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Abstract We study the first eigenvalue of the p−Laplacian (with 1 < p < ∞) on
a quantum graph with Dirichlet or Kirchoff boundary conditions on the nodes. We
find lower and upper bounds for this eigenvalue when we prescribe the total sum of
the lengths of the edges and the number of Dirichlet nodes of the graph. Also we find
a formula for the shape derivative of the first eigenvalue (assuming that it is simple)
when we perturb the graph by changing the length of an edge. Finally, we study in
detail the limit cases p → ∞ and p → 1.

Keywords p−Laplacian · Quantum graphs · Eigenvalues · Shape derivative

1 Introduction

A quantum graph is a graph in which we associate a differential law with each edge.
This differential lawmodels the interaction between the two nodes defining each edge.
The use of quantum graphs (as opposed to more elementary graph models, such as
simple unweighted or weighted graphs) opens up the possibility of modeling the inter-
actions between agents identified by the graph’s vertices in a far more detailed manner
than with standard graphs. Quantum graphs are nowwidely used in physics, chemistry

Leandro M. Del Pezzo was partially supported by UBACyT 20020110300067 and CONICET PIP
5478/1438 (Argentina) and Julio D. Rossi was partially supported by MTM2011-27998 (Spain).

B Leandro M. Del Pezzo
ldpezzo@dm.uba.ar

Julio D. Rossi
jrossi@dm.uba.ar

1 CONICET and Departamento de Matemática, FCEyN, Universidad de Buenos Aires, Pabellon I,
Ciudad Universitaria (1428), Buenos Aires, Argentina

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s13324-016-0123-y&domain=pdf


L. M. Del Pezzo, J. D. Rossi

and engineering (nanotechnology) problems, but can also be used, in principle, in the
analysis of complex phenomena taking place on large complex networks, including
social and biological networks. Such graphs are characterized by highly skewed degree
distributions, small diameter and high clustering coefficients, and they have topolog-
ical and spectral properties that are quite different from those of the highly regular
graphs, or lattices arising in physics and chemistry applications. Quantum graphs are
also used to model thin tubular structures, so-called graph-like spaces, they are their
natural limits, when the radius of a graph-like space tends to zero. On both, the graph-
like spaces and the metric graph, we can naturally define Laplace-like differential
operators. See [3,4,19,29].

Among properties that are relevant in the study of quantum graphs is the study of the
spectrum of the associated differential operator. In particular, the so-called spectral
gap (this concerns bounds for the first nontrivial eigenvalue for the Laplacian with
Neumann boundary conditions) has physical relevance and was extensively studied in
recent years. See, for example, [19,20,22,23] and references therein.

In this paper we are interested in the eigenvalue problem that naturally arises when
we consider the p−Laplacian, (|u′|p−2u′)′, as the differential law on each side of the
graph together with Dirichlet boundary conditions on a subset of nodes of the graph
and pure transmission (known as Kirchoff boundary conditions, [18]) in the rest of
the nodes. To be concrete, given 1 < p < ∞, we deal with the following problem: in
a finite metric graph Γ we consider a set of nodes VD and look for the minimization
problem

λ1,p(Γ,VD) = inf

{∫
Γ

|u′(x)|p dx∫
Γ

|u(x)|p dx : u ∈ X (Γ,VD), u �≡ 0

}
, (1.1)

where X (Γ,VD) := {v ∈ W 1,p(Γ ) : v is continuous in Γ, v = 0 on VD}.
There is a minimizer, see Sect. 3, that is a nontrivial weak solution to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−(|u′|p−2u′)′(x) = λ1,p(Γ,VD)|u|p−2u(x) on the edges of Γ,

u(v) = 0 ∀v ∈ VD,∑
e∈Ev(Γ )

∣∣∣∣ ∂u

∂xe
(v)

∣∣∣∣
p−2

∂u

∂xe
(v) = 0 ∀v ∈ V(Γ )\VD.

(1.2)

Our main results for this eigenvalue problem can be summarized as follows (we
refer to the corresponding sections for precise statements):

– we show that there is a first eigenvalue with an associated nonnegative eigenfunc-
tion, that is, the infimum in (1.1) is attained at a nonnegative function. We provide
examples that show that λ1,p(Γ,VD) can be a multiple eigenvalue or a simple
eigenvalue depending on the graph.

– We find a sharp lower bound for the first eigenvalue that depends only on the total
sum of the lengths of the edges of the graph, �(Γ ), namely

λ1,p(Γ,VD) ≥ C(p)

(
1

�(Γ )

)p

,
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here the constant C(p) is explicit and depends only on p.
– We find a sharp upper bound for the first eigenvalue depending on the total sum of
the lengths of the edges, �(Γ ), and the number of edges of the graph, card(E(Γ )),

λ1,p(Γ,VD) ≤ C(p)

(
card(E(Γ ))

�(Γ )

)p

,

again the constant C(p) is explicit and depends only on p.
– Under the assumption that the first eigenvalue is simple, we find a formula for its
shape derivative when we perturb the graph by changing the length of an edge.
In the case of a multiple eigenvalue, we provide examples that show that the first
eigenvalue is not differentiable with respect to the lengths of the edges of the graph
(but it is Lipschitz).

– We study the limit cases p → ∞ and p → 1. For p = ∞ we find a geometric
characterization of the first eigenvalue and for p = 1 we prove that there exist the
analogous of Cheeger sets in quantum graphs.

Note that without a bound on the total length of the graph the first eigenvalue is
unbounded from above and from below the optimal bound is zero and without a bound
on the number of Dirichlet nodes it is not bounded above even if we prescribe the total
length. Therefore our results are also sharp in this sense. Also remark that our results
are new even for the linear case p = 2.

Let us end this introduction with a brief discussion on ideas and techniques used in
the proofs as well as a description of the previous bibliography.

Existence of eigenfunctions can be easily obtained from a compactness argument as
for the usual p−Laplacian in a bounded domain ofRN , see [13]. However, in contrast
to what happens in the usual case of a bounded domain, see [2], the first eigenvalue is
not simple, we show examples of this phenomena.

Eigenvalues on quantum graphs are by now a classical subject with an increasing
number of recent references, we quote [7,12,20,23]. The literature on eigenfunctions
of the p−Laplacian, also called p−trigonometric functions, is now quite extensive:
we refer in particular to [25–27] and references therein.

The upper and lower bounds comes from test functions arguments together with
some analysis of the possible configurations of the graphs.

For the shape derivative when we modify the length of one edge we borrow ideas
from [14].

Concerning the limit as p → ∞ for the eigenvalue problem of the p−Laplacian
in the usual PDE case we refer to [5,6,16,17]. To obtain this limit the main point is
to use adequate test functions to obtain bounds that are uniform in p in order to gain
compactness on a sequence of eigenfunctions.

Finally, for p = 1 we refer to [8,11,28]. In this limit problem the natural space that
appear is that of bounded variation functions, see [1]. Remark that when considering
bounded variation functions we loose continuity.

