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1 Introduction

The study of W -infinity algebras has its origins in various physical theories, such as conformal
field theory, the theory of quantum Hall effect, etc. The most important of these algebras is
W1+∞, which is the central extension of the Lie algebra D of differential operators on the circle.

The dificulty when studying the representation theory of these algebras lies in the fact that,
although they admit a Z-gradation and a triangular decomposition, each of the graded subspaces
is still infinite dimensional. As a consequence, the study of highest weight modules that satisfy
the quasifinite condition, which is, graded subspaces are finite dimensional, becomes a nontrivial
problem.

The representations of the Lie algebra W1+∞ were first studied in [KR1], where its irreducible
quasifinite highest weight modules were characterized and it was shown that they can be realized
in terms of the irrducible highest weight representations of the Lie algebra of infinite matrices.
At the end of that article, similar results were found for the central extension of the Lie algebra
of quantum pseudo-differential operatos Sq, which contains as a subalgebra the q-analogue of

the Lie algebra D̂, the algebra of all regular difference operators on C×.
This study for D̂ was continued in [FKRW], [KL] and [KR2] in the framework of vertex

algebra theory and in [BKLY] for the matrix case. In [KL], V. Kac and J. Liberati also gave
some general results on the characterization of quasifinite representations of any Z-graded Lie
algebra, which will be used in this paper. In [KWY], a classification was given of the irreducible
quasifinite highest weight modules of the central extension of the Lie subalgebras of D fixed by
minus the anti-involutions preserving the principal gradation. These results were extended in
[BL1] to the algebra DN of the N ×N -matrix differential operators on the circle.

An analogous study was carried out for the Lie algebra of quantum pseudo-differential oper-
ators. In [BL3] it was shown that there is a family of anti-involutions on Sq, up to conjugation,
preserving the principal gradation. Their irreducible quasifinite highest weight modules were
classified and realized in terms of irreducible highest weight representations of the Lie algebra

of infinite matrices with finitely many nonzero diagonals g`
[m]
∞ and its classical Lie subalgebras

of B, C and D types. Similarly, in [BL2], the quasifinite highest weight modules over the central
extension of the Lie algebra of N × N matrix quantum pseudo differential operators, denoted
Ŝq,N , were classified and characterized them in terms of the representation theory of the Lie
algebra of infinite matrices with finitely many nonzero diagonals.

Making use of the the description of Lie subalgebras of Ŝq,N fixed by minus the anti-
involutions preserving the principal gradation given in [BB], we classify the irreducible highest
weight modules of some of the subalgebras found, particularly the orthogonal and symplectic
types. This paper is organized as follows. In Sect. 2 we present some standard facts of represen-

tation theory of ĝ`
[m]

∞ and its subalgebras of types B, C and D. In Sects. 3 and 4 we introduce
the subalgebras Sσ,Nq,N and we study the structure of its parabolic subalgebras. In Sect. 5 we

give a characterization of the irreducible quasifinite highest weight modules of Ŝσ,Nq,N . In Sect. 6

an interplay between Ŝσ,Nq,N and the infinite rank classical Lie algebras of types A, B, C and D
is established. Finally, in Sect. 7 we give the realization of the irreducible quasifinite highest

weight modules of Ŝσ,Nq,N .
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2 Lie algebras ĝ`
[m]

∞ and its classical Lie subalgebras

In this section we will give a description of the Lie algebra of infinite matrices with finitely many

nonzero diagonals g`
[m]
∞ and its classical Lie subalgebras of B, C and D types. We will follow

the notation in Sect. 1 of [KWY].
Denote Rm = C[u]/(um+1) the quotient algebra of the polynomial algebra C[u] by the ideal

generated by um+1 (m ∈ Z≥0). Let 1 be the identity element in Rm. Denote by g`
[m]
∞ the

complex Lie algebra of all infinite matrices (ai,j)i,j∈Z with only finitely many nonzero diagonals
with entries in Rm. Denote Ei,j the infinite matrix with 1 at (i, j)-entry and 0 elsewhere. There

is a natural automorphism ν of g`
[m]
∞ given by

ν(Ei,j) = Ei+1,j+1. (2.1)

Let the weight of Ei,j be j − i. This defines the principal Z-gradation g`
[m]
∞ = ⊕j∈Z(g`

[m]
∞ )j .

Denote by ĝ`
[m]

∞ = g`
[m]
∞ ⊕ Rm the central extension of g`

[m]
∞ given by the following 2-cocycle

with values in Rm:

C(A,B) = Tr([J,A]B), (2.2)

where J =
∑

i≤0Ei,i. The Z-gradation of the Lie algebra g`
[m]
∞ extends to ĝ`

[m]

∞ by putting the
weight of Rm to be 0. In particular, we have the triangular decomposition,

ĝ`
[m]

∞ = (ĝ`
[m]

∞ )− ⊕ (ĝ`
[m]

∞ )0 ⊕ (ĝ`
[m]

∞ )+, (2.3)

where

(ĝ`
[m]

∞ )± = ⊕j∈N(ĝ`
[m]

∞ )±j and (ĝ`
[m]

∞ )0 = (g`[m]
∞ )0 ⊕Rm. (2.4)

Given λ ∈ (ĝ`
[m]

∞ )∗0, we let

ci = λ(ui), (2.5)

aλ
(i)
j = λ(uiEj,j),

aH
(i)
j = uiEj,j − uiEj+1,j+1 + δj,0ci,

ah
(i)
j = aλ

(i)
j −

aλ
(i)
j+1 + δj,0ci,

where j ∈ Z and 0 ≤ i ≤ m. Let L(ĝ`
[m]

∞ , λ) be the irreducible highest weight ĝ`
[m]

∞ -module with

highest weight λ. The aλ
(i)
j are called labels and ci are the central charges of L(ĝ`

[m]

∞ , λ).

Consider the vector space Rm[t, t−1] and take the basis vi = t−i, i ∈ Z over Rm. Now
consider the following C-bilinear form on Rm[t, t−1]:

B±(umvi, u
nvj) = um(−u)−n(±1)iδi,−j . (2.6)

Denote by b̄
−[m]
∞ (resp. b̄

+[m]
∞ ) the Lie subalgebra of g`

[m]
∞ which preserves the bilinear form

B−(·, ·) (resp. B+(·, ·)). We have

b̄+[m]
∞ = {(ai,j(u))i,j∈Z ∈ g`[m]

∞ : ai,j(u) = −a−j,−i(−u)},
b̄−[m]
∞ = {(ai,j(u))i,j∈Z ∈ g`[m]

∞ : ai,j(u) = (−1)1+i+ja−j,−i(−u)}.
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Denote by b
[m]
∞ = b̄

−[m]
∞ ⊕ Rm (resp. b̃

[m]
∞ = b̄

+[m]
∞ ⊕ Rm) the central extension of b̄

−[m]
∞ (resp.

b̄
+[m]
∞ ) given by the restriction of the 2-cocycle (2.2), defined in g`

[m]
∞ . The subalgebra b

[m]
∞ (resp.

b̃
[m]
∞ ) inherits from ĝ`

[m]

∞ the principal Z-gradation and the triangular decomposition (see [KR2]
and [FKRW] for notation),

b[m]
∞ = ⊕j∈Z(b[m]

∞ )j , b[m]
∞ = (b[m]

∞ )+ ⊕ (b[m]
∞ )0 ⊕ (b[m]

∞ )−,

b̃[m]
∞ = ⊕j∈Z(b̃[m]

∞ )j , b̃[m]
∞ = (b̃[m]

∞ )+ ⊕ (b̃[m]
∞ )0 ⊕ (b̃[m]

∞ )−

Note that the Lie algebra b̃
[m]
∞ is isomorphic to b

[m]
∞ via the isomorphism that sends the elements

ukEi,j − (−u)kE−j,−i to ukEi,j + (−1)1+i+j(−u)kE−j,−i, i, j ∈ Z, k ∈ Z+. Their Cartan subal-
gebra coincides. In particular, when m = 0, we have the usual Lie subalgebra of g`∞, denoted

b∞ (see [K]) (resp. b̃∞, see [W]). Given λ ∈ (b
[m]
∞ )∗0, denote L(b

[m]
∞ , λ) the irreducible highest

weight module over b
[m]
∞ with highest weight λ.

For each λ ∈ (b
[m]
∞ )∗0, we let

ci = λ(ui), (2.7)

bλ
(j)
0 = λ(2ujE0,0) (j odd),

bλ
(j)
i = λ(ujEi,i − (−u)jE−i,−i),

bH
(j)
i = ujEi,i − ujEi+1,i+1 + (−u)jE−i−1,−i−1 − (−u)jE−i,−i,

bH
(j)
0 = 2(ujE0,0 − ujE−1,−1 − ujE1,1) + uj , (j even),

bH
(j)
0 = (2ujE0,0 − ujE−1,−1 − ujE1,1) + uj , (j odd),

bh
(j)
i = λ(bH

(j)
i ) = bλ

(j)
i −

bλ
(j)
i+1,

bh
(j)
0 = λ(bH

(j)
0 ) = −2 bλ

(j)
1 + 2cj (j even),

bh
(j)
0 = λ(bH

(j)
0 ) = bλ

(j)
0 −

bλ
(j)
1 + cj (j odd),

where i ∈ N and 0 ≤ j ≤ m. The bλ
(i)
j are called the labels and ci are the central charges of

L(b
[m]
∞ , λ) or L(b̃

[m]
∞ , λ).

Now consider the following C-bilinear form on Rm[t, t−1]:

C(umvi, u
nvj) = um(−un)(−1)iδi,1−j . (2.8)

Denote by c̄
[m]
∞ the Lie subalgebra of g`

[m]
∞ which preserves the bilinear form C( , ). We have

c̄[m]
∞ = {(aij(u))i,j∈Z ∈ g`[m]

∞ | aij(u) = (−1)i+j+1a1−j,1−i(−u) } .

Denote by c
[m]
∞ = c̄

[m]
∞ ⊕ Rm the central extension of c̄

[m]
∞ given by the restriction of the

2-cocycle (2.2), defined in g`
[m]
∞ . This subalgebra inherits from ĝ`

[m]

∞ the principal Z-gradation
and the triangular decomposition, (see [KWY] and [K] for notation)

c[m]
∞ = ⊕j∈Z(c[m]

∞ )j c[m]
∞ = (c[m]

∞ )+ ⊕ (c[m]
∞ )0 ⊕ (c[m]

∞ )− .

In particular when m = 0, we have the usual Lie subalgebra of g`∞, denoted by c∞.

Given λ ∈ (c
[m]
∞ )∗0, denote by L(c

[m]
∞ ;λ) the irreducible highest weight module over c

[m]
∞ with

highest weight λ. For each λ ∈ (c
[m]
∞ )∗0, we let:

4



ci = λ(ui),

cλ
(i)
j = λ(uiEj,j − (−u)iE1−j,1−j),

cH
(i)
j = uiEj,j − ujEj+1,j+1 + (−u)iE−j,−j − (−u)iE1−j,1−j , (2.9)

cH
(i)
0 = (uiE0,0 − uiE1,1) + ui, (i even)

ch
(i)
j = cλ

(i)
j −

cλ
(i)
1+j ,

ch
(i)
0 = cλ

(i)
1 + ci (i even), (2.10)

where j ∈ N and i = 0, · · · ,m. For later use, it is convenient to put ch
(i)
0 = ci (i odd),

i = 0, · · · ,m.

The cλ
(i)
j are called the labels and ci are the central charges of L(c

[m]
∞ , λ).

