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Abstract Weprove sharp regularity estimates for viscosity solutions of fully nonlinear
parabolic equations of the form

ut − F
(

D2u, Du, X, t
)

= f (X, t) in Q1, (Eq)

where F is elliptic with respect to the Hessian argument and f ∈ L p,q(Q1). The
quantity �(n, p, q) := n

p + 2
q determines to which regularity regime a solution of

(Eq) belongs. We prove that when 1 < �(n, p, q) < 2 − εF , solutions are parabol-
ically α-Hölder continuous for a sharp, quantitative exponent 0 < α(n, p, q) < 1.
Precisely at the critical borderline case, �(n, p, q) = 1, we obtain sharp parabolic
Log-Lipschitz regularity estimates.When 0 < �(n, p, q) < 1, solutions are locally of

class C1+σ, 1+σ
2 and in the limiting case �(n, p, q) = 0, we show parabolic C1,Log-Lip

regularity estimates provided F has “better” a priori estimates.
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1 Introduction

The study of second order parabolic equations plays a fundamental role in the develop-
ment of several fields in pure and applied mathematics, such as differential geometry,
functional and harmonic analysis, infinite dimensional dynamical systems, probabil-
ity, as well as in mechanics, thermodynamics, electromagnetism, among others. The
non-homogeneous heat equation,

ut − �u = f in Q1 = B1 × (−1, 0], (1.1)

where f ∈ L p(Q1), p > n+2
2 , represents the simplest linear prototype. Its mathe-

matical analysis goes back to nineteenth century and the regularity theory for such
an equation is nowadays fairly complete. The fully nonlinear parabolic theory is
quite more recent. The fundamental works of Krylov and Safonov [15,16] on lin-
ear, non-divergence form elliptic equations set the beginning of the development of
the regularity theory for viscosity solutions to fully nonlinear parabolic equations.
Since then this has been a central subject of research. Wang in [20,21] proves Harnack

inequality and C1+α, 1+α
2 estimates for fully nonlinear parabolic equations, and Cran-

dall et al. in [4] develop an L p-viscosity theory, see also Imbert–Silvestre’s survey in
[8] as regards to existence, comparison and Hölder regularity of viscosity solutions.

Krylov in [11,12] obtainsC2+α, 2+α
2 estimates for solutions to ut −F(D2u) = 0, under

convexity assumptions (see also [21, Section 4.3] for similar results), and Caffarelli
and Stefanelli in [1] exhibit solutions to uniform parabolic equations that are not C2,1.

Non-divergence form parabolic equations involving sources with mixed integra-
bility conditions f ∈ L p,q(Q1), as in (Eq) have also been fairly well studied in the
literature. Existence in suitable parabolic Sobolev spaces has been proven by Krylov,
see [13,14], see also the sequence of works by Kim [9,10]. Insofar as regularity esti-
mates are concerned, only qualitative results are available when p and q are sufficient
large. Nonetheless, as in a number of physical, geometric and free boundary prob-
lems, obtaining a quantitative sharp regularity estimate for solutions is decisive for a
finer analysis. Hence, the purpose of this paper is to obtain sharp moduli of continuity
of solutions for second order parabolic equation (Eq), involving sources with mixed
norms, which depend only on dimension, p, q and universal parameters.

Hereafter we denote by

�(n, p, q) := n

p
+ 2

q
.

The first quantitative regularity result we show states that if 1 < �(n, p, q) < n+2
p0

,

where n+2
2 ≤p0 <n+1 is a constant,1 then solutions are parabolically α-Hölder con-

1 The universal constant p0 is one which gives the minimal range for which the Aleksandrov–Bakelman–
Pucci–Krylov–Tso maximum principle holds for L p-viscosity solutions provided p > p0 (cf. [4, Section
2] and [5] for more details).
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tinuous for the sharp exponent α := 2 − �(n, p, q) (see Sect. 3 for the treatment of
this case).

Intuitively, as �(n, p, q) decreases, one should expect that regularity estimates of
solutions improve . The borderline is �(n, p, q) = 1, where we prove that solutions
are parabolically Log-Lipschitz continuous (see Sect. 4 for this analysis). This result is

a further quantitative improvement to the fact that u ∈ C
α, α

2
loc (Q1) for any 0 < α < 1.

When 0 < �(n, p, q) < 1, we show that solutions are C1+β,
1+β
2 , for β ≤ 1 −

�(n, p, q) (see Sect. 5 for this case). Qualitative results, when p = q > n + 1, were
previously obtained by Crandall et al. [4, Section 7] and Wang [21, Section 1.2].

Finally, we deal with the upper borderline case, f ∈ BMO(Q1). Under appropriate
higher a priori estimates on F , we show that solutions are parabolicallyC1,Log-Lip

loc (Q1)

(see Sect. 6 for this approach). Particularly, u ∈ C
1+α, 1+α

2
loc (Q1) for any 0 < α < 1.

The table below provides a global picture of the parabolic regularity theory for
equations with anisotropic sources, in comparison with the sharp elliptic estimate
from [18]: where ς := 2 − �(n, p, q) and μ := min{α−, 1 − �(n, p, q)}. Here α−
means α − ζ for every 0 < ζ < α and ε ∈ (0, n

2 ) is a universal constant.2

f ∈ L p(B1) Regularity of u f ∈ L p,q (Q1) Regularity of u

n − ε ≤ p < n C
0,2− n

p
loc (B1) 1 < �(n, p, q) < n+2

p0
C

ς,
ς
2

loc (Q1)

p = n C
0,Log-Lip
loc (B1) �(n, p, q) = 1 par − C

0,Log-Lip
loc (Q1)

p > n C
1,min

{
α−,1− n

p

}

loc (B1) 0 < �(n, p, q) < 1 C
1+μ,

1+μ
2

loc (Q1)

BMO � L∞ C
1,Log-Lip
loc (B1) BMO � L∞ par − C

1,Log-Lip
loc (Q1)

Elliptic Theory Parabolic Theory

It is interesting to note that the parabolic regularity estimates agree with its elliptic
counterpart provided f ∈ L p,∞(Q1).

Next picture (Fig. 1) shows the critical surfaces and the regions they define for the
optimal regularity estimates available for solutions to (Eq).

2 Here ε is the Escauriaza’s universal constant which provides the minimal range which the Harnack
inequality (resp. Hölder regularity) holds for viscosity solutions to fully nonlinear elliptic equations, since
p ≥ n − ε (see [6] for more details).
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Fig. 1 Critical surfaces for optimal regularity estimates

2 Definitions and preliminary results

Throughout this paper F : Sym(n)×Rn × B1(0)× (−1, 0] −→ R is a fully nonlinear
uniformly elliptic operator with respect to the Hessian argument and Lipschitz with
respect to gradient dependence. That is, there are constants � ≥ λ > 0 and 
 ≥ 0
such that for all Z , W ∈ Rn and M, N ∈ Sym(n), space of n × n symmetric matrices,
with M ≥ N , there holds

P−
λ,�(M−N )−
|Z−W | ≤ F(M, Z , X, t)−F(N , W, X, t) ≤ P+

λ,�(M−N )+
|Z−W |.
(2.1)

Hereafter, P±
λ,� denote the Pucci’s extremal operators:

P+
λ,�(M) := λ ·

∑
ei <0

ei + � ·
∑
ei >0

ei and P−
λ,�(M) := λ ·

∑
ei >0

ei + � ·
∑
ei <0

ei

where {ei : 1 ≤ i ≤ n} are the eigenvalues of M . Any operator F which satisfies
the condition (2.1) will be referred in this article as a (λ,�, 
)-parabolic operator.
Following classical terminology, any constant or mathematical term which depends
only on dimension and of the parameters λ, � and 
 will be called universal.