The paper is organized as follows: in Sect. 2 we collect some preliminaries; in
Sect. 3 we deal with the first eigenvalue on a quantum graph and prove its upper and
lower bounds; in Sect. 4 we perform a shape derivative approach of the first eigenvalue
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showing that it is differentiable when we change the length of one edge and providing
an explicit formula for this derivative; in Sect. 5 we study the limit as p → ∞ of the
first eigenvalue while in the final section, Sect. 6 we look for the limit as p → 1.

2 Preliminaries

2.1 Quantum graphs

We collect here some basic knowledge about quantum graphs, see for instance [4] and
references therein.

A graph Γ consists of a finite or countable infinite set of vertices V(Γ ) = {vi } and
a set of edges E(Γ ) = {e j } connecting the vertices. A graph Γ is said a finite graph
if the number of edges and the number of vertices are finite.

Two vertices u and v are called adjacent (denoted u ∼ v) if there is an edge
connecting them. An edge and a vertex on that edge are called incident. We will
denote v ∈ e when e and v are incident. We define Ev(Γ ) as the set of all edges
incident to v. The degree dv(Γ ) of a vertex V(Γ ) is the number of edges that incident
to it, where a loop (an edge that connects a vertex to itself) is counted twice.

We will say that v is a terminal vertex if there exists an unique vertex u ∈ V(Γ )

such that u ∼ v. Let us denote by T(Γ ) the set of all terminal vertices.
A walk is a sequence of edges in which the end of each edge (except the last) is the

beginning of the next. A trail is a walk in which no edge is repeated. A path is a trail
in which no vertex is repeated. A graph Γ is said connected if a path exists between
every pair of vertices, that is a graph which is connected in the sense of a topological
space.

A graph Γ is called a directed graph if each of its edges is assigned a direction. In
the remainder of the section, Γ is a directed graph.

Each edge e can be identified with an ordered pair (ve, ue) of vertices.The vertices
ve and ue are the initial and terminal vertex of e. The edge ê is called the reversal of
the edge e if vê = ue and uê = ve. We define

Ê(Γ ) := {ê : e ∈ E(Γ )}.

The edge e is called outgoing (incoming) at a vertex v if v is the initial (terminal)
vertex of e. The number of outgoing (incoming) edges at a vertex v is called outgoing
(incoming) degree and denoted dov (Γ ) (div(Γ )). Observe that dv(Γ ) = dov (Γ )+div(Γ ).

Definition 2.1 (See Definition 1.2.3 in [4]) A graph Γ is said to be a metric graph, if

1. each edge e is assigned a positive length �e ∈ (0,+∞];
2. the lengths of the edges that are reversals of each other are assumed to be equal,

that is �e = �ê;
3. a coordinate xe ∈ Ie = [0, �e] increasing in the direction of the edge is assigned

on each edge;
4. the relation xê = �e − xe holds between the coordinates on mutually reserved

edges.
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A finite metric graph whose edges all have finite lengths will be called compact.
If a sequence of edges {e j }nj=1 forms a path, its length is defined as

∑n
j=1 �e j . For

two vertices v and u, the distance d(v, u) is defined as the minimal length of the
path connected them. A compact metric graph Γ becomes a metric measure space by
defining the distance d(x, y) of two points x and y of the graph (that are not necessarily
vertices) to be the short path on Γ connected these points, that is

d(x, y) := inf

{∫ 1

0
|γ ′(t)| dt : γ : [0, 1] → Γ Lipschitz, γ (0) = x, γ (1) = y

}
.

The length of a metric graph (denoted �(Γ )) is the sum of the length of all edges.
A function u on a metric graph Γ is a collection of functions ue defined on (0, �e)

for all e ∈ E(Γ ), not just at the vertices as in discrete models.
Let 1 ≤ p ≤ ∞. We say that u belongs to L p(Γ ) if ue belongs to L p(0, �e) for all

e ∈ E(Γ ) and

‖u‖p
L p(Γ )

:=
∑

e∈E(Γ )

‖ue‖p
L p(0,�e)

< ∞.

The Sobolev space W 1,p(Γ ) is defined as the space of continuous functions u on Γ

such that ue ∈ W 1,p(Ie) for all e ∈ E(Γ ) and

‖u‖p
W 1,p(Γ )

:=
∑

e∈E(Γ )

‖ue‖p
L p(0,�e)

+ ‖u′
e‖p

L p(0,�e)
< ∞.

Observe that the continuity condition in the definition ofW 1,p(Γ )means that for each
v ∈ V(Γ ), the function on all edges e ∈ Ev(Γ ) assume the same value at v.

The spaceW 1,p(Γ ) is aBanach space for 1 ≤ p ≤ ∞. It is reflexive for 1 < p < ∞
and separable for 1 ≤ p < ∞.

Theorem 2.2 Let Γ be a compact graph and 1 < p < ∞. The injection W 1,p(Γ ) ⊂
Lq(Γ ) is compact for all 1 ≤ q ≤ ∞.

A quantum graph is a metric graph Γ equipped with a differential operator H,

accompanied by a vertex conditions. In this work, we will consider

H(u)(x) := −Δpu(x) = −(|u′(x)|p−2u′(x))′.

Given VD a non empty subset of V(Γ ), our vertex conditions are the following

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u(x) is continuous in Γ,

u(v) = 0 ∀v ∈ VD,∑
e∈Ev(Γ )

∣∣∣∣ ∂u

∂xe
(v)

∣∣∣∣
p−2

∂u

∂xe
(v) = 0 ∀v ∈ V(Γ )\VD,

(2.1)

where the derivatives are assumed to be taken in the direction away from the vertex.
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Throughout this work,
∫
Γ
u(x) dx denotes

∑
e∈E(Γ )

∫ �e
0 ue(x) dx .

2.2 Eigenvalues of the p−Laplacian in R

Here we present a brief review concerning eigenvalues of the 1-dimensional
p−Laplacian. For a more elaborate treatment we refer the reader to [24].

Let p ∈ (1,+∞). Given L > 0, all eigenvalues λ of the Dirichlet problem

{
−(|u′|p−2u′)′ = λ|u|p−2u in (0, L),

u(0) = u(L) = 0,

are of the form

λn,p =
(nπp

L

)p p

p′ ∀n ∈ N

with corresponding eigenfunctions

un(x) = αL

nπp
sinp

(nπp

L
x
)

, α ∈ R\{0}

where πp = 2π
p sin(π/p) ,

1/p + 1/p′ = 1, and sinp is the p−sine function.
Then the first Dirichlet eigenvalue is

λ1,p =
(πp

L

)p p

p′ , (2.2)

and has a positive eigenfunction (any other eigenvalue has eigenfunctions that change
sign).

Remark 2.3 Observe that {λn,p} coincides with the Dirichlet eigenvalues of the Lapla-
cian when p = 2.

3 The first eigenvalue on a quantum graph

LetΓ be a compact connected quantum graph andVD be a non-empty subset of V(Γ ).