Now consider the following C−bilinear form on Rm[t, t−1]:

D(umvi, u
nvj) = um(−u)nδi,1−j . (2.11)

Denote by d
[m]
∞ the Lie subalgebra of g`

[m]
∞ which preserves the bilinear form D(·, ·). We have

d̄[m]
∞ = {(ai,j(u))i,j∈Z ∈ g`[m]

∞ : ai,j(u) = −a1−j,1−i(−u)}.

Denote by d
[m]
∞ = d̄

[m]
∞ ⊕Rm the central extension of d̄

[m]
∞ given by the restriction of the 2-cocylcle

(2.2), defined in g`
[m]
∞ . This subalgebra inherits from ĝ`

[m]

∞ the principal Z-gradation and the
triangular decomposition (see [KR2] and [FKRW] for notation),

d[m]
∞ = ⊕j∈Z(d[m]

∞ )j , d[m]
∞ = (d[m]

∞ )+ ⊕ (d[m]
∞ )0 ⊕ (d[m]

∞ )−.

Given λ ∈ (d
[m]
∞ )∗0, denote L(d

[m]
∞ , λ) the irreducible highest weight module over d

[m]
∞ with highest

weight λ.

For each λ ∈ (d
[m]
∞ )∗0, we let

ci = λ(ui), (2.12)

dλ
(j)
i = λ(ujEi,i − (−u)jE1−i,1−i),

dH
(j)
i = ujEi,i − ujEi+1,i+1 + (−u)jE−i,−i − (−u)jE1−i,1−i,

dH
(j)
0 = ((−u)jE0,0 + (−u)jE−1,−1 − ujE2,2 − ujE1,1) + 2uj ,

dh
(j)
i = λ(dH

(j)
i ) = dλ

(j)
i −

dλ
(j)
i+1,

dh
(j)
0 = λ(dH

(j)
0 ) = −dλ(j)1 −

dλ
(j)
2 + 2cj ,

where i ∈ N and 0 ≤ j ≤ m. The dλ
(i)
j are called the labels and ci are the central charges of

L(d
[m]
∞ , λ). In particular, when m = 0 we have the usual d̄∞ = d̄

[0]
∞ , d∞ = d

[0]
∞ , cf. [K]. In this

case, we drop the superscript [0].
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3 The Lie algebra Sq,N
Consider C[z, z−1] the Laurent polynomial algebra in one variable. We denote Saq the associative
algebra of quantum pseudo-differential operators. Explicitly, let Tq denote the operator on
C[z, z−1] given by

Tqf(z) = f(qz),

where q ∈ C× = C\{0}. An element of Saq can be written as a linear combination of operators

of the form zkf(Tq), where f is a Laurent polynomial in Tq. The product in Saq is given by

(zmf(Tq))(z
kg(Tq)) = zm+kf(qkTq)g(Tq). (3.1)

Denote Sq the Lie algebra obtained from Saq by taking the usual commutator. Take S ′q :=
[Sq,Sq]. It follows:

Sq = S ′q ⊕ CT 0
q (direct sum of ideals).

Let N be a positive integer. As of this point, we shall denote by MatNA the associative
algebra of all N ×N matrices over an algebra A and Eij the standard basis of MatNC.

Let Saq,N = Saq ⊗MatNC be the associative algebra of all quantum matrix pseudodifferential

operators, namely the operators on CN [z, z−1] of the form

E = ek(z)T
k
q + ek−1(z)T

k−1
q + · · ·+ e0(z), where ek(z) ∈ MatNC[z, z−1]. (3.2)

In a more useful notation, we write the matrix of pseudodifferential operators as linear
combinations of elements of the form zkf(Tq)A, where f is a Laurent polynomial, k ∈ Z and
A ∈ MatNC. The product in Saq,N is given by

(zmf(Tq)A)(zkg(Tq)B) = zm+kf(qkTq)g(Tq)AB. (3.3)

Let Sq,N denote the Lie algebra obtained from Saq,N with the bracket given by the conmutator,
namely:

[zmf(Tq)A, z
kg(Tq)B] = zm+k(f(qkTq)g(Tq)AB − f(Tq)g(qmTq)BA). (3.4)

Taking the trace form tr0(
∑

j cjw
j) = c0, and denoting by tr the usual trace in MatMC, we

obtain, by a general construction (cf. Sec. 1.3 in [KR1]), the following 2-cocylce in Sq,N

ψ(zmf(Tq)A, z
kg(Tq)B) = δm,−kmtr0(f(q−mTq)g(Tq)) tr(AB), (3.5)

where r, s ∈ Z, f, g ∈ C[w,w−1], A, B ∈ MatNZ. Let

Ŝq,N = S ′q,N ⊕ CC (3.6)

denote the central extension of S ′q,N by a one-dimensional center CC corresponding to the two-

cocycle ψ. The bracket in Ŝq,N is given by

[zmf(Tq)A, z
kg(Tq)B] = zm+k(f(qkTq)g(Tq)AB − f(Tq)g(qmTq)BA) (3.7)

+ ψ(zmf(Tq)A, z
kg(Tq)B)C.
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The elements zkTmq Eij (k ∈ Z,m ∈ Z, i, j ∈ {1, · · · , N}) form a basis of Sq,N . We define
the weight on Sq,N by

wtzkf(Tq)Eij = kN + i− j. (3.8)

This gives the principal Z -gradation of Saq,N , Sq,N and Ŝq,N ,

Saq,N = ⊕j εZ(Sq,N )j , Ŝq,N = ⊕j εZ(Ŝq,N )j .

An anti-involution σ of Saq,N is an involutive anti-automorphism of Saq,N , ie, σ2 = Id, σ(ax+by) =
aσ(x) + bσ(y) and σ(xy) = σ(y)σ(x), for all a, b ∈ C and x, y ∈ Saq,N . From now on we will
assume that |q| 6= 1.

The following Corolary was proved in [BB].

Corollary 3.1. Let σ = σA,B,c,r,N be given by

σ(Eii) = EN+1−i,N+1−i

σ(TqEii) = BT−1q EN+1−i,N+1−i

σ(zEii) = zAT rqEN+1−i,N+1−i (3.9)

σ(z−1Eii) = A−1qrz−1T−rq EN+1−i,N+1−i

σ(Eij) =

{
ci,jEN+1−j,N+1−i if i > j

c−1j,i EN+1−j,N+1−i if i < j

where A, B, ci,j , r ∈ C, A2(Bq−1)r = 1, ci,j verify the following relations

cij = ci,i−1ci−1,i−2 · · · cj+1,j (3.10a){
ci,jcN+1−j,N+1−i = 1 if i ≤ n or j > n

ci,jc
−1
N+1−i,N+1−j = ±1 if i > n and j ≤ n.

(3.10b)

Then σ = σA,B,c,r,N extends to an anti-involution on Saq,N which preserves the principal Z-
gradation.

Remark 3.2. For each n < N , a Z-gradation preserving anti-involution can be constructed in a
similar way. In [BB] all anti-involutions of Saq,N preserving the Z-gradation were classified.

Let SA,B,c,r,Nq,N denote the Lie subalgebra of Sq,N fixed by minus σA,B,c,r,N , namely

SA,B,c,r,Nq,N = {a ∈ Sq,N |σA,B,c,r,N (a) = −a}, (3.11)

where σA,B,c,r,N is the anti-involution given by Corolary 3.1.

Lemma 3.3. The Lie algebras SA,B,c,r,Nq,N for arbitrary choices of A, B and c are isomorphic to

Sε,q,1,r,Nq,N , where ε is 1 or −1, and 1 is the matrix c with ci = 1 except for the fixed points that
are 1 or −1, which keep their sign.
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Thus, the anti-involution is of the following form:

σε,r,N (zkh(Tq)Ei,j) = (ε)kqk(k−1)r/2zkh(q1−kT−1q )T krq EN+i−j,N+1−i. (3.12)

where ε = ±1, r ∈ C×. For simplicity, denote Sσ,Nq,N the Lie subalgebras of Sq,N fixed by minus
σε,r,N .

We will denote

δm,even =

{
1 if m is even

0 otherwise
.

Sσ,Nq,N inherits a Z-gradation from Sq,N since σ preserves the principal Z−gradation of Saq,N . Thus

Sσ,Nq,N = ⊕j ∈Z(Sσ,Nq,N )j . We can now give a description of (Sσ,Nq,N )j . By the division algorithm, let
j = kN + p with 0 ≤ p ≤ N − 1 . Thus,

If p 6= 0

(Sσ,Nq,N )j ={zk(q(k−1)/2Tq)rk/2(f(q(k−1)/2Tq)Ei,i−p

− (ε)kf((q(k−1)/2Tq)
−1)EN+1−i+p,N+1−i)|f(w) ∈ C[w,w−1], 1 + p ≤ i ≤ N,

i 6= (N + 1 + p)/2}⋃
δN+p,odd{zk(q(k−1)/2Tq)rk/2g(q(k−1)/2Tq)E(N+1+p)/2,(N+1−p)/2|g(w) ∈ C[w,w−1]ε,k}⋃
{zk+1(qk/2Tq)

r(k+1)/2(h(qk/2Tq)Ei,N−p+i

− (ε)k+1h(q−k/2T−1q )Ep+1−i,N+1−i|h(w) ∈ C[w,w−1], 1 ≤ i ≤ p, i 6= (1 + p)/2}⋃
δp,odd{zk+1(qk/2Tq)

r(k+1)/2g̃(qk/2Tq)E(p+1)/2,(2N+1−p)/2|g̃(w) ∈ C[w,w−1]ε,k+1},

and for p = 0

(Sσ,Nq,N )j ={zk(q(k−1)/2Tq)rk/2(f(q(k−1)/2Tq)Ei,i

− (ε)kf((q(k−1)/2Tq)
−1)EN+1−i,N+1−i)|f(w) ∈ C[w,w−1], 1 ≤ i ≤ [N/2]}⋃

δN,odd{z−k(q(−k−1)/2Tq)−rk/2g(q(−k−1)/2Tq)E(N+1)/2,(N+1)/2|g(w) ∈ C[w,w−1]ε,k}

where C[w,w−1]ε,k denotes the set of Laurent polynomials such that f(w−1) = −(ε)kf(w).

We denote again ψ the restriction of the 2-cocycle in (3.5) to Sσ,Nq,N . Denote by Ŝσ,Nq,N the

central extension of Sσ,Nq,N by CC corresponding to the 2-cocycle ψ. Ŝσ,Nq,N is a Lie subalgebra of

Ŝq,N by definition.

4 Parabolic subalgebras of Sσ,Nq,N

In order to characterize the quasifiniteness of the highest weight modules (HWMs) of Ŝσ,Nq,N we
will study the structure of its parabolic subalgebras and apply general results for quasifinite
representations of Z-graded Lie algebras obtained in [KL]. We refer to [KL] for proofs and
details. Let g be a Z-graded Lie algebra over C,
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g =
⊕
j ∈Z

gj , [gi, gj ] ⊂ gi+j ,

where gi is not necessarily of finite dimension. Let g± = ⊕j>0g±j . A subalgebra p of g is called
parabolic if it contains g0 ⊕ g+ as a proper subalgebra, that is

p =
⊕
j ∈Z

pj , where pj = gj for j ≥ 0, and pj 6= 0 for some j < 0.

Following [KL], we assume the following properties of g:

(P1) g0 is commutative,

(P2) if a ε g−k (k > 0) and [a, g1] = 0, then a = 0.

Given a ∈ g−1, a 6= 0, we define pa = ⊕j εZpj , where paj = gj for all j ≥ 0, and

pa−1 =
∑

[. . . [[a, g0], g0], . . . ], pa−k−1 = [pa−1, p
a
−k].

Lemma 4.1. (a) For any parabolic subalgebra p of g, p−k 6= 0, k > 0, implies
p−k+1 6= 0.

(b) pa is the minimal parabolic subalgebra containing a.