We can (and will) always assume that F is normalized in the sense

F(0, 0, X, t) = 0, (2.2)

and, unless otherwise stated, conditions (2.1) and (2.2) are always assumed throughout
the text; sometimes we will refer F as a normalized (λ,�, 
) operator.

Equations and problems studied here are designed in the (n + 1)-dimensional
Euclidean space, Rn+1. The semi-open cylinder is denoted by
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Qr (X0, τ ) = Br (X0) × (τ − r2, τ ]. For simplicity we refer Q1(0, 0) = Q1. The
parabolic distance between the points P1 = (X1, t1) and P2 = (X2, t2) ∈ Q1 is
defined by

dpar(P1, P2) :=
√

|X1 − X2|2 + |t1 − t2|.

For a function u : Q1 → R the semi-norm and norm for the parabolic Hölder space
are defined respectively by

[u]
Cα, α

2 (Q1)
:= sup

(X,t),(Y,s)∈Q1
(X,t) �=(Y,s)

|u(X, t) − u(Y, s)|
dpar((X, t), (Y, s))α

and ‖u‖
Cα, α

2 (Q1)
:= ‖u‖C0(Q1)

+[u]
Cα, α

2 (Q1)
.

Under finiteness of such a norm one concludes that u is α-Hölder continuous with
respect to the spatial variables and α

2 -Hölder with respect to the temporal variable.
We say that u is locally (parabolically) Log-Lipschitz continuous if the following

quantity

[u]par−C0,Log-Lip(Qr (x0,t0)) := sup
(X,t),(Y,s)∈Qr (x0,t0)

|u(X, t) − u(Y, s)|
−r log r

∀ r 
 1.

is finite for (x0, t0) ∈ Q1. Moreover, the corresponding parabolic Log-Lipschitz norm
is given by

‖u‖par−C0,Log-Lip(Qr (x0,t0)) := ‖u‖C0(Qr (x0,t0)) + [u]par−C0,Log-Lip(Qr (x0,t0)).

In what follows, C1+α, 1+α
2 (Q1) denotes the space of u whose spacial gradient

Du(X, t) there exists in the classical sense for every (X, t) ∈ Q1 and such that

‖u‖
C1+α, 1+α

2 (Q1)
:= ‖u‖L∞(Q1) + ‖Du‖L∞(Q1)

+ sup
(X,t),(Y,s)∈Q1

(X,t) �=(Y,s)

|u(X, t) − [u(Y, τ ) − Du(Y, s) · (X − Y )]|
d1+α
par ((X, t), (Y, s))

is finite. It is easy to verify that u ∈ C1+α, 1+α
2 (Q1) implies every component of Du

is C0,α(Q1) , and u is 1+α
2 -Hölder continuous in the variable t , see for instance [4,

Section 1].
Now, we say that u is locally (parabolically) C1,Log-Lip continuous if the quantity

[u]par−C1,Log-Lip(Qr (x0,t0))

:= sup
(X,t),(Y,s)∈Qr (x0,t0)

|u(X, t) − [u(Y, s) + Du(Y, s).(X − Y )]|
−r2 log r
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is finite. Moreover, its parabolic C1,Log-Lip-norm is given by

‖u‖par−C1,Log-Lip(Qr (x0,t0))

:= ‖u‖C0(Qr (x0,t0)) + ‖Du‖L∞(Qr (x0,t0)) + [u]par−C1,Log-Lip(Qr (x0,t0)).

A function u belongs to the Sobolev space W 2,1,p(Q1) if it satisfies u, Du, D2u, ut ∈
L p(Q1). The corresponding norm is given by

‖u‖W 2,1,p(Q1)
=

[
‖u‖p

L p(Q1)
+ ‖ut‖p

L p(Q1)
+ ‖Du‖p

L p(Q1)
+ ‖D2u‖p

L p(Q1)

] 1
p

It follows by Sobolev embedding that if p > n+2
2 then W 2,1,p(Q1) is continuously

embedded in C0(Q1). Also, u ∈ W 2,1,p
loc (Q1) implies that u is twice parabolically

differentiable a.e., see for more details [2].

Definition 2.1 (LP-viscosity solutions) Let G : Sym(n)×Rn × B1(0)×(−1, 0] → R

be a uniformly elliptic operator, P > n+2
2 and f ∈ LP

loc(Q1). We say that a function
u ∈ C0(Q1) is an LP-viscosity subsolution (respectively supersolution) to

ut − G
(

D2u(X, t), Du(x, t), X, t
)

= f (X, t) in Q1 (2.3)

if for all ϕ ∈ W 2,1,P
loc (Q1) whenever ε > 0 and O ⊂ Q1 is an open set and

ϕt − G
(

D2ϕ(X, t), Dϕ(x, t), X, t
)

− f (X, t) ≥ ε (resp. ≤ −ε) a.e. in O

then u − ϕ cannot attains a local maximum (resp. minimum) in O . In an equivalent
manner, u is an LP-viscosity subsolution (resp. supersolution) if for all test function
ϕ ∈ W 1,2,P

loc (Q1) and (X0, t0) ∈ Q1 at which u − ϕ attain a local maximum (resp.
minimum) one has

⎧⎪⎨
⎪⎩

essliminf
(X,t)→(X0,t0)

[
ϕt−G

(
D2ϕ(X, t), Dϕ(x, t), X, t

)
− f (X, t)

]
≤0

esslimsup
(X,t)→(X0,t0)

[
ϕt−G

(
D2ϕ(X, t), Dϕ(x, t), X, t

)
− f (X, t)

]
≥0

(2.4)

Finally we say that u is an LP-viscosity solution to (2.3) if it is both an LP-viscosity
supersolution and an LP-viscosity subsolution.

Remark 2.2 We say that a function u ∈ C0(Q1) is a C0-viscosity solution to (2.3)
when the sentences in (2.4) are evaluated pointwisely for all “test function” ϕ ∈
C2,1

loc (Q1). This is the notion used by Imbert–Silvestre in [8] and Wang in [20,21].

