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We consider a new timetabling problem arising from a real-world application in a private university in
Buenos Aires, Argentina. In this paper we describe the problem in detail, which generalizes the Post-
Enrollment Course Timetabling Problem (PECTP), propose an ILP model and a heuristic approach based
on this formulation. This algorithm has been implemented and tested on instances obtained from real
data, showing that the approach is feasible in practice and produces good quality solutions.
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1. Introduction and literature review

Timetabling problems within the context of universities re-
present a very challenging task, where many different restrictions
and demands must be satisfied by a feasible solution. During the
last decade, this type of timetabling problems has received quite a
lot of attention, partly due to the organization of three different
competitions: the First International Timetabling Competition
(ITC) in 2002, the Second ITC in 2007 and the Third ITC in 2011. As
a result, a wide variety of methods and algorithms for different
approaches to the problem has been proposed.

The ITC 2007 presented three tracks with different university-
related timetabling problems: Examination Timetabling (ETP) [18],
where the objective is to schedule exams along a time horizon
while satisfying a set of constraints (see, e.g., [3,11]); Post Enrol-
ment based Course Timetabling (PECTP) [18], where the objective
is to schedule a set of events into rooms and time-slots (usually, a
week) based on the selections made by the students; and Curri-
culum-based Course Timetabling (CCTP) [18], where the problem
consists in scheduling a set of events to rooms and time-slots, but
according to the curricula of the university (see, for example,
[2,14,16]). Bettinelli et al. [1] provide a good overview on course
timetabling problems, and Lübbecke [17] gives some further
comments regarding practical and implementation issues.

The PECTP is defined by the following information, as stated in
putación, Pabellón I, Ciudad

Díaz),
. Miranda-Bront).
[18]: a set of events to be scheduled into a number of time-slots; a
set of rooms with an associated capacity; a set of room-features
that may be required by the events and satisfied by the rooms; a
set of students who are enrolled in different combinations of
events; a set of feasible time-slots for each of the events; and a set
of precedence requirements among certain events. The objective is
to assign the events to a room and a time-slot while satisfying the
following hard constraints: every student must attend at most one
event per time-slot; the room assigned to each event must have
enough capacity and satisfy the features required by the corre-
sponding event; at most one event is assigned to a room in any
time-slot; events must be assigned to time-slots which are fea-
sible; and where specified, events must be scheduled in the order
established by the precedences. As regards the objective function,
a set of soft constraints is defined, adding a penalization for each
violation within the schedule: students should not be scheduled to
attend an event in the last time-slot of a day; students should not
attend three or more events in successive time-slots, and should
not be required to attend only one event in a given day.

Several approaches have been proposed for the PECTP, mainly
considering metaheuristics since in the ITC 2007 a strict time limit
was imposed on the running time of the algorithms. Most of them
are designed to tackle the problem in two or three stages, focusing
first on the feasibility and then on the optimality of the generated
timetable. Lewis [15] proposes a three-phase heuristic that uses
Simulated Annealing (SA) for the last two in order to improve the
generated schedule. Jat and Yang [12] propose a two phase ap-
proach using Genetic Algorithms and Tabu Search. Chiarandini
et al. [9] propose a heuristic based on stochastic local search. Ce-
schia et al. [6] perform an extensive study for the PECTP by
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considering several variations of the problem and propose a me-
taheuristic based on SA. Nothegger et al. [21] propose an ant col-
ony optimization algorithm. Cambazard et al. [4] study a wide
variety of approaches, including Constraint Programming (CP) and
a list-coloring relaxation of the PECTP. Finally, van den Broek and
Hurkens [23] propose an ILP based heuristic for the problem. They
use a column-generation approach in a construction phase and
then formulate an ILP model to refine the solution, focusing also
on the soft constraints. They report competitive solutions com-
pared to the five finalists in the competition. Due to the definition
of the PECTP, many of these approaches apply a preprocessing
phase in which conflicts among events are derived. For example,
the set of events a particular student is enrolled in cannot be as-
signed to the same time-slot, since otherwise the schedule violates
a hard constraint. In general, all approaches produced good com-
putational results in the instances involved in the competition.