(c) ga0 := [pa, pa] ∩ g0 = [a, g1]

Proof. Cf. [KL] Lemmas 2.1 and 2.2.

In [BKLY], for the case of the central extension of the Lie algebra of matrix differential
operators on the circle, the existance of some parabolic subalgebras p such that pj = 0 for j � 0
was observed. Having in mind that example, they give the following definition.

Definition 4.2. (a) A parabolic subalgebra p is called nondegenerate if p−j has finite codi-
mension in g−j , for all j > 0.

(b) An element a ∈ g−1 is called nondegenerate if pa is nondegenerate.

We will also require the following condition on g.

(P3) If p is a nondegenerate parabolic subalgebra of g, then there exists an nondegenerate
element a such that pa ⊆ p.

Now take a parabolic subalgebra p of Ŝσ,Nq,N . Observe that for each j ∈ N, j = kN + p with
0 ≤ p ≤ N − 1, we have

p−j = {z−k(q(−k−1)/2Tq)−rk/2(f(q(−k−1)/2Tq)Ei,i+p (4.1)

− (ε)kf(q(k+1)/2T−1q )EN+1−i−p,N+1−i)|f(w) ∈ Ii−j , 1 ≤ i ≤ N − p, i 6= (N + 1− p)/2}⋃
δN−p,odd{z−k(q(−k−1)/2Tq)−rk/2g(q(−k−1)/2Tq)E(N+1−p)/2,(N+1+p)/2|g(w) ∈ I

(N+1−p)/2
−j }⋃

{z−k−1(q−1−k/2Tq)−r(k+1)/2(h(q−1−k/2Tq)Ei,i−N+p

− (ε)(k+1)h((q−1−k/2Tq)
−1)E2N+1−i−p,N+1−i)|h(w) ∈ Ii−j , N + 1− p ≤ i ≤ N, i 6= (2N + 1− p)/2}⋃

δp,odd{z−k−1(q−1−k/2Tq)−r(k+1)/2g̃(q−1−k/2Tq)E(2N+1−p)/2,(1+p)/2|g̃(w) ∈ I
(2N+1−p)/2
−j },
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where Ii−j is a subspace of C[w,w−1], I
(N+1−p)/2
−j is a subspace of C[w,w−1]ε,k and I

(2N+1−p)/2
−j

is a subspace of C[w,w−1]ε,k+1.

Let us check conditions (P1),(P2) and (P3) for Ŝσ,Nq,N .

Observe that (P1) is immediate from the definition of (Ŝσ,Nq,N )0. (P2) follows from computing
the following bracket

[zl(q(l−1)/2Tq)
lr/2(f(Tq)Ei,j−(ε)lf(T−1q )EN+1−j,N+1−i), Ej,j−1 − EN+2−j,N+1−j ]

and the particular case

[zl(q(l−1)/2Tq)
lr/2(f(Tq)EN/2,N/2−(ε)lf(T−1q )EN/2+1,N/2+1), EN/2,N/2−1 − EN/2+2,N/2+1].

To prove (P3), let f(w), g(w) be Laurent polynomials in the variable w with f ∈ Ii−j , and let
p−j with j = kN + p as in (4.1). Let us first consider 1 ≤ i ≤ N − p. If p = 0, suppose
i 6= (N + 1)/2. We compute the following bracket

[z−k(q(−k−1)/2Tq)
−rk/2(f(q(−k−1)/2Tq)Ei,i−(ε)kf(q(k+1)/2T−1q )EN+1−i,N+1−i),

g(q−1/2Tq)Ei,i − g(q1/2T−1q )EN+1−i,N+1−i]

So, Ii−j satisfies

AjI
i
−j ⊆ Ii−j , (4.2)

where Aj = {g(qk/2w)− g(q−k/2w) : g(w) ∈ C[w,w−1]}.
If p 6= 0, suppose that i 6= N + 1− i. Computing the following bracket

[z−k(q(−k−1)/2Tq)
−rk/2(f(q(−k−1)/2Tq)Ei,i+p−(ε)kf(q(k+1)/2T−1q )EN+1−i−p,N+1−i),

g(q−1/2Tq)Ei,i − g(q1/2T−1q )EN+1−i,N+1−i],

we see that Ii−j satisfies (4.2) for Aj = {g(qk/2w) : g(w) ∈ C[w,w−1]}.
Now, if N + 1− p ≤ i ≤ N , we see by computing

[z−k−1(q−1−k/2Tq)
−r(k+1)/2(f(q−1−k/2Tq)Ei,i−N+p−(ε)k+1f(q1+k/2T−1q )E2N+1−i−p,N+1−i),

g(q−1/2Tq)Ei,i − g(q1/2T−1q )EN+1−i,N+1−i]

that Ii−j also satisfies (4.2), this time for Aj = {g(q(−1−k)/2w) : g(w) ∈ C[w,w−1]}.
Analogous results can be obtained if N − p is odd for I

(N+1−p)/2
−j by computing

[z−k(q(−k−1)/2Tq)
−kr/2(f(q(−k−1)/2Tq)E(N+1−p)/2,(N+1+p)/2,

g(q−1/2Tq)Ei,i − g(q1/2T−1q )EN+1−i,N+1−i],

and if p is odd for I
(2N+1−p)/2
−j , computing

[z−k−1(q−1−k/2Tq)
−r(k+1)/2(f(q−1−k/2Tq)E(2N+1−p)/2,(1+p)/2,

g(q−1/2Tq)Ei,i − g(q1/2T−1q )EN+1−i,N+1−i].

Thus, since C[w,w−1] is a principal ideal domain, we have proven the following
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Lemma 4.3. For j > 0,

(a) Ii−j, I
(N+1−p)/2
−j and I

(2N+1−p)/2
−j are ideals;

(b) if Ii−j 6= 0, I
(N+1−p)/2
−j 6= 0 and I

(2N+1−p)/2
−j 6= 0, then they have finite codimension in

C[w,w−1].

Let [k] denote the integer part of a number k. Now we have the following important Propo-
sition.

Proposition 4.4. (a) Any nonzero element d ∈ (Ŝσ,Nq,N )−1 is nondegenerate.

(b) Any parabolic subalgebra of Ŝσ,Nq,N is nondegenerate.

(c) Let d ∈ (Ŝσ,Nq,N )−1,

d =

[N/2]+δN,even∑
i=1

fi(q
−1/2Tq)Ei,i+1 − fi(q1/2T−1q )EN−i,N+1−i

+ δN,eveng(q−1/2Tq)EN/2,N/2+1 + z−1(q−1Tq)
−r/2h(q−1Tq)EN,1,

where fi(w), g(w) and h(w) are Laurent polynomials such that g(w−1) = −g(w) and
h(w−1) = −εh(w). Then

(Ŝσ,Nq,N )d0 : = [(Ŝσ,Nq,N )1, d]

= span{fk−1(q−1/2Tq)(q−1/2Tq)l(Ek−1,k−1 − Ek,k)
+ fk−1(q

1/2T−1q )(q−1/2Tq)
−l(EN−k+1,N−k+1 − EN+2−k,N+2−k) :

2 ≤ k ≤ [N/2] + δN,odd, l ∈ Z≥0}
∪ δN,even{g(q−1/2Tq)((q

−1/2Tq)
n − (q−1/2Tq)

−n)(EN/2,N/2 − EN/2+1,N/2+1) :

n ∈ Z≥0, g ∈ C[w,w−1]ε,0}
∪ {h(Tq)(T

m
q − εT−mq )EN,N − h(q−1Tq)((q

−1Tq)
m − ε(q−1Tq)−m)E1,1

+ tr0(εh(q1/2w−1)(wm − εw−m))C : m ∈ Z, h ∈ C[w,w−1]ε,1}.

Proof. Let 0 6= d ∈ (Ŝσ,Nq,N )−1, by Lemma (4.1), part (a), pd−j 6= 0 for all j ≥ 1. So,

by Lemma (4.3) part (b), part (a) follows. Let p be any parabolic subalgebra of Ŝσ,Nq,N , us-

ing Lemma 2.1 and 2.2 in [KL], we get p−1 6= 0. Then using (a) and pd ⊆ p (for any
nonzero d ∈ p−1) we obtain (b). Finally, part (c) follows by computing the commutators
[d, a] with a = (q−1/2Tq)

lEk,k−1 − (q−1/2Tq)
−lEN+2−k,N+1−k with 2 ≤ k ≤ [N/2] + δN,odd; a =

δN,even((q−1/2Tq)
n − (q−1/2Tq)

−n)EN/2+1,N/2 and a = zT
r/2
q (Tmq − εT−mq )E1,N , with l, n, m ∈

Z≥0.

Summarizing, we have proven that the following properties are satisfied by Ŝσ,Nq,N :

(P1) (Ŝσ,Nq,N )0 is commutative;
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(P2) if a ∈ (Ŝσ,Nq,N )−j (j > 0) and [a, (Ŝσ,Nq,N )1] = 0, then a = 0;

(P3) if p is a nondegenerate parabolic subalgebra of Ŝσ,Nq,N , then there exists a nondegenerate
element a, such that pa ⊆ p.

Observe that (P3) follows from Proposition (4.4), parts (a) and (b).

5 Characterization of quasifinite highest weight modules of Ŝσ,Nq,N

Now, we begin our study of quasifinite representations over the lie algebras Ŝσ,Nq,N . Let g be a Lie
algebra. For a Lie algebra g, a g-module V is called Z-graded if V = ⊕j ∈ZVj and giVj ⊂ Vi+j .
A Z-graded g-module V is called quasifinite if dimVj <∞ for all j.

Given λ ∈ g∗0, a highest weight module is a Z-graded g-module V (g, λ) generated by a
heighest weight vector vλ ∈ V (g, λ) which satisfies

hvλ = λ(h)vλ (h ∈ g0), g+vλ = 0.

A nonzero vector v ∈ V (g, λ) is called singular if g+vλ = 0. The Verma module over g is defined
as usual:

M(g, λ) = U(g)⊗U(g0⊕g+) Cλ,

where Cλ is the one-dimensional (g0 ⊕ g+)-module given by h 7→ λ(h) if h ∈ g0, g+ 7→ 0, and
under the action of g is induced by the left multiplication in U(g). Here and further U(g) stands
for the universal enveloping algebra of the Lie algebra g. Any highest-weight module V (g, λ) is
a quotient module of M(g, λ). The irreducible module L(g, λ) is the quotient of M(g, λ) by the
maximal proper graded module. We shall write M(λ) and L(λ) in place of M(g, λ) and L(g, λ)
if no ambiguity may arise.

Consider a parabolic subalgebra p = ⊕j ∈Zpj of g and let λ ∈ g∗0 be such that λ|g0∩[p,p] = 0.
Then the (g0 ⊕ g+)-module Cλ extends to a p-module by letting pj act as 0 for j < 0, and we
may construct the highest-weight module

M(g, p, λ) = U ⊗U(p) Cλ
called the generalized Verma module. Clearly all these heighest weight modules are graded.

From now on we will consider λ ∈ ĝ∗0. By Theorem 2.5 in [K], we have the following.