According to [4, Section 6] (see also [20, Section 5]) for a fixed (X0, t0) ∈ Q1, we
measure the oscillation of the coefficients of F around (X0, t0) by the quantity

�F (X0, t0, X, t) := sup
M∈Sym(n)

|F(M, 0, X, t) − F(M, 0, X0, t0)|
‖M‖ + 1

. (2.5)
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For notation purposes, we shall often write �F (0, 0, X, t) = �F (X, t).
We recall that a function f is said to belong to the Anisotropic Lebesgue space,

L p,q(Q1) if

‖ f ‖L p,q (Q1) :=
(∫ 0

−1

(∫

B1

| f (X, t)|pd X

) q
p

dt

) 1
q

= ‖‖ f (·, t)‖L p(B1)‖Lq ((−1,0]) < +∞.

This is a Banach space when endowed with the norm above. When p = q, this is the
standard definition of L p spaces. The definition are naturally extended when either p
or q are infinity. It is plain to verify that L p,q(Q1) ⊂ Ls(Q1) for s := min{p, q}.

We recall again the existence of the constant p0, satisfying n+2
2 ≤ p0 < n + 1, for

which Harnack inequality (resp, Hölder regularity) holds for LP-viscosity solutions,
provided P > p0, see for instance [4, Section 5]. The following compactness result
becomes then available:

Proposition 2.3 (Compactness of solutions) Let u be an LP-viscosity solution to (Eq)

in Qr under the assumption P ≥ min{p, q} > p0. Then u is locally of class Cβ,
β
2 for

some 0 < β < 1 and

‖u‖
Cβ,

β
2 (Qr )

≤ C(n, λ,�, 
)r−β
(
‖u‖L∞(Qr ) + r2−�(n,p,q)‖ f ‖L p,q (Qr )

)
.

Upon appropriate regularity assumption on the boundary data, solutions are pre-
compact in the C0-topology up-to-the-boundary. We state such a result for future
references and refer to [3, Proposition 4.6] and [4, Lemma 6.3] for a proof.

Proposition 2.4 (Pre-compactness up to the boundary) Let � satisfy a uniform exte-
rior cone condition, Q := � × ((−T, 0]) and C ⊂ C0(∂p Q) be compact, R > 0 and
BR := { f ∈ LP(Q) : ‖ f ‖LP(Q) ≤ R}. Then the set all functions u ∈ C0(Q) such
that there exists ψ ∈ C and f ∈ BR for which u is an LP-viscosity solution to

ut − P−
λ,�(D2u) − 
|Du| − f ≤ 0 ≤ ut − P+

λ,�(D2u) + 
|Du| + f in Q

and u = ψ on ∂p Q is pre-compact in C0(Q).

Another piece of information we need in our approach concerns the stability of the
notion of viscosity solutions; that is the limit of a sequence of viscosity solutions turns
out to be a viscosity solution of the limiting equation. More precisely, we refer to the
following Lemma, whose proof can be found, for instance, in [4, Theorem 6.1].

Lemma 2.5 (Continuity with respect to equation) Let Fj , F be normalized (λ,�, 
)

operators, P > p0, f, f j ∈ LP(Q1) and u j be LP-viscosity solutions to

(u j )t − Fj (D2u j , Du j , x, t) = f j in Q1
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for all j ∈ N. Assume that u j → u locally uniformly as j → ∞. Moreover, for all
Qr (x0, t0) ⊂ Q1 and all ϕ ∈ W 2,1,P(Qr (x0, t0)) (test function), assume that

g j (x, t) := Fj (D2ϕ(x, t), Dϕ(x, t), x, t) − f j (x, t)

and

g(x, t) := F(D2ϕ(x, t), Dϕ(x, t), x, t) − f (x, t)

satisfy
‖g − g j‖LP(Qr (x0,t0)) → 0 as j → ∞. (2.6)

Then, u is an LP-viscosity solution to

ut − F(D2u, Du, x, t) = f in Qr (x0, t0).

Furthermore, if F and f are continuous functions, then u is a C0-viscosity solution if
(2.6) holds for all ϕ ∈ C2,1(Q1) (test function).

In the sequel, we obtain a Lemma which provides a tangential path toward the
regularity theory available for constant coefficient, homogeneous F-caloric functions.

Lemma 2.6 (F-Caloric approximation Lemma) Let u be an LP-viscosity solution to
(Eq)with |u| ≤ 1 and f ∈ L p,q(Q1) with P := min{p, q} > p0. Define h : Q1/2 → R

to be the LP-viscosity solution of

{
ht − F(D2h, 0, 0, 0) = 0 in Q 1

2

h = u on ∂p Q 1
2

(2.7)

Given δ > 0, there exists η = η(δ, n, λ,�,P) > 0 such that if

max

{(∫
−

Q1

�P
F (X, t)

) 1
P

, ‖ f ‖L p,q (Q1), 


}
≤ η,

then
sup
Q 1

2

|u − h| ≤ δ. (2.8)

Proof The proof is based on a contradiction argument. Suppose there exists a δ0 > 0
for which the thesis of the Lemma, namely sentence (2.8), does not hold, regard-
less how small we make η. That means we could find sequences of functions
(u j ) j≥1, (h j ) j≥1 with |u j | ≤ 1, a sequence of normalized (λ,�, 
 j )-operators
Fj : Sym(n)×Rn × Q1 → R and a sequence of functions ( f j ) j≥1 all linked through
the set of equations

⎧
⎪⎨
⎪⎩

(u j )t − Fj (D2u j , Du j , X, t) = f j in Q1

(h j )t − Fj (D2h j , 0, 0, 0) = 0 in Q 1
2

h j = u j on ∂p Q 1
2

(2.9)
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in the LP-viscosity sense, with

max

{(∫
−

Q1

�P
Fj

(X, t)

) 1
P

, ‖ f j‖L p,q (Q1), 
 j

}
= o(1) as j → ∞; (2.10)

however
sup
Q 1

2

|u j − h j | > δ0 for all j ∈ N. (2.11)

By compactness of the sequences (u j ) j≥1 and (h j ) j≥1, namely Propositions 2.3
and 2.4, we may assume, passing to a subsequence if necessary, that u j → u0 and
h j → h0 uniformly in Q 1

2
.

Next we will prove that u0 = h0. The idea is to conclude that both functions solve
the same PDE, for which uniqueness is available, and hence this would contradict
(2.11) for j � 1 large enough.

Initially we note that it follows from structural condition imposed on the operators
(Fj ) j≥1, namely, (2.1), that, up to a subsequence, can may assume

Fj (M, 0, 0, 0) → F0(M) (2.12)

locally uniformly in the space Sym(n), where F0 is a (λ,�, 0) operator with constant
coefficients—see for instance [4, Sections 1 and 6] and [21, Lemma 1.4]. Also, apply-
ing Lemma 2.5 along with uniqueness result, for instance [4, Lemma 6.2], we know
h0 is the unique C0-viscosity solution to

{
(h0)t − F0(D2h0) = 0 in Q 1

2

h0 = u0 on ∂p Q 1
2
.

(2.13)

To conclude the proof, wewill show that u0 also solves (2.13) in the viscosity sense.
For that end, let ϕ ∈ C2,1(Q 1

2
) be a test function and define

K j (ϕ) :=
∣∣∣Fj

(
D2ϕ(X, t), Dϕ(X, t), X, t

)
− f j (X, t) − F0

(
D2ϕ(X, t)

)∣∣∣ .

