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1 Introduction

The study of W-infinity algebras has its origins in various physical theories, such as conformal
field theory, the theory of quantum Hall effect, etc. The most important of these algebras is
Wi1400, which is the central extension of the Lie algebra D of differential operators on the circle.

The dificulty when studying the representation theory of these algebras lies in the fact that,
although they admit a Z-gradation and a triangular decomposition, each of the graded subspaces
is still infinite dimensional. As a consequence, the study of highest weight modules that satisfy
the quasifinite condition, which is, graded subspaces are finite dimensional, becomes a nontrivial
problem.

The representations of the Lie algebra Wi, were first studied in [KR1], where its irreducible
quasifinite highest weight modules were characterized and it was shown that they can be realized
in terms of the irrducible highest weight representations of the Lie algebra of infinite matrices.
At the end of that article, similar results were found for the central extension of the Lie algebra
of quantum pseudo-differential operatos S,;, which contains as a subalgebra the g-analogue of
the Lie algebra 13, the algebra of all regular difference operators on C*.

This study for D was continued in [FKRW], [KL] and [KR2] in the framework of vertex
algebra theory and in [BKLY] for the matrix case. In [KL], V. Kac and J. Liberati also gave
some general results on the characterization of quasifinite representations of any Z-graded Lie
algebra, which will be used in this paper. In [KWY], a classification was given of the irreducible
quasifinite highest weight modules of the central extension of the Lie subalgebras of D fixed by
minus the anti-involutions preserving the principal gradation. These results were extended in
[BL1] to the algebra DV of the N x N-matrix differential operators on the circle.

An analogous study was carried out for the Lie algebra of quantum pseudo-differential oper-
ators. In [BL3] it was shown that there is a family of anti-involutions on S;, up to conjugation,
preserving the principal gradation. Their irreducible quasifinite highest weight modules were
classified and realized in terms of irreducible highest weight representations of the Lie algebra
of infinite matrices with finitely many nonzero diagonals gﬁgg }and its classical Lie subalgebras
of B, C and D types. Similarly, in [BL2], the quasifinite highest weight modules over the central
extension of the Lie algebra of N x N matrix quantum pseudo differential operators, denoted
Sy N, were classified and characterized them in terms of the representation theory of the Lie
algebra of infinite matrices with finitely many nonzero diagonals.

Making use of the the description of Lie subalgebras of S,y fixed by minus the anti-
involutions preserving the principal gradation given in [BB], we classify the irreducible highest
weight modules of some of the subalgebras found, particularly the orthogonal and symplectic
types. This paper is organized as follows. In Sect. 2 we present some standard facts of represen-

tation theory of L(;E[m] and its subalgebras of types B, C and D. In Sects. 3 and 4 we introduce
the subalgebras SqU’N and we study the structure of its parabolic subalgebras. In Sect. 5 we

give a characterization of the irreducible quasifinite highest weight modules of Sg’]]\,v . In Sect. 6

—

an interplay between S;T’JJVV and the infinite rank classical Lie algebras of types A, B, C and D
is established. Finally, in Sect. 7 we give the realization of the irreducible quasifinite highest

weight modules of S;’]]VV.



2 Lie algebras g/\EE:] and its classical Lie subalgebras

In this section we will give a description of the Lie algebra of infinite matrices with finitely many
nonzero diagonals gfgg] and its classical Lie subalgebras of B, C and D types. We will follow
the notation in Sect. 1 of [KWY].

Denote R, = C[u]/(u™*!) the quotient algebra of the polynomial algebra C[u] by the ideal
generated by vl (m € Zs(). Let 1 be the identity element in R,,. Denote by gﬁ[g}} the
complex Lie algebra of all infinite matrices (a; )i jez with only finitely many nonzero diagonals

with entries in R,,. Denote E; ; the infinite matrix with 1 at (¢, j)-entry and 0 elsewhere. There

is a natural automorphism v of geL’Z} ] given by

v(Eij) = Eiy1,j+1- (2.1)
Let the weight of F; ; be j —i. This defines the principal Z-gradation g&@ = @jez(gf[gg])j.
Denote by g/\ézz] = geL’éﬂ @ R,, the central extension of geL’Z} ] given by the following 2-cocycle

with values in R,,:

C(A,B)=Tr([J, AlB), (2.2)
where J =), <o Eii- The Z-gradation of the Lie algebra gﬁ([gf I extends to gAKEZ ] by putting the
weight of R, to be 0. In particular, we have the triangular decomposition,

gl = (G & (g0 @ (1), (23)
where
(90)s = @jen(gled oy and - (ghe)o = (9t%D)0 & Ron (24)
Given \ € (gE[ ])0, we let
Go= A, (2.5)
A= AWEyy),
aH](.i) = ’l,LiEjJ—UiEjJrljJrl“‘(SjOCia
ahgi) _ aA§i) a)\(J)rlJr(;’Oc“

where j € Z and 0 < i < m. Let L(gﬂ[ " , A) be the irreducible highest weight gAE[m]—module with

highest weight A. The “)\g) are called labels and ¢; are the central charges of L(gf[ ™ JA).

Consider the vector space R,[t,t!] and take the basis v; = t=%, i € Z over R,,. Now
consider the following C-bilinear form on R,,[t,t™1]:

BE(u™vi, u™v;) = u™ (—u) T (£1)16; . (2.6)

Denote by ngm] (resp. Bi.jm]) the Lie subalgebra of gﬁgg} which preserves the bilinear form
B~ (-,-) (resp. BT(-,-)). We have

b = {(aij(w))ijez € g+ aij(u) = —aj—s(—u)},
bod™ = {(aij(w)ijez € g aij(w) = (=1)" " Ha; i(—u)}.



Denote by bL’Z;”] = B;J’”] @ Ry, (resp. IN)LZL I = B;FO[m} @ R,,) the central extension of B;o[m] (resp.
Bjo[m]) given by the restriction of the 2-cocycle (2.2), defined in gé[;g I, The subalgebra b[;’} ] (resp.

BQS }) inherits from gAE([:: ] the principal Z-gradation and the triangular decomposition (see [KR2]
and [FKRW] for notation),

) = @y, ) = () @ (o @ (b

b = @jen(B));, B = (012 @ (0o @ (b

Note that the Lie algebra IN)LZ'} lis isomorphic to bEZ I via the isomorphism that sends the elements
uFE;j — (—u)*E_j _; to uFE; j + (-1)Y I (—u)*E_; _;, i,j € Z, k € Z. Their Cartan subal-
gebra coincides. In particular, when m = 0, we have the usual Lie subalgebra of gf.,, denoted
beo (see [K]) (resp. beo, see [W]). Given X € (b[ })0, denote L(b([)o],)\) the irreducible highest
weight module over bl;" ] with highest weight A.

For each \ € (b&"g})g, we let

Cz = A(U’), (2.7)
—\2u/Eyo) (j 0dd),
= MW Ei; — (~u) E_; ),

bH,(J) —WE; —wWEiy1i01 + (—u)E_i_ 1 i1 — (—u)JE_;_,

bHoj) 2w Eop —wE_1 1 —wEy1)+u!, (j even),

"HY) = 2w Eog — W E 1, 1 —wEiq) + !, (§ odd),

bh(J = \( H(J) (J) b/\§+)17

bh(j )\(bH(] ) = b)\(j) +2¢; (j even),
=ACHP) =22~ 1 ¢; (5 oda),

where ¢ € N and 0 < 57 < m. The b)\g-i) are called the labels and ¢; are the central charges of
LI N or LB, N).
Now consider the following C-bilinear form on R,,[t,t!]:

C(u"v;, u™v;) = u™(—u™)(—=1)"6;1-; - (2.8)
Denote by 5!32 I the Lie subalgebra of g&[g } which preserves the bilinear form C(, ). We have
el = {(aij(w)ijez € 90" agj(uw) = (1) ar_j1_4(~u) }.
[m]

Denote by cx' = ELZL ] @ R,, the central extension of EL’Z} ] given by the restriction of the

2-cocycle (2.2), defined in gﬁ[gg ). This subalgebra inherits from gAEgZ } the principal Z-gradation
and the triangular decomposition, (see [KWY] and [K] for notation)

b = @jen(cld); = (cL)s @ (o @ (-
In particular when m = 0, we have the usual Lie subalgebra of gf,, denoted by cso.

Given X € (¢ [m])o, denote by L(c[oo}, A) the irreducible highest weight module over ™ with
highest weight A. For each \ € (CLO])O, we let:



G = )‘(ui)v
A = AW B — (—u) B jaj),

J
‘HY = B~ Ej1 i+ (—u)E_j_j— (—u)'Erj1j, (2.9)
CH(gi) = (u'Ego—u'Ey1) +u', (i even)
(@) _ (1) (i)
chj _ C)\j o C)‘H-j?
Ch(()l) = C)\gl) +¢ (i even), (2.10)
where 7 € N and ¢ = 0,---,m. For later use, it is convenient to put Ch(()i) = ¢ (i odd),

i=0,-,m.

The C)\y) are called the labels and c; are the central charges of L(c[og1 ] A).

Now consider the following C—bilinear form on R,,[t,t~]:
D(u™v;, u"v;) = u™(—u)" 05 1—j. (2.11)
Denote by d2 the Lie subalgebra of geL’Z} ) which preserves the bilinear form D(-,-). We have

A = {(ai;(w))ijez € g0« a; j(u) = —ar—j1—i(—u)}.

[m]

Denote by deo” = cﬁo@ ] ® R, the central extension of JL’Q ] given by the restriction of the 2-cocylcle

(2.2), defined in gﬁg@]. This subalgebra inherits from gAE[;ﬂ the principal Z-gradation and the
triangular decomposition (see [KR2] and [FKRW] for notation),

A = @jez(dy;,  dT = (@) @ (d)e @ (d) .