Theorem 5.1. The following conditions on λ ∈ g∗0 are equivalent:

1. M(λ) contains a singular vector a.vλ in M(λ)−1 where a is nondegenerate;

2. there exists a nondegenerate element a ∈ g−1, such that λ([g1, a]) = 0;

3. L(λ) is quasifinite;

4. there exists a nondegenerate element a ∈ g−1, such that L(λ) is the irreducible quotient
of the generalized Verma module M(g, pa, λ).
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Consider ĝ = Ŝσ,Nq,N . A functional λ ∈ (Ŝσ,Nq,N )∗0 is described by its labels,

4i,l = λ((q−1/2Tq)
lEi,i − (q−1/2Tq)

−lEN+1−i,N+1−i),

4N,l = λ((T lq + T−lq )EN,N − ((q−1Tq)
l + (q−1Tq)

−l)E1,1)

with l ∈ Z≥0, 1 < i ≤ [N/2] + δN,even and the central charge c = λ(C). We shall consider the
generating series

4i(x) =
∑
l∈Z

x−l 4i,l 1 < i ≤ [N/2] + δN,even and 4N (x) =
∑
l∈Z

x−l 4N,l . (5.1)

Recall that a quasipolynomial is a linear combination of functions of the form p(x)qαx, where
p(x) is a polynomial and α ∈ C. That is, it satisfies a nontrivial linear differential equation
with constant coefficients. We also have the following well-known proposition.

Proposition 5.2. Given a quasipolynomial P , and a polynomial B(x) =
∏
i(x−Ai), take b(x) =∏

i(x− ai) where ai = eAi, then b(x)(
∑

n∈Z P (n)x−n) = 0 if and only if B(d/dx)P (x) = 0.

If the polynomial B is even we call P an even quasipolynomial. As a result, one has the
following characterization of quasifinite heighest weight modules over ĝ.

Theorem 5.3. A Ŝσ,Nq,N -module L(λ) is quasifinite if and only if one of the following conditions
holds:

1. There exist monic polynomials b1(w), · · · , b[N/2]−δN,even(x), bεN (w) such that

bi(x)(4i+1(x)−4i (x)) = 0 for 1 < i ≤ [N/2]− δN,even and (5.2)

bεN (x)(4N (x) + 2c) = 0 (5.3)

Moreover, if N is even there exists a monic polynomial bN/2(x) such that

bN/2(x)(41+N/2(x)−4N/2(x)) = 0 (5.4)

2. There exist quasipolynomials Pi and even quasipolynomials P εN such that (n ∈ N)

Pi(n) = 4i,n −4i+1,n for 1 < i ≤ [N/2]− δN,even and (5.5)

P εN (n) = 4N,n for n 6= 0 and P εN (0) = −2c. (5.6)

Moreover, if N is even there exists an even quasipolynomial PN/2 such that

PN/2(n) = 4N/2,n −4N/2+1,n. (5.7)

Proof. From Proposition 4.4 part (c) and Theorem 5.1 part (b), we have that L(λ) is quasifinite
if and only if there exist (monic) Laurent polynomials

hε(w) =

p∑
t=0

ct(w
t − εw−t), g(w) =

u∑
s=0

ds(w
s − w−s), fi(w) =

mi∑
v=−mi

ai,vw
v
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for 1 < i ≤ [N/2]− δN,even, such that for each l, n, m εZ≥0, we have

λ(fk−1(q
−1/2Tq)(q

−1/2Tq)
l(Ek−1,k−1 − Ek,k)

+ fk−1(q
1/2T−1q )(q−1/2Tq)

−l(EN−k+1,N−k+1 − EN+2−k,N+2−k)) = 0

with 1 < k ≤ [N/2]− δN,even,

λ(h(Tq)(T
m
q − εT−mq )EN,N − h(q−1Tq)((q

−1Tq)
m − ε(q−1Tq)−m)E1,1

+ tr0(εh(q1/2w−1)(wm − εw−m))C) = 0,

and

δN,evenλ(g(q−1/2Tq)((q
−1/2Tq)

n − (q−1/2Tq)
−n)(EN/2,N/2 − EN/2+1,N/2+1)) = 0.

These conditions can be rewritten as follows:

0 =

mi∑
v=−mi

ai,v(4i,v+l −4i+1,v+l) (5.8)

for all 1 < i ≤ [N/2]− δN,even and l ∈ Z≥0, and

0 =

p∑
t=0

ct(4N,t+m − ε4N,t−m) + tr0(εh(q1/2w−1)(wm − εw−m))C) = 0 (5.9)

with m ∈ N. Finally, if N is even,

0 =
u∑
s=0

ds(4N/2,s+n −4N/2,−s+n +41+N/2,−s+n −41+N/2,s+n) (5.10)

with n ∈ Z≥0. Let

Fk(x) = 4k(x)−4k+1(x)

for 1 < k ≤ [N/2]− δN,even.
Let us first analyze (5.8). Multiplying both sides by x−l and adding over l ∈ Z, we get

0 =

mi∑
v=−mi

ai,vx
vFi(x) = fi(x)Fi(x). (5.11)

We construct b̃i(x) = xmifi(x) ∈ C[x]. The equivalence of (1) and (2) for this case follows
from the fact that (5.2) holds since it also holds multiplying both sides of this formula by
xmi with mi ≥ 0. Due to Proposition 5.2, the existence of the qualispolynomials Pi(x) for
1 < i ≤ [N/2]− δN,even is clear.

Let us now study (5.9). Making use of the definition of tr0 given in Section 3 and the fact
that 4N,l = 4N,−l, we get

0 =

p∑
t=0

ct(4N,t+m − ε4N,t−m)− 2εcmc

Multiplying both sides by xm − εx−m and adding over m ∈ Z≥0, we obtain
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0 =

p∑
t=0

ct(x
−t − εxt)4N (x)−

∑
m∈Z

(xm − εx−m)(2εcmc) = −εhε(x)(4N (x) + 2c).

Once again, (5.3) holds since it also holds multiplying both sides of this formula by xp with
p ≥ 0. Now, bε(x) = xphε(x) ∈ C[x]. Since hε(x−1) = −εhε(x) it is easy to see that if α 6= 0
is a root of bε(x), then 1/α is also a root of bε(x). Now we can apply Proposition 5.2 and due
to the relationship between the roots of B and b in this proposition it follows that the Bε(x)
corresponding to our bε(x) is an even polynomial. This implies that the quasipolynomial P εN (x)
such that P εN (n) = 4N,n for n 6= 0 and P (0) = 2c is even, finishing the proof for this case.

Finally, let us analyze 5.10 for the case N even. Proceding similarly as with the previous
equation, we multiply by (xn − x−n) and add over n ∈ Z≥0. Using the fact that 41+N/2,l =
−4N/2,−l we obtain

0 =

u∑
s=0

ds(x
s − x−s)(4N/2(x)−4N/2+1(x)) = g(x)FN/2(x).

Now b̂N/2(x) = xug(x) ∈ C[x]. Making use once again of Proposition 5.2 we prove that
PN/2(x) such that PN/2(n) = 4N/2,n −4N/2+1,n for n ∈ Z is an even quasipolynomial.

Given a quasifinite irreducible highest weight Ŝσ,Nq,N -module V by Theorem 5.3, we have that
there either exist a quasipolynomials Pi(x) (for 1 ≤ i ≤ [N/2]− δN,even) satisfying (5.5), an even
quasipolynomials P εN (x) verifying (5.6), and if N is even, PN/2(x) satisfying (5.7). We will write

Pi(x) =
∑
e∈C

pe,i(x)qeix, (5.12)

P εN (x) =
∑
j∈C

pεj,N (x) coshq(e
+
j x) +

∑
j∈C

qεj,N (x) sinhq(e
−
j x) and

PN/2(x) =
∑
j∈C

pj,N/2(x) coshq(e
+
j x) +

∑
j∈C

qj,N/2(x) sinhq(e
−
j x),

with pj,N (x) and pj,N/2(x) (respectively, qj,N (x) and qj,N/2(x)) even (respectively, odd) polyno-

mials, pe,i(x) a polynomial, e, e+j and e−j distinct complex numbers. Also, coshq(x) = qx+q−x

2

and sinhq = qx−q−x
2 . The last two expresions in (5.12) are unique up to a sign of e+j or a si-

multaneous change of signs of e−j and the respective qj(x). We call e+j (respectively, e−j ), even
type (respectively odd type) exponents of V with multiplicities pj(x) (respectively, qj(x)). As
in [KWY], we denote e+ the set of even type exponents e+j with multiplicity pj(x) and by e−

the set of odd type exponents e−j with multiplicity qj(x). Therefore, the pair (e+; e−) uniquely
determines V . Analogously for the first formula, we call ei the exponents of V with multiplicities
pe,i(x), and we denote e the set of exponents ei with multiplicity pe,i(x). We will denote this

module by L(Ŝσ,Nq,N ; e; e+; e−).

15



6 Interplay between Ŝσ,Nq,N and the infinite rank classical Lie al-
gebras

In this section we will discuss the connection between Ŝσ,Nq,N and the Lie algebra of infinite
matrices with finitely many nonzero diagonals over the algebra of truncated polynomials and
its classical Lie subalgebras. Let O be the algebra of all holomorphic functions on C× with the
topology of uniform convergence on compact sets, and denote

Oε,j = {f ∈ O|f(w) = −εjf(w−1)}.

Let R be an associative algebra over C and denote R∞ a free R-module with a fixed basis
{vj}j∈Z and denote Rm = C[t]/(tm+1) where m ∈ Z+.

We consider the vector space SOaq,N spanned by the quantum pseudo differential operators (of

infinite order) of the form zkf(Tq)Ei,j , where f ∈ O. The bracket in Sq,N extends to (Sq,N )O.

In a similar fashion, we define a completion (Sσ,Nq,N )O of Sσ,Nq,N consisting of all pseudo differential
operators of the form

{zk(q(k−1)/2Tq)rk/2(f(q(k−1)/2Tq)Ei,j − (ε)kf((q(k−1)/2Tq)
−1)EN+1−j,N+1−i) :

k ∈ Z, 1 ≤ i < j ≤ N, f ∈ O},

and the opposite diagonal

{zk(q(k−1)/2Tq)rk/2(f(q(k−1)/2Tq)Ei,N+1−i : k ∈ Z, 1 ≤ i ≤ N, f ∈ Oε,k}.

Then the 2-cocycle ψ on Sσ,Nq,N extends to a 2-cocycle ψ on (Sσ,Nq,N )O. Recall that S ′q,N denotes

the derived algebra of Sq,N . Let ŜOq,N = SO′q,N + CC be the corresponding central extension.

Given s ∈ C, we have (cf. (3.2) in [?]) the embedding ϕ
[m]
s : Sq,N −→ g`

[m]
∞ (ϕ

[m]
s :

(Sq,N )O −→ g`
[m]
∞ ) given by

ϕ[m]
s (zkf(Tq)Ei,j) =

∑
l∈Z

f(sq−l+t)E(l−k)N−i+1,lN−j+1

which are Lie algebra homomorphisms. A restriction of these homomorphisms of Lie algebras to

Sσ,Nq,N gives a family of homomorphisms of Lie algebras ϕ
[m]
s : Sσ,Nq,N −→ g`

[m]
∞ (ϕ

[m]
s : (Sσ,Nq,N )O −→

g`
[m]
∞ ).

For each s ∈ C and k ∈ Z, set

I
[m]
s,k = {f ∈ O : f (i)(sq(k−1)/2+n) = 0 and f (i)(s−1q−(k−1)/2−n) = 0, ∀n ∈ Z, 0 ≤ i ≤ m}

and
Ĩ
[m]
s,k,ε = {f ∈ Oε,j : f (i)(sq(k−1)/2+n) = 0 ∀n ∈ Z, 0 ≤ i ≤ m}.