A different perspective of the problem is addressed in van den
Broek et al. [24], where the authors study a real timetabling pro-
blem at TU Eindhoven. In this case, the weekly timetable is already
given and students have a preference list of events and request to
be assigned to a certain number of them. The objective is to assign
students to events satisfying constraints that are similar to the
PECTP (i.e., one event per time-slot, not exceeding capacity of the
room, and minimum and maximum quota constraints) among
some other constraints. They show that for some combinations of
constraints the problem is − Complete and propose an Integer
Linear Programming (ILP) formulation for the problem. Compu-
tational results show that the approach is effective for real in-
stances considered.

Another problem similar to the PECTP is the so-called student
sectioning problem, which consists in assigning students to parti-
cular sections (i.e., classes) based on their requests and satisfying
several traditional constraints such as room and section capacity,
and avoiding conflicts in students timetables due to overlapping
assignments. Carter [5] describes the characteristics of the pro-
blem and provides the details of the scheduling system developed
at the University of Waterloo. The timetable construction and the
sectioning of students is divided in mainly three stages: a student
preregistration for the next semester; the generation of an initial
timetabling (involving both an automated and a manual stage);
and the student scheduling, including a drop/add period. Students
are willing to attend to a set of courses, which are composed by
multiple sections. In this sense, the problem considers a more
complex structure for courses than the PECTP, similarly to our
problem. The problem also considers that a student is willing to
take all the courses in the list provided. Murray et al. [20] and
Muller and Murray [19] build upon this research, mainly using the
method proposed by Carter [5] to construct the initial timetable.
The former presents a framework for tackling the problem, in-
cluding several practical considerations. Muller and Murray [19]
tackle the overall problem, generating the initial timetable as in
Carter [5] and providing further developments, including several
new local search operators, for the student sectioning stage. In
both cases, the research is motivated by its application in Purdue
University.

We further include a comparison with some other problems in
the literature regarding timetables in educational institutions. The
Balanced Academic Curriculum Problem (see, e.g., Chiarandini
et al. [8]) aims to define at a general level the organization of
courses for a university degree. The planning horizon is divided in
years, where each of them is further divided into teaching terms
where the courses can take place. Courses present precedences
among them and load constraints are imposed on each teaching
period, including both the number of courses assigned and the
total credits involved in a teaching period. In a follow up paper,
Ceschia et al. [7] consider a generalization of this problem.
Regarding the methodology, we briefly discuss a few ap-
proaches concerning the use of ILP techniques within more gen-
eral frameworks. Sorensen and Dahms [22] propose a two stage
decomposition heuristic based on an ILP formulation for a High
School Timetabling Problem. Kristiansen et al. [13] consider an ILP
for the High School Timetabling Problem, which is solved in two
stages by means of a general purpose solver, but in this case re-
sulting in an exact algorithm. The approach produces good results,
obtaining 9 new best known solutions for the problem. Finally,
Daskalaki and Birbas [10] consider a university timetabling pro-
blem where groups of students are enrolled in a set of courses,
similarly to the PECTP. Standard operational constraints are con-
sidered, and a difference regarding the PECTP and with our pro-
blem is that all the requests of a student must be satisfied. The
structure of the courses is, however, more general than in the
PECTP and may include more than one type of class. The authors
propose a two stage approach, where some of the heaviest op-
erational constraints are relaxed in the first stage and then re-
considered in the second one, where smaller ILPs are formulated
and solved for each day of the week independently.