Given \ € (dL’ZJ ])8, denote L(dgg ], A) the irreducible highest weight module over d([g” ! with highest
weight A.
For each A € (dL’Z}])g, we let

= )\(ui), (2.12)
d)\l(.j) = /\(UjEi,z' — (—U)jEl—i,l—i)a
HY =l By = By + (—u) B — (—uY B,

7
THY) = (—u)Egp + (~u)fE_1-1 — W Eyy — wEy 1) + 20,

where ¢ € N and 0 < j < m. The d/\g-i) are called the labels and c¢; are the central charges of

L(dgg], A). In particular, when m = 0 we have the usual dy, = iﬂl, doo = dgé], cf. [K]. In this

case, we drop the superscript [0].



3 The Lie algebra S, y

Consider C[z, z71] the Laurent polynomial algebra in one variable. We denote Sy the associative
algebra of quantum pseudo-differential operators. Explicitly, let 7, denote the operator on
Clz, 271 given by

qu(Z) = f(qz)v

where ¢ € C* = C\{0}. An element of S§ can be written as a linear combination of operators
of the form z¥ f(T}), where f is a Laurent polynomial in 7. The product in Sy is given by

(=" f(T))(2"g(Ty)) = 2" f(d"T,)g(Ty). (3.1)
Denote S, the Lie algebra obtained from Sj by taking the usual commutator. Take S(’] =
[Sq, Sql. It follows:
Sy =S, ®CT, qO (direct sum of ideals).

Let N be a positive integer. As of this point, we shall denote by MatyA the associative
algebra of all V x N matrices over an algebra A and Fj; the standard basis of MatyC.
Let S; N = 8§ ® MatyC be the associative algebra of all quantum matrix pseudodifferential

operators, namely the operators on C [z, 27!] of the form
E = ek(z)T;C + ek_l(z)Tf_l + -+ eg(z), where er(2) € MatyClz,2z7Y. (3.2)

In a more useful notation, we write the matrix of pseudodifferential operators as linear
combinations of elements of the form z* f (Ty)A, where f is a Laurent polynomial, k € Z and
A € MatyC. The product in S,y is given by

(=" f(Ty) A)(*g(Ty) B) = =" f(¢"T,)g(T,) AB. (3.3)

Let Sg,n denote the Lie algebra obtained from Sy, with the bracket given by the conmutator,
namely:

(2™ f(T,)A, 2*g(T,)B] = 2™ (f(¢"T,)g(T,) AB — f(T})g(¢™T,) BA). (3.4)

Taking the trace form tro(zj cjw’) = ¢p, and denoting by ¢r the usual trace in MatyC, we
obtain, by a general construction (cf. Sec. 1.3 in [KR1]), the following 2-cocylce in Sy n

(2" f(Ty)A, zkg(Tq)B) = O mitro(f(g "Ty)g(Ty)) tr(AB), (3.5)
where r, s € Z, f, g € Clw,w™!], A, B € MatyZ. Let
Sun =8,y & CC (3.6)

denote the central extension of S('L ~ by a one-dimensional center CC' corresponding to the two-

cocycle . The bracket in 8/%7\; is given by

(2™ f(T)A, zkg(Tq)B] = zm+k(f(qkTq)g(Tq)AB — f(T,)9(¢"T,)BA) (3.7)
+ Q/)(me(Tq)Aa Zkg(Tq)B)C~



The elements szquZ-j (k € Z,m € Z,i,j € {1,---,N}) form a basis of S n. We define
the weight on Sy n by

wtz® f(T,)Eij = kN +i — j. (3.8)

This gives the principal Z -gradation of 7 v, Sq,n and S/q,TV,
Sen = ®jen(FgN)jy  Sgn = Sjen(FN)j-

An anti-involution o of S; y is an involutive anti-automorphism of 8(‘117 N i€, 0% =Id, o(az+by) =
ao(z) + bo(y) and o(zy) = o(y)o(z), for all a, b € C and z,y € Sy . From now on we will
assume that |g| # 1.

The following Corolary was proved in [BB].

Corollary 3.1. Let 0 = 04 B,crN be given by

0(Eii) = ENg1—i N+1—i
o(TyEii) = BT, "Enj1—iN+1—i
0(2Eii) = 2AT  ENt1-i N+1—i (3.9)
o(z 1 Ey) = A_lqrz_qu_rENH—i,NH—i

o(Ey) = CijENy1-jNt1-i if P>
RS | o
¢ EnvimjNt1—i if 1<

where A, B, ¢; j, v € C, A2 (Bqg~1)" =1, ¢;j verify the following relations

Cij = Cii—1Ci—1,i—2 """ Cj+1,j (3.10a)

{ci,jCN+lj,N+li:1 if isnoor j>mn (3.10b)

ol _ o :
cZJcN+17i7N+17j—:|:1 if i>n and j<n.

Then 0 = 0ABcrN ertends to an anti-involution on S;N which preserves the principal Z-
gradation.

Remark 3.2. For each n < N, a Z-gradation preserving anti-involution can be constructed in a
similar way. In [BB] all anti-involutions of S \ preserving the Z-gradation were classified.

Let S;}\?’C’r’]v denote the Lie subalgebra of S, y fixed by minus o4 p,r n, namely

Sﬁ}\?,c,r,N — {a e S 7]\]|UA’B’C’T7]\,(Q) — _a}’ (3.11)

where 04 g, N is the anti-involution given by Corolary 3.1.

Lemma 3.3. The Lie algebras Sﬁ}f’c’T’N for arbitrary choices of A, B and ¢ are isomorphic to

S;"]Z\}l’r’N, where € is 1 or —1, and 1 is the matriz ¢ with ¢; = 1 except for the fized points that

are 1 or —1, which keep their sign.



Thus, the anti-involution is of the following form:
O'g’r,N<Zkh(Tq)Ei7j) = (G)qu(k_l)r/2zkh(q1_kTq_l)T(fTEN_,_i_j’N_;,_l_i. (312)

where e = +1, » € C*. For simplicity, denote S;’]]\\,[ the Lie subalgebras of S; y fixed by minus

O¢r,N-
We will denote

1 if m is even
5m,even = . .
0 otherwise

Sg’]]\,V inherits a Z-gradation from S, y since o preserves the principal Z—gradation of S ;. Thus

Sg ]]\\,[ = @; GZ(Sq ]]\\,[ )j- We can now give a description of (8 ) By the division algorithm, let
jJ=kN+pwith0<p< N —1. Thus,

Ifp#0

STV ={ZF @BV PT) R (f ("I PT)E sy
— (@ F (¢ PTY) ™ ENti—ipni1-) [ f(w) € Clw,w™], 14+ p<i <N,
i#(N+1+p)/2}
U5N+p,odd{z (g2, )2 g (g 1)/2Tq)E(N+1+p)/2,(N+1fp)/2’g<w) € Clw, w']%*}
U{Zkﬂ(qk/2Tq)T(k+1)/2(h(qkﬂTq)E@',prH
— (M (g Y Epyr—ivsa—ilh(w) € Clu,w™], 1<i<p,i# (1+p)/2}
U5 0dd{ZE TG PTG T ) By 1y o, (av41-p)2lG(w) € Clw, w1 ]F 1Y

and for p=10

(827]</V)j :{Zk(q(kfl)/QTq)rk/Q(f(q(kfl)/2Tq)Ei,i
— (@" (" VPT) T Enimini-i) [ f(w) € Clw,w™'], 1< i < [N/2])
U N 0aa{z (g DRI TR g (¢RI PT ) By 1y o vy j2l9(w) € Cluw, w™ 'R}

where C[w, w™!]** denotes the set of Laurent polynomials such that f(w™!) = —(e)kf(w).
We denote again 1) the restriction of the 2-cocycle in (3.5) to SUN. Denote by S N N the

central extension of 87 N by CC corresponding to the 2-cocycle 1. S N is a Lie subalgebra of
Sq, ~ by definition.

4 Parabolic subalgebras of S;’]ZVV

—

In order to characterize the quasifiniteness of the highest weight modules (HWMSs) of S;’]]\\,[ we
will study the structure of its parabolic subalgebras and apply general results for quasifinite
representations of Z-graded Lie algebras obtained in [KL]. We refer to [KL] for proofs and
details. Let g be a Z-graded Lie algebra over C,



s=Po o8] Cgitss
JEL

where g; is not necessarily of finite dimension. Let g+ = ®;>0g+;. A subalgebra p of g is called
parabolic if it contains gg ® g4 as a proper subalgebra, that is
p= @pj, where p; = g; for j > 0, and p; # 0 for some j < 0.
JEL
Following [KL], we assume the following properties of g:
(P1) go is commutative,

(P2) ifaeg_k (kK >0) and [a,g1] =0, then a = 0.

Given a € g—;, a # 0, we define p* = ®;zp;, where p} = g; for all j > 0, and

pil :Z[“'[[a790]790]7”']7 pgk—l = [pghpik]'

Lemma 4.1. (a) For any parabolic subalgebra p of g, p_ # 0, k > 0, implies
pry1 #0.

(b) p® is the minimal parabolic subalgebra containing a.
(c) g5 == [p",p*] N go = [a,31]
Proof. Cf. [KL] Lemmas 2.1 and 2.2. O

In [BKLY], for the case of the central extension of the Lie algebra of matrix differential
operators on the circle, the existance of some parabolic subalgebras p such that p; = 0 for j > 0
was observed. Having in mind that example, they give the following definition.