Let

J [m],r,ε
s = ⊕k∈Z{zk(q(k−1)/2Tq)rk/2(f(q(k−1)/2Tq)Ei,j − (ε)kf((q(k−1)/2Tq)

−1)EN+1−j,N+1−i) :

1 ≤ i < j ≤ N, f ∈ I [m]
s,k }

⊕ ⊕k∈Z {zk(q(k−1)/2Tq)rk/2(f(q(k−1)/2Tq)Ei,N+1−i : 1 ≤ i ≤ N, f ∈ Ĩ [m]
s,k,ε}.
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Using the Taylor formula on ϕ
[m]
s : Sσ,Nq,N −→ g`

[m]
∞ , it follows that

kerϕ[m]
s = J [m],r,ε

s . (6.1)

Choose a branch of log q. Let τ = log q/2πi. Then any s ∈ C× is uniquely written as s = qa,
with a ∈ C/τ−1Z. Fix ~s = (s1, · · · , sM ) ∈ CM such that if each si = qai , we have

ai − aj /∈ Z + τ−1Z for i 6= j, (6.2)

and ~m = (m1, · · · ,mM ) ∈ ZM≥0. Let g`
[~m]
∞ = ⊕Mi=1g`

[mi]
∞ . Consider the homomorphism

ϕ[~m]
s = ⊕Mi=1ϕ

[mi]
si : (Sσ,Nq,N )O −→ g`[~m]

∞ .

Proposition 6.1. Given ~s and ~m as above, we have the exact sequence of Z−graded Lie algebras,
provided that |q| 6= 1 :

0→ J
[~m],r,ε
s → (Sσ,Nq,N )O → g`[~m]

∞ → 0, (6.3)

where J
[~m],r,ε
s = ∩Mi=1J

[mi],r,ε
si .

Proof. The injectivity part is clear from (6.1). For the sake of simplicity, we will prove the

surjectivity of ϕ
[~m]
s for the case M = 1, ~m = m and ~s = s = qa. We will make use of the

well-known fact that for every discrete sequence of points of C and a non-negative integer m
there exists f(w) ∈ O having prescribed values of its first m derivatives at these points. By
conditions (6.2) and |q| 6= 1 and since a /∈ Z/2 we have that {q(n−1)/2+j+a} and {q−(n−1)/2−j−a}
are discrete and disjoint sequences of points in C. Therefore we can find f ∈ O such that every
element tjEa,b is in the image, finishing the proof.

We now intend to extend the homomorphism ϕ
[m]
s to a homomorphism between the central

extensions of the corresponding Lie algebras.

Proposition 6.2. The C−linear map ϕ̂
[m]
s : Ŝσ,Nq,N → ĝ`

[m]

∞ defined by (s = qa),

ϕ̂[m]
s |

(Ŝσ,Nq,N )j
= ϕ[m]

s |(Sσ,Nq,N )j
if j 6= 0, (6.4)

ϕ̂[m]
s (q−n/2Tnq Ei,i − qn/2T−nq EN+1−i,N+1−i) = ϕ[m]

s (q−n/2Tnq Ei,i − qn/2T−nq EN+1−i,N+1−i)

(6.5)

−
m∑
j=1

q(a−1)n + (−1)jq(−a+1)n

qn/2 − q−n/2
(n log q)j

tj

j!
(n 6= 0),

ϕ̂[m]
s (C) = 1 ∈ Rm, (6.6)

is a Lie algebra homomorphism over C.

Proof. It is a straightforward computation restricting the formula ϕ̂
[m]
s in (3.2) of [?], to Ŝσ,Nq,N .

The homomorphism ϕ
[m]
s is defined for any s ∈ C. However, for a ∈ Z/2, it is no longer

surjective. These cases are described by the following propositions.
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Proposition 6.3. For a = 1, we have the following exact sequence of Lie algebras:

0→ J [m],k,ε
s → (Sσ,Nq,N )O → g→ 0

where g ' d̄[m]
∞ if ε = 1 and g ' c̄[m]

∞ if ε = −1.

Proof. We will first prove the case ε = 1. The homomorphism ϕ
[m]
s : Sq,N → g`

[m]
∞ introduced

in [?] is surjective. The anti-involution of Sq,N defined in (3.12) transfers, via ϕ
[m]
s , to an anti-

involution ω : g`
[m]
∞ → g`

[m]
∞ as follows

ω(ukEi,j) = (−u)kE1−j,1−i. (6.7)

Therefore, the Lie algebra of −σ fixed points in Sq,N , explicitly, Sσ,Nq,N , maps surjectively to the

Lie algebra of −ω fixed points in g`
[m]
∞ , explicitly, d̄

[m]
∞ . If ε = −1, the anti-involution ω is as

follows
ω(ukEi,j) = (−1)qj−qi(−u)kE1−j,1−i,

where i = qiN + ri and j = qjN + rj , with 1 ≤ ri ≤ N and 1 ≤ rj ≤ N . As a result of the

surjectivity described, it is enough to show that ω is conjugated by an automorphism T ′ of g`
[m]
∞

to the anti-involution defining c̄
[m]
∞ . To that end, we define

T ′(umEa,b − εqb−qa(−u)mE1−b,1−a) = umEa,b − εa+b(−u)mE1−b,1−a, (6.8)

where a = qaN + ra and b = qbN + rb, with 0 ≤ ra ≤ N − 1 y 0 ≤ rb ≤ N − 1. It is easy to see

that ω is conjugated by T ′ to the anti-involution defining c̄
[m]
∞ .

Proposition 6.4. If a = 1/2 and N is odd, we have the following exact sequence of Lie algebras:

0→ J [m],k,ε
s → (Sσ,Nq,N )O → g→ 0,

where g ' b̄+[m]
∞ if ε = 1 and g ' b̄−[m]

∞ if ε = −1.

Proof. If ε = 1, replace in the proof of the last proposition ω by

ω(ukEi,j) = (−u)kE−N+1−j,−N+1−i. (6.9)

Therefore, the Lie algebra of −σ fixed points in Sq,N , explicitly, Sσ,Nq,N , maps surjectively to the

Lie algebra of −ω fixed points in g`
[m]
∞ . Consequently, it is enough to see that ω is conjugated

by an automorphism T of g`
[m]
∞ to the anti-involution defining b̄

+[m]
∞ . So, we define

T (urEi,j) = urE(−N+1)/2+i,(−N+1)/2+j . (6.10)

It is easy to check that this extends to an automorphism of the algebra g`
[m]
∞ that conjugates ω

to the anti-involution defining b̄
+[m]
∞ . If ε = −1, ω is the following

ω(ukEi,j) = (−1)qi−qj (−u)kE−N+1−j,−N+1−i, (6.11)

where i = qiN + ri and j = qjN + rj , with 1 ≤ ri ≤ N y 1 ≤ rj ≤ N . The automorphism of

g`
[m]
∞ for this case is D = T ◦ T ′, where T is the same that in the previous case and we have

T ′(umEa,b − εqb−qa(−u)mE−b,−a) = umEa,b − εa+b(−u)mE−b,−a, (6.12)

with a = qaN + ra and b = qbN + rb, for 0 ≤ ra ≤ N − 1 and 0 ≤ rb ≤ N − 1. It is easy to see

that ω is conjugated by D to the anti-involution defining b̄
−[m]
∞ .
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Proposition 6.5. If a = 1/2 and N is even, we have the following exact sequence of Lie
algebras:

0→ J [m],k,ε
s → (Sσ,Nq,N )O → d̄[m]

∞ → 0.

Proof. This proof follows the same steps as last proposition. If ε = 1, because ω is the same as
before, it is enough to replace T by

T (urEi,j) = urE−N/2+i,−N/2+j . (6.13)

The rest of the proof is the same for this case. If ε = −1, ω is the same formula as in the last
proposition, so it is enough to replace T ′ by

T ′(umEa,b − εqb−qa(−u)mE1−b,1−a) = umEa,b − (−u)mE1−b,1−a, , (6.14)

where a = qaN + ra and b = qbN + rb, with 0 ≤ ra ≤ N − 1 and 0 ≤ rb ≤ N − 1.

Remark 6.6. (a) By an abuse of notation, for a = 1 and a = 1/2, in view of Propositions 6.3 to

6.5, we will denote again ϕ
[m]
s the surjective homomorphism from Sσ,Nq,N onto c̄

[m]
∞ , b̄

[m]
∞ and

d̄
[m]
∞ , respectively, given by the old ϕ

[m]
s composed with the corresponding isomorphisms

introduced in the proof of the proposition above.

(b) Recall that ν was defined in (2.1). If ε = 1, for arbitrary a ∈ Z, the image of Sσ,Nq,N under

the homomorphism ϕ
[m]
qa is νa(d

[m]
∞ ). Similarly, if a ∈ Z+ 1/2, the image of Sσ,Nq,N under the

homomorphism ϕ
[m]
qa is νa(d

[m]
∞ ) if N is even and νa(b

[m]
∞ ) if N is odd. As a consequence,

it is enough to study the cases a = 1 and a = 1/2. The same conclusions can be obtained
for ε = −1. Therefore, we will only consider a = 1 and a = 1/2 throughout this paper.

Given vectors ~s = (s1, · · · , sM ) = (qa1 , · · · , qaM ) ∈ CM and ~m = (m1, · · · ,mM ) ∈ ZM such
that if ai ∈ Z, then ai = 1; if ai ∈ Z + 1/2 then ai = 1/2; and ai − aj /∈ Z + τ−1Z for i 6= j.
Combining this with Propositions 6.1 to 6.5, we obtain a surjective Lie algebra homomorphism

ϕ
[~m]
~s = ⊕ni=1ϕ

[mi]
si :

̂
(Sσ,Nq,N )O −→ g[~m] :=

n∑
i=1

g[mi], (6.15)

where if ε = 1

g[mi] =


ĝ`

[mi]

∞ if ai /∈ Z/2,
b̃
[mi]
∞ if ai = 1/2 and N is odd,

d
[mi]
∞ if ai = 1/2 and N is even or ai = 1.

and if ε = −1

g[mi] =


ĝ`

[mi]

∞ if ai /∈ Z/2,
b
[mi]
∞ if ai = 1/2 and N is odd,

d
[mi]
∞ if ai = 1/2 and N is even,

c
[m]
∞ if ai = 1.
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7 Realization of quasifinite highest weight modules of Ŝσ,Nq,N

In this section g[m] will be ĝ`
[m]

∞ or one of its classical subalgebras. The proof of the following
Proposition is standard (cf. [K])

Proposition 7.1. The g[m]−module L(g[m], λ) is quasifinite if and only if all but finitely many

of the †h
(i)
j are zero, where † represents a, b, c or d depending on whether g[m] is ĝ`

[m]

∞ , b
[m]
∞ , c

[m]
∞

or d
[m]
∞ .

Given ~m = (m1, · · · ,mM ) ∈ ZM≥0, take a quasifinite λi ∈ (g[mi])∗0 for each 1 ≤ i ≤M , and let

L(g[mi], λi) be the corresponding g[mi]-module. Let ~λ = (λ1, · · · , λM ). Then the tensor product

L(g[m], λ) = ⊗Mi=L(g[mi], λi) (7.1)

is an irreducible g[~m]-module, with g[~m] = ⊕Mi=1g
[mi]. The module L(g[~m], ~λ) can be regarded as

a Ŝσ,Nq,N −-module via the homomorphism ϕ
[~m]
~s and will be denoted by L

[~m]
~s (~λ). We shall need the

following results.

Proposition 7.2. Let V be a quasifinite Ŝσ,Nq,N -module. Then the action of Ŝσ,Nq,N on V naturally

extends to the action of (Ŝσ,Nq,N )Ou on V , for any u 6= 0.

Proof. The proof is similar to the proof of Proposition (4.3) of [KL], replacing B = adD2 − k2
by the following:

• If i 6= j, i 6= N + 1− j, i 6= N + 1− i and j 6= N + 1− j

B =
1

2qk
(ad(Tq)Ei,i − ad(qkTq)Ej,j)

+
1

2
(ad(qT−1q )EN+1−j,N+1−j − ad(q−k+1Tq)EN+1−i,N+1−i).