We estimate

K j (ϕ) ≤ 
 j |Dϕ(X, t)| + �Fj (X, t)
(
|D2ϕ(X, t)| + 1

)
+ | f j (X, t)|

+
∣∣∣Fj

(
D2ϕ(X, t), 0, 0, 0

)
− F0

(
D2ϕ(X, t)

)∣∣∣ . (2.14)

Finally, since from (2.10) and (2.12) one has that the LP-norm of RHS of (2.14) goes
to zero as j → ∞, we can apply once more Lemma 2.5, which assures u0 is too
a solution of (2.13), and by uniqueness, u0 = h0, which yields a contradiction as
indicated before. 
�
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We conclude this section by commenting on reduction processes to be used through-
out the proof.

Remark 2.7 (Preserving ellipticity) If F is a (λ,�, 
)-parabolic operator then

G
(

M,
−→
Z , X, t

)
= κ2

0 · F

(
M

κ2
0

,

−→
Z

κ0
, X, t

)

is a (λ,�, κ0 · 
)-parabolic operator for any κ0 > 0.

Remark 2.8 (Normalization and scaling) We can always suppose, without loss of
generality, that viscosity solutions of

ut − F(D2u, Du, X, t) = f (X, t) in Q1

satisfy ‖u‖L∞(Q1) ≤ 1. Also given a small number ε0 > 0, we can also suppose that

 + ‖ f ‖L p,q (Q1) < 2ε0. Indeed, for

κ := ε0

ε0(‖u‖L∞(Q1) + 1) + ‖ f ‖L p,q (Q1)

and R > max

{
1,




ε0
,
√

κ

}
,

we define

v(X, t) := κu

(
1

R
X,

1

R2 t

)
.

It is easy to verify that

1. ‖v‖L∞(Q1) ≤ 1;
2. vt − G (D2v, Dv, X, t) = g(X, t) in Q1, in the LP-viscosity sense, where

G (M,
−→
Z , X, t) = κ

R2 F

(
R2

κ
M,

R

κ

−→
Z ,

1

R
X,

1

R2 t

)
and

g(X, t) = κ

R2 f

(
1

R
X,

1

R2 t

)
;

3. G is a
(
λ,�,
�

)
-parabolic operator, with 
� < ε0;

4. ‖g‖L p,q (Q1) ≤ ε0;

5.

(∫
−

Qr

�P
G (X, t)

) 1
P ≤ max

{
1,

κ

R2

}(∫
−

Qr R−1

�P
F (X, t)

) 1
P

(cf. [4, Remark 6.4]).

Once a universal estimate is proven for v, a corresponding one becomes available for
the general solution u, properly adjusted by the choices of κ and R.
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3 Optimal Cα, α
2 regularity

Our strategy for proving optimal Cα, α
2 regularity estimates is based on a refined com-

pactness method as in [4,18,20,21]. It relies on a control of oscillation decay obtained
from the regularity theory available for a “better” limiting equation; the realm of the
so-called geometric tangential analysis. Next lemma is the key access point for the
approach, as it provides the first step in the iteration process to be implemented.

Lemma 3.1 Let u be a normalized LP-viscosity solution for (Eq), that is, |u| ≤ 1 in
Q1. Given 0 < γ < 1, there exist η(n, λ,�, γ ) > 0 and 0 < ρ(n, λ,�, γ ) 
 1

2 ,
such that if

max

{(∫
−

Q1

�P
F (X, t)

) 1
P

, ‖ f ‖L p,q (Q1), 


}
≤ η with 1 < �(n, p, q) <

n + 2

p0

then, for some ς ∈ R, with |ς | ≤ C(n, λ,�) there holds

sup
Qρ

|u − ς | ≤ ργ . (3.1)

Proof For a δ > 0 to be chosen a posteriori, let h be a solution to a homogeneous
uniformly parabolic equation with constant coefficients, that is δ-close to u in the
L∞-norm, i.e.,

ht − F(D2h) = 0 in Q1 and sup
Q 1

2

|u − h| ≤ δ. (3.2)

Lemma 2.6 assures the existence of such a function. Once our choice for δ, to be
set of the end of this proof, is universal, then the choice of η(n, λ,�, δ) is universal
too. From the regularity theory available for h, see for instance [4, Section 7] or [21,
Section 1.2], we can estimate

|h(X, t) − h(0, 0)| ≤ C(n, λ,�)dpar((X, t), (0, 0)) for
√

|X |2 + |t | <
1

3
, (3.3)

and also,
|h(0, 0)| ≤ C(n, λ,�). (3.4)

For ς = h(0, 0) it follows from Eqs. (3.2) and (3.3) via triangular inequality that

sup
Qρ

|u − ς | ≤ δ + C(n, λ,�)ρ. (3.5)

We make the following universal selections:

ρ := min

{
r0,

(
1

2C

) 1
1−γ

}
and δ := 1

2
ργ (3.6)
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where C > 0 is a universal constant from Eq. (3.3) and 0 < r0 ≤ 1 is a universal
constant to appear in the Theorem 3.2. Let us stress that the choices above depend
only upon dimension, ellipticity parameters and the fixed exponent. From the above
choices we obtain

sup
Qρ

|u − ς | ≤ ργ
.

and the Lemma is concluded. 
�
Theorem 3.2 Let u be an LP-viscosity solution of (Eq) with f ∈ L p,q(Q1) and

1 < �(n, p, q) <
n + 2

p0
.

There exist universal, positive constants r0 and θ0 such that if

sup
0<r≤r0

sup
(Y,τ )∈Q 1

2

(∫
−

Qr (Y,τ )

�P
F (Y, τ, X, t)

) 1
P ≤ θ0,

then, for a constant C > 0 and γ := 2 − �(n, p, q), there holds

‖u‖
Cγ,

γ
2

(
Q 1

2

) ≤ C(n, λ,�, γ )
[‖u‖L∞(Q1) + ‖ f ‖L p,q (Q1) + 1

]
.

Proof Through normalization and scaling processes, see Remark 2.8, we can suppose
without losing generality that |u| ≤ 1 and ‖ f ‖L p,q (Q1) ≤ η, where η is the universal
constant from Lemma 3.1 when we set γ = γ (n, p, q) = 2 − �(n, p, q). Once
selected θ0 = η the goal will be to iterate the Lemma 3.1. For a fixed (Y, τ ) ∈ Q 1

2
we

claim that there exists a convergent sequence of real numbers {ςk}k≥1, such that

sup
Q

ρk (Y,τ )

|u − ςk | ≤ ρk.γ (3.7)

where the radius 0 < ρ 
 1
2 is given by Lemma 3.1, upon the selection of γ as above.

The proof of (3.7) will follow by induction process. Lemma 3.1 gives the first step
of induction, k = 1. Now suppose verified the kth step in (3.7). We define

vk(X, t) = u(Y + ρk X, τ + ρ2k t) − ςk

ρk.γ

and

Fk(M, Z , X, t) := ρk[2−γ ]F

(
1

ρk[2−γ ]
M,

1

ρk[1−γ ]
Z , Y + ρk X, τ + ρ2k t

)
.