Definition 4.2. (a) A parabolic subalgebra p is called nondegenerate if p_; has finite codi-
mension in g_; , for all j > 0.

(b) An element a € g_; is called nondegenerate if p* is nondegenerate.

We will also require the following condition on g.

(P3) If p is a nondegenerate parabolic subalgebra of g, then there exists an nondegenerate
element a such that p* C p.

Now take a parabolic subalgebra p of Sg’]]\\/ . Observe that for each j € N, j = kN + p with
0<p< N —1, we have

Py = {2 H (@R TR (¢ PTY) By (4.1)

- (6)kf(q(k+1)/2Tq_1)EN—i-l—i—p,N-l-l—i)|f(w) €eI';,1<i<N-pi#(N+1-p)/2}
U5N7p,odd{z_k(q(_k_1)/2Tq)_rk/zg(q(_k_1)/2Tq)E(N+1—p)/2,(N+1+p)/2|g(w) € I(j}fﬂ_pw}
g 2T, D2 (g 2T B,

— ()" Vn((¢ 2T ) Bansr—iopnr1-i)|h(w) € I'j, N+1—p<i< N, i# (2N +1-p)/2}
U5p,odd{z_k_1(q_l_k/QTq)_T(k+1)/2§(q_l_k/2Tq)E(2N+1—p)/2,(1+p)/2|§(w) € I(_2]N+1_p)/2},



(VH1=P)/2 i3 a subspace of Clw,w™1]** and I(ij\”rl_p)/2

where Iij is a subspace of Clw,w™1], I”, -

is a subspace of C[w, w™ k1,
Let us check conditions (P1),(P2) and (P3) for Sg’fvv.

Observe that (P1) is immediate from the definition of (Sg’fvv)o. (P2) follows from computing
the following bracket

[Zl(q(lil)/qu)lrp(f(Tq)Ezyj_(e)lf(Tqil)ENJrlfj,NJrlfi)7 Ejj 1 —Enyo_jNy1-j]

and the particular case

[Zl(q(l_leq)lr/Q(f(Tq)EN/2,N/2—(G)lf(Tq_l)EN/2+1,N/2+1)7 Enjonso—1 — Enjagan/o+1]-

To prove (P3), let f(w), g(w) be Laurent polynomials in the variable w with f € Iij, and let
p_; with j = KN +p as in (4.1). Let us first consider 1 < i < N —p. If p = 0, suppose
i # (N +1)/2. We compute the following bracket
[ka(q(fkfl)/ZTq)frkﬂ(f(q(fkfl)/2Tq)Ei7i_(e)kf(q(kJrl)/ZTl;l)EN+1_i7N+1_i)’
9(q P Eii — 9(q"*T; ) Enga—in1—i]
So, Iij satisfies
AL, C T, (4.2)
where A; = {g(¢"/?w) — g(¢7*/?w) : g(w) € Clw,w™"]}.
If p # 0, suppose that i # N + 1 — ¢. Computing the following bracket
2R (gD RT) TR (f (TR RT) By — ()R F (@RI Y B i p nr1—i),
9(g VP By — g(ql/quil)EN—&-l—i,N—&-l—i]7
we see that Ii_j satisfies (4.2) for A; = {g(¢"/?w) : g(w) € Clw,w™']}.
Now, if N+1—p <i < N, we see by computing
[Z_k_l(q_l_k/2Tq)_r(k+1)/2(f(q_l_kﬂTq)Ei,ifNer_(E)k+1f(q1+k/2Tq_1)E2N+1fifp,N+1fi)a
9(a T Ei — 9(a" T, ) Enga—i 1)
that Iij also satisfies (4.2), this time for A; = {g(¢"=1""/%w) : g(w) € Clw,w']}.

Analogous results can be obtained if N — p is odd for I (N+1-p)

Ay /2 by computing

=R (g EIRT) TR R (f (g R VR T By 1y o, (N 14 20
9(a T E; i — g(a" T, ") Enyr—in41—il,
and if p is odd for I(ZNH*p)/Z, computing

—J

[ g R T) T REDR (g RT ) B ) j2, (1) /25
9(q PTYE;; — 9(q" Ty Enr—ivai1—i).

Thus, since C[w,w™!] is a principal ideal domain, we have proven the following

10



Lemma 4.3. For j >0,

(a) T I(_]}]H_p)ﬂ and [N 1P/

i by are ideals;

(b) if Iij # 0, I(f}fﬂ_p)/z # 0 and I£2]N+1—p)/2 # 0, then they have finite codimension in
Clw,w™1].

Let [k] denote the integer part of a number k. Now we have the following important Propo-
sition.

Proposition 4.4. (a) Any nonzero element d € (53’11\\,7),1 is nondegenerate.

—_—
o,N

(b) Any parabolic subalgebra of S,LN is nondegenerate.

—

(c) Let d € (ST\)-1,

[N/2]+§N,even
d= > filaPTYEii — fild" Ty ) En-iniii
i=1
+ 5N76veng(q_1/2TQ)EN/2,N/2+1 + Z_l(q_qu)_rﬂh(q_qu)EN,la

where f;(w), g(w) and h(w) are Laurent polynomials such that g(w™') = —g(w) and
h(w™') = —eh(w). Then

(S )i+ = (ST ) d]
= span{ fu—1(¢""*T)) (¢ *Ty) (E—16-1 — i)
+ foo1 (@ 2T (P T) T EN ki N—kt1 — Engo—pNto—k) ¢
2 <k <[N/2]4 0Nodi,! € Z>0}

U 5N,even{9(q_1/2Tq)((q_l/ZTq)n - (q_l/qu)_n)(EN/z,N/Q — Enjovi,n/241)
n € Zso, g € Clw,w ']}

U{MT )T — eI, ™) Eny — ha™ Ty (a7 Ty)™ — e(a™ Ty) ™) Eng

+ tro(eh(¢"?w™ ) (W™ — ew™™))C :m € Z, h € Clw,w ']}

—

Proof. Let 0 # d € (S;’]J\\,[),l, by Lemma (4.1), part (a), p‘ij # 0 for all j > 1. So,

by Lemma (4.3) part (b), part (a) follows. Let p be any parabolic subalgebra of 8;’]]\\,[ , us-
ing Lemma 2.1 and 2.2 in [KL], we get p_1 # 0. Then using (a) and p? C p (for any
nonzero d € p_j) we obtain (b). Finally, part (c) follows by computing the commutators
[Cl, (1] with a = (q_l/QTq)lEk,k_l — (q_1/2Tq)_lEN+2_k7N+1_k with 2 < k < [N/Q] + 5N,odd§ a =
(5N7even((q_1/2Tq)” - (q_l/qu)_”)EN/%LN/Q and a = 2T5/2(T[;” — €I, ™)E N, with [, n, m €
Z>0. Il

.. . . . o,N |
Summarizing, we have proven that the following properties are satisfied by S N

(P1) (Sg’f\,v)o is commutative;
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(P2) ifa € (S;’]]\,V)_j ( >0) and [a, (S;’J]\\;)l] = 0, then a = 0;
(P3) if p is a nondegenerate parabolic subalgebra of Sg’]lvv , then there exists a nondegenerate
element a, such that p® C p.

Observe that (P3) follows from Proposition (4.4), parts (a) and (b).

—

5 Characterization of quasifinite highest weight modules of S;T’ZJVV

Now, we begin our study of quasifinite representations over the lie algebras Sg”f\,v. Let g be a Lie
algebra. For a Lie algebra g, a g-module V' is called Z-graded if V = @©,<7zV; and g;,V; C Viy;.
A Z-graded g-module V is called quasifinite if dimV; < oo for all j.

Given A € g, a highest weight module is a Z-graded g-module V(g, \) generated by a
heighest weight vector vy € V(g, A) which satisfies

hvy = )\(h)v,\ (h € go), gruy\ = 0.

A nonzero vector v € V(g, A) is called singular if gyvy = 0. The Verma module over g is defined
as usual:

M(Q? )\) = Z/{(g) ®M(90€Bg+) C)\a

where C,, is the one-dimensional (gg @ g+ )-module given by h — A(h) if h € go, g+ — 0, and
under the action of g is induced by the left multiplication in /(g). Here and further ¢(g) stands
for the universal enveloping algebra of the Lie algebra g. Any highest-weight module V (g, A) is
a quotient module of M (g, A). The irreducible module L(g, ) is the quotient of M(g, A) by the
maximal proper graded module. We shall write M (\) and L(\) in place of M (g, A) and L(g, A)
if no ambiguity may arise.

Consider a parabolic subalgebra p = @; ¢ zp; of g and let A € g be such that A|g A = 0.
Then the (go @ g+ )-module Cy extends to a p-module by letting p; act as 0 for j < 0, and we
may construct the highest-weight module

M(g,p, A) = U @y ) Cr

called the generalized Verma module. Clearly all these heighest weight modules are graded.
From now on we will consider A € g§. By Theorem 2.5 in [K], we have the following.

Theorem 5.1. The following conditions on X € g are equivalent:
1. M(X) contains a singular vector a.vy in M (X)_1 where a is nondegenerate;
there exists a nondegenerate element a € g_1, such that X([g1,a]) = 0;

L()) is quasifinite;

L e

there exists a nondegenerate element a € g_1, such that L(\) is the irreducible quotient
of the generalized Verma module M (g, p®, \).