• If i = j,

B =
1

qk − 1
adTqEi,i +

q−k+1

q−k − 1
adT−1q EN+1−i,N+1−i.

• If i = N + 1− j,

B =
1

qk
adTqEi,i − q−k+1adT−1q EN+1−i,N+1−i.

Theorem 7.3. Let V be a quasifinite g[~m]-module, which is regarded as a Ŝσ,Nq,N -module via the

homomorphism ϕ
[~m]
~s . Then any Ŝσ,Nq,N -submodule of V is also a g[~m]-submodule. In particular,

the Ŝσ,Nq,N -module L
[~m],k,ε
~s (~λ) is irreducible if ~s = (s1, · · · , sM ) with si = qai is such that ai ∈ Z

implies ai = 1; ai ∈ Z + 1/2 implies ai = 1/2 and ai − aj /∈ Z + τ−1Z for i 6= j.
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Proof. Let W be a Ŝσ,Nq,N -submodule of V . Due to the fact that W is a quasifinite Ŝσ,Nq,N -module as

well, by Proposition 7.2 it can be extended to (Ŝσ,Nq,N )Ou for u 6= 0. As a result of (6.15), the map

ϕ
[~m]
~s : (Ŝσ,Nq,N )Ou −→ (g[~m])u is surjective for any u 6= 0. Therefore, W is invariant with respect

to all members of the principal gradation of (g[~m])u with u 6= 0. Since g[~m] coincides with its
derived algebra, this proves the theorem.

Now, we will proceed to show that all the irreducible quasifinite Ŝσ,Nq,N -modules can be realized

as some L
[~m],k,ε
~s (~λ), for some ~m ∈ ZM≥0 and ~s ∈ CM , with si = qai such that ai − aj /∈ Z + τ−1Z

for i 6= j. For simplicity, we will consider the case M = 1 to calculate the generating series

4ε
m,s,λ,i(x) =

∑
n∈Z(4ε

m,s,λ,i)n x
−n of the highest weight and central charge c of the Ŝσ,Nq,N -module

L
[m],k,ε
s (λ).

We will introduce the following notation

ηi(α, β) =
qαβ + (−1)iq−αβ

qβ/2 − q−β/2
(β log q)i

i!
. (7.2)

Making use of Theorem (5.3), take an irreducible quasifinite weight Ŝσ,Nq,N -module V with
central charge c and generating series 4i(x), P εN (x) an even quasipolynomial such that

P εN (n) = 4N,n for n 6= 0 and P εN (0) = −2c, (7.3)

Pi(x) a quasipolynomial such that

Pi(n) = 4i,n −4i+1,n (7.4)

for 1 < i ≤ [N/2]−δN,even are quasipolynomials, and when N is even, PN/2(x) an even quasipoly-
nomial such that

PN/2(n) = 4N/2,n −4N/2+1,n. (7.5)

We write

Pi(x) =
∑
s∈C

ps,i(x)qsix, for 1 < i ≤ [N/2]− δN,even (7.6)

P εN (x) =
∑
j∈Z

pεj,N (x) coshq(e
+
j x) +

∑
j∈Z

qεj,N (x) sinhq(e
−
j x) and

PN/2(x) =
∑
j∈Z

pj,N/2(x) coshq(e
+
j x) +

∑
j∈Z

qj,N/2(x) sinhq(e
−
j x),

where pj,N (x) and pj,N/2(x) (respectively, qj,N (x) and qj,N/2(x)) are even (respectively, odd)

polynomials and pe,i(x) is a polynomial. Let L
[~m]
~s (g[~m], ~λ) be a representation of g[~m] considered

as a representation of Ŝσ,Nq,N via ϕ̂
[~m]
s , where g[m] is g`

[m]
∞ or one of its classical subalgebras. Then

(4ε
m,a,λ,i)n = −λ(ϕ̂[m]

s ((q−1/2Tq)
nEi,i − (q1/2Tq)

−nEN+1−i,N+1−i), (7.7)

with 1 < i ≤ [N/2] + δN,even, and

(4ε
m,a,λ,N )n = −λ(ϕ̂[m]

s ((Tnq + T−nq )EN,N − ((q−1Tq)
n + (q−1Tq)

−n)E1,1), (7.8)

where ϕ̂
[m]
s is the embedding given by proposition 6.2 composed accordingly with the isomor-

phisms defined in propositions 6.3 to 6.5.
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Proposition 7.4. Take the embedding ϕ̂
[m]
s : Ŝσ,Nq,N −→ ĝ`

[m]

∞ with s = qa y a /∈ Z/2. The

ĝ`
[m]

∞ -module L(ĝ`
[m]

∞ , λ) regarded as a Ŝσ,Nq,N -module is isomorphic to

L(Ŝσ,Nq,N ; e; e+; e−), where

(a) The exponents e are −1/2+a−l and 1/2−a+l with l ∈ Z and their respective mutiplicities
are

p1/2−a+l,i(x) =

m∑
u=0

(x log q)u

u!
ah

(u)
(l−1)N+i and (7.9)

p−1/2+a−l,i(x) =
m∑
u=0

(−x log q)u

u!
ah

(u)
lN−i,

for 1 < i ≤ [N/2]− δN,even.

(b) The exponents are e+ = e− = a− l with l ∈ Z with multiplicities

pεa−l,N (x) =
m∑

u=0,u even

aĥ
(u)
(l−1)N

xu

u!
and qεa−l,N (x) =

m∑
u=0,u odd

ah̃
(u)
(l−1)N

xu

u!
, (7.10)

where

aĥ
(u)
(l−1)N = 2(log q)u(ah

(u)
(l−1)N + δl,1(cu − δu,0c0)) and

ah̃
(u)
(l−1)N = 2(log q)u(ah

(u)
(l−1)N + δl,1cu),

and P εl,N (0) = −2c0 for i = N .

(c) Moreover, if N is even, we have the exponents e+ = e− = 1/2 − a + l with l ∈ Z and their
multiplicities are

p1/2−a+l,N/2(x) =
m∑

u=0,u par

(x log q)u

u!
ah

(u)
(l−1/2)N and (7.11)

q1/2−a+l,N/2(x) =

m∑
u=0,u impar

−(x log q)u

u!
ah

(u)
(l−1/2)N ,

for i = N/2.

Proof. If 1 < i ≤ [N/2]−δN,even, combining the formulas of proposition 6.2 with (2.5) and (7.7),
we have that

(4ε
m,a,λ,i)n =

∑
l∈Z

m∑
u=0

(
−(n log q)u

u!
qn(−1/2+a−l) aλ

(u)
lN+1−i

+
(−n log q)u

u!
q−n(−1/2+a−l) aλ

(u)
(l−1)N+i

)
+

m∑
u=1

ηu(a− 1, n)cu.

Then,

(4ε
m,a,λ,i)n − (4ε

m,a,λ,i+1)n =
∑
l∈Z

m∑
u=0

(−n log q)u

u!
ah

(u)
(l−1)N+iq

−n(−1/2+a−l)

+
(n log q)u

u!
ah

(u)
lN−iq

n(−1/2+a−l).
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Making use of the definitions of multiplicities and exponents for the quasipolynomial Pi(x) in
(7.6), we complete the proof for (a).

If i = N , as before, considering (7.8) and (2.5), we obtain

(4ε
m,a,λ,N )n =

∑
l∈Z

m∑
u=0

(
ηu(−1 + a− l, n)2 sinhq(n/2) aλ

(u)
lN

− ηu(a− l, n)2 sinhq(n/2) aλ
(u)
(l−1)N+1

)
+

m∑
u=1

2 sinhq(n/2)ηu(a− 1, n)cu.

Shifting the index l to l − 1 in the first sum, we get

(4ε
m,a,λ,N )n =

∑
l∈Z

m∑
u=0

2 sinhq(n/2)ηu(a− l, n)(ah
(u)
(l−1)N + δl,1cr − c0).

Since

2 sinhq(n/2)ηu(a− l, n) =
(n log q)u

u!
(qn(a−l) + (−1)uq−n(a−l))

and making use of the definitions of multiplicities and exponents for the quasipolynomials P εN (x)
in (7.6), we finish the proof for (b).

If N even, following the same steps as in the proof of (a), we have

(4ε
m,a,λ,N/2)n − (4ε

m,a,λ,N/2+1)n =
∑
l∈Z

m∑
u=0

(n log q)u

u!
ah

(u)
(l−1/2)N (q−n(1/2−a+l) + (−1)uqn(1/2−a+l)).

Then, splitting the sums according to the parity of u, we get the multiplicities and exponents
expected.

Proposition 7.5. Let s = qa with a = 1/2 and N even. Take the embedding ϕ̂
[m]
s : Ŝσ,Nq,N −→

d
[m]
∞ . The d

[m]
∞ -module L(d

[m]
∞ , λ) regarded as a Ŝσ,Nq,N -module is isomorphic to L(Ŝσ,Nq,N ; e; e+; e−),

where

(a) If 1 < i ≤ [N/2]− δN,even, the exponents are e = l with l ∈ Z and their multiplicities are

pl,i(x) =

m∑
u=0

(−x log q)u

u!
dh

(u)
(l−1/2)N+i if l > 0 and (7.12)

pl,i(x) =
m∑
u=0

(x log q)u

u!
dh

(u)
(l−1/2)N−i if l ≤ 0

(b) If i = N , the exponents e+ and e− are 1/2− l with l ≥ 1 and their multiplicities are

pε1/2−l,N (x) =
m∑

u=0,u even

dĥ
(u)
(l−1/2)N

xu

u!
and qε1/2−l,N (x) =

m∑
u=0,u odd

dh̃
(u)
(l−1/2)N

xu

u!
,

(7.13)
where

dĥ
(u)
(l−1/2)N = 2(log q)u(dh

(u)
(l−1/2)N + δl,1(cu − δu,0c0)) and

dh̃
(u)
(l−1/2)N = 2(log q)u(dh

(u)
(l−1/2)N + δl,1cu)

and P εl,N (0) = −2c0.
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(c) Moreover, if N is even, for i = N/2 the exponents e+ and e− are l ≥ 0 and their multi-
plicities are, if l ≥ 1,

pl,N/2(x) =
m∑

u=0,u even

2
(x log q)u

u!
dh

(u)
lN and (7.14)

ql,N/2(x) =
m∑

u=0,u odd

−2
(x log q)u

u!
dh

(u)
lN

and if l = 0

p0,N/2(x) =
m∑

u=0,u even

2
(x log q)u

u!
dλ

(u)
1 and q0,N/2(x) = 0. (7.15)

Proof. Consider first the case ε = 1. By Remark 6.6, part (a), we have that the embedding

ϕ̂
[m]
s : Ŝσ,Nq,N −→ d

[m]
∞ is in fact the embedding given by proposition 6.2 composed by T−1, where

T is the automorphism of g`
[m]
∞ defined in (6.13).

If 1 < i ≤ [N/2]− δN,even, using (7.7) for the embedding in this case, we get

(4ε
m,1/2,λ,i)n = λ

(∑
l∈Z

m∑
u=0

−(n log q)u

u!
q−nltrE(l+1/2)N+1−i,(l+1/2)N+1−i (7.16)

+
∑
l∈Z

m∑
u=0

(−n log q)u

u!
qnltrE(l−1/2)N+i,(l−1/2)N+i

)
+

m∑
u=1

ηu(−1/2, n)cu.

Making an adequate change of variables in l and using (2.12), we get

(4ε
m,1/2,λ,i)n−(4ε

m,1/2,λ,i+1)n =
∑
l≥1

m∑
u=0

(n log q)u

u!

(
(−1)uqnl dh(l−1/2)N+i+q

n(−l+1) dh(l−1/2)N−i
)
.

Making use of the definitions of multiplicities and exponents for the quasipolynomial Pi(x) in
(7.6), we finish the proof of (a).