We say that the value λ ∈ R is an eigenvalue of the p−Laplacian if there exists non
trivial function u ∈ X (Γ,VD) := {v ∈ W 1,p(Γ ) : v = 0 on VD} such that

∫
Γ

|u′(x)|p−2u′(x)w′(x) dx = λ

∫
Γ

|u(x)|p−2u(x)w(x) dx

for all w ∈ X . In which case, u is called an eigenfunction associated to λ.
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Recall from the introduction that the first eigenvalue of the p−Laplacian is given
by

λ1,p(Γ,VD) = inf

{∫
Γ

|u′(x)|p dx∫
Γ

|u(x)|p dx : u ∈ X (Γ,VD), u �≡ 0

}
. (3.1)

By a standard compactness argument, it follows that there exists an eigenfunction
associated to λ1,p(Γ,VD). Note that when VD �= ∅ the norm inW 1,p(Γ ) is equivalent
to (

∫
Γ

|u′|p)1/p = (
∑

e∈E(Γ ) ‖u′
e‖p

L p(0,�e)
)1/p.

Theorem 3.1 Let Γ be a compact connected quantum graph, VD be a non-empty
subset of V(Γ ) and p ∈ (1,+∞). Then there exists a non-negative u0 ∈ X (Γ,VD)

such that

λ1,p(Γ,VD) =
∫
Γ

|u′
0(x)|p dx∫

Γ
|u0(x)|p dx .

Moreover, u0 is an eigenfunction associated to λ1,p(Γ, VD).

Proof Let {un}n∈N ⊂ X (Γ, VD) be a minimizing sequence for λ1,p(Γ,VD), that is,

λ1,p(Γ,VD) = lim
n→∞

∫
Γ

|u′
n(x)|p dx,

∫
Γ

|un(x)|p dx = 1 ∀n ∈ N.

Note thatwe can assume thatun ≥ 0.Then, there existsC > 0 such that‖un‖W 1,p(Γ ) ≤
C for all n ∈ N. Therefore, using thatX (Γ,VD) is a reflexive space and Theorem 2.2,
there exist u0 ∈ X (Γ, VD) and a subsequence that will still call {un}n∈N such that

un ⇀ u0, weakly in X (Γ,VD), (3.2)

un → u0, strongly in L p(Γ ). (3.3)

As ‖un‖L p(Γ ) = 1 for all n ∈ N, by (3.3), we have that ‖u0‖L p(Γ ) = 1. Then u0 �≡ 0.
On the other hand, by (3.2),

λ1,p(Γ,VD) = lim
n→∞

∫
Γ

|u′
n(x)|p dx ≥

∫
Γ

|u′
0(x)|p dx .

Then, by (3.1), we get

λ1,p(Γ,VD) =
∫

Γ

|u′
0(x)|p dx .

Finally, it is clear that u0 is an eigenfunction of the p−Laplacian associated to
λ1,p(Γ,VD). ��
Remark 3.2 Note that, if VD ⊂ V′

D ⊂ V(Γ ) then λ1(Γ,VD) ≤ λ1(Γ,V′
D), due to

X (Γ, V ′
D) ⊂ X (Γ, VD).

Our next result shows that the first eigenvalue is simple if the Dirichlet vertices are
terminal vertices.
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Theorem 3.3 Let Γ be a compact connected quantum graph such that T(Γ ) �= ∅,
and p ∈ (1,+∞). If VD ⊆ T(Γ ) is non-empty then the eigenfunctions associated
to λ1,p(Γ,VD) do not change sign and, in addition, λ1,p(Γ,VD) is simple. Here
card(V(Γ )) is the cardinal number of V(Γ ).

Proof Let u be an eigenfunction associated to λ1,p(Γ,VD). We have that |u| is also a
minimizer of (3.1). Then, without loss of generality, we can assume that u ≥ 0 in Γ.

Let v ∈ VD and u ∈ V(D) such that v ∼ u and u �= 0 in Ie0 where e0 ∈ E(Γ ) and
v, u ∈ e0. Then, by the maximum principle (see [30]), we have that u > 0 in (0, �e).
Moreover if u(u) = 0, by Hopf’s lemma, u′(u) > 0, and this contradicts the Kirchhoff
conditions at u.Hence u(u) > 0.Then u > 0 in (0, �e) for all e ∈ Eu(Γ ).We continue
in this fashion obtaining u > 0 in Γ . Once we have that every eigenfunction does not
change sign we get simplicity for λ1,p(Γ,VD) arguing as in [25]. ��
Remark 3.4 In general, the first eigenvalue is not simple. For example, let Γ be a
simple graph with 3 vertices and 2 edges, that is V(Γ ) = {v1, v2, v3} and E(Γ ) =
{[v1, v2], [v2, v3]}. Let VD = {v1, v2, v3}.

Γ

L Lv1 v2 v3

Then λ1,p(Γ, VD) =
(πp

L

)p p

p′ and

u(x) =
⎧⎨
⎩

L

πp
sinp

(πp

L
x
)

if x ∈ I[v1,v2] = [0, L],
0 otherwise,

v(x) =
⎧⎨
⎩

L

πp
sinp

(πp

L
x
)

if x ∈ I[v2,v3] = [0, L],
0 otherwise,

are two linearly independent eigenfunctions associated to λ1,p(Γ, VD). The reason for
this lack of simplicity is that the vertex v2 can be understood as a node that disconnects
Γ.

Now, we give a lower bound for the first eigenvalue of the p−Laplacian which does
not depend on V(Γ ), E(Γ ) and VD . For the proof of the next theorem we follow the
ideas of [21].

Theorem 3.5 Let Γ be a connected compact metric graph,VD be a non-empty subset
of V(Γ ) and p ∈ (1,+∞). Then

λ1,p(Γ,VD) ≥
(

πp

2�(Γ )

)p p

p′ .
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Proof Let Γ̃ be a metric graph obtained from Γ by doubling each edge. Then E(Γ̃ ) =
E(Γ ) ∪ Ê(Γ ), V(Γ̃ ) = V(Γ ), and dv(Γ̃ ) is even for all v ∈ V(Γ̃ ).

On the other hand, given u ∈ X (Γ,VD) we can define ũ ∈ X (Γ̃ ,VD) such that

ũe(xe) = ue(xe) ∀xe ∈ Ie if e ∈ E(Γ )

ũe(xe) = ue(�e − xe) ∀xe ∈ Ie otherwise .

Moreover
∫

Γ̃

|̃u′(x)|p dx = 2
∫

Γ

|u′(x)|p dx, and
∫

Γ̃

|̃u(x)|p dx = 2
∫

Γ

|u(x)|p dx .