12



— —

Consider g = S;’]]VV . A functional \ € (S;’]]VV )§ is described by its labels,
Nii=M(q T Eii — (7 °Ty) " Enyaoingii),
ANy =MTg+ T, Eny = ((671T)' + (a7 Ty) ™) Ery)

with | € Z>o, 1 < i < [N/2] + dN even and the central charge ¢ = A(C). We shall consider the
generating series

Ai(z) =Y o' Ay 1<i<[N/2+0Newen and Ay (x)=> a7 Ayy. (5.1)
l€Z leEZ

Recall that a quasipolynomial is a linear combination of functions of the form p(x)¢®*, where
p(z) is a polynomial and o« € C. That is, it satisfies a nontrivial linear differential equation
with constant coefficients. We also have the following well-known proposition.

Proposition 5.2. Given a quasipolynomial P, and a polynomial B(x) = [[;(x—A;), take b(x) =
[T:(z — a;) where a; = ei, then b(z)(}, c7 P(n)z™™) = 0 if and only if B(d/dz)P(z) = 0.

If the polynomial B is even we call P an even quasipolynomial. As a result, one has the
following characterization of quasifinite heighest weight modules over g.

Theorem 5.3. A S;’ijv—module L(X) is quasifinite if and only if one of the following conditions
holds:

1. There exist monic polynomials bi(w), -+ ,bN/2] sy cpen (T), by (W) such that

bi(z)(Nip1(z)— Di () =0 for 1<i<[N/2] —0Nepen and (5.2)
by () (An(z) +2¢) =0

Moreover, if N is even there exists a monic polynomial by o(z) such that
bnyo () (D1yny2(x) — Anyja(x)) =0 (5.4)
2. There ezist quasipolynomials P; and even quasipolynomials P§; such that (n € N)

Pz(n) = Ai,n — Ai—l—l,n fO’l“ 1< < [N/2] — 5N,even and (55)
Py(n)=Ann  for n#0 and Py(0) = —2c. (5.6)

Moreover, if N is even there exists an even quasipolynomial Pyjy such that
Prja(n) = Anjam — Dnjatin: (5.7)

Proof. From Proposition 4.4 part (c) and Theorem 5.1 part (b), we have that L()\) is quasifinite
if and only if there exist (monic) Laurent polynomials

p u m;
h(w) =Y alw —ew™), glw) = di(w —w™), fiw)= Y a0
t=0 s=0 v=—m;
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for 1 < i < [N/2] — dN,cven, such that for each I, n, meZx>g, we have

M1 (V2T ) (VT ) (By—1h1 — Ex)
+ flcfl(ql/QTq_l)(q_1/2Tq)_l(Eka+1,ka+1 — EnyopNy2-k) =0

with 1 < k < [N/Q] - 5N,evena

AT )T = €T, ™ En oy = h(g ' T) (g7 T)™ — elg™'Ty) ™) Era
+ tro(eh(qlﬂw*l)(wm —ew ™))C) =0,

and

SN evenNg(q 2 Ty) (/2 Ty)" — (q71/2Tq)7n)(EN/2,N/2 — Enjo41,8/241)) = 0.
These conditions can be rewritten as follows:

my

0= Z Qi (Divst = Dit1,o+1) (5.8)

v=—mm;

for all 1 <@ < [N/2] — 6N even and | € Z>q, and

p
0= ¢(ANtim—€AN1—m) + troleh(¢Pw™ ) (W™ — ew™™))C) = 0 (5.9)
t=0

with m € N. Finally, if N is even,

0= Z dS(AN/Q,s—f—n - AN/2,—s—i—n + A1—‘,—]\/'/2,—8—‘,—71 - A1—i—]\f/2,$-‘y-n) (510)
5=0

with n € Zzo. Let

Fi(x) = Ap(2) — Dy (@)

for 1 < k <[N/2] — N, cven-
Let us first analyze (5.8). Multiplying both sides by 2~! and adding over [ € Z, we get

0= i a; 2" Fi(z) = fi(z)Fi(x). (5.11)

v=—my;

We construct b;(z) = x™ifj(z) € Clz]. The equivalence of (1) and (2) for this case follows
from the fact that (5.2) holds since it also holds multiplying both sides of this formula by
2™ with m; > 0. Due to Proposition 5.2, the existence of the qualispolynomials P;(z) for
1 <i < [N/2] — 0N cven is clear.

Let us now study (5.9). Making use of the definition of ¢ry given in Section 3 and the fact
that AN,Z = AN,—Z: we get,

p
0= Ct(AN,t—f—m — €AN,t—m) — 2€CmC
t=0
m

Multiplying both sides by ™ — ez~ and adding over m € Zx>(, we obtain

14



M@

c(z7t —ext) Ay (2) — Z (2™ — ex™ ™) (2ecmc) = —eh () (An(x) 4 2¢).
t=0 meZ

Once again, (5.3) holds since it also holds multiplying both sides of this formula by xP with
p > 0. Now, b¢(z) = 2Ph¢(x) € Clx]. Since h¢(x~!) = —eh®(z) it is easy to see that if a # 0
is a root of b°(x), then 1/« is also a root of b°(x). Now we can apply Proposition 5.2 and due
to the relationship between the roots of B and b in this proposition it follows that the B(x)
corresponding to our b°(x) is an even polynomial. This implies that the quasipolynomial P (z)
such that P§(n) = A, for n # 0 and P(0) = 2c is even, finishing the proof for this case.

Finally, let us analyze 5.10 for the case N even. Proceding similarly as with the previous
equation, we multiply by (z" —27") and add over n € Zxo. Using the fact that A /o) =
—/A Ny2,—; We obtain

0= Zd 2° — 27 %) (Anja(T) — Anjoga () = g(x) Fyja(w).

Now I;N/g(x) = z¥g(x) € C[z]. Making use once again of Proposition 5.2 we prove that
Pyyo(z) such that Pyja(n) = Anjopn — Anja41, for n € Z is an even quasipolynomial. O
Given a quasifinite irreducible highest weight S —module V' by Theorem 5.3, we have that
there either exist a quasipolynomials P;(x) (for 1 < i < [N/2] — 6N even) satisfying (5.5), an even
quasipolynomials Py () verifying (5.6), and if N is even, Py () satisfying (5.7). We will write

- me(x)qeﬂ, (5.12)

ecC
V(@) = D20 (@) coshglef @) + Y gf (@) sinby(ej @) and
et jeC
PN/2 Zp] N/2 COShq(ejx) + Z qij/Q( ) sinh,, (e ),
et jEC

with p; v(x) and p; n/o(z) (respectively, ¢; n(x) and g; n/2()) even (respectively, odd) polyno-

mials, pe;(x) a polynomial, e, ej and e; distinct complex numbers. Also, coshy(z) = ngq_z
and sinh, = g 5t —_ The last two expresions in (5.12) are unique up to a sign of ej or a si-

multaneous change of signs of e;” and the respective g; (z). We call e;r (respectively, e;), even
type (respectively odd type) exponents of V with multz’plicities pj(x) (respectively, g;j(z)). As
in [KWY], we denote et the set of even type exponents e with multiplicity p;(x) and by e~
the set of odd type exponents e ] with multiplicity ¢;(z). Therefore, the pair (e*;e™) uniquely
determines V. Analogously for the first formula, we call e; the exponents of V with multiplicities
Pei(x), and we denote e the set of exponents e; with multiplicity pe;(x). We will denote this

module by L(S

q]]\\,[,e etiem).
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6 Interplay between 8 , v and the infinite rank classical Lie al-
gebras

—

In this section we will discuss the connection between SJZJVV and the Lie algebra of infinite
matrices with finitely many nonzero diagonals over the algebra of truncated polynomials and
its classical Lie subalgebras. Let O be the algebra of all holomorphic functions on C* with the
topology of uniform convergence on compact sets, and denote

O = {f € O|f(w) = —¢ f(w™)}.
Let R be an associative algebra over C and denote R* a free R-module with a fixed basis

{vj}jez and denote R,, = Clt ]/(tm+1) where m € Z .
We consider the vector space S spanned by the quantum pseudo differential operators (of
o N

infinite order) of the form 2" f(T, ) ;j» where f € O. The bracket in S, v extends to (S, n)°.
In a similar fashion, we define a completion (8;’]]\\,[ )© of 8;’]]\\,[ consisting of all pseudo differential
operators of the form

(B D2T YRR (£ (R DPTYE j — () f (% V2T YENs1_jni1) -
keZ,1<i<j<N, feO},

and the opposite diagonal
{F(qF2T )2 (f (V2T B N i s k€ Z, 1 <i <N, f € O%F}.

Then the 2-cocycle ¥ on S;’]]VV extends to a 2-cocycle ¥ on (S;’]]VV)O. Recall that S(’L n denotes
the derived algebra of S, n. Let SEN = Sf]’\, + CC be the corresponding central extension.

[m]

Given s € C, we have (cf. (3.2) in [?]) the embedding 4,0[ ml Sqn — g&[fg] (ps
(Syn)® — geL’E]) given by

m H—t
90£ }( E f l E)N—i+1,IN—j+1
leZ

Which are Lie algebra homomorphisms. A restriction of these homomorphisms of Lie algebras to
S” N gives a family of homomorphisms of Lie algebras ¢!™ : SUN — gl (oM (SUN) —

z!;?]).
For each s € C and k € Z, set

Iy;] ={fe0: f(i)(sq(kfl)/%r") =0 and f(i)(sfqu(kfl)/%") =0,VneZ0<i<m}

and

ope = {f €09 fO(sq*k V) — 0 VneZ,0<i<m}.

Let
TIre = apen{ 2 (qBVPTYR(f (¢ PTY By — () £ (6% VPT) ™) Enga g :
1<i<j<N, fel}}

@ Grez (M (qFVRPT) (WY PT)E np—i s 1<i <N, f € Is[”Z]e}
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[m] .