Concerning the methodology proposed in Carter [5] for the
student sectioning problem, firstly a conflict matrix is constructed,
where each entry accounts for the number of students that have
requested each pair of courses. In addition, due to the size of the
problem considered, the students are first clustered based on the
similarities among their courses' request and then a preliminary
assignment to sections is performed, aiming always to minimize
the expected number of conflicts. This step is referred as homo-
geneous sectioning. Using this information, the overall problem,
consisting in approximately 3000 course sections and 17 000
students, is decomposed into several subproblems trying to group
together sections with high interaction, which are then solved
independently one at a time in decreasing order of difficulty. For
each of these subproblems, different steps are considered se-
quentially. Firstly, an automated course timetabling step is con-
sidered where sections are assigned to time-slots aiming to
minimize the total number of student conflicts and considering
aggregated information regarding the room capacities by defining
room profiles. This step is performed using a greedy heuristic and
followed by a local search phase consisting of a 2-opt operator.
Then, a classroom assignment step is performed using the in-
formation from the preregistration and including several con-
straints regarding type, distance and availability of the classrooms.
After manual improvements made by the representatives of each
university department, the original sectioning is discarded and the
students are reassigned using the overall timetable generated in
the previous steps. The students are sectioned one at a time in a
two-pass fashion, considering in the first pass only some of the
choices and in then the remaining ones. The objective is to prevent
filling up courses only by students which registered earlier.

In this paper, we focus on a real-world application arising from
a private university in Argentina which simultaneously involves
timetabling events to time-slots and rooms as well as assigning
students to a certain number of events chosen from their pre-
ference list. Similarly to the PECTP, the assignment of events to
time-slots must satisfy certain constraints, which in turn depends
on the assignment of students to events. In addition, courses have
a particular hierarchical structure, similar to the student section-
ing problem described before, that must be taken into account
when performing the different assignments. This problem is
named Generalized Post-Enrollment Course Timetabling Problem
(GPECTP).

The contributions of this paper are threefold. Firstly, we study a
problem with a direct and practical application that integrates,
combines and tackles jointly two other problems from the related
literature, namely the PECTP and the problem defined in van den



Fig. 1. Example of course structures. (a) Course with one commission. (b) Course with two commissions.
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Broek et al. [24]. In addition to the hierarchical structure of the
courses, as considered in the sectioning problem, in our problem
only a certain number of the courses provided in the preference
list of a student are to be assigned (indeed, we consider a lower
and an upper bound on the number of assignments for each of
them). Secondly, aiming to provide a solution methodology, we
propose an ILP formulation that integrates the characteristics
mentioned before. In order to use the algorithmwithin the context
of the university, we develop a two-stage ILP based heuristic for
GPECTP. Similarly to Carter [5], the first stage defines an assign-
ment of classes to time-slots and then, based on these settings, the
second stage assigns the students to the classes. However, there
are some major differences regarding the methodology used in
each of these stages. Firstly, Carter [5], once the problem is par-
titioned into smaller subproblems, generates only one timetable
based on a pre-assignment of students to sections. In our case, we
split the set of students into smaller subsets and by considering a
similar idea to room profiles we generate several timetables per
subset, obtaining as a result a multi-start approach for the pro-
blem. This is particularly important since, as we explain later in
the paper, this helps in finding feasible and good quality time-
tables. Furthermore, the assignment of students to classes is done
in an integrated fashion, considering as well the assignment of
classes to rooms by means of an ILP formulation. This is an im-
portant characteristic since the assignments of students to classes,
the assignment of classes to time-slots and the assignment of
classes to classrooms are interdependent. Compared to the related
literature, Carter [5] tackles these two problems sequentially: first
the classroom assignment and then the automated student section-
ing. A similar observation can be made regarding the approach in
Muller and Murray [19], where the timetabling of classes and the
assignment of classes to rooms is taken from the initial sectioning
stage, although they propose several local search operators to find
improved (feasible) solutions.

Finally, we report the results obtained on three real world in-
stances, and analyze the benefits obtained by the university with
the implementation of the algorithm. These instances are made
public for further comparisons on the problem.

The paper is organized as follows. In Section 2 we present the
context of the university and the description of GPECTP, including
a discussion regarding its relation with known problems from the
related literature. Then, Section 3 introduces the basic notation
and definitions used throughout the paper and presents an ILP
formulation for GPECTP. In Section 4 we present the ILP based
heuristic developed to solve the problem. Computational results
are shown in Section 5 and finally we draw some conclusions and
future directions in Section 6.

2. Context and characteristics of the timetabling problem

The university offers 12 different programs of study, approxi-
mately 120 courses, and has 220 faculty members and 1200
registered students overall. The academic year is divided in two
semesters that are scheduled independently. Time-slots refer to the
available teaching periods within a week and remain unchanged
during the whole semester.