Then
λ1,p(Γ̃ ,VD) ≤ λ1,p(Γ,VD). (3.4)

On the other hand, there exists a closed path on Γ̃ coming along every edge in Γ̃

precisely one time, due to dv(Γ̃ ) is even for all v ∈ V(Γ̃ ), see [9,15]. We identify this
path with a loop L on a vertex v0 ∈ VD of length less than or equal to 2�(Γ ). Observe
that L is a metric graph,

�(L) ≤ 2�(Γ ) and λ1,p(L, {v0}) ≤ λ1,p(Γ̃ ,VD). (3.5)

Moreover,

λ1,p(L, {v0}) = inf

{∫
L |u′(x)|p dx∫
L |u(x)|p dx : u ∈ X (L, {v0}), u �≡ 0

}

= inf

{∫ �(L)

0 |u′(x)|p dx∫ �(L)

0 |u(x)|p dx
: u ∈ W 1,p

0 (0, �(L)), u �≡ 0

}

=
(

πp

�(L)

)p p

p′ (by (2.2)).

Therefore, by (3.4) and (3.5),

λ1,p(Γ,VD) ≥ λ1,p(Γ̃ ,VD) ≥ λ1,p(L, {v0}) =
(

πp

�(L)

)p p

p′ ≥
(

πp

2�(Γ )

)p p

p′ ,

which is the desired conclusion. ��
The lower bound given in the above theorem is optimal as the following example

shows.

Example 3.6 Let Γ be a simple graph with 2 vertices and an edge, that is, V(Γ ) =
{v1, v2} and E(Γ ) = {[v1, v2]}. Let VD = {v1}.

Γ

(Γ )
v1 v2
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Then

λ1,p(Γ,VD) = inf

{∫
Γ

|u′(x)|p dx∫
Γ

|u(x)|p dx : u ∈ X (Γ,VD), u �≡ 0

}

= inf

{∫ �(Γ )

0 |u′(x)|p dx∫ �(Γ )

0 |u(x)|p dx
: u ∈ W 1,p(0, �(Γ )), u(0) = 0, u �≡ 0

}

= inf

{∫ 2�(Γ )

0 |u′(x)|p dx∫ 2�(Γ )

0 |u(x)|p dx
: u ∈ W 1,p

0 (0, 2�(Γ )), u �≡ 0

}

=
(

πp

2�(Γ )

)p p

p′ .

Example 3.7 Let Γ be a star graph with n + 1 vertices and n edges, that is, V(Γ ) =
{v0, v1, . . . , vn} and E(Γ ) = {[v1, v0], [v1, v2], . . . , [v1, vn]}. Let VD = {v1}, ε > 0
and �([v1, v0]) = L − (m − 1)ε and �([v1, vi ]) = ε for all i ∈ {2, . . . , n}. Then
�(Γ ) = L .

Γ

v1v0

v3

v6

v2v4

v5 v7

Then

λε
1,p(Γ, VD) =

(
πp

2(L − (n − 1)ε)

)p p

p′ →
(πp

2L

)p p

p′ =
(πp

2L

)p p

p′

as ε → 0+. Hence, given L > 0 we have that

inf
{
λ1,p(Γ,VD) : Γ is a star graph, �(Γ ) = L ,∅ �= VD ⊂ V(Γ )

}

is equal to
(πp

2L

)p p

p′ .

Finally, we give an upper bound for the first eigenvalue of the p−Laplacian.

Theorem 3.8 Let Γ be a connected compact metric graph,VD be a non-empty subset
of V(Γ ) and p ∈ (1,+∞). Then

λ1,p(Γ,VD) ≤
(
card(E(Γ ))πp

�(Γ )

)p p

p′ ,

where card(E(Γ )) is the number of elements in E(Γ ).
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Proof Let e0 ∈ E(Γ ) such that �e0 = max{�e : e ∈ E(Γ )}. Then

�e0 ≥ card(E(Γ ))

�(Γ )
. (3.6)

On the other hand, taking

u(x) =
⎧⎨
⎩

�e0

πp
sinp

(
πp

�e0
x

)
if x ∈ Ie0 ,

0 otherwise,

and using (3.6), we have that

λ1,p(Γ, VD) ≤
∫
e0

|u′(x)|p dx∫
e0

|u(x)|p dx =
(

πp

�e0

)p p

p′ ≤
(
card(E(Γ ))πp

�(Γ )

)p p

p′ .

This completes the proof. ��
The upper bound is also optimal.

Example 3.9 Let Γ as in Eample 3.6 and VD = {v1, v2}.
Γ

(Γ )
v1 v2

Then

card(E(Γ )) = 1 and λ1,p(Γ, VD) =
(

πp

�(Γ )

)p p

p′ .

Example 3.10 Let Γ be a star graph with n + 1 vertices and n edges, that is V(Γ ) =
{v0, v1, . . . , vn} and E(Γ ) = {[v1, v0], [v2, v0], . . . , [vn, v0]}. Let VD = V(Γ ) and
�([vi , v0]) = � for all i ∈ {1, . . . , n}. Then �(Γ ) = n� = card(E(Γ ))�.

Γ

L
v0 v1

v3

v6

v2v4

v5 v7
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Then

λ1,p(Γ, VD) =
(πp

�

)p p

p′ =
(
card(E(Γ ))πp

�(Γ )

)p p

p′ .

Hence, given L > 0 and n ∈ N we have that

max
{
λ1,p(Γ,VD) : Γ is a star graph, �(Γ ) = L , card(E(Γ )) = n,∅ �= VD

}

is equal to
(nπp

L

)p p

p′ .

4 The shape derivative of λ1, p(Γ,VD)

The aim of this section is to study the perturbation properties of λ1,p(Γ,VD) with
respect to the edges.

More precisely, let e0 ∈ E(Γ ) such that e0 = [u, v], we consider the following
family of graphs {Γδ}δ∈R where for any δ

V(Γδ) = V(Γ ), E(Γδ) = E(Γδ)

and the length assigned to e ∈ E(Γδ) is

�δ
e =

{
�e0 + δ if e = e0,

�e otherwise.

The problem of perturbation of eigenvalues consists in analyzing the dependence of
λ(δ) := λ1,p(Γδ,VD) with respect to δ. Note that λ(0) = λ1,p(Γ,VD).

Lemma 4.1 Let Γ be a connected compact metric graph, VD be a non-empty subset
of V(Γ ) and p ∈ (1,+∞). Then function λ(δ) is continuous at δ = 0.

Proof Let u be an eigenfunction associated to λ(0) with ‖u‖L p(Γ ) = 1. Then

wδ(x) =
⎧⎨
⎩
u

(
�e0

�e0 + δ
x

)
if x ∈ Ie0 ,

u(x) otherwise,

belongs to X (Γδ,VD) for all δ. Therefore for any δ

λ(δ) ≤
∫
Γδ

|w′
δ(x)|p dx∫

Γδ
|wδ(x)|p dx

=
∑

e∈E(Γ )\{e0}
∫ �e
0 |u′(x)|p dx + ∫ �e0+δ

0

∣∣∣∣u′
(

�e0

�e0 + δ
x

)∣∣∣∣
p (

�e0

�e0 + δ

)p

dx

∑
e∈E(Γ )\{e0}

∫ �e
0 |u(x)|p dx + ∫ �e0+δ

0

∣∣∣∣u
(

�e0

�e0 + δ
x

)∣∣∣∣
p

dx
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=
∑

e∈E(Γ )\{e0}
∫ �e
0 |u′(x)|p dx + ∫ �e0

0

∣∣u′(x)
∣∣p dx

(
�e0

�e0 + δ

)p−1

∑
e∈E(Γ )\{e0}

∫ �e
0 |u(x)|p dx + ∫ �e0

0 |u(x)|p dx
�e0 + δ

�e0

.