Using (7.8) for the embedding in this case, we get

(4ε
m,1/2,λ,N )n = (7.17)

λ

(∑
l∈Z

m∑
u=0

(n log q)u

u!
tu
(
(−qn(1/2−l) − (−1)uq−n(1/2−l))E(l−1/2)N+1,(l−1/2)N+1

+
∑
l∈Z

m∑
u=0

(n log q)u

u!
tu(q−n(1/2+l) + (−1)uqn(1/2+l))E(l+1/2)N,(l+1/2)N

))

+
m∑
u=1

2 sinhq(n/2)ηu(−1/2, n)cu.

Once again, making an adequate change of variables in l, using (2.12), and taking into account
the fact that

2ηu(−1/2, n) sinhq(n/2) =
(qn/2 + (−1)uq−n/2)(n log q)u

u!
,

24



we have

(4ε
m,1/2,λ,N )n =

∑
l≥1

dh
(u)
(l−1/2)N (n)(qn(1/2−l) + (−1)uq−n(1/2−l))

+
m∑
u=0

(n log q)u

u!
(qn/2 + (−1)uq−n/2)(cu − δu,0c0).

In order to complete the proof, we study the parity of u and split the sums accordingly. As a
result of the definitions of multiplicities and exponents for the quasipolynomials P εN (x) in (7.6),
we find the exponents and multiplicities expected for (b).

For i = N/2, we follow the same steps as in (a), but with an adequate change of variables in
l. This way, we get

(4ε
m,1/2,λ,N/2)n − (4ε

m,1/2,λ,N/2+1)n =
∑
l≥1

m∑
u=0

(n log q)u

u!
(q−n(l−1) + (−1)uqn(l−1))dh

(u)
(l−1)N

+

m∑
u=0

(n log q)u

u!
(1 + (−1)u) dλ

(u)
1 .

Lastly, by splitting this sums according to the parity of u, we find the exponents and multiplicities
expected, finishing the proof for this case.

Consider now ε = −1. The embedding ϕ̂
[m]
s : Ŝσ,Nq,N −→ d

[m]
∞ is in this case the embedding

given by proposition 6.2 composed by D = T ◦T ′, where T ′ is the automorphism of g`
[m]
∞ defined

in (6.14). The results for this embedding are the same as for ε = 1.

Proposition 7.6. Let s = qa with a = 1/2 and N odd and take the embedding ϕ̂
[m]
s : Ŝσ,Nq,N −→

g[m], where g[m] = b̃
[m]
∞ if ε = 1 and g[m] = b

[m]
∞ if ε = −1. The g[m]-module L(g[m], λ) regarded

as a Ŝσ,Nq,N -module is isomorphic to L(Ŝσ,Nq,N ; e; e+; e−), where

(a) The exponents e are l ∈ Z and their multiplicities are

pl,i(x) =

m∑
u=0

(−x log q)u

u!
bh

(u)
(l−1/2)N+i−1/2 if l > 0 and (7.18)

pl,i(x) =
m∑
u=0

(x log q)u

u!
bh

(u)
(l−1/2)N−i−1/2 if l ≤ 0,

for 1 < i ≤ [N/2]− δN,even.

(b) The exponents are e+ = e− = 1/2− l with l ≥ 0 and their respective multiplicities are, for
l ≤ 1,

pε1/2−l,N (x) =

m∑
u=0,u even

2(log q)u bh
(u)
(l−1/2)N−1/2

xu

u!
and (7.19)

qε1/2−l,N (x) =
m∑

u=0,u odd

2(log q)u bh
(u)
(l−1/2)N−1/2

xu

u!
,
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and for l = 0,

pε1/2,N (x) =

m∑
u=0,u even

2(log q)u
xu

u!
(cu − δu,0c0) and qε1/2,N (x) =

m∑
u=0,u odd

2(log q)u
xu

u!
cu,

and P εl,N (0) = −2c0 for i = N .

Proof. Consider first ε = 1. By remark 6.6, part (a), we have that the embedding ϕ̂
[m]
s :

Ŝσ,Nq,N −→ b
[m]
∞ is in fact the embedding given by proposition 6.2 composed by T−1, where T is

the automorphism of g`
[m]
∞ defined in (6.10). Using (7.7) for the embedding for this case, we

have

(4m,1/2,λ,i)n = λ

(∑
l∈Z

m∑
u=0

−(n log q)u

u!
q−nltrE(l−1/2)N−i+1/2,(l−1/2)N−i+1/2 (7.20)

+
∑
l∈Z

m∑
u=0

(−n log q)u

u!
qnltrE((l−1/2)N+i−1/2,(l−1/2)N+i−1/2

)
+

m∑
u=1

ηu(−1/2, n)cu.

Making an adequate change of variables in l and using (2.7), we have

(4m,1/2,λ,i)n =
∑
l≥1

m∑
u=0

(n log q)u

u!
(dλ

(u)
(l−1/2)N+i−1/2(−1)uqnl − dλ

(u)
(l−1/2)N−i+1/2q

−n(l−1))

+
m∑
u=1

ηu(−1/2, n)cu.

Then,

(4m,1/2,λ,i)n − (4m,1/2,λ,i+1)n =∑
l≥1

m∑
u=0

(n log q)u

u!
((−1)uqnl bh

(u)
(l−1/2)N+i−1/2 + q−n(l−1) bh

(u)
(l−1/2)N−i−1/2).

Making use of the definitions of multiplicities and exponents for the quasipolynomial Pi(x) in
(7.6), we finish the proof of (a).

Using (7.8) for the embedding in this case, we have

(4m,1/2,λ,N )n = (7.21)

λ

(∑
l∈Z

m∑
u=0

(n log q)u

u!
tu
(
(−qn(1/2−l) − (−1)uq−n(1/2−l))E(l−1/2)N+1/2,(l−1/2)N+1/2

+
∑
l∈Z

m∑
u=0

(n log q)u

u!
tu(q−n(1/2+l) + (−1)uqn(1/2+l))E(l+1/2)N−1/2,(l+1/2)N−1/2

))

+
m∑
u=1

2 sinhq(n/2)ηu(−1/2, n)cu.

Once again, by making an adequate change of variables in l, using (2.7) and the fact that

2ηu(−1/2, n) sinhq(n/2) =
(qn/2 + (−1)uq−n/2)(n log q)u

u!
,
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we obtain

(4m,1/2,λ,N )n =
∑
l≥1

m∑
u=0

(n log q)u

u!
dh

(u)
(l−1/2)N−1/2(q

n(1/2−l) + (−1)uq−n(1/2−l))

+
m∑
u=0

(n log q)u

u!
(qn/2 + (−1)uq−n/2)(cu − δu,0c0).

To complete the proof, we study the parity of u and split the sums accordingly. As a result of
the definitions of multiplicities and exponents for the quasipolynomials P εN (x) in (7.6), we find
the exponents and multiplicities expected.

Consider now ε = −1. The embedding ϕ̂
[m]
s : Ŝσ,Nq,N −→ d

[m]
∞ is in this case the embedding

given by proposition 6.2 composed by D = T ◦T ′, where T ′ is the automorphism of g`
[m]
∞ defined

in (6.12). Proceeding in an analogous way as for the case ε = 1, we get the expected results.

Proposition 7.7. Let s = qa with a = 1 and let the embedding ϕ̂
[m]
s : Ŝσ,Nq,N −→ g[m], where

g[m] = d
[m]
∞ if ε = 1 and g[m] = c

[m]
∞ if ε = −1. The g[m]-module L(g[m], λ) regarded as a

Ŝσ,Nq,N -module is isomorphic to L(Ŝσ,Nq,N ; e; e+; e−), where

(a) If 1 < i ≤ [N/2] − δN,even, the exponents e are 1/2 − l with l ∈ Z and their multiplicities
are

p1/2−l,i(x) =
m∑
u=0

(x log q)u

u!
†h

(u)
lN−i with l > 0 ahd (7.22)

p1/2−l,i(x) =
m∑
u=0

(−x log q)u

u!
†h

(u)
(l−1)N+i, with l ≤ 0

where † represents c or d depending on whether g[m] is c
[m]
∞ or d

[m]
∞ .

(b) If i = N , the exponents e+ and e− are l − 1 with l ≤ 1 and their multiplicities are

pεl−1,N (x) =
m∑

u=0,u even

†ĥ
(u)
(l−1)N

xu

u!
and qεl−1,N (x) =

m∑
u=0,u odd

†h̃
(u)
(l−1)N

xu

u!
, (7.23)

with

†ĥ
(u)
(l−1)N = 2(log q)u(†h

(u)
(l−1)N + δl,1(cu + †λ

(u)
1 − δu,0c0)) and

†h̃
(u)
(l−1)N = −2(log q)u †h

(u)
(l−1)N ,

where † represents c or d depending on whether g[m] is c
[m]
∞ or d

[m]
∞ and P εi,N (0) = −2c0.

(c) Moreover, if N is even, for i = N/2 the exponents e+ and e− are l − 1/2 with l ≥ 1 and
their multiplicities are

pl−1/2,N/2(x) =
m∑

u=0,u even

2
(x log q)u

u!
†h

(u)
(l−1/2)N and (7.24)

ql−1/2,N/2(x) =
m∑

u=0,u odd

−2
(x log q)u

u!
†h

(u)
(l−1/2)N ,
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where † represents c or d depending on whether g[m] is c
[m]
∞ or d

[m]
∞ .

Proof. By Remark 6.6, part (a), we have that the embedding ϕ̂
[m]
s : Ŝσ,Nq,N −→ d

[m]
∞ is in fact the

embedding given by proposition 6.2 composed by T−1, where T is the automorphism of g`
[m]
∞

defined in (6.13).
If 1 < i ≤ [N/2]− δN,even, using (7.7) for the embedding in this case, we have

(4m,1,λ,i)n =λ

(∑
l∈Z

m∑
u=0

−(n log q)u

u!
qn(1/2−l)trElN+1−i,lN+1−i

+
∑
l∈Z

m∑
u=0

(−n log q)u

u!
qn(−1/2+l)trE(l−1)N+i,(l−1)N+i

)
+

m∑
u=1

ηu(0, n)cu.

Making an adequate change of variable in l and using (2.12), we have

(4m,1,λ,i)n =
∑
l∈Z

m∑
u=0

(n log q)u

u!

(
− dλ

(u)
lN+1−iq

n(1/2−l)

+ (−1)r dλ
(u)
(l−1)N+iq

n(−1/2+l))+
m∑
u=1

ηu(0, n)cu.

Then,

(4m,1,λ,i)n − (4m,1,λ,i+1)n =∑
l≥1

m∑
u=0

(n log q)u

u!
(dh

(u)
lN−i q

n(1/2−l) + (−1)u qn(l−1/2) dh
(u)
(l−1)N+i).

Making use of the definitions of multiplicities and exponents for the quasipolynomial Pi(x)
in (7.6), we finish the proof of (a).

Using (7.8) for the embedding in this case, we obtain

(4m,1,λ,N )n =λ

(∑
l∈Z

m∑
u=0

(n log q)u

u!
tu
(
(−qn(1−l) − (−1)uq−n(1−l))E(l−1)N+1,(l−1)N+1 (7.25)

+
∑
l∈Z

m∑
u=0

(n log q)u

u!
tu(q−nl + (−1)uqnl)ElN,lN

))

+

m∑
u=1

2 sinhq(n/2)ηu(0, n)cu.

We make a change of variables in l. Using (2.12) and the fact that

2ηu(0, n) sinhq(n/2) =
(1 + (−1)u)(n log q)u

u!
y

2η0(0, n) sinhq(n/2) =
2(n log q)u

u!
,

we have

(4m,1,λ,N )n =
∑
l≥1

m∑
u=0

(n log q)u

u!