In general, the curriculum of a program of study is not strict
and often graduate students obtain their degrees by completing
the curriculum in different ways. Courses are classified as man-
datory or elective, depending on the program of study each stu-
dent enrolls in. The former are courses that the student must at-
tend (and, of course, pass) in order to obtain the corresponding
degree. Elective courses are, on the other hand, grouped by topic;
each student must then select from a restricted number of courses
within each topic.

Each course consists of one or more modules corresponding to
different types of classes. Such types are lectures, exercise-classes
and labs. A course consists of exactly one of the following com-
binations of class types, hereafter named patterns: lectures, or
lectures and exercise-classes, or lectures, exercise-classes and labs.
It should be mentioned that each of these classes consists of one or
more events, which have to be scheduled within the week and may
have certain restrictions regarding its periodicity and time avail-
ability. For example, the university could require some courses to
be scheduled within certain hours of the day due to academic and
more general policies.

In addition, a course is composed of one or several commissions,
which are instances of the same course. Each of these commis-
sions has its own set of classes and all of them follow exactly the
same pattern as regards the modules of the course. A commission
may have more than one instance of each type of class. A student
is required to be enrolled in only one commission of a course and
all classes enrolled in must belong to the same commission.

Fig. 1 illustrates this. In Fig. 1(a) the course consists of only one
commission and the pattern is defined by lectures, exercise-classes
and labs. Then, the pattern for a student enrolled in the course can
be any combination of one lecture, one exercise class and one lab
included in Comm. 1. Fig. 1(b) shows a course with two commis-
sions. A student has to be enrolled either in Comm. 1 or Comm. 2,
and within each commission any combination of classes following
the pattern is feasible. For example, patterns (Lect. 1.1, Ex. 1.2, Lab.
1.1) and (Lect. 1.1, Ex. 1.1, Lab 1.1) are feasible for a student enrolled
in Commission 1, but pattern (Lect. 1.1, Ex. 1.1, Lab. 2.2) is infeasible.

By the end of each semester, the academic offer for the next
semester is decided and each department assigns the faculty to the
courses. Together with this information, every professor informs
the administrative staff about the time availability and a maximum
number of days per week in which the assigned classes have to be
scheduled. This information, combined with the requirements of
the course, results in the final available time-slots for each class.

As regards infrastructure, the university has 30 rooms with
seating capacity ranging from 8 to 110 people. Classification of
rooms is based on their attributes and special features like media
equipment, computers, etc. Regarding the classes, some of them
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can be given in any room while others require some specific at-
tributes (for example, availability of computers).

Until the system was implemented, the construction of the
timetable was very time-consuming and iterative. Once all the
information was gathered, the administrative office was re-
sponsible for the timetabling process. Based on the knowledge
about potential students for each course, the scheduler manually
attempted to timetable the courses avoiding conflicts and assuring
that every student had the possibility to attend a required number
of courses. It should be mentioned that the latter aspect is parti-
cularly important because, being a private university, every stu-
dent having a reasonably good academic performance must be
able to obtain the degree within the expected time and to avoid
paying extra tuition fees.

From an initial assignment, if there were conflicts or some
student could not attend the required courses, the scheduler asked
some of the faculty staff members to accept a different time-slot
and repeated the laborious process in order to obtain an improved
scheduling. Once the timetabling was complete, students were
informed about the courses enrolled in. As a result of this process,
at the beginning of the semester, long lines of students were
formed at the administration office requesting possible changes in
the courses they have been assigned to. These requests were again
delivered to the scheduler who tried, if possible, to satisfy their
requests by making some shiftings.

The process had three major drawbacks. Firstly, it was completely
inefficient and time-consuming since it is not humanely possible to
consider all the alternatives. Secondly, the whole process and the
responsibility of starting the semester with the timetable on time
depended mainly on the scheduler. Regardless of his/her outstanding
performance, it entailed an excessive level of pressure and re-
presented a weak point from the organizational perspective, since
any unexpected event (for example, the scheduler getting sick) may
jeopardize the beginning of the semester. Finally, the students were
required to have full-time status and their assignments to courses
were compulsive, they did not have the possibility of choosing which
courses to be enrolled in for the semester.