Since u is an eigenfunction associated to λ(0) and ‖u‖L p(Γ ) = 1, we have that

λ(δ) ≤
λ(0) +

[(
�e0

�e0 + δ

)p−1

− 1

] ∫ �e0
0

∣∣u′(x)
∣∣p dx

1 + δ

�e0

∫ �e0
0 |u(x)|p dx

∀δ. (4.1)

Therefore
lim sup

δ→0
λ(δ) ≤ λ(0). (4.2)

Then to show that λ(δ) is continuous at λ = 0, it remains to prove that

lim inf
δ→0

λ(δ) ≥ λ(0). (4.3)

Let uδ be an eigenfunction associated to λ(δ) normalized by ‖uδ‖L p(Γδ) = 1. Then,
for any δ

vδ(x) =
⎧⎨
⎩
uδ

(
�e0 + δ

�e0
x

)
if x ∈ Ie0 ,

uδ(x) otherwise,

belongs to X (Γ,VD). Moreover

‖vδ‖p
L p(Γ ) =

∫
Γ

|vδ(x)|p dx

=
∑

e∈E(Γ )\{e0}

∫ �e

0
|uδ(x)|p dx +

∫ �e0

0

∣∣∣∣uδ

(
�e0 + δ

�e0
x

)∣∣∣∣
p

dx

=
∑

e∈E(Γ )\{e0}

∫ �e

0
|uδ(x)|p dx +

(
�e0

�e0 + δ

) ∫ �e0+δ

0
|uδ(x)|p dx

=1 − δ

�e0 + δ

∫ �e0+δ

0
|uδ(x)|p dx

(4.4)
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for all δ, and

‖v′
δ‖p

L p(Γ ) =
∫

Γ

|v′
δ(x)|p dx

=
∑

e∈E(Γ )\{e0}

∫ �e

0
|u′

δ(x)|p dx +
∫ �e0

0

∣∣∣∣u′
δ

(
�e0 + δ

�e0
x

)∣∣∣∣
p (

�e0 + δ

�e0

)p

dx

=
∑

e∈E(Γ )\{e0}

∫ �e

0
|u′

δ(x)|p dx +
(
1 + δ

�e0

)p−1 ∫ �e0+δ

0

∣∣u′
δ(x)

∣∣p dx .

Hence

‖v′
δ‖p

L p(Γ ) = λ(δ) +
[(

1 + δ

�e0

)p−1

− 1

] ∫ �e0+δ j

0

∣∣u′
δ(x)

∣∣p dx . (4.5)

Then

λ(0) ≤
λ(δ) +

[(
1 + δ

�e0

)p−1

− 1

] ∫ �e0+δ j

0

∣∣u′
δ(x)

∣∣p dx

1 − δ

�e0 + δ

∫ �e0+δ

0 |uδ(x)|p dx
(4.6)

for all δ.
Let {δ j } j∈N such that δ j → 0 as j → ∞ and

lim
j→+∞ λ(δ j ) = lim inf

δ→0
λ(δ). (4.7)

Then, by (4.1), (4.7), (4.4), and (4.5), {vδ j } j∈N is bounded in W 1,p(Γ ). Hence there
exist a subsequence (still denote {v j } j∈N) and u0 ∈ X (Γ,VD) such that

vδ j ⇀ u0 weakly in W 1,p(Γ ),

vδ j → u0 strongly in L p(Γ ).

Then, by (4.4), we have ‖u0‖L p(Γ ) = 1. In addition, by (4.5) and (4.7), we get

λ(0) ≤
∫

Γ

|u′
0(x)|p dx

≤ lim inf
j→+∞

∫
Γ

|v′
δ j

(x)|p dx

≤ lim inf
j→+∞ λ(δ j ) +

[(
1 + δ j

�e0

)p−1

− 1

] ∫ �e0+δ j

0

∣∣∣u′
δ j

(x)
∣∣∣p dx

= lim inf
δ→0

λ(δ).
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Therefore (4.3) holds.
Thus, by (4.2) and (4.3), the function λ(δ) is continuous at δ = 0. ��

Corollary 4.2 LetΓ be a connected compactmetric graph,VD be a non-empty subset
of V(Γ ), p ∈ (1,+∞) and uδ be an eigenfunction associated to λ(δ) normalized by
‖uδ‖L p(Γδ) = 1. Then there exists a subsequence δ j → 0 and an eigenfunction u0
associated to λ(0) such that

vδ j → u0 strongly in X (Γ,VD)

as j → +∞ where

vδ j (x) =
⎧⎨
⎩
uδ j

(
�e0 + δ

�e0
x

)
if x ∈ Ie0

uδ j (x) otherwise.

Moreover ‖u0‖L p(Γ ) = 1 and

lim
j→∞

∫ �e0+δ j

0

∣∣uδ j (x)
∣∣p dx =

∫ �e0

0
|u0(x)|p dx,

lim
j→∞

∫ �e0+δ j

0

∣∣∣u′
j (x)

∣∣∣p dx =
∫ �e0

0
|u′

0(x)|p dx .

Proof Let {δ j } j∈N such that δ j → 0 as j → ∞. By (4.4) and (4.5), we have that

‖vδ j ‖p
L p(Γ ) = 1 − δ j

�e0 + δ j

∫ �e0+δ j

0

∣∣u j (x)
∣∣p dx

‖v′
δ j

‖p
L p(Γ ) = λ(δ j ) +

[(
1 + δ j

�e0

)p−1

− 1

] ∫ �e0+δ j

0

∣∣∣u′
δ j

(x)
∣∣∣p dx .

By Lemma 4.1, we have that λ(δ j ) → λ(0). Then {vδ j } j∈N is bounded in X (Γ, VD),

‖vδ j ‖p
L p(Γ ) → 1, (4.8)

‖v′
δ j

‖p
L p(Γ ) → λ(0), (4.9)

as j → ∞. Therefore there exists a subsequence (still denoted {vδ j } j∈N) and u0 ∈
X (Γ,VD) such that

vδ j ⇀ u0 weakly in W 1,p(Γ ),

vδ j → u0 strongly in L p(Γ ).