As commented before, see Remark 2.7, Fk is (λ,�, 
)-parabolic operator, moreover
by the induction hypothesis, |vk | ≤ 1 and
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(vk)t − Fk(D2vk, Dvk, X, t) = ρk.[2−γ ] f (Y + ρk X, τ + ρ2k t) =: fk(X, t),

in the LP-viscosity sense. One easily computes,

‖ fk‖L p,q (Q1) = ρk(2−γ )ρ−k.�(n,p,q)

⎛
⎝
∫ τ

τ−ρ2k

(∫

B
ρk (Y )

| f (Z , s)|pd Z

) q
p

ds

⎞
⎠

1
q

.

Due to the sharp choice of γ (n, p, q) = 2 − �(n, p, q), we have that

‖ fk‖L p,q (Q1) = ‖ f ‖
L p,q

(
B

ρk (Y )×(τ−ρ2k ,τ ]
) ≤ ‖ f ‖L p,q (Q1) ≤ η,

as well as,

(∫
−

Q1

�P
Fk

(X, t)

) 1
P ≤ max

{
1, ρk(2−γ )

}(∫
−

Q
ρk (Y,τ )

�P
F (Y, τ, X, t)

) 1
P

≤ η.

In conclusion,we are allowed to employLemma3.1 to vk , which provides the existence
of a universally bounded real number ςk with |ςk | ≤ C , such that

sup
Qρ

|vk − ςk | ≤ ργ . (3.8)

Finally, if we select
ςk+1 := ςk + ρk.γ ςk (3.9)

and rescale (3.8) back to the unit domain, we obtain the (k +1)th step in the induction
process (3.7). In addition, we have that

|ςk+1 − ςk | ≤ Cρk.γ , (3.10)

and hence the sequence {ςk}k≥1 is Cauchy, and so it converges. From (3.7) ςk →
u(Y, τ ). As well as from (3.10) it follows that

|u(Y, τ ) − ςk | ≤ C

1 − ργ
ρk.γ , (3.11)

Finally, for 0 < r < ρ, let k the smallest integer such that (X, t) ∈ Qρk (Y, τ ) \
Qρk+1(Y, τ ). It follows from (3.7) and (3.11) that

sup
Qr (Y,τ )

|u(X,t)−u(Y,τ )|
dpar((X,t),(Y,τ ))γ

≤ sup
Qr (Y,τ )

|u(X,t)−ςk |+|u(Y,τ )−ςk |
dpar((X,t),(Y,τ ))γ

≤
(
1 + C

1−ργ

)
sup

Qr (Y,τ )

ρk.γ

dpar((X,t),(Y,τ ))γ

≤
(
1 + C

1−ργ

)
1

ργ .
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Last estimate, combined with Remark 2.8 and a standard covering argument provide

‖u‖
Cγ,

γ
2

(
Q 1

2

) ≤ C(n, λ,�, γ )
[‖u‖L∞(Q1) + ‖ f ‖L p,q (Q1) + 1

]
.

and hence the proof of Theorem is verified. 
�
Remark 3.3 The exponent of Hölder regularity of our result is sharp. This can be
verified through of following example from [19]: Let u ∈ Cloc((−1, 0]; L2

loc(B1)) ∩
L2

loc((−1, 0]; W 1,2
loc (B1)) be a weak solution to

ut − �u = f in Q1

Suppose that 1 < �(n, p, q) < 2 then for γ := 2 − �(n, p, q) we have that u ∈
C

γ,
γ
2

loc (Q1). Remark that in this case p0 = n+2
2 .

Remark 3.4 Under VMO assumption of the coefficients of the operator F :

∫
−

Qr (Y,τ )

�P
F (Y, τ, X, t) = o(1),

as r → 0, Theorem 3.2 holds without the smallness oscillation condition, as it can
always be assumed upon an appropriate scaling.

Remark 3.5 Under no assumptions on the coefficients, other than ellipticity, adjust-

ments in the proof of previous Theorem yields C
γ,

γ
2

loc (Q1) where γ

:= min
{
β−, 2 − �(n, p, q)

}
where 0 < β < 1 is the maximal exponent from Propo-

sition 2.3.

4 Parabolic Log-Lipschitz type estimates

In this section we address the question of finding the optimal and universal modulus
of continuity for solutions of uniformly parabolic equations of the form (Eq) whose
right hand side lies in the borderline space L p,q(Q1), when p and q lie on the critical
surface:

�(n, p, q) = 1.

Such estimate is particularly important to the general theory of fully nonlinear
parabolic equations. Through a simple analysis one verifies that solutions of (Eq),
with sources under the above borderline integrability condition should be asymptoti-
cally Lipschitz continuous. Indeed, as �(n, p, q) → 1+, solutions are parabolically
Hölder continuous for every exponent 0 < α < 1. The key goal in this section is to
obtain the sharp, quantitative modulus of continuity for u.
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Lemma 4.1 Let u be a normalized LP-viscosity solution to (Eq). There exist
η(n, λ,�) > 0 and 0 < ρ(n, λ,�) 
 1

2 , such that if

max

{(∫
−

Q1

�P
F (X, t)

) 1
P

, ‖ f ‖L p,q (Q1), 


}
≤ η (4.1)

under the condition �(n, p, q) = 1, then, we can find an affine function L(X) :=
A+〈B, X〉, with universally bounded coefficients, |A|+ |B| ≤ C(n, λ,�), such that

sup
Qρ

|u − L| ≤ ρ. (4.2)

Proof For a δ > 0 which will be chosen a posteriori, we apply Lemma 2.6 and find a
function h : Q 1

2
→ R satisfying

ht − F(D2h) = 0 in Q 1
2
,

in the LP-viscosity sense such that

sup
Q 1

2

|u − h| ≤ δ. (4.3)

We now define
L(X) = h(0, 0) + 〈Dh(0, 0), X〉, (4.4)

and apply the regularity theory available for h, see for instance [4, Section 7] or [21],
as to assure the existence of a universal constants 0 < αF < 1 and C > 0 such that

|h(X, t) − L(X)| ≤ Cdpar((X, t), (0, 0))1+αF , for
√

|X |2 + |t | <
1

3
. (4.5)

It is time to make universal choices: we set

ρ := min

{
r0,

(
1

2C

) 1
αF

}
<

1

2
and δ := 1

2
ρ, (4.6)

which decides the value of η(n, λ,�) > 0 through the approximation Lemma 2.6. It
the sequel we estimate

sup
Qρ

|u − L| ≤ sup
Qρ

|u − h| + sup
Qρ

|h − L| ≤ ρ,

and the proof is complete. 
�
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Theorem 4.2 Let u be an LP-viscosity solution to (Eq). There exists universal con-
stants, r0 > 0 and θ0 > 0, such that if

sup
0<r≤r0

sup
(Y,τ )∈Q 1

2

(∫
−

Qr (Y,τ )

�P
F (Y, τ, X, t)

) 1
P ≤ θ0,

then, for a universal constant C > 0 and any (X, t), (Y, τ ) ∈ Q 1
2
, there holds

|u(X, t) − u(Y, τ )| ≤ C
[‖u‖L∞(Q1) + ‖ f ‖L p,q (Q1) + 1

] · ω(dpar((X, t), (Y, τ ))),

where ω(s) := s log 1
s is the Lipschitz logarithmic modulus of continuity.