Due to this complex situation, the university decided to de-
velop a system to assist the scheduler with the timetabling pro-
cess. Furthermore, aiming to overcome the third drawback men-
tioned before, the whole timetabling process should follow a de-
mand-driven approach. Given the context and the university re-
quirements, our suggestion is to provide students with a set of
courses they are willing to take, a preference list, that includes
more possibilities than the maximum number of courses they are
allowed to take, and to let them rank the courses according to
their preferences. We also establish for each student a minimum
number of courses that must be selected from its preference list, in
order to guarantee a minimum degree of possible academic pro-
gress for the semester. In addition, the university ranks the stu-
dents according to their academic records and other criteria,
which are also taken into account in the timetabling process. Then,
the optimization problem we are tackling involves maximizing the
global weighted preference (a combination of students pre-
ferences and rank performances) while assigning lessons to the
time-slots, taking into account the choices made by the students
and several other university resource constraints.

A difference regarding the GPECTP and other timetabling pro-
blems is that we are requested to consider all operational and
resource constraints as hard. This of course has an impact on the
difficulty of finding a feasible timetable satisfying all constraints.
The university authorities give priority to all constraints and de-
cide that, in case no feasible solution is found, the system should
be used on less restrictive scenarios (for example, by expanding
the available time-slots for the academic staff or reducing the
minimum number of courses to be assigned for each student).
As mentioned in the introduction, the GPECTP considers si-
multaneous characteristics from the PECTP and from the research
in van den Broek et al. [24]. The latter takes into account pre-
ference lists, but assumes that the assignment of events to time-
slots has already been done and that it is an input to the problem.
On the other hand, if the set of courses provided by a student
represents indeed the courses in which she is enrolled, then the
problem becomes the PECTP – despite some differences in the
particular constraints considered. However, in our case, the as-
signments of courses to students is one of the outcomes of the
problem. More precisely, in the PECTP the events to which a stu-
dent is to be assigned are known a priori. Therefore, in the list-
coloring approach proposed by Cambazard et al. [4] the set of
events chosen by a student define, as they name it, a student clique.
All those events have to be scheduled in different time-slots, en-
abling a preprocessing phase where conflicts among events can be
derived and used within the optimization.

In the case of the GPECTP this analysis is not possible due to the
following two reasons. Firstly, since the preference list of a student
usually contains more courses (and, therefore, events) than the
maximum number of courses allowed to take simultaneously, then
the conflicts among the events depend on the courses effectively
enrolled in, which in turn depends on the time-slots assigned to
the events. In addition, even assuming that we know exactly the
courses to be assigned to a particular student, the hierarchical
structure of the courses and its composition in terms of commis-
sions have a similar effect, since the events effectively enrolled in
are not known a priori and, furthermore, it is one of the outputs of
the GPECTP.

In the next section we present the notation and the formal
definitions used throughout the paper as well as the ILP for-
mulation for the problem. Since the problem involves a large
number of constraints, they are explained in detail while for-
mulating the model.
3. ILP formulation

3.1. Definitions and notation

We begin by introducing some basic definitions and the nota-
tion used to describe the problem. For clarity reasons, we group
the definitions according to the entity (students, courses, and
time-slots). Given the large number of parameters and definitions,
for notation purposes we adopted the following criteria. Defini-
tions are referred with superscripts, while decision variables with
subscripts. Sets are identified by capital letters, and weights used
in the objective function by Greek letters.