Then, by (4.1), we have ‖u0‖L p(Γ ) = 1. In addition, by (4.2), we get

λ(0) =
∫

Γ

|u′
0(x)|p dx ≤ lim inf

j→+∞

∫
Γ

|v′
j (x)|p dx = λ(0).
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Therefore u0 is an eigenfunction associated to λ(0) and

‖vδ j ‖W 1,p(Γ ) → ‖u0‖W 1,p(Γ )

as j → ∞. Since vδ j ⇀ u0 weakly in W 1,p(Γ ), we have that vδ j → u0 strongly in
W 1,p(Γ ). Then vδ j → u0 strongly in W 1,p(Ie0) and hence

∫ �e0

0
|u0(x)|p dx = lim

j→∞

∫ �e0

0
|vδ j (x)|p dx = lim

j→∞

(
�e0

�e0 + δ j

)∫ �e0+δ j

0

∣∣∣uδ j (x)
∣∣∣p dx,

∫ �e0

0
|u′
0(x)|p dx = lim

j→∞

∫ �e0

0
|v′

δ j
(x)|pdx = lim

j→∞

(
1+ δ j

�e0

)p−1 ∫ �e0+δ j

0

∣∣∣u′
δ j

(x)
∣∣∣p dx,

that is,

∫ �e0

0
|u0(x)|p dx = lim

j→∞

∫ �e0+δ j

0

∣∣uδ j (x)
∣∣p dx,

∫ �e0

0
|u′

0(x)|p dx = lim
j→∞

∫ �e0+δ j

0

∣∣∣u′
j (x)

∣∣∣p dx,
which completes the proof. ��

Before proving that the functionλ is differentiable at δ = 0when the first eigenvalue
is simple, we will show that, in the general case, λ is differentiable from the left and
from the right at δ = 0.

Lemma 4.3 Let Γ be a connected compact metric graph, VD be a non-empty subset
of V(Γ ) and p ∈ (1,+∞). Then the function λ(δ) is left and right differentiable at
δ = 0 and

lim
δ→0+

λ(δ) − λ(0)

δ
= min

u∈E

{
− (p − 1)

�e0

∫ �e0

0

∣∣u′(x)
∣∣p dx − λ(0)

�e0

∫ �e0

0
|u(x)|p dx

}
,

lim
δ→0−

λ(δ) − λ(0)

δ
= max

u∈E

{
− (p − 1)

�e0

∫ �e0

0

∣∣u′(x)
∣∣p − λ(0)

�e0

∫ �e0

0
|u(x)|p dx

}
,

where E is the set of eigenfunctions u associated with λ(0) normalized by ‖u‖L p(Γ ) =
1.

Proof We split the proof in several steps.

Step 1. We start by showing that

lim sup
δ→0+

λ(δ) − λ(0)

δ
≤ − (p − 1)

�e0

∫ �e0

0

∣∣u′(x)
∣∣p dx − λ(0)

�e0

∫ �e0

0
|u(x)|p dx

for any eigenfunction u associated to λ(0) normalized by ‖u‖L p(Γ ) = 1.

Author's personal copy



The first eigenvalue of the p−Laplacian on quantum graphs

Let u be an eigenfunction associated to λ(0) normalized by ‖u‖L p(Γ ) = 1. By
(4.1), we have

λ(δ) − λ(0) ≤

[(
�e0

�e0 + δ

)p−1

− 1

] ∫ �e0
0

∣∣u′(x)
∣∣p dx − λ(0)

δ

�e0

∫ �e0
0 |u(x)|p dx

1 + δ

�e0

∫ �e0
0 |u(x)|p dx

for all δ. Then

λ(δ) − λ(0)

δ
≤

(
�e0

�e0 + δ

)p−1

− 1

δ

∫ �e0
0

∣∣u′(x)
∣∣p dx − λ(0)

�e0

∫ �e0
0 |u(x)|p dx

1 + δ

�e0

∫ �e0
0 |u(x)|p dx

for all δ > 0. Therefore

lim sup
δ→0+

λ(δ) − λ(0)

δ
≤ − (p − 1)

�e0

∫ �e0

0

∣∣u′(x)
∣∣p dx − λ(0)

�e0

∫ �e0

0
|u(x)|p dx .

Step 2. With a similar procedure, we obtain

lim inf
δ→0−

λ(δ) − λ(0)

δ
≥ − (p − 1)

�e0

∫ �e0

0

∣∣u′(x)
∣∣p dx − λ(0)

�e0

∫ �e0

0
|u(x)|p dx .

for any eigenfunction u associated to λ(0) normalized by ‖u‖L p(Γ ) = 1.

Step 3. Now we show that there exists an eigenfunction u0 associated to λ(0) normal-
ized by ‖u0‖L p(Γ ) = 1 such that

lim inf
δ→0+

λ(δ) − λ(0)

δ
≥ − (p − 1)

�e0

∫ �e0

0

∣∣u′
0(x)

∣∣p dx − λ(0)

�e0

∫ �e0

0
|u0(x)|p dx .

Let uδ be an eigenfunction associated to λ(δ) normalized by ‖uδ‖L p(Γδ) = 1. By
(4.6), we have

λ(δ) − λ(0) ≥ − A(δ)

B(δ)
∀δ

where

A(δ) = λ(δ)δ

(�e0 + δ)

∫ �e0+δ

0
|uδ(x)|p dx −

[(
1 + δ/�e0

)p−1 − 1
] ∫ �e0+δ j

0

∣∣u′
δ(x)

∣∣p dx
B(δ) = 1 − δ

(�e0 + δ)

∫ �e0+δ

0
|uδ(x)|p dx .
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Then

λ(δ) − λ(0)

δ
≥

A(δ)

δ

B(δ)
(4.10)

for all δ > 0. Let {δ j } j∈N such that δ j → 0+ as j → ∞ and

lim
j→+∞

λ(δ j ) − λ(0)

δ j
= lim inf

δ→0+
λ(δ) − λ(0)

δ
. (4.11)

Then, by Corollary 4.2, there exist a subsequence (still denoted δ j ) and an eigenfunc-
tion u0 associated to λ(0) such that

‖u0‖L p(Γ ) = 1,

lim
j→∞

∫ �e0+δ j

0

∣∣uδ j (x)
∣∣p dx =

∫ �e0

0
|u0(x)|p dx,

lim
j→∞

∫ �e0+δ j

0

∣∣∣u′
j (x)

∣∣∣p dx =
∫ �e0

0
|u′

0(x)|p dx .

Therefore

lim
j→+∞

A(δ j )

δ j
= − (p − 1)

�e0

∫ �e0

0

∣∣u′
0(x)

∣∣p dx − λ(0)

�e0

∫ �e0

0
|u0(x)|p dx,

lim
j→+∞ B(δ j ) = 1.

In addition, by (4.10) and (4.11), we get

lim inf
δ→0+

λ(δ) − λ(0)

δ
≥ − (p − 1)

�e0

∫ �e0

0

∣∣u′
0(x)

∣∣p dx − λ(0)

�e0

∫ �e0

0
|u0(x)|p dx .

Hence, by step 1, we have that

lim
δ→0+

λ(δ) − λ(0)

δ
= − (p − 1)

�e0

∫ �e0

0

∣∣u′
0(x)

∣∣p dx − λ(0)

�e0

∫ �e0

0
|u0(x)|p dx .