Proof We start off the proof by assuming, with no loss of generality, that |u| ≤ 1 and

‖ f ‖L p,q (Q1) <
η

4
and 
 <

η

8max{1,L n(B1(0))} ,

where η = η(n, λ,�) the largest positive number such that the Lemma 4.1 holds.
Choose θ0 = η

8 . For a fixed (Y, τ ) ∈ Q 1
2
we will prove the existence of a sequence of

affine functions

Lk(X) = Ak + 〈Bk, X − Y 〉

such that
sup

B
ρk (Y )×(τ−ρ2k ,τ ]

|u − Lk | ≤ ρk (4.7)

and
|Ak+1 − Ak | ≤ Cρk and |Bk+1 − Bk | ≤ C, (4.8)

where 0 < ρ 
 1
2 is the radius given by Lemma 4.1. Notice that the second estimate

in (4.8) gives the growing estimate on the linear coefficients of order

|Bk | ≤ Ck. (4.9)

We now argue by induction. Lemma 4.1 provides the first step and now we suppose
that we have already verified the kth step of (4.7). Define

vk(X, t) := u(Y + ρk X, τ + ρ2k t) − Lk(Y + ρk X)

ρk
,

which verifies |vk | ≤ 1 in Q1, by the induction condition. Define

Fk(M,
−→p , X, t) := ρk F

(
M

ρk
,
−→p , Y + ρk X, τ + ρ2k t

)
.
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It is plain to check that Fk is a (λ,�, 
)-parabolic operator and

(vk)t − Fk(D2vk, Dvk, X, t) = fk(X, t) + gk(X, t) = Hk(X, t)

in the LP-viscosity sense, where

fk(X, t) := ρk f (Y + ρk X, τ + ρ2k t)

and

gk(X, t) := Fk(D2vk, Dvk + Bk, X, t) − Fk(D2vk, Dvk, X, t).

Moreover,

‖ fk‖L p,q (Q1) = ρkρ−k.�(n,p,q)

⎛
⎝
∫ τ

τ−ρ2k

(∫

B
ρk (Y )

| f (Z , s)|pd Z

) q
p

ds

⎞
⎠

1
q

.

By the critical condition, �(n, p, q) = 1, we verify that

‖ fk‖L p,q (Q1) = ‖ f ‖
L p,q

(
B

ρk (Y )×(τ−ρ2k ,τ ]
) <

η

4
.

Moreover, given the smallest regime on 
, assumption (2.1) and (4.9), we have

|gk(X, t)| ≤ Ckρk
 <
η

8max{1,L n(B1(0))} .

Thus,

‖gk‖L p,q (Q1) ≤ η

8max{1,L n(B1(0))}
p
√
L n(B1(0)) ≤ η

8
.

Therefore, ‖Hk‖L p,q (Q1) <
3η
8 . Furthermore,

(∫
−

Q1

�P
Fk

(X, t)

) 1
P ≤ max

{
1, ρk

}(∫
−

Q
ρk (Y,τ )

�P
F (Y, τ, X, t)

) 1
P

≤ η

8
.

Wehave verified thatwe can applyLemma4.1 to the function vk , assuring the existence
of an affine function L̃k(X) = Ãk + 〈B̃k, X〉 satisfying |Ãk |, |B̃k | ≤ C , such that

sup
Qρ

|vk − L̃k | ≤ ρ. (4.10)

We now define

Ak+1 := Ak + ρkÃk and Bk+1 := Bk + B̃k . (4.11)
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Rescaling (4.10) to the unit domain gives the (k+1)th induction step. The first estimate
in (4.7) assures that the sequence {Ak}k≥1 converges to u(Y, τ ). Also we can estimate,
by geometric series,

|u(Y, τ ) − Ak | ≤ Cρk

1 − ρ
. (4.12)

Finally, for 0 < r < ρ, let k be the lowest integer such that

(X, t) ∈ Qρk (Y, τ )\Qρk+1(Y, τ ).

It follows by (4.7), (4.9) and (4.12) that

sup
Qr (Y,τ )

|u(X,t)−u(Y,τ )|
r log r−1 ≤ sup

Q
ρk (Y,τ )

|u−Lk |+|u(Y,τ )−Ak |+|Bk |ρk

r log r−1

≤ C sup
Q

ρk (Y,τ )

kρk

r log r−1

≤ C(n, λ,�),

and the proof of the theorem is concluded. 
�
Remark 4.3 As a consequence of the estimate given by Theorem 4.2, we are able to
derive a precise integral behaviour of the gradient of a solution to (Eq). Indeed, one
can derive the following pointwise control, say near (0, 0):

|Du(X, t)| � −C log(|X |2 + |t |), for
√

|X |2 + |t | 
 1

2

Under suitable smallness regime on f ∈ L p,q(Q1) and on �F ∈ LP(Q1), it follows

by an adjustment of our arguments, combined with H1, 12 ,s interior estimates from
[4, Theorem 7.3] that one can approximate an LP-viscosity solution of (Eq) by an
F-caloric function

ht − F(D2h, X0, t0) = 0 in Q 1
2
,

in the H1, 12 ,s(Q 1
2
) topology. Thus, through an iterative process as indicated in the

proof of Theorem 4.2, one can find affine functions Lk such that

∫
−

Q
ρk

|D(u − Lk)|s ≤ 1.

Therefore, it is possible to establish s-BMO type of estimates for the gradient in terms
of the L p,q(Q1) norm of f , when the critical condition n

p + 2
q = 1 is verified. That

is,

‖Du‖s−BMO(Qr ) ≤ C
[‖u‖L∞(Q1) + ‖ f ‖L p,q (Q1) + 1

]
, for 0 < r 
 1

4
.
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Comparing such an estimate with the results from [4, Theorem 7.3], it synthesizes
quantitatively the fact of

|Du| ∈
⋂
m≥1

Lm
loc(Q1),

since L P -viscosity solutions have its gradient in Ls
loc(Q1) for all s < n+2

�(n,p,q)−1 .

5 Optimal C1+α, 1+α
2 regularity

In this section we obtain asymptotically sharp C1+σ, 1+σ
2 interior regularity estimates

for solutions of (Eq). Such estimates are already available in the literature, see for
instance [4] and [20]. We shall only comment on how we can deliver them by means
of the arguments designed in Sect. 4.