3.1.1. Days and time-slots
As mentioned before, the timetable considers a week. The week

is modeled as a collection of consecutive days; each of them is
defined by a collection of consecutive time-slots where events are
scheduled. In practice, the week consists of six days, Monday to
Saturday. Saturday is defined by two time-slots, while the re-
maining working days are defined by five time-slots. Time-slots
are numbered in ascending order following their position within
the week.
= { … ¯}d1, ,
 Set of working days
Set of time-lots defining working day ∈d
s̄d
 First and last time-slot of working day ∈d ,
respectively
∪ ∈ Sd
d
 Set of time-slots
=
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3.1.2. Rooms
For each room, we identify two attributes: its seating capacity

and its type, which is an internal classification made by the
university.
rka
Typ
cap

nri

Cla

Qm

T m

Clm

Lec
Ex
Lab
Slo
Vc

nd
nv

Ini

Rc

qc
m̄a
set of rooms

es
 set of room's type
ma
r
 capacity of room ∈r

number of rooms of type i for ∈i Types
Ma

ssesi
 classes that could be assigned to rooms of type i
Ga

type of room ∈r
wa

m̄a
tr

3.1.3. Courses
The definitions introduced below represent the hierarchical

structure of courses introduced before. Each event included in a
class is assumed to fit exactly in one time-slot and all classes have
a periodicity, meaning that a class must be given in a determined
number of days, with a fixed number of events per day. Let c be a
class, with Vc its set of events, ndc its weekly periodicity and nvc

the number of events per day. Then, | | = ×V nd nvc c c. Finally, it
should be mentioned that the order in which the events of a class
are scheduled is not relevant and, therefore, fixed a priori.
set of courses

S f
set of classes

Cf
set of courses' group
nd

commissions of course ∈m

lecture classes of course ∈m

set of classes of course ∈m
⊆q
 lecture classes of commission q

⊆q
 exercise classes of commission q
⊆q
 lab classes of commission q
⊆tsc
 feasible time-slots for class ∈c

set of events of class ∈c
c
 weekly periodicity of class ∈c

c
 number of consecutive events on a same day of class

∈c

tc
 initial events for each of the ndc blocks of con-

secutive events for class ∈c

⊆
 set of admissible rooms for class ∈c
quota of class ∈c

qm
 number of students that must attend course ∈m
nre

3.1.4. Students
Each student is asked to provide a preference list of courses,

from which a subset with a minimum and a maximum number of
courses will be selected. Course assignment for the semester will
be based on this subset. Within the preference list, some courses
can be marked as required, meaning that the student must be as-
signed to at least one commission of that course. This is done by
using a particular preference value.

The remaining courses are classified as either mandatory or
elective. Elective courses belong to exactly one group, for which
there is also a minimum and a maximum number of courses that
can be assigned to a student. Although groups are defined by
program of study, we adopt a particular definition for each student
in order to capture the nature of students' different situations. For
example, a student may have already passed some courses of a
particular group, but still be able to select some others. In this
sense, given a student ∈a , Ga is the set containing the defini-
tions of each group. We assume that two groups defined for a
student cannot share courses.
Finally, we note that the higher the ranking for a student, the
higher the priority.
student set

academic performance weight for student ∈a

maximum number of courses to be assigned to stu-
dent ∈a

minimum number of courses to be assigned to stu-
dent ∈a
⊆
 set of courses chosen by the student ∈a

set of groups definitions chosen by the student ∈a
m
 preference value for course ∈m given by student
∈a
g
 maximum number of courses to be assigned to stu-
dent ∈a from group ∈g Ga
available slots for student ∈a
Sla

3.1.5. Faculty members
Finally, we introduce some notation to refer to faculty mem-

bers. Together with the available time-slots, each member in-
dicates also a maximum number of days he/she is willing to use
for teaching purposes. Then, all classes assigned to this member
should be scheduled taking this into account.
set of faculty members
⊆
 available time-slots of ∈f
⊆
 classes taught by ∈f
āys f
 maximum number of days per week ∈f wants to
give lessons
Although the assignment of the teaching staff to the classes is
assumed to be done at an earlier stage, it affects the time-slots
where a given class can be assigned. Therefore, the set of feasible
time-slots of a class ∈c must account also for the available time-
slots of the staff assigned, i.e., ∩ ∩∈ ∈ S Slotsf c C

f c
, f . For notation

purposes, we will refer to this set as Slotsc.

3.2. Decision variables

We consider six sets of binary variables to model the different
constraints of the timetable. Binary variable xac takes value 1 iff stu-
dent ∈a is assigned to class ∈c Clm, for ∈m Ma. We further define
binary variable xsacs that takes value 1 iff class c assigned to student a
is scheduled to time-slot ∈ ∩s Slots Slc a. These two sets of variables
let us handle the student-class assignment aspect of the timetable.

