly suboptimal and, when the number of clusters is larger, the
operators are able to find improvements to the initial solution.

The aggregated results from Table 2 cover some interesting behavior of the approach,
related to the fact that the best number of clusters is highly coupled with the instance. In
Table 2 we report the %aG for each instance and value of k, averaged over the values of
Tmax. The main observation from this table is that the number of clusters has an impact
on the quality of the solutions obtained. For instance, k = 8 obtains the best solutions on
the large instances, improving by 1.4% on average the results obtained by k = 5 in two of
the three instances. On the contrary, k = 5 obtains the best average results for preselection
instances, improving by nearly 1% the results produced with k = 8 on the last instance.
Overall, although all percentages are within a small range, our selection for CFRS-ang is
setting k = 8 and Tmax = 0.9.

We next show the results regarding the impact of using a multi-thread version (running
on four threads) of the algorithm. Table 3 shows the %aG for the single and multi-thread
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Table 2 Avg. %aG for each
instance and k, averaged over
Tmax

Instance k

4 5 6 7 8

large_n 2.27 3.10 2.58 2.35 1.76

large_awt 2.47 3.52 2.81 2.17 1.92

large_awot 2.26 3.07 2.16 2.40 2.27

presel_n 2.88 2.25 2.76 2.75 2.75

presel_awt 3.42 2.61 3.25 3.06 2.81

presel_awot 2.64 2.48 2.99 3.20 3.23

Avg. 2.66 2.84 2.76 2.66 2.46

Table 3 Single versus multi-thread avg.% gaps

Instance CFRS-vsc CFRS-ang

Single thread Multi-thread Single thread Multi-thread

%aG %bG %aG %bG %aG %bG %aG %bG

large_n 2.87 2.52 2.68 1.70 2.65 2.21 1.76 1.41

large_awt 3.78 3.38 3.25 2.15 2.60 1.95 1.76 1.38

large_awot 3.56 2.35 2.88 2.38 3.10 2.80 2.02 1.91

presel_n 4.33 3.48 3.00 2.26 3.76 3.42 2.77 2.33

presel_awt 4.66 3.39 3.40 2.63 3.44 2.95 2.79 2.63

presel_awot 3.85 3.71 3.09 2.42 3.74 3.35 3.23 2.93

version of the selected configurations for each algorithm, namely CFRS-vsc with k = 4 and
Tmax = 0.67 and CFRS-ang with k = 8 and Tmax = 0.9. The results are somehow aligned
with the ones reported by Absi et al. (2015), obtaining on average improvements of around
1%. The results seem to be more consistent for CFRS-ang, possibly due to the fact that the
size of the clusters is balanced.

Finally, we comment on some particular behaviors observed during the experimentation.
We noted that CFRS-ang produced, consistently, better results than CFRS-vsc, although in
some instances this is not the case. In addition, we observed that the structure of the instance
plays an important role regarding the number of cluster to consider, as can be noted from the
results in this section.

4.2 Comparison with other methods

We begin by showing in Table 4 the results obtained by CFRS-vsc and CFRS-ang on the
instances available after the preselection phase. We report for each method the average
(Avg.) and best solution found (Best) over ten independent runs with different seeds. As
reported in the previous section, CFRS-ang produces in general better results than CFRS-vsc
on big instances (large and preselection). However, we can observe that CFRS-vsc obtains
in general much better solutions than CFRS-ang on small and medium instances, both on
average and the best solution obtained. This behavior is the expected one, since the clustering
approach in general and CFRS-ang in particular have been devised and experimentally tuned
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Table 4 Average and best solutions for CFRS-vsc and CFRS-ang on the instances up to the preselection