Initially, we revisit Lemma 4.1 and observe that if 0 < αF ≤ 1 represents the

optimal exponent from the C1+α, 1+α
2 regularity theory for solutions to homogeneous

(λ,�, 
)-parabolic operators with constant coefficients, then given

α ∈ (0, αF ) ∩ (0, 1 − �(n, p, q)] , (5.1)

since sup
0<r≤r0

sup
(Y,τ )∈Q 1

2

(∫
−

Qr (Y,τ )

�P
F (Y, τ, X, t)

) 1
P

and ‖ f ‖L p,q are under universal

smallest regime assumption, we are able to choose

ρ := min

{
r0,

(
1

2C

) 1
αF −α

}
(5.2)

such that
sup
Qρ

|u − L| ≤ ρ1+α, (5.3)

where L is given by (4.4). This is the first step in our induction process. Now, suppose
that has been checked the kth step in the induction process

sup
Q

ρk

|u − Lk | ≤ ρk(1+α) (5.4)

with the following order of approximation for the coefficients

|Ak+1 − Ak | ≤ Cρk(1+α) and |Bk+1 − Bk | ≤ Cρkα. (5.5)

We define the re-scaled function

vk(X, t) := u(Y + ρk X, τ + ρ2k t) − Lk(Y + ρk X)

ρk(1+α)
,
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which verifies |vk | ≤ 1 in Q1, and satisfies in the LP-viscosity sense

(vk)t − Gk(D2vk, Dvk, X, t) = fk(X, t) + gk(X, t) = Hk(X, t) (5.6)

where

Gk(M,
−→p , X, t) = ρk(1−α)F

(
1

ρk(1−α)
M, ρkα−→p , ρk X, ρ2k t

)

is a (λ,�, 
)-parabolic operator and

fk(X, t) := ρk(1−α) f (Y + ρk X, τ + ρ2k t)

gk(X, t) := Gk(D2vk, Dvk + Bk, X, t) − Gk(D2vk, Dvk, X, t).

Now,

‖ fk‖L p,q (Q1) = ω(ρk)‖ f ‖
L p,q

(
Q

ρk (Y,τ )
) <

η

2
,

where ω(ρk) = ρk[1−α−�(n,p,q)] is computed by change of variables. By the inte-
grability relation and the value of α, we conclude ω(ρk) ≤ 1 for all integer k ≥ 1.
Also

|gk(X, t)| ≤ μ(ρk)


where as before μ is easily computed explicitly using (5.5). Now, we have verified
μ(ρk) < 1 and in fact lim

k→∞ μ(ρk) = 0. Thus,

‖gk‖L p,q (Q1) ≤ 

p
√
L n(B1(0)) <

η

2
.

Finally,

(∫
−

Q1

�P
Gk

(X, t)

) 1
P ≤ max

{
1, ρk(1−α)

}(∫
−

Q
ρk (Y,τ )

�P
F (Y, τ, X, t)

) 1
P

and ‖Hk‖L p,q (Q1) ≤ η;

therefore, we can apply the first induction step, which gives the existence of an affine
function Lk(X) := Ak + 〈Bk, X〉 with |Ak |, |Bk | ≤ C(n, λ,�) such that

sup
Qρ

|vk − Lk | ≤ ρ1+α.
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Rewriting the previous estimate in the unit domain gives

sup
Q

ρk+1

|u − Lk+1| ≤ ρ(k+1)(1+α),

for Lk+1(X) := Lk(x) + ρk(1+α)Lk(ρ
−k X). The coefficients fulfils

|Ak+1 − Ak | + ρk |Bk+1 − Bk | ≤ C0(n, λ,�)ρ(1+α)k, (5.7)

hence, from (5.7), we conclude that (Ak)k≥1 ⊂ R and (Bk)k≥1 ⊂ Rn converge to
u(Y, τ ) and to Du(Y, τ ) respectively. Moreover we have the following control

|u(Y, τ ) − Ak | ≤ C0
ρk(1+α)

1 − ρ
and |Du(Y, τ ) − Bk | ≤ C0

ρkα

1 − ρ
(5.8)

Finally, given any 0 < r < ρ, let k be an integer such that (X, t) ∈ Qρk (Y, τ )\Qρk+1

(Y, τ ). Therefore, we estimate from (5.8) that

sup
Qr (Y,τ )

|u(X, t) − [u(Y, τ ) + 〈Du(Y, τ ), X − Y 〉]| ≤ C0(n, λ,�, α).r1+α

and the sketch is finished.

Remark 5.1 We highlight that the previous result must be interpreted in following
way

⎧⎨
⎩
If 1 − �(n, p, q) < αF then u ∈ C

1+σ, 1+σ
2

loc (Q1), for σ=1 − �(n, p, q)

If 1 − �(n, p, q) ≥ αF then u ∈ C
1+γ,

1+γ
2

loc (Q1), for any γ < αF .

Remark 5.2 The optimality of previous result can be verified by an example due to
Krylov in [13, Page 209].

6 Parabolic C1,Log-Lip type estimates

In this last section we address the issue of finding the optimal regularity estimate
for the limiting upper borderline case f ∈ BMO, which encompasses the case f ∈
L∞,∞ � L∞.

In view of the almost optimal estimates given in the previous section, estab-
lishing a quantitative regularity result for solutions to (Eq) with bounded forcing

term, requires that F-harmonic functions are C2+σ, 2+σ
2 smooth; otherwise no fur-

ther information could be revealed from better hypotheses on the source function f .
Evans–Krylov’s regularity theory [7,11,12] assures that convex/concave equations do

satisfy the C2+σ, 2+σ
2 smoothness assumption.

We now state and prove our sharp par− C1,Log-Lip interior regularity theorem. For
simplicity we will work on equations with constant coefficients and with no gradient
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dependence. Similar result can be easily obtained under continuity condition on the
coefficients and Lipschitz control on the gradient dependence.

Theorem 6.1 Let u be a C0-viscosity solution to ut − F(D2u) = f (X, t) in Q1.
If any solution of vt − F(D2v + M) = K , where M ∈ Sym(n) and K ∈ R are on the

surface −F(M) = K , has interior C2+σ, 2+σ
2 a priori estimates, i.e.,

‖v‖
C2+σ, 2+σ

2 (Qr )
≤ �

r2+σ
‖v‖L∞(Q1) (6.1)

for some �(n, λ,�, K ) > 0 and σ(n, λ,�) ∈ (0, 1). Then, for a constant
C(n, λ,�, σ,�) > 0, there holds

|u(X, t) − [u(0, 0) + 〈Du(0, 0), X〉]|
≤ C

[‖u‖L∞(Q1) + ‖ f ‖B M O(Q1) + 1
] · ω(dpar((X, t), (0, 0))) (6.2)

where ω(r) = r2 log 1
r is the C1-Log-Lipschitz modulus of continuity.

Proof By standard reduction arguments, we can assume that ‖u‖L∞(Q1) ≤ 1
2 and

‖ f ‖BMO(Q1) ≤ ϑ0 for some ϑ0 > 0 which will be chosen a posteriori. Throughout
the proof we use the notation

[ f ]avg,Q1 :=
∫
−

Q1

f (Z , ς)d Zdς.