Using the Taylor formula on ;s Sg ]]\\,[ — gé[m] it follows that

ker ™l = glmlre, (6.1)
Choose a branch of log q. Let 7 = log ¢/2mi. Then any s € C* is uniquely written as s = ¢%,
with @ € C/771Z. Fix §= (s1,---,sy) € CM such that if each s; = ¢%, we have
ai—a; ¢ Z+7'Z fori#j, (6.2)
and m = (my, -+ ,mpr) € Z%. Let gﬁ[m] = @iﬂilgﬂggi]. Consider the homomorphism

Pl = @M, plmil . (§77)0 — gell,

Proposition 6.1. Given s and m as above, we have the exact sequence of Z— graded Lie algebras,
provided that |q| # 1 :

0 — Jimhre (STN)C = gt — 0, (6.3)

J[m] TE _ ﬂf‘{ [my],r.e

where s

Proof. The injectivity part is clear from (6. 1) For the sake of simplicity, we will prove the
[

surjectivity of g I for the case M = 1, m = m and § = s = ¢*. We will make use of the
well-known fact that for every discrete sequence of pomts of C and a non-negative integer m
there exists f(w) € O having prescribed values of its first m derivatives at these points. By
conditions (6.2) and |¢| # 1 and since a ¢ Z/2 we have that {¢(»~D/2tita} and {¢q—(»~D/2-i-a}
are discrete and disjoint sequences of points in C. Therefore we can find f € O such that every
element ¢/ E, 5, is in the image, finishing the proof. O

[

We now intend to extend the homomorphism <p5m] to a homomorphism between the central
extensions of the corresponding Lie algebras.

Proposition 6.2. The C—linear map cﬁ[s ml SU]]\Y — g€ deﬁned by (s =q%),

pml| —— =M ifj#0 6.4
Ps |( ;J]\\IT)J = Ps | q,’I]\\TT)J' Zf]?'é ) ( )

ik (q_n/QT;Ei,i - qn/QTq_nEN—i-l—z’,N—i-l—i) = plm] (q_n/QT:Ei,i - n/QT "EN{1-i,N+1—i)

(6.5)
m _(a—1)n + (=1 j,(—a+1)n t]
= " —q 7!

pIM(C) = 1€ Ry, (6.6)

is a Lie algebra homomorphism over C.

—

Proof. 1t is a straightforward computation restricting the formula @Lm] in (3.2) of [?], to Sqa’]]\\; . O
[m]

The homomorphism ¢z ' is defined for any s € C. However, for a € Z/2, it is no longer
surjective. These cases are described by the following propositions.
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Proposition 6.3. For a =1, we have the following exact sequence of Lie algebras:
ke NNO
0 — Jm = (Sgn)" —9g—0

whereg:cﬁo@] ife=1 andg:égg] ife=—1.

[m] [m]

Proof. We will first prove the case € = 1. The homomorphism ¢s " : Sg n — gloo” introduced
[m]

in [?] is surjective. The anti-involution of S, x defined in (3.12) transfers, via ¢5 -, to an anti-

involution w : gﬁgg N gEL@ I as follows

w(ukEm-) = (—u)kEl_jJ_,'. (6.7)
Therefore, the Lie algebra of —o fixed points in S, , explicitly, Sg’fvv , maps surjectively to the
Lie algebra of —w fixed points in geL’Z}], explicitly, J[OZL | Ife = —1, the anti-involution w is as

follows
w"E; ;) = (1) % (—u)* By,

where i = ¢;N +7; and j = ¢;N + 7, with 1 <7r; < N and 1 <r; < N. As a result of the

surjectivity described, it is enough to show that w is conjugated by an automorphism 7" of gzL’Z} ]

to the anti-involution defining EL@ I To that end, we define

T'(umE,p — €% (—u)"Ey 1) = 4™ Eap — € (—u)™E 41 _a, (6.8)

where a = ¢uN + 1, and b = ¢yN + 13, with 0 <ry, < N -1y 0<r, <N —1. It is easy to see
that w is conjugated by T” to the anti-involution defining ELTQ ! O

Proposition 6.4. Ifa = 1/2 and N is odd, we have the following exact sequence of Lie algebras:
0 — Jimhke - (ST0)° = g — 0,
where g ~ l_);ro[m] ife=1and g~ l_)o_o[m] if e=—1.

Proof. If e = 1, replace in the proof of the last proposition w by

wWPE ;) = (—w)* E_ny1j N1 (6.9)

Therefore, the Lie algebra of —o fixed points in S, n, explicitly, Sg’fvv , maps surjectively to the

Lie algebra of —w fixed points in gd;'} I Consequently, it is enough to see that w is conjugated
by an automorphism 7" of g&[fg I'to the anti-involution defining I_);ro[m]. So, we define

T(u"Eij) = u"E(_Ni1)/24i,(-N+1)/245- (6.10)

It is easy to check that this extends to an automorphism of the algebra geL’Z} ! that conjugates w

to the anti-involution defining B;Fo[m]. If e = —1, w is the following
Wl B j) = (=1)% 9 (—u)"E_ni1-j N1, (6.11)

where i = ¢;N +r; and j = ¢;jN +r;, with 1 <r; < Ny 1 <r; <N. The automorphism of

gzLZ’} I for this case is D = T o T" , where T is the same that in the previous case and we have

T' (U™ Eyp — €079 (—u)"E_ o) =u"Eqp — e“+b(—u)mE_b7_a, (6.12)
with a = guN +rq and b = guN +1p, for 0 <r, < N —1and 0 <rp < N — 1. It is easy to see
that w is conjugated by D to the anti-involution defining l_);o[m}. ]
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Proposition 6.5. If a = 1/2 and N is even, we have the following exact sequence of Lie
algebras:

0 — Jimbke (‘S‘L‘;’]]\,\])(9 —dm — 0.

Proof. This proof follows the same steps as last proposition. If € = 1, because w is the same as
before, it is enough to replace T by

T(u"E;j) =u E_Njayi—N/2tj- (6.13)

The rest of the proof is the same for this case. If ¢ = —1, w is the same formula as in the last
proposition, so it is enough to replace T by

T,(umEa,b - 6Qb_qa(_u)mE‘l—b,l—a) = umEa,b - (_u)mEl—b,l—m ) (614)
where a = ¢, N + 714 and b =N +1p, with 0 <7, < N—1and 0 <r, < N — 1. ]
Remark 6.6. (a) By an abuse of notation, for a = 1 and a = 1/2, in view of Propositions 6.3 to

6.5, we will denote again (p[sm] the surjective homomorphism from SZ’]J\,V onto E([Q ], ISL@ Vand

J[JQ], respectively, given by the old <p[sm] composed with the corresponding isomorphisms

introduced in the proof of the proposition above.

(b) Recall that v was defined in (2.1). If € = 1, for arbitrary a € Z, the image of S;’JJ\,V under

the homomorphism gogf] is V“(d([fg }). Similarly, if @ € Z+ 1/2, the image of Sg’]]vv under the
homomorphism go[qyf] is u“(d[gg}) if N is even and ua(bL’S]) if N is odd. As a consequence,
it is enough to study the cases a = 1 and a = 1/2. The same conclusions can be obtained

for e = —1. Therefore, we will only consider a = 1 and a = 1/2 throughout this paper.

Given vectors 5= (s1,---,s1) = (¢™,---,¢™) € CM and m = (my,--- ,mps) € ZM such
that if a; € Z, then a; = 1; if a; € Z 4 1/2 then a; = 1/2; and a; — a; ¢ Z + 1717 for i # j.
Combining this with Propositions 6.1 to 6.5, we obtain a surjective Lie algebra homomorphism

o = @yl (STN)0 — g™ = gl (6.15)
i=1
where if e =1
g e e 7)o,
glmil = { plmil if a; =1/2 and N is odd,
dL’?i] if a; =1/2 and N is even or a; = 1.
and if e = —1
g e ¢ 72,
glmil — plmi] if a; = 1/2 and N is odd,
dlmil if a; = 1/2 and N is even,
cL"g] if a; = 1.
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7 Realization of quasifinite highest weight modules of 8;’]]\]\[

In this section g™ will be gAEEZ]

Proposition is standard (cf. [K])

or one of its classical subalgebras. The proof of the following

Proposition 7.1. The g™ —module L(gl™, ) is quasifinite if and only if all but finitely many
of the Thgi) are zero, where T represents a, b, ¢ or d depending on whether g[m] 18 gAEEZ], bﬁ.@”, CLZL]

or dLZ?].