Instance BKS CFRS-vsc CFRS-ang

Avg. Best Avg. Best

small_n 4797.85 4830.16 4806.97 4850.81 4815.71

small_awt 4716.58 4730.63 4730.63 4732.94 4728.93

small_awot 4839.64 4900.33 4855.62 5029.74 5002.03

medium_n 7814.17 8030.83 7942.22 8129.49 8073.45

medium_awt 7749.42 7940.37 7847.30 8043.66 7945.46

medium_awot 8021.88 8235.51 8169.69 8374.02 8318.28

large_n 20,471.40 21,020.99 20,786.70 20,817.78 20,738.50

large_awt 20,215.26 20,936.56 20,734.60 20,583.50 20,516.70

large_awot 21,176.49 21,821.13 21,641.20 21,619.78 21,522.50

presel_n 25,376.41 26,304.66 26,136.70 26,017.54 25,894.40

presel_awt 24,939.83 26,002.34 25,785.00 25,629.04 25,573.20

presel_awot 25,835.85 26,738.85 26,524.50 26,637.14 26,558.40

to tackle large instances, which are the most difficult ones. Indeed, the selection of k = 8
and Tmax = 0.9 may not be the best choice for medium size instances, since the clusters
tend to have only a few tens of vertices, and little time is dedicated to improve the integrated
solution. With respect to the approach in general, the ILS procedure and the cluster stage
produced the best improvements in the overall approach. The latter, in particular, allows a
better usage of the available time. Although not mentioned explicitly, the clustering phase is
able to improve nearly 3–4% with respect to previous solutions on large instances.

In Table 5 we extend and update the algorithm comparison reported in Absi et al. (2015)
on the same set of instances.1 The first column indicates the name of the instance, and BKS
reports the best known solution for each instance.We then report the results for GN andG-SL
where in both cases we applied to the resulting solution one local search step exploring the
neighborhood described in the previous section, together with the average results for the
methods proposed by Huber and Geiger (2014), Lum et al. (2015), Absi et al. (2015), as well
as CFRS-vsc and CFRS-ang.

The first observation regarding the four available heuristics from the competition is that
the results are comparable, obtaining solutions within the 6–7% of the best known solution.
The best results in this sense are obtained by Huber and Geiger (2014), which in several cases
reached that value, and in general the solutions are below the 2% from the BKS. Absi et al.
(2015) also report good overall results, with solutions ranging below 4% from the BKS, and
showing the best performance on small and medium instances. It is important to remark that
the approach in Absi et al. (2015) consider 50% more computing time (i.e., 900 s overall)
than the other approaches, where 300 extra seconds are assigned to the set-partitioning based
post-optimization procedure.

Next, we focus on the results obtained by GN and G-SL, and relate themwith the structure
of the SB-VRP.We first remark that, although both approaches are heuristic and contain a few
arbitrary design decision, they are however useful to obtain a deeper insight on the structure
of the problem in general and the instances in particular. At a first glance, it seems reasonable

1 We remark that the results reported in Absi et al. (2015) for our method are based on a preliminary draft of
this research.
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Table 6 Summary of %aG on large instances for all methods

Instance GN G-SL Huber and Geiger
(2014)

Lum et al.
(2015)

Absi et al.
(2015)

CFRS-vsc CFRS-ang

large_n 18.40 18.91 1.43 7.72 4.37 2.68 1.69

large_awt 13.78 16.96 1.32 5.45 4.01 3.57 1.82

large_awot 22.47 19.39 1.33 5.87 4.01 3.04 2.09

presel_n 19.04 27.67 0.95 5.26 2.41 3.66 2.53

presel_awt 16.38 23.22 1.57 6.89 2.93 4.26 2.76

presel_awot 18.31 20.23 1.28 3.39 1.62 3.50 3.10

Avg. %aG 18.07 21.07 1.31 5.76 3.23 3.45 2.33

to expect that by incorporating swap locations in the solution, as G-SL does, it would be
beneficial. However, from Table 5 we can observe that the results of G-SL compared with
GN are somehow mixed, and that GN obtained better solutions in 8 of the 12 instances. This
behavior is consistent with our experience during the development of the heuristic, where for
this set of instances the solutions tend to avoid using swap locations. Similar observations
are reported in Lum et al. (2015).

For this set of instances, CFRS-vsc is in the middle between Huber and Geiger (2014)
and Lum et al. (2015), standing within 0.5 and approximately 4% with respect to the BKS
reported in Absi et al. (2015). The results obtained on the small instances are comparable, and
CFRS-vsc produces results around 1% better on the large instances. On the contrary, Absi
et al. generate better solutions formedium and preselection instances. Regarding CFRS-ang,
the overall results stand between Huber and Geiger (2014) and Absi et al. (2015), but it shows
a pronounced difference depending on the size of the instances. Absi et al. (2015) produce
better results on the small and medium instances, specially in the latter. However, for larger
instances CFRS-ang shows a better overall behavior. It generates comparable results on the
preselection instances, and the average improvement on the large instances is around 2%.