The strategy is to find parabolic quadratic polynomials

Pk(X, t) := 1

2
〈Ak X, X〉 + Bk t + 〈Ck, X〉 + Dk

such that P0 = P−1 = 1
2 〈N X, X〉, where −F(N ) = [ f ]avg,Q1 and for all k ≥ 0,

Bk − F(Ak) = [ f ]avg,Q1 and sup
Q

ρk

|u − Pk | ≤ ρ2k, (6.3)

with

ρ2(k−1)(|Ak −Ak−1|+ |Bk −Bk−1|)+ρk−1|Ck −Ck−1|+ |Dk −Dk−1| ≤ Cρ2(k−1)

(6.4)
where the radius 0 < ρ 
 1

2 in (6.3) and (6.4) will also be determined a posteriori.
We prove the existence of such polynomials by induction process in k. The first step of
induction, k = 0, it is obviously satisfied. Suppose now that we have verified the thesis
of induction for k = 0, 1, . . . , i . Then, defining the re-scaled function v := Q1 → R

given by

vk(X, t) = (u − Pk)(ρ
k X, ρ2k t)

ρ2k
,
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we have, by induction hypothesis, that |vk | ≤ 1 and it solves

(vk)t − Fk(D2vk) = f (ρk X, ρ2k t) := fk(X, t)

in the C0-viscosity sense, where Fk(M) := F(M + Ak) − Bk which is a (λ,�, 0)-
parabolic operator with

‖ fk‖BMO(Q1) := sup
0<r≤1

∫
−

Qr

∣∣ fk(X, t) − [ fk]avg,Qr

∣∣ d Xdt

= sup
0<r≤1

∫
−

Qrρ

∣∣ f (Z , ς) − [ f ]avg,Qrρ

∣∣ d Zdς

≤ ‖ f ‖BMO(Q1)

≤ ϑ0.

As in Lemma 2.6, with some slight changes, and, under smallness assumption on
‖ f ‖B M O(Q1) to be set soon, we can find a C0-viscosity solution h to

ht − F(D2h + Mk) = [ f ]avg,Q1 in Q1,

such that

sup
Q 1

2

|vk − h| ≤ δ,

for some δ > 0 which we will choose below. From hypothesis (6.1), h is C2+σ, 2+σ
2 at

the origin with universal bounds. Thus, if we define

P(X, t) := 1

2
〈D2h(0, 0)X, X〉 + ht (0, 0)t + 〈Dh(0, 0), X〉 + h(0, 0),

by the C2+σ, 2+σ
2 regularity assumption (6.1), we can estimate

|D2h(0, 0)| + |ht (0, 0)| + |Dh(0, 0)| + |h(0, 0)| ≤ C�

where

|(h − P)(X, t)| ≤ C(n)�dpar((X, t), (0, 0))2+σ .

Now, we are able to select

ρ :=
(

1

2C�

) 1
σ

and δ := 1

2
ρ2.

The choice above for ρ(�, σ,�, λ, n) 
 1
2 decides the value for δ(�, σ,�, λ, n) > 0

which determines, by Lemma 2.6, the universal smallness regime given by the constant
ϑ0 > 0. From the previous choices, we readily obtain
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sup
Qρ

|vk − P| ≤ ρ2. (6.5)

Rewriting (6.5) back to the unit domain yields

sup
Q

ρk+1

∣∣∣∣u(X, t) −
[
Pk(X, t) + ρ2kP

(
X

ρk
,

t

ρ2k

)]∣∣∣∣ ≤ ρ2(k+1). (6.6)

Therefore, defining

Pk+1(X, t) := Pk(X, t) + ρ2kP

(
X

ρk
,

t

ρ2k

)
,

we verify the (k +1)th step of induction and, clearly, the required conditions (6.3) and
(6.4) are satisfied. From (6.4) we conclude that Dk → u(0, 0) and Dk → Du(0.0),
with the following estimates

|u(0, 0) − Dk | ≤ Cρ2k

1 − ρ
and |Du(0, 0) − Ck | ≤ Cρk

1 − ρ
. (6.7)

Furthermore, Eq. (6.4) yields the growth estimates:

|Ak | ≤
k∑

j=1

|A j − A j−1| ≤ Ck and |Bk | ≤
k∑

j=1

|B j − B j−1| ≤ Ck. (6.8)

Finally, given any 0 < r < ρ, let k be an integer such that

(X, t) ∈ Qρk (Y, τ )\Qρk+1(Y, τ )

We estimate from Eqs. (6.3), (6.7) and (6.8),

sup
Qr (0)

|u(X, t) − [u(0, 0) + 〈Du(0, 0), X〉]|

≤ ρ2k + |u(0, 0) − Dk | + ρk |Du(0, 0) − Ck | + ρ2k(|Bk | + |Ak |)
≤ C(n, λ,�, σ,�).r2 log r−1,

and the proof of Theorem is finished. 
�
Remark 6.2 The final estimate says that solutions to (Eq) are asymptotically C2,1

in the parabolic sense. Furthermore, adjustments in the previous explanation yield
ut , D2u ∈ s − B M O(Q 1

2
), with appropriate a priori estimate in terms of the B M O-

norm of f in Q1. Indeed, under appropriate smallness regime on f ∈ B M O(Q1) we
can approximate u by a solution h to
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ht − F(D2h, X0, t0) = [ f ]avg,Q1 in Q 1
2

in the W 2,1,s(Q 1
2
) topology. Thus, by an iterative process similar to the one used here

one finds parabolic quadratic polynomials Pk such that

∫
−

Q
ρk

(
|∂t (u − Pk)|s + |D2(u − Pk)|s

)
≤ 1

Therefore, the previous sentence provides the desired s-BMO estimate. In other
words,

‖ut‖s−B M O(Qr ) + ‖D2u‖s−B M O(Qr ) ≤ C{‖u‖L∞(Q1) + ‖ f ‖B M O(Q1)},
for 0 < r 
 1

Remark 6.3 The result proven in this section can be further applied to equations of
the form ut − F(D2u, X, t) = f (u, X, t), where f is continuous. It is particularly
meaningful to geometric flow problems:

Ht − �H − H |A|2 = 0,

where H is the inwards mean curvature vector of the surface at position X and time t
and |A| represents the norm of the second fundamental form. This equation describes
the mean curvature hyper-surface in the Euclidean space Rn+1, see for example [17].

Remark 6.4 As a final remark, we note that the results proven in this article can
be generalized for a more general class of anisotropic Lebesgue spaces with mixed
norms. Namely, consider −→p = (p1, . . . , pn). Let f ∈ L p1,...,pn ,q(Q1), i.e., f ∈
L p1

X1
. . . L pn

Xn
Lq

t . The quantity

�(n, p1, . . . , pn, q) :=
(

n∑
i=1

1

pi

)
+ 2

q

sets up the following regularity regimes, with universal a priori estimates:

• 1 < �(n, p1, . . . , pn, q) < n+2
p0

< 2 for the Cα, α
2 regularity regime;

• �(n, p1, . . . , pn, q) = 1 for the Lipschitz logarithmic type estimates;

• 0 < �(n, p1, . . . , pn, q) < 1 for the C1+α, 1+α
2 regularity regime.
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