Given m = (mq,--- ,myr) € Z]go, take a quasifinite \; € (g[mi])(’; for each 1 < i < M, and let
L(gl™!, \;) be the corresponding g™il-module. Let )= (M, -+, Anr). Then the tensor product

L(g™,\) = @M L(gI™], \) (7.1)

is an irreducible gl™-module, with gl = oM, g™l The module L(gl™ X) can be regarded as

—

a Sg’]]vv —-module via the homomorphism gpgm and will be denoted by L[Slﬁ] (X) We shall need the
following results.
Proposition 7.2. Let V be a quasifinite Sg’jj\,v—module. Then the action of SZ’]J\,V on V naturally

—

extends to the action of (S;’]]VV)O on'V, for any u # 0.

u

Proof. The proof is similar to the proof of Proposition (4.3) of [KL], replacing B = adD? — k?
by the following:

e Ifi#jiAN+1—j i#A#N+1l—iandj#AN+1—j

1
B :ﬁ(ad(Tq)Em —ad(¢"T,)E; )
1 B _
+ 5 (ad(qTy ) Enyr—j v — ad(g T EN-p1-i N 41-i)-
o If i = j,
—k+1

1 q —1
B = ﬁ&quEi’i + maqu EN+1—i,N+1—i-

o Ifi=N+1-—j,

1 — —
B = qik:aquEi,i —q k“aqu 1EN+1—i,N+1—i-

O]

—

Theorem 7.3. Let V be a quasifinite g™ -module, which is regarded as a Sg’fvv—module via the

—

homomorphism wgﬁ]. Then any Sg’fvv—submodule of V is also a g™ -submodule. In particular,
the S;’J]\,V—module L?}’k’e(;\) is irreducible if § = (s1,---,sn) with s; = ¢ is such that a; € Z

implies a; = 1; a; € Z + 1/2 implies a; = 1/2 and a; — a; ¢ Z+ 77 fori # j.
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/\

Proof. Let W be a S o N N _submodule of V. Due to the fact that W is a quasifinite Sq N N _module as

/\

well, by Proposition 7.2 it can be extended to (S )O for u # 0. As a result of (6.15), the map

QO?] : (SZJJ\\,[)S — (gl™),, is surjective for any u # 0. Therefore, W is invariant with respect
to all members of the principal gradation of (g[m])u with u # 0. Since gl™ coincides with its
derived algebra, this proves the theorem. O

Now, we will proceed to show that all the irreducible quasifinite SZ’]JVV—modules can be realized
as some L?]’k’e(X), for some m € ngo and § € CM, with s; = ¢% such that a; —a; ¢ Z + 77'Z
for i # j. For simplicity, we will consider the case M = 1 to calculate the generating series
AL ni(®@) =20 ca (A5, s 1 i)n @™ of the highest weight and central charge c of the S;’]]Vv—module

[sm]ke()\)'

We will introduce the following notation

(0,f) = ¢*% + (=1)'q*" (Blogq)’
A P) =T B B i

(7.2)

Making use of Theorem (5.3), take an irreducible quasifinite weight Sg’]l\y -module V' with
central charge ¢ and generating series A;(x), Py(z) an even quasipolynomial such that

Py(n)=Any, for n#0 and Py(0) = —2c, (7.3)
P;(z) a quasipolynomial such that
Pi(n) = Ain — Digan (7.4)

for 1 < i < [N/2]—0N even are quasipolynomials, and when N is even, Py /5(z) an even quasipoly-
nomial such that

Pyja(n) = Anjapn — Dnj241n- (7.5)
We write

- Z psi(z)g®*,  for 1<i<[N/2] — N cven (7.6)
seC
Zp]N ) coshyg ( ejx + qu n(z)sinhy(e;z) and
JEL JEZ

Pyo(z ZPJ Ny2( COShq(ejx) + ZQj,N/Q( ) sinhg (e ),
JEL JEZ

where p; n(z) and pj n/2(7) (respectively, ¢;n(7) and g; n/2(x)) are even (respectively, odd)
polynomials and pe ;(z) is a polynomial. Let Lgﬁ] (g[m], X) be a representation of g™ considered

5]

as a representation of S N via ¢y, where g™ is g&[g Vor one of its classical subalgebras. Then

(Abpanidn = =AM (¢ V2T Eii — (¢"°Ty) " Enyainti-i), (7.7)
with 1 < i < [N/2] 4 0N even, and
(Dpan)n = =A@(T7 + T, Evy — (07 Ty)" + (07 Ty) ™) B, (7.8)

[m]

where ¢ ' is the embedding given by proposition 6.2 composed accordingly with the isomor-
phisms defined in propositions 6.3 to 6.5.
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Proposition 7.4. Take the embedding cp[m] : Sa]]vv — gf[ & with s = q¢* ya ¢ Z/2. The

a,
~lm [m]

9l ]-module L(g€OO

L(ngj\\,[,e et;e™), where
(a) The exponents e are —1/24+a—1 and 1/2—a+1 with | € 7 and their respective mutiplicities

, A) regarded as a Sq’N -module is isomorphic to

are
_ - (@logg) o () J
p1/2—a+l,i($)—ZT (I-1)N+i " (7.9)
u=0 ’
o~ (—logg)", (u
P-1/24a-14(x) = Z T hl(J\f)—i7
u=0 ’

for 1 < i <[N/2] — N, cven-

(b) The exponents are et = e~ = a — | with | € Z with multiplicities

Pon(T) = Z aﬁE?L)N%T and qu—l,N(x) = Z aﬁE?—)l)N%’ (7.10)
u=0,u even u=0,u odd
where
By = 20080)" (K + Gra(ew — ugen))  and
GEE?_)UN = 2(log Q)u(ahg—)l)N o),

and Pf(0) = —2¢o fori=N.

(c) Moreover, if N is even, we have the exponents et = e~ = 1/2 —a+ 1 with | € Z and their
multiplicities are

“ xlogq)",. (u
P1/2—ati,N/2(T) = Z (wlogq)" hEl—)l/Q)N and (7.11)

u!

Q1/27a+l,N/2(x) =
u=0,u tmpar

fori= N/2.

Proof. If 1 < i < [N/2] = 6N epen, combining the formulas of proposition 6.2 with (2.5) and (7.7),
we have that

nlogq al) a
maAzn_ZZ( ( Hatal) Al(N)—l—l 7

1€Z u=0

(_nlogq) -n a—l) a S

T (~1/2+a—1) )\El)l)N—H +> nula—1,n)cy
u=1

Then,

m

nlogq _ _

( f’n,a,)\,i)n _( ma)\z+1 n - ZZ a/hg?)l)NJ’»zq M=1/2+ah)
leZ u=0

(nlogg)* ap(®) n(-1/2+a-0),

+
ul IN—i4
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Making use of the definitions of multiplicities and exponents for the quasipolynomial P;(x) in
(7.6), we complete the proof for (a).
If i = N, as before, considering (7.8) and (2.5), we obtain

(Dot =33 (m—l a1, n)2sinhy(n/2) “AL

l€Z u=0

— nu(a —1,n)2sinhy(n/2) * Z)I)N+1) + Z2smh (n/2)nu(a —1,n)cy.

u=1

Shifting the index [ to I — 1 in the first sum, we get

(Doany)n =D Y 2sinhy(n/2)n.(a — 1, n)(ahggﬂlw + 61160 — co).
leZ u=0

Since | .
2 Sinhq(n/2)77u(a — l, n) = M(qn(a—l) + (_1)uq—n(a—l))
u!
and making use of the definitions of multiplicities and exponents for the quasipolynomials P ()

n (7.6), we finish the proof for (b).
If N even, following the same steps as in the proof of (a), we have

nlogq _ Catl Catl
(D e vy = (Do ar njaii)n = ZZ By gy (@D (1) 2met D),
l€Z u=0
Then, splitting the sums according to the parity of u, we get the multiplicities and exponents
expected.
O

sml

Proposition 7.5. Let s = ¢* with a = 1/2 and N even. Take the embedding go S;”]]VV —

d. The d2-module L(dgo}7 A) regarded as a S W N N _module is isomorphic to L(Sq]]vv, e;etye),

where

(a) If 1 <i < [N/2] — 0N cven, the exponents are e =1 with | € Z and their multiplicities are

" (—zlogq )
pri(x) = Z (u|g) hgl )1/2)N+z if >0 and (7.12)
u=0 ’
B i (xlogq)“dh(u) <0
i) = Z . Mg LS
u=0

(b) If i = N, the exponents et and e~ are 1/2 — 1 with | > 1 and their multiplicities are

pi/%l,N(x) - Z dﬁgﬁl/z)N%l; and qi/%l,N(CC) = Z dhE?)l/Q) xu
u=0,u even w=0.20dd (7'13)
where
dhg?) 12y = 2(log Q)u(dhgr) 1/2)n +011(cu = bupco))  and
dh&?)l/m = 2(log Q)u(dhE?) 12N T 01,1Cu)

and Pf (0) = —2co.
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(¢) Moreover, if N is even, for i = N/2 the exponents et and e~ are | > 0 and their multi-
plicities are, if [ > 1,

m

xlogq ”

piny2(T) = E 2(5)‘111( ) and (7.14)
u=0,u even

" zlogq ”
anp@) = Y 2&%( )

u!
u=0,u odd
and if | =0
o (zlog @) 4 (u) _
Po,N/2(~’U) = Z QT Ay and (JO,N/z(l’) =0. (7.15)

u=0,u even

Proof. Consider first the case ¢ = 1. By Remark 6.6, part (a), we have that the embedding

@Lm] : SZ’]JVV — dl;’} Vis in fact the embedding given by proposition 6.2 composed by 7!, where

T is the automorphism of gégg ! defined in (6.13).
If 1 < i <[N/2] — 6N even, using (7.7) for the embedding in this case, we get

nlogq ol
(Bona/za)n = A ( Z Z "B (1412 N4 =i (11 /2) N 41— (7.16)
leZ u=0
nlogq e
PSS D ) + znu (~1/2,n)
l€Z u=0

Making an adequate change of variables in [ and using (2.12), we get

. nlogq “wn n(—
(Aajenin— (D12 0i41)n = ZZ (=1)"q" *hg_1 joyn i+ " TRy o i)
[>1 u=0

Making use of the definitions of multiplicities and exponents for the quasipolynomial P;(z) in
(7.6), we finish the proof of (a).
Using (7.8) for the embedding in this case, we get

(Ao 1/2aN)n = (7.17)
nloggq n(1/2— w —n(1/2—
A(ZZ( ul ) (<_q (1/2=0 —(—1)% (/2 l))E(l—1/2)N+1,(l—1/2)N+1
1€Z u=0

o~ (nlogq)" . _, .
+ ZZ ut ("2 4 (—1)"g (1/2+l))E(l+1/2)N,(z+1/2)N))
1€Z u=0

+ Z 2sinhg(n/2)n,(—1/2,n)cy

u=1

Once again, making an adequate change of variables in [, using (2.12), and taking into account
the fact that
"2 4 (=1)"g"/?)(nlog g)"

u!