(
(q−n(l−1) + (−1)uqn(l−1)) dh(l−1)N + (1 + (−1)u) dλ

(u)
1

)
+

m∑
u=0

(1 + (−1)u)(n log q)u

u!
cu − 2c0.
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In order to finish the proof, we study the parity of u and split the sums accordingly. As a
result of the definitions of multiplicities and exponents for the quasipolynomials P εN (x) in (7.6),
we find the exponents and multiplicities expected for (b).

For i = N/2, following the same steps as in the proof of (a), we have

(4m,1/2,λ,N/2)n − (4m,1/2,λ,N/2+1)n =∑
l≥1

m∑
u=0

λ

(
− (n log q)u

u!
tu(qn(1/2−l) + (−1)uqn(−1/2+l))E(l−1/2)N+1,(l−1/2)N+1

+
(n log q)u

u!
tu(qn(1/2−l) + (−1)uqn(−1/2+l))E(l−1/2)N,(l−1/2)N

)
.

Making a change of variables in l and using (2.12), we get

(4m,1/2,λ,N/2)n − (4m,1/2,λ,N/2+1)n =∑
l≥1

m∑
u=0

(n log q)u

u!
(qn(1/2−l) + (−1)uqn(−1/2+l))dh

(u)
(l−1/2)N .

Studying the parity of u and splitting the sums accordingly, we find the exponents and multi-
plicities expected for this case, finishing the proof.

Consider now ε = −1. The embedding ϕ̂
[m]
s : Ŝσ,Nq,N −→ c

[m]
∞ is in this case the embedding

given by proposition 6.2 composed by D = T ◦T ′, where T ′ is the automorphism of g`
[m]
∞ defined

in (6.8). Proceeding in an analogous way as for case ε = 1, we obtained the expected results.

Consider an irreducible quasifinite highest weight Ŝσ,Nq,N -module V with central charge c and
generating series 4i(x) such that

Pi(n) = 4i,n −4i+1,n for 1 < i ≤ [N/2]− δN,even and

P εN (n) = 4N,n for n 6= 0 and P εN (0) = −2c,

where Pi(x) are quasipolynomials and P εN (x) are even quasipolynomials. Moreover, if N is even,
there exists an even quasipolynomial PN/2(x) such that

PN/2(n) = 4N/2,n −4N/2+1,n.

Using the notation introduced in (7.6), decompose the set A = {s ∈ C|ps,i 6= 0 for some i}∪{s ∈
C|pεs,N 6= 0} ∪ {s ∈ C|ps,N/2 6= 0} ∪ {s ∈ C|qεs,N 6= 0} ∪ {s ∈ C|qs,N/2 6= 0} into a disjoint union
of equivalence classes under the condition

s = qa ∼ qa′ = s′ ⇔ a− a′ ∈ Z + τ−1Z.

Pick a representative s in an equivalence class S such that s = q if the equivalence class lies in
Z and s = q1/2 if the equivalence class lies in Z+ 1/2. Let S = {qa, qa+t1 , qa+t2 , . . . } be such an
equivalence class. Take t0 = 0 and let
m = maxs∈S{deg ps,i, deg pεs,N ,deg qεs,N , deg ps,N/2,deg qs,N/2}. It is easy to see that if a = 1 or

a = 1/2, then ti ∈ Z. Now, we will associate S to a g[m]-module L
[m]
s (λS) in one of the following

ways.
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• If a /∈ Z/2, for 1 < i ≤ [N/2]− δN,even let

ah
(u)
(tj−1)N+i =

1

(log q)u

(
d

dx

)u
p1/2−a+tj ,i(0) and (7.26)

ah
(u)
tjN−i =

(
−1

log q

)u( d

dx

)u
p−1/2+a−tj ,i(0), (7.27)

and let

ah
(u)
(tj−1)N + δtj ,1(cu − δu,0c0) =

1

2(log q)u

(
d

dx

)u
pεtj ,N (0) if u even and (7.28)

ah
(u)
(tj−1)N + δtj ,1cu =

1

2(log q)u

(
d

dx

)u
qεtj ,N (0) if u odd, (7.29)

and if N is even

ah
(u)
(tj−1/2)N =

1

(log q)u

(
d

dx

)u
ptj ,N/2(0) if u even and (7.30)

ah
(u)
(tj−1/2)N = − 1

(log q)u

(
d

dx

)u
qtj ,N/2(0) if u odd, (7.31)

for u = 0, . . . ,m. We associate S to the ĝ`
[m]

∞ -module L
[m]
s (λS) with central charges

cu =
∑
i

∑
tj

(ah
(u)
(tj−1)N+i + ah

(u)
tjN−i) +

∑
tj

(ah
(u)
(tj−1)N + δN, even

ah
(u)
(tj−1/2)N )

and labels

aλ
(u)
l =

∑
(tj−1)N+i≥l

aḣ
(u)
(tj−1)N+i +

∑
tjN−i≥l

aḣ
(u)
tjN−i

+
∑

(tj−1)N≥l

aḣ
(u)
(tj−1)N + δN, even

∑
(tj−1/2)N≥l

aḣ
(u)
(tj−1/2)N ,

with aḣ
(u)
t = ah

(u)
t − δt,0cu.

• If a = 1/2 and N is even, for 1 < i ≤ [N/2]− δN,even let

dh
(u)
(tj−1/2)N+i =

(
−1

log q

)u( d

dx

)u
ptj ,i(0) if tj > 0 (7.32)

dh
(u)
(tj−1/2)N−i =

1

(log q)u

(
d

dx

)u
ptj ,i(0) if tj ≤ 0, (7.33)

and let

dh
(u)
(tj−1/2)N + δtj ,1(cu − δu,0c0) =

1

2(log q)u

(
d

dx

)u
pε1/2−tj ,N (0) if u even and (7.34)

dh
(u)
(tj−1/2)N + δtj ,1cu =

1

2(log q)u

(
d

dx

)u
qε1/2−tj ,N (0) if u odd, (7.35)
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and if N is even

dh
(u)
tjN

=
1

2(log q)u

(
d

dx

)u
ptj ,N/2(0) if u even and (7.36)

dh
(u)
tjN

= − 1

2(log q)u

(
d

dx

)u
qtj ,N/2(0) if u odd, (7.37)

for u = 0, . . . ,m. We associate S to the d
[m]
∞ -module L

[m]
s (λS) with central charges

cu =
∑
i

∑
tj

(dh
(u)
(tj−1/2)N+i + dh

(u)
(tj−1/2)N−i) +

∑
tj

(dh
(u)
(tj−1/2)N + δN, even

dh
(u)
tjN

)

and labels

dλ
(u)
l =

∑
(tj−1/2)N+i≥l

dh
(u)
(tj−1/2)N+i +

∑
(tj−1/2)N−i≥l

dh
(u)
(tj−1/2)N−i

+
∑

(tj−1/2)N≥l

dh
(u)
(tj−1/2)N + δN, even

∑
tjN≥l

dh
(u)
tjN

.

• If a = 1/2, N is odd for 1 < i ≤ [N/2]− δN,even let

bh
(u)
(tj−1/2)N+i−1/2 =

(
−1

log q

)u( d

dx

)u
ptj ,i(0) if tj > 0 (7.38)

bh
(u)
(tj−1/2)N−i−1/2 =

1

(log q)u

(
d

dx

)u
ptj ,i(0) if tj ≤ 0, (7.39)

and let

bh
(u)
(tj−1/2)N−1/2 + δtj ,1(cu − δu,0c0) =

1

2(log q)u

(
d

dx

)u
pε1/2−tj ,N (0) if u even and (7.40)

bh
(u)
(tj−1/2)N−1/2 + δtj ,1cu =

1

2(log q)u

(
d

dx

)u
qε1/2−tj ,N (0) if u odd, (7.41)

for u = 0, . . . ,m. We associate S to the g[m]-module L
[m]
s (λS) with central charges

cu =
∑
i

∑
tj

(bh
(u)
(tj−1/2)N+i−1/2 + bh

(u)
(tj−1/2)N−i−1/2) +

∑
tj

bh
(u)
(tj−1/2)N−1/2

and labels

bλ
(u)
l =

∑
(tj−1/2)N+i−1/2≥l

bh
(u)
(tj−1/2)N+i−1/2 +

∑
(tj−1/2)N−i−1/2≥l

bh
(u)
(tj−1/2)N−i−1/2

+
∑

(tj−1/2)N−1/2≥l

bh
(u)
(tj−1/2)N−1/2,

with g[m] = b̃
[m]
∞ if ε = 1 and g[m] = b

[m]
∞ if ε = −1.

• If a = 1, for 1 < i ≤ [N/2]− δN,even, let

†h
(u)
tjN−i =

1

(log q)u

(
d

dx

)u
p1/2−tj ,i(0) if tj > 0 (7.42)

†h
(u)
(tj−1)N+i =

(
−1

log q

)u( d

dx

)u
p1/2−tj ,i(0) if tj ≤ 0, (7.43)
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and let

†h
(u)
(tj−1)N + δtj ,1(cu + †λ

(u)
1 − δu,0c0) =

1

2(log q)u

(
d

dx

)u
pεtj ,N (0) if u even and (7.44)

†h
(u)
(tj−1)N = − 1

2(log q)u

(
d

dx

)u
qεtj ,N (0) if u odd, (7.45)

and if N is even

†h
(u)
(tj−1/2)N =

1

2(log q)u

(
d

dx

)u
ptj−1/2,N/2(0) if u even and (7.46)

†h
(u)
(tj−1/2)N = − 1

2(log q)u

(
d

dx

)u
qtj−1/2,N/2(0) if u odd, (7.47)

for u = 0, . . . ,m, where † represents d if ε = 1 and c if ε = −1. We associate S to the

g[m]-module L
[m]
s (λS) with central charges

cu =
∑
i

∑
tj

(†h
(u)
tjN+i + †h

(u)
tjN−i) +

∑
tj

(†h
(u)
(tj−1)N + δN, even

†h
(u)
(tj−1/2)N )

and labels

†λ
(u)
l =

∑
tjN+i≥l

†h
(u)
tjN+i +

∑
tjN−i≥l

†h
(u)
tjN−i

+
∑

(tj−1)N≥l

†h
(u)
(tj−1)N + δN, even

∑
(tj−1/2)N≥l

†h
(u)
(tj−1/2)N ,

where g[m] = d
[m]
∞ and † = d if ε = 1 and g[m] = c

[m]
∞ with † = c if ε = −1.

Denote {s1, s2, . . . } with si = qai a set of representatives of equivalence classes of the set A.

By Theorem 7.3, the Ŝσ,Nq,N -module L
[~m]
~s (λ) is irreducible for ~s = (s1, s2, . . . ) such that ai ∈ Z

implies that ai = 1 and ai ∈ Z/2 implies that ai = 1/2. Then, as consequence of the discussion
above, the Theorem 7.3 and Propositions 7.4-7.7, we have proved the following.

Theorem 7.8. Let V an irreducible quasifinite highest weight Ŝσ,Nq,N -module with central charge
c and let Pi(x), P εN (x) and, if N is even, PN/2(x) the quasipolynomials given by Theorem 5.3

written in the form (7.6). Then, V is isomorphic to the tensor product of the modules L
[m]
s (λS)

with distinct equivalence classes S.

Remark 7.9. A different choice of representative s = qa with a /∈ Z/2 in the equivalence class

S has the effect of shifting ĝ`
[m]

∞ via the automorphism νi for some i. It is not difficult to see

that any irreducible quasifinite highest weight module L(Ŝσ,Nq,N , ξ) can be obtained as above in
an essentially unique way, up to this shift.
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