Step 4. In the same way, we can show that there exists an eigenfunction v0 associated
to λ(0) such that

lim
δ→0−

λ(δ) − λ(0)

δ
= − (p − 1)

�e0

∫ �e0

0

∣∣v′
0(x)

∣∣p dx − λ(0)

�e0

∫ �e0

0
|v0(x)|p dx .

��
Thus, if the first eigenvalue is simple then the function λ(δ) is differentiable at

δ = 0.
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Theorem 4.4 Let Γ be a connected compact metric graph,VD be a non-empty subset
of V(Γ ) and p ∈ (1,+∞). If the first eignevalue λ1,p(Γ,VD) is simple, then the
function λ(δ) is differentiable at δ = 0 and

λ′(0) = − (p − 1)

�e0

∫ �e0

0

∣∣u′
0(x)

∣∣p dx − λ(0)

�e0

∫ �e0

0
|u0(x)|p dx

where u0 is an eigenfunction associated to λ(0) normalized by ‖u‖L p(Γ ) = 1.

Remark 4.5 Note that the result of Theorem 4.4 does not hold if we remove the
assumption that the first eigenvalue is simple. For example, let Γ defined as in Remark
3.4 and e0 = [v2, v3] we have that

lim
δ→0+

λ(δ) − λ(0)

δ
= min

u∈E

{
− (p − 1)

L

∫ �e0

0

∣∣u′(x)
∣∣p dx − λ(0)

L

∫ �e0

0
|u(x)|p dx

}

= min
u∈E

{
− pλ(0)

L

∫ �e0

0
|u(x)|p dx

}
= − pλ(0)

L
,

lim
δ→0−

λ(δ) − λ(0)

δ
= max

u∈E

{
− (p − 1)

L

∫ �e0

0

∣∣u′(x)
∣∣p dx − λ(0)

L

∫ �e0

0
|u(x)|p dx

}

= max
u∈E

{
− pλ(0)

L

∫ �e0

0
|u(x) |p dx

}
= 0.

Hence λ is not differentiable (but Lipschitz) at δ = 0.

5 The limit as p → ∞
In this section we deal with the limit as p → ∞ of the eigenvalue problem (3.1).

Theorem 5.1 Let Γ be a connected compact metric graph,VD be a non-empty subset
of V(Γ ), and u p be a minimizer for (3.1) normalized by ‖u p‖L p(Γ ) = 1. Then, there
exists a sequence p j → ∞ such that

u p j → u∞

uniformly in Γ and weakly in W 1,q(Γ ) for every q < ∞.
Moreover, any possible limit u∞ is a minimizer for

Λ∞(Γ,VD) = inf

{‖v′‖L∞(Γ )

‖v‖L∞(Γ )

: v ∈ W 1,∞(Γ ), v = 0 on VD, v �≡ 0

}
.

This value Λ∞(Γ,VD) is the limit of λ1,p(Γ, VD)1/p and can be characterized as

Λ∞(Γ,VD) = 1

max
x∈Γ

d(x,VD)
.
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Note that

max
z∈Γ

d(x,VD) = 1

2
max
z∈Γ

min
v∈VD

d(x, v).

Proof In this proof we use ideas from [17]. Let u p be an eigenfunction associated
with λ1,p(Γ, VD) normalized by ‖u p‖L p(Γ ) = 1. We first prove a uniform bound
(independent of p) for the L p-norm of u′

p.To this end, take v any smooth function that
vanishes on VD . Using that u p is a minimizer for (3.1) we obtain

∫
Γ

|u′
p(x)|p dx∫

Γ
|u p(x)|p dx ≤

∫
Γ

|v′(x)|p dx∫
Γ

|v(x)|p dx ,

hence we get

(∫
Γ

|u′
p(x)|p dx

)1/p

≤
(∫

Γ
|v′(x)|p dx∫

Γ
|v(x)|p dx

)1/p

.

Now we observe that

(∫
Γ

|v′(x)|p dx∫
Γ

|v(x)|p dx
)1/p

→ ‖v′‖L∞(Γ )

‖v‖L∞(Γ )

as p → ∞. Therefore, we conclude that there exists a constant C independent of p
such that

(∫
Γ

|u′
p(x)|p dx

)1/p

≤ C.

Then, by Hölder inequality, we have

(∫
Γ

|u′
p(x)|q dx

)1/q

≤ card(E(Γ ))
1/q

(∫
Γ

|u′
p(x)|p dx

)1/p

�(Γ )(p−q)/pq

≤ Ccard(E(Γ ))
1/q�(Γ )

(p−q)/pq

for all 1 ≤ q ≤ p. Then we obtain that the family {u p}p≥q is bounded inW 1,q(Γ ) for
any q < ∞ and therefore by a diagonal procedure we can extract a sequence p j → ∞
such that

u p j → u∞

uniformly in Γ and weakly in W 1,q(Γ ) for every q < ∞.
From our previous computations we obtain

(∫
Γ

|u′∞(x)|q dx
)1/q

≤ ‖v′‖L∞(Γ )

‖v‖L∞(Γ )

card(E(Γ ))
1/q�(Γ )

1/q
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and then (taking q → ∞) we conclude that

‖u′∞‖L∞(Γ ) ≤ ‖v′‖L∞(Γ )

‖v‖L∞(Γ )

,

for every v smooth that vanishes on VD .
Now, using that u p j converges uniformly to u∞ we obtain that

‖u∞‖L∞(Γ ) = 1.

In fact, we have

(∫
Γ

|u∞(x)|p dx
)1/p

≤
(∫

Γ

|u∞(x) − u p(x)|p dx
)1/p

+
(∫

Γ

|u p(x)|p dx
)1/p

=
(∫

Γ

|u∞(x) − u p(x)|p dx
)1/p

+ 1.

Now we have that

(∫
Γ

|u∞(x) − u p(x)|p dx
)1/p

≤ ‖u∞ − u p‖L∞(Γ )�(Γ )
1/p → 0

as p → ∞ and we conclude that ‖u∞‖L∞(Γ ) ≤ 1. On the other hand,

1 =
(∫

Γ

|u p(x)|p dx
)1/p

≤
(∫

Γ

|u∞(x) − u p(x)|p dx
)1/p

+
(∫

Γ

|u∞(x)|p dx
)1/p

and then we obtain the reverse inequality, ‖u∞‖L∞(Γ ) ≥ 1.
We have proved that u∞ is a minimizer for

Λ∞(Γ,VD) = inf

{‖v′‖L∞(Γ )

‖v‖L∞(Γ )

: v ∈ W 1,∞(Γ ), v = 0 on VD, v �≡ 0

}
.

and that

λ1,p(Γ,VD)1/p → Λ∞(Γ,VD)

as p → ∞.
It remains to show that

Λ∞(Γ,VD) = 1

maxz∈Γ d(z,VD)
.
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To this end, first let us consider a point z0 ∈ Γ such that

max
z∈Γ

d(z, VD) = d(z0, VD)

and the cone

v(x) =
(
1 − 1

d(z0,VD)
d(x, z0)

)
+

.