21y (—1/2,n) sinhy(n/2) = (¢

)
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we have

(Aml/Q)\N n—zdhl 1/2)N( )( n(1/2— l)+( )u —n(1/2— l))
>1

" (nlog q)“ —n
+> (jQ)(qn/z +(=1)"q""*)(cu = Su0c0)-

u=0

In order to complete the proof, we study the parity of v and split the sums accordingly. As a
result of the definitions of multiplicities and exponents for the quasipolynomials Pf,(x) in (7.6),
we find the exponents and multiplicities expected for (b).

For 1 = N/2, we follow the same steps as in (a), but with an adequate change of variables in
[. This way, we get

€ nlogq — u _n(l— u
(Am,l/Q,/\,N/2>” - (Am 1/2)\N/2+1 ZZ —n=1) + (_1) q G 1))dhEZEI)N
1>1 u=0
— (nlogq)" uy dy (u)
+ZT(1+(_1) )AL,
u=0 ’

Lastly, by splitting this sums according to the parity of u, we find the exponents and multiplicities
expected, finishing the proof for this case.

pml Sg]]\\,[ — d[oo} is in this case the embedding

given by proposition 6.2 composed by D = T'oT’, where T” is the automorphism of gﬂ[oo} defined
n (6.14). The results for this embedding are the same as for ¢ = 1. O

Consider now ¢ = —1. The embedding ¢

Proposition 7.6. Let s = ¢® with a = 1/2 and N odd and take the embedding go[m] SZ’]J\,V —
al™ | where glmM = bl if e =1 and g™ = bl if e = —1. The g™ -module L(g!™,\) regarded

N o : N _
as a S;’N -module is isomorphic to L(S]"y;e;eT;e™), where

q,

(a) The exponents e are l € Z and their multiplicities are

(—xlogq)" by, (W)

Ms

pLi(x) = > o (-1/)Ntio1e O 1>0 and (7.18)
pi(z) = i (zlogq)" Q)ubh(u) if 1<0
Ly u! (I-1/2)N—i—1/2 =

I
o

for 1 < i <[N/2] — dn,cven-

(b) The exponents are e™ = e~ =1/2 —1 with | > 0 and their respective multiplicities are, for

1 <1,
¢ )= Y 2(logq) Y xu d 7.19)
Pijo—in(® 089)" "hi 2y joyn— 12, A (7.
u=0,u even
€ % u $u
q1/2—l,N($) = Z 2(log q) bhgz )1/2)N 1/27,1°
u=0,u odd )

25



and for 1 =0,

m ey m u
T
p§/2,N<37) = Z 2(log q)" *,( w = 0u0c0)  and qi/2,N(9C) = Z 2(log Q)uacw
u=0,u even u=0,u odd

and Pf(0) = —2¢q fori=N.

Proof. Consider first ¢ = 1. By remark 6.6, part (a), we have that the embedding @!’ﬂ :
S;’]]VV — bL’.I‘ Vis in fact the embedding given by proposition 6.2 composed by T~!, where T is

the automorphism of gﬁ[org] defined in (6.10). Using (7.7) for the embedding for this case, we
have

nlogq o
(Dpmajzni)n = )\<ZZ 't Eq_1/2)N—it1/2,(1-1/2)N—i+1/2 (7.20)
l€Z u=0
nlogq i
+ZZ YT B (1—1/2)Nrim1/2,(1-1 /2) N-+i 1/2) Znu —1/2,n)c
17 u=0

Making an adequate change of variables in [ and using (2.7), we have

nlogq (@A) u nl _ dy () —n(i-1
(Bom,1/2,0 "_ZZ )‘l 1/2)N+i— 1/2( 1)*¢" — A1 2)N—it1/24 (=)
1>1 u=0

m
+ Z nu(—1/2,n)cy
u=1
Then,

(D 1/2 Nidn — (B2 nit1)n =

nlogq u, ml by (u) 1-1) by, ()
ZZ —1)% h(l 1/2)N+i—1/2 T4 = h(l 1/2)N—i— 1/2)
1>1 u=0

Making use of the definitions of multiplicities and exponents for the quasipolynomial P;(z) in
(7.6), we finish the proof of (a).
Using (7.8) for the embedding in this case, we have

(D122 N)n = (7.21)
nlogq n(1/2— w (19—
)‘(ZZ< ul ) ((—q (/2=0) (—1)%q (1/2 l))E(l—1/2)N+1/2,(l—1/2)N+1/2
1€Z u=0 ’
" nlogq)" .., _, w
+ZZ( o " (q "2 4 (—1)q (1/2H))E(z+1/2)1v1/2,(1+1/2)N1/2)>
1€Z u=0 ’

+ Z 2sinhg(n/2)n,(—1/2,n)c,

u=1
Once again, by making an adequate change of variables in [, using (2.7) and the fact that

(¢"? + (—1)“g~™/?)(nlog q)"
u!

21y (—1/2,n) sinhy(n/2) =

)
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we obtain

nlogq (19 Y e
(A m1/2/\Nn—ZZ 1)1/2)1\/ 1/2( (1/2 l)+(_1) q 172 l))

>1 u=0
- (nlOgQ)u n/2 u,—n/2
+;m<q 2 (1)) (e — Buoco)

To complete the proof, we study the parity of v and split the sums accordingly. As a result of
the definitions of multiplicities and exponents for the quasipolynomials P (x) in (7.6), we find
the exponents and multiplicities expected.

pml S:;]]\\,[ — d™ is in this case the embedding

given by proposition 6.2 composed by D = T oT", where T” is the automorphism of gﬁgo} defined
n (6.12). Proceeding in an analogous way as for the case e = 1, we get the expected results.

Consider now ¢ = —1. The embedding ¢s

O]

Proposition 7.7. Let s = ¢* with a = 1 and let the embedding cp[m] S;’]]VV — g™ where

g = s if e = 1 and g™ = e lf e = —1. The g™-module L(gI™,\) regarded as a
Sg’]zvv-module s isomorphic to L(SUIJ\\,Z, e;etie™), where

)

(a) If 1 <i < [N/2] — dN cven, the exponents e are 1/2 — 1 with | € Z and their multiplicities

are
o~ (zlog )"y (u .
P1/2—1,i(7) = UZ:% TThl(N)—i with { >0 ahd (7.22)
(z) = i (=x1089)" 4 with 1 < 0
P1/2-1,i = o u! (I-1)N+4> -
where 1 represents ¢ or d depending on whether g™ is CL@} or dgb].

(b) If i = N, the exponents et and e~ are l — 1 with | < 1 and their multiplicities are

m m

€ u ;Eu € u xu
pan@= Y TR T and i@ = Y0 TR (123)
u=0,u even u=0,u odd
with
TEE;L)l)N (log Q) (Thgf)l)]\[ + 5l,1(Cu + T)‘gu) - 5u,060)) and
h(l N = —2(log q) Th(l N
where T represents ¢ or d depending on whether g™ is cEZﬂ or dL’.ﬁ‘] and PfN(O) = —2¢p.

(¢) Moreover, if N is even, for i = N/2 the exponents et and e~ are l —1/2 with I > 1 and
their multiplicities are

= xlogq ”
Pi-1/2,n/2(2) = Z 2<U')Thgl)1/2) and (7.24)
u=0,u even
_ o\ o @loga)" s
Q-1/2,n/2(x) = —()de . aty2)N
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where t represents ¢ or d depending on whether g™ is c[m] or d([;g].

~m] | U',N

Proof. By Remark 6.6, part (a), we have that the embedding ¢g - : SN — dL’Q] is in fact the

embedding given by proposition 6.2 composed by 7!, where T is the automorphism of gégg ]
defined in (6.13).
If 1 < i <[N/2] — 0N,even, using (7.7) for the embedding in this case, we have

nlogq _
(D1 xidn —)\<Z > - " By i
l€Z u=0

nlogq e r -
+ ZZ (120 E(ll)NJri,(ll)NJri) +2_ (0, m)ey

l€Z u=0 u=1

Making an adequate change of variable in [ and using (2.12), we have

(nlogq)* n(1/9—
m 1A, z n — Z Z g d)\[(]u\[)+1_iq (1/2=0)
l€Z u=0

+ ( )7" d)‘gl)l)N-i-zq (*1/2+l)) + Znu(oan)cu
u=1
Then,
(Amani)n — (Dminiti)n

< (nlogq) u — u n(lt— u
ZZT(dhl(N) i 4 PR (1) gD dhglzl)NJri)'

Making use of the definitions of multiplicities and exponents for the quasipolynomial P;(x)
n (7.6), we finish the proof of (a).
Using (7.8) for the embedding in this case, we obtain

" (nlog q)“ _ v —n(l—
(D1 AN )n =A<Zz(jmt“((—qn(l D (-1)"¢ " NEg_ynig-nyne (7.25)

1EZ u=0
~ (nlogg)"
+ Z Z Ttu(q—nl + ( 1)u nl)ElN lN))
leZ u=0
m
+ Z 2sinhy(n/2)n,(0,n)cy
u=1

We make a change of variables in [. Using (2.12) and the fact that
(1+ (=1)")(nlogq)"

21, (0,n) sinhy(n/2) =

u!
) 2(nlogq)*
210(0,n) sinhy(n/2) = (u‘gQ),
we have
i nlo U
Do =303 LB (ontt=t) | (_qyugn=Dydp )y (14 (<1 A)
1>1 u=0
(1 1
+Z( + ( nOgQ) ey — 200,
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In order to finish the proof, we study the parity of v and split the sums accordingly. As a
result of the definitions of multiplicities and exponents for the quasipolynomials P, (x) in (7.6),
we find the exponents and multiplicities expected for (b).