This tendency can be better appreciated in Table 6, which shows the detailed %aG for all
methods for each of the larger instances, as well as the average %aG. As mentioned before,
Huber and Geiger (2014) obtains the best results. When restricting to this particular set of
instances, the results produced by CFRS-ang are on average 1% better than the ones from
Absi et al. (2015). Indeed, considering the results reported in Table 1, we can observe that
all combinations between k and Tmax produce better results than the approach proposed by
Absi et al. (2015). Furthermore, Absi et al. also report results considering 1200s (plus 300s
for the post-optimization) for the execution time and their approach generates solutions with
an average %aG of 2.46, which is still slightly above CFRS-ang.

In general, CFRS-ang obtains better results on normal and all with trailer instances
compared to the gaps for the all without trailer ones. We also note that CFRS-vsc produces
results that are close to the ones obtained by Absi et al. (2015), only 0.2% below on average.
This suggests a reasonable performance for CFRS-vsc, since it runs in a single-thread and
uses 300s less for the execution.

We now present the results obtained by CFRS-vsc and CFRS-ang in the final set of
instances. The key for the table is the same as for Table 4. We note that neither Huber and
Geiger (2014), Lum et al. (2015) and Absi et al. (2015) report the results for these instances.
Indeed, we only count with our results for this set of instances and the ranking provided
by the organizers, where CFRS-vsc ranked in the second position. Similarly to the previous
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Table 7 Results obtained on the instances used in the final round

Instance GN G-SL CFRS-vsc CFRS-ang

Avg. Best Avg. Best

final_n 43,366.50 41,990.50 37,590.97 37,087.00 36,687.50 36,305.80

final_awt 37,529.60 41,896.80 36,805.52 36,435.50 35,449.65 34,997.90

final_awot 46,093.50 44,607.50 39,572.50 38,914.00 39,033.90 38,826.20

final_r_n 151,125.00 150,372.00 137,593.80 137,273.00 135,930.70 135,509.00

final_r_awt 139,537.00 149,361.00 132,407.10 132,072.00 131,643.00 131,445.00

final_r_awot 215,155.00 164,757.00 155,498.80 154,255.00 153,000.40 152,587.00

table, the relation between the best solution found by CFRS-vsc and CFRS-ang with respect
to the average over the ten runs keeps the same relation. We remark that CFRS-ang is able
to improve consistently the results obtained by CFRS-vsc (Table 7).

We can observe, however, a different trend in this table when comparing the heuristics GN
and G-SL. In this case, G-SL obtains better results in 4 out of the 6 instances, and it produces
worse results in the all with trailer instances. In addition, for the last instance, a remarkable
improvement of nearly 40% is observed between both solutions. These results are consistent
with the structure observed in these instances. Compared with large instances used in the
previous table, we noted that the maximum route duration has been increased considerably,
and also that demands for customers represent a tight constraint in general. In particular, the
difference obtained in the instance final random all without trailer is due to the fact that, in
general, at most two customers can be allocated into a single swap body. Therefore, since all
customers are truck customers, GN generates a large number of truck routes. On the other
hand, G-SL attempts to use train routes trying to take advantage of the use of swap locations.
As a result, a smaller number of routes is generated, where each of them visits nearly twice
the number of customers with respect to the solution generated by GN.

Overall, these findings lead us to believe that the SB-VRPpresents a complicated structure,
and that further developments from the theoretical side as well as from a computational
standpoint are required to get a deeper insight on the problem.

5 Conclusions

In this paper we study the SB-VRP and consider a cluster-first route-second with a GRASP
metaheuristic to solve it. This problem is relatively new in the VRP literature and, although
it presents some similarities with other VRP variants, its particular structure and the results
obtained by our algorithm as well as other approaches developed simultaneously showed
that it deserves further attention. Taking into account the time limit for the execution, our
approaches start by splitting the instance into smaller instances, optimize them during a
certain amount of time, and then merge this solution and use the remaining time to obtain
a better final solution. This approach showed to be quite effective in practice, obtaining
comparable results in the instances provided and ranking in the second position on the final
set of instances. We also propose an alternative approach that improves the results of the
ones obtained by our method during the competition and provide an explicit comparison of
several approaches appearing in the literature, aiming to contribute to future developments
for the problem.
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As future research, based on our experience while working on the problem, we believe
that more attention should be devoted to study the structure of the problem, in particular
regarding the convenience (or not) of using the swap locations. In addition, taking into
account the other approaches, it would be interesting to investigate the use of Integer Linear
Programming both to explore large neighborhoods of a solution as well as to evaluate where
is the limit for solving instances to optimality. Based on the experimental study presented
in this paper regarding the clustering phase, it would be interesting to consider, if possible,
using an exact approach to tackle each cluster separately.
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