This function v is Lipschitz and vanishes on VD , hence it is a competitor for the
infimum for Λ∞(Γ,VD) and then we get

Λ∞(Γ,VD) ≤ 1

d(z0,VD)
= 1

maxz∈Γ d(z,VD)
.

To see the reverse inequality we argue as follows: let v be a smooth function vanishing
onVD and normalize it according to ‖v‖L∞(Γ ) = 1. Let z1 ∈ Γ be such that v(z1) = 1.
Since z1 ∈ Γ it holds that

max
z∈Γ

d(z,VD) ≥ d(z1,VD).

Hence there is a vertex v ∈ VD such that

max
z∈Γ

d(z,VD) ≥ d(z1, v),

and we get

1 = v(z1) − v(v) = v′(ξ)d(z1, v) ≤ |v′(ξ)|max
z∈Γ

d(z,VD).

We conclude that

‖v′‖L∞(Γ ) ≥ 1

maxz∈Γ d(z,VD)

and therefore

Λ∞(Γ,VD) ≥ 1

maxz∈Γ d(z,VD)
.

This ends the proof. ��
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6 The limit as p → 1

In this section we study the other limit case, p = 1. We will use functions of bounded
variation on the graph (that we will denote by BV (Γ )) and the perimeter of a subset
of the graph (denoted by Per(D)). We refer to [1] for precise definitions and properties
of functions and sets in this context.

Theorem 6.1 Let Γ be a connected compact metric graph,VD be a non-empty subset
of V(Γ ), and u p be a minimizer for (3.1) normalized by ‖u p‖L1(Γ ) = 1. Then, there
exists a sequence p j → 1+ such that

u p j → u1

in L1(Γ ).

Moreover, any possible limit u1 is a minimizer for

Λ1(Γ, VD) = inf

{
‖v′‖BV (Γ )

‖v‖L1(Γ )

: v ∈ BV (Γ ), v = 0 on VD, v �= 0

}
.

This value Λ1(Γ, VD) is the limit of λ1,p(Γ, VD).

Proof Without loss of generality, we can assume that u p(x) ≥ 0 for all x ∈ Γ. Let
vp = (u p)

p. Then vp ∈ W 1,1(Ω) and

∫
Γ

|vp(x)| dx = 1
∫

Γ

|v′
p(x)| dx = p

∫
Γ

u(x)p−1|u′(x)| dx

≤ p

(∫
Γ

u(x)p dx

)1/p′ (∫
Γ

|u′(x)|p dx
)1/p

= p

(∫
Γ

|u′(x)|p dx
)1/p

.

Hence

Λ1(Γ, VD) ≤ ‖v′
p‖BV (Γ )

‖vp‖L1(Γ )

≤ p

(∫
Γ

|u′
p(x)|p dx

)1/p

(∫
Γ

|u p(x)|p dx
)1/p

= pλ1,p(Γ,VD)
1/p.

From where we get
Λ1(Γ,VD) ≤ lim inf

p→1+ λ1(Γ,VD)
1/p. (6.1)
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On the other hand, for any smooth function v that vanishes on VD we have

λ1(Γ,VD)1/p ≤
(∫

Γ
|v′(x)|p dx)1/p(∫

Γ
|v(x)|p dx)1/p

from where it follows

lim sup
p→1+

λ1(Γ,VD)1/p ≤
∫
Γ

|v′(x)| dx∫
Γ

|v(x)| dx

and we conclude that

lim sup
p→1+

λ1(Γ,VD)
1/p ≤ Λ1(Γ,VD). (6.2)

Therefore, from (6.1) and (6.2) we obtain

lim
p→1+ λ1(Γ,VD) = Λ1(Γ,VD). (6.3)

Moreover, by [10, Theorem4 Section5.2.3] we have that there is u1 ∈ BV (Γ ) such
that

‖u p j − u1‖L1(Γ ) → 0

for a sequence p j → 1+. From the lower semicontinuity of the variation measure (see
[10, Theorem1 Section5.2.1]), we have

‖u1‖BV (Γ ) ≤ lim inf
p j→1

‖u p j ‖BV (Γ ).

From this we conclude that every possible limit of a sequence of u p as p → 1 is an
extramal for Λ1(Γ,VD). ��
Theorem 6.2 It holds that

Λ1(Γ,VD) = inf

{
Per(D)

|D| : D ⊂ Γ, D ∩ VD = ∅
}

.

Proof We have

Λ1(Γ,VD) ≤ λ = inf

{
Per(D)

|D| : D ⊂ Γ, D ∩ VD = ∅
}

.

By Theorem 6.1, there exists a function u ∈ BV (Γ ), u �≡ 0, such that

Λ1(Γ,VD) = ‖u′‖BV (Γ )

‖u‖L1(Γ )

.
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We can consider without loss of generality that u ≥ 0. Let

Et := {x ∈ Γ : u(x) > t}.

We have

|u′|(Γ ) =
∫ ∞

0
Per(Et )dt.

Hence, we get using Cavalieri’s principle,

0 = ‖u′‖BV (Γ ) − Λ1(Γ,VD)‖u‖L1(Γ )

=
∫ ∞

0
(Per(Et ) − Λ1(Γ,VD)|Et |)dt

≥
∫ ∞

0
(Per(Et ) − λ|Et |)dt ≥ 0.

Therefore, we conclude that for almost every t ∈ R (in the sense of the Lebesgue
measure on R),

Per(Et ) = λ|Et |

and

λ = Λ1(Γ,VD).

��
Sets D∗ such that

inf

{
Per(D)

|D| : D ⊂ Γ, D ∩ VD = ∅
}

= Per(D∗)
|D∗|

are called Cheeger sets. See [28] and references therein.

Example 6.3 To see that the optimal value Λ1(Γ,VD) depends strongly on the geo-
metric configuration of the graph Γ , let us consider the following example: let Γ be a
simple graph with 4 nodes (3 of them, the terminal nodes, are in VD) and 3 edges as
the one described by the next figure:

a
b

b
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Let us compute

Λ1(Γ,VD) = inf

{
‖v′‖BV (Γ )

‖v‖L1(Γ )

: v ∈ BV (Γ ), v = 0 on VD, v �≡ 0

}

= inf

{
Per(D)

|D| : D ⊂ Γ, D ∩ VD = ∅
}

,

in this case. As we will see its value (and the corresponding optimal set D∗) depends
on the lengths a and b.

First, let us compute the value of
Per(D)

|D| for D = Γ . We have

|Γ | = �(Γ ) = a + 2b, and Per(Γ ) = 3.

Hence

Per(Γ )

�(Γ )
= 3

a + 2b
.

On the other hand, if we consider Da the characteristic function of the edge of
length a we obtain

|Da | = a, and Per(Da) = 2,

and then

Per(Da)

|Da | = 2

a
.

Now we remark that any other subset D of Γ has a ratio
Per(D)

|D| bigger or equal

than one of the previous two sets. Therefore, we conclude that

Λ1(Γ,VD) =

⎧⎪⎪⎨
⎪⎪⎩

3

a + 2b
if a ≤ 4b,

2

a
if a > 4b.
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