For i = N/2, following the same steps as in the proof of (a), we have

(D12 aN/2)n — (Dm0 N/241)n

(nlo
ZZ)\( gq) 14 V2D o (“1) g E o s

>1 u=0

nlo n — u, n(—
4 (P8O mta/2-1) | (_qyugnt 1/2“))E(Z—l/zw,(l—l/?)N)'

u!

Making a change of variables in [ and using (2.12), we get

(Am 1/2)\N/2) - (Am 1/2,)\,N/2+1)n =

ZZ nlogq n(1/2— l)+( 1)4q n(— 1/2+l)) hgz)l/Q)N

1>1 u=0

Studying the parity of u and splitting the sums accordingly, we find the exponents and multi-
plicities expected for this case, finishing the proof.

Consider now ¢ = —1. The embedding @L’”} : SZ JZVV — CLO] is in this case the embedding

given by proposition 6.2 composed by D = T'oT", where T” is the automorphism of gﬁ[oo] defined
n (6.8). Proceeding in an analogous way as for case € = 1, we obtained the expected results. [J

Consider an irreducible quasifinite highest weight Sg’]]vv -module V' with central charge ¢ and
generating series A\;(z) such that

Pi(n)=20in —Dig1n  for 1 <i<[N/2] —nepen and
Py(n)=Ann, for n#0 and Py(0)=—2c,

where Pj(z) are quasipolynomials and Py (x) are even quasipolynomials. Moreover, if N is even,
there exists an even quasipolynomial Py /s (z) such that

Pnja(n) = Anjan — Dnjatin:

Using the notation introduced in (7.6), decompose the set A = {s € C|ps; # 0 for some i}U{s €

Clps y # 0t U {s € Clpsny2 # 0} U{s € Clgg y # 0} U {s € Clgs nj2 # 0} into a disjoint union
of equivalence classes under the condition

s:qawq“/:s’ﬁa—a’EZ—i—T_lZ.

Pick a representative s in an equivalence class S such that s = ¢ if the equivalence class lies in
Z and s = ¢'/? if the equivalence class lies in Z 4 1/2. Let S = {¢%, ¢°™*, ¢ ...} be such an
equivalence class. Take tg = 0 and let

m = maxses{deg psi,deg p ,deg ¢ y,deg ps n/2, deg s N/} It is easy to see that if a = 1 or
a =1/2, then t; € Z. Now, we will associate S to a gl™-module LLm]()\S) in one of the following
ways.
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o Ifa¢ Z/2, for 1 <i < [N/2] — 0N cven let

ay () B 1 d\"
h(t._l)Nﬂ = (log )" <dx> P1/2—a+tj,z‘(0) and (7.26)
ht N_ (logq) (dm) P-1/24a-1;,i(0), (7.27)
and let
“h(u) + 0. 1(cy — 0 c)—; 4N (0) if u even and (7.28)
(t;=)N T T S T T 0R0 T S (00 g)u \ da Pty N '
B g et (L i (0) if uodd (7.29)
(t;—1)N t;,1Cu 2(log ) \ da 4i; N ) .
and if N is even
ap{) L (4 0) if d 7.30
(t—1/2)N = (logq)“ e pt].7N/2( ) if u even an (7.30)
(w) 1 (d)\" .
h(t‘—l/?)N W <d$> qthN/Q(O) if u Odd, (731)
for u=0,...,m. We associate S to the gAELT:}—module L[sm]()\g) with central charges
4o (w) (u)
Cu = ZZ 1; —1)N+z ht N—i) T Z N T ON, even h(tj—1/2)N)
t]

and labels

a)\l(u): Z t-—1N+z+ Z ah? —1

(t;—1)N+i>l t;N—i>l
aj (u) aj (u)
+ Z h(tj—1)N + ON, even Z h(tj—l/Q)N’
(t;—1)N>I (tj—1/2)N>1

with @h{" = h{™ — 5, e,

e Ifa=1/2and N is even, for 1 <i < [N/2] — 0N cpen let

dy (u) ARV EAYS .
h(tj—l/Q)N—H' = <logq) <dx) pt;i(0) if ;>0 (7.32)
dp, (w) _ 1 a\" P
h(tj_l/Q)N—i - (10g q)u <dZL‘> ptjﬂf(o) if t] < 07 (733)
and let
(t,—1/2N T t;,1(cu — Su0c0) = oz q)" \ dx Pija—; n(0) if u even an (7.34)
i) + 0¢j,100 = L (4 (0) if u odd (7.35)
(t;=1/2N 21T T 9 (og g)u \ dx d1/2—t;,N ) :
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and if N is even

dr(w) 1 d\" .
hth = 7)u (da:) ptij/g(O) if u even and (7.36)

dr(w) 1 d\" )
hth = 72(10?)“ <d$> Qtj,N/Q(O) if u Odd7 (737)

for u=0,...,m. We associate S to the d2module L[m]()\g) with central charges
4 dpw) dy, ()
Cu = Z Z 1/2 YN+i h(t —1/2)N— z )+ Z 1/2)N + 0N, even hth)
.7

and labels

dy(u) _ dy (u) dy ()
A= Z h(trl/Z)Nﬂ'—i_ Z h(tj—1/2)N7
(tj—1/2)N+i>l (t;j—1/2)N—i>l

+ Z dh( ) _1/2)N —l—(steven Z dhi(:])v.

(tj—1/2)N>1 t; N>l

e Ifa=1/2, Nisodd for 1 <i<[N/2] — dn even let

by (u) —1\"(d\" :
h(t 71/2)N+z 1/2 <10gq> (d]j) pt].’i(()) if t] >0 (738)
by (u) _ 1 d\" :
h(tj—l/Z)N—i—l/Z = W <d$> ptj,i(O) lf tj é O, (739)
and let
oyt 5 Suoco) — (L) e 0) if d (7.40
(tj*l/Z)N*l/Q + tj,l(Cu - U,OCO) — 2(10g q)u % pl/thJ’N( ) 1I U even al ( . )
by — 43" 0) if uodd 7.41
(t;—1/2)N—1/2 T 0t;,1Cu = oz g)" \ dz qij2—4;n(0) if uodd, (7.41)
for u=0,...,m. We associate S to the gl"-module L[m}()\g) with central charges

by, () by () b
C“_ZZ h(tj—1/2 N+i—1/2+ h(tj—l/Q)N i—1/2 +Z ht —1/2)N—1/2

and labels

by (u) _ by (u) by (w)
A= Z h(tj—l/Q)NJrz 1/2 Z h(tj—1/2)N—i—1/2
(tj—1/2)N+i—1/2>1 (tj—1/2)N—i—1/2>1

by (u)
+ Z h(tj—1/2)N—1/2’
(t;—1/2)N—1/2>1

with gl = B if ¢ = 1 and g™ = bl if e = —1.
e Ifa=1, for 1 <i <[N/2] —N,cven, let

w _ 1 (d)" .

Thth—i = (log q)* (dw) p1/2—tj,i(0) if ¢;>0 (7.42)
(u) o LN\ .

Th(tj—l)N-i-’i = <10gq> <d$> pl/?—tj,i(o) if tj S 07 (743)
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and let

U u 1 d v € .
Thgt) v+ Ot;,1(cu + T)\g ) _ du,0C0) = W <dw> ptﬁN(O) if u even and  (7.44)
W 1 d\" :
Th(tj—l)N W (dx) Qt]-,N(O) if u odd, (7.45)
and if N is even
fp (%) __ L (4 0) it d (7.46)
(t&=1/2N " 2(log g)¥ \ da Pt;—1/2,N/2 if u even an .
fp(® L (4 (0) if uodd (7.47)
(tj—1/2)N — 2(log q)* \ dz dt;—1/2,N/2 I u odad, .
for u = 0,...,m, where t represents d if ¢ = 1 and c if ¢ = —1. We associate S to the

g™-module L[Sm]()\g) with central charges
(u (u)
Cy = Z Z it T Z Thy) 1w+ O event i)y o)

and labels

T>‘l(U): Z Thtuz)\/ﬂ Z Th? —i

tjN+i>l tyN—i>l
(u) 7 (w)
+ Z Th‘(tjfl)N + (SN, even Z h(t i—1/2)N
(t;—1)N>I (tj—1/2)N =l

where g™ = d™ and t = d if e = 1 and g™ = e with t = c if e = —1.

Denote {s1, s2,...} with s; = ¢% a set of representatives of equivalence classes of the set A.

By Theorem 7.3, the Sg’fvv—module Lgﬁ]()\) is irreducible for § = (s1, $2,...) such that a; € Z
implies that a; = 1 and a; € Z/2 implies that a; = 1/2. Then, as consequence of the discussion
above, the Theorem 7.3 and Propositions 7.4-7.7, we have proved the following.

/\

Theorem 7.8. Let V' an irreducible quasifinite highest weight SU -module with central charge
c and let P(z), Py(x) and, if N is even, Pyjo(z) the quaszpolynommls given by Theorem 5.3

written in the form (7.6). Then, V is isomorphic to the tensor product of the modules L£ }(/\5)
with distinct equivalence classes S.

Remark 7.9. A different choice of representative s = ¢* with a ¢ Z/2 in the equivalence class
S has the effect of shifting gAE[OT:] via the automorphism v for some i. It is not difficult to see
that any irreducible quasifinite highest weight module L(Sg’fvv,é“) can be obtained as above in
an essentially unique way, up to this shift.
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