Given a class ∈c and an event ∈v Vc , binary variable ycvs
takes value 1 iff v is assigned to time-slot ∈s Slotsc. In addition,
binary variable yrcrs takes value 1 iff class ∈c is assigned to room

∈r Rc in time-slot ∈s Slotsc and binary variable wc takes value 1 iff
class ∈c is scheduled in the timetable. These three sets of
variables allow us to model the assignment of classes to rooms and
time-slots.

Finally, we define variables to model restrictions imposed by
the faculty members. Binary variables zfd take value 1 iff professor

∈f has a class assigned to day ∈d .
We next describe in detail the constraints that define a feasible

timetable.

3.3. Modeling problem constraints

The formulation we present next models the usual constraints
that appear in academic timetabling problems together with some
particular constraints considered in this case. Specific details are
given with each type of constraints.
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3.3.1. Student-course assignment constraints
Each student informs a preference list of courses he/she is

willing to take during the semester, from which a subset con-
taining at least ma and at most m̄a has to be assigned. Groups are
managed in a similar fashion. For each assigned course, the pattern
must be feasible and the quota for each class must not be
exceeded.

Regarding the structure of the courses and its correct assign-
ment to a commission, we note that feasible patterns always in-
clude a lecture class. Thus, we use this type of classes to manage
the assignment of a student to a commission and then establish
the necessary relations to conform a feasible pattern. For simpli-
city reasons, a commission has an empty set of classes of a parti-
cular class-type if and only if the pattern for the course does not
include them. Finally, classes have an assigned quota, which must
not be exceeded:
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Constraints (1) establish that each student must be assigned to
at most one lecture class of the courses in the preference list. If a
course is marked as required for the student, the constraint is
imposed by equality. Constraints (2) and (3) force the assignment
to a course to be a feasible pattern. Constraints (4) restrict the
minimum and maximum number of courses that can be assigned
to a student, and constraints (5) establish an analogous restriction
within groups defined by the student.

3.3.2. Class-slot feasibility constraints
The assignment of classes to time-slots has to satisfy different

types of restrictions. For a schedule to be feasible, the block
structure of the class has to be satisfied and each event has to be
assigned to exactly one time-slot, without overlaps among them.
In addition, some of the classes consisting of two or more blocks
cannot be assigned to consecutive days (due to some pedagogical
preferences):
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Constraints (6) establish that if a class is scheduled, then its
quota must not be exceeded. Constraints (7) schedule the events of
a class to exactly one feasible time-slot if the class is scheduled,
and constraints (8) establish that at most one event of each block
can be scheduled within one day. In addition, constraints (9) en-
sure that consecutive events in a class block are scheduled to
consecutive times-slots within the same day. Note that these last
three constraints model the correct assignment of events to time-
slots in terms of slots overlapping conflicts. Finally, inequalities
(10) establish that different blocks of a class must be scheduled in
non-consecutive days. Note that it is sufficient to express these
constraints only in terms of the initial event of each block, since
constraints (9) impose the assignment of the entire block to con-
secutive time-slots within the same day. It is worth to note that
constraints (10) apply just for classes with non-consecutive days
requirement. For these classes, constraints (8) can be omitted since
they are dominated by (10).

3.3.3. Class-room feasibility constraints
The assignment of classes to rooms is feasible if it satisfies some

standard restrictions, mainly avoiding exceeding the capacity of
the room and overlappings in a time-slot. Constraints (11) estab-
lish that if a class is assigned then all of its events must be assigned
to exactly one room in the corresponding time-slot. Constraints
(12) force that at most one event is assigned to a room in a time-
slot and constraints (13) assures that the capacity of a room is not
exceeded. In addition to these feasibility constraints, inequalities
(14) force different events in a block to be assigned to the same
room. This is similar to the room stability constraint in related
university timetabling problems:
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3.3.4. Student-time-slot feasibility constraints
These constraints are necessary to guarantee that the timetable

is feasible for the students. Similarly to the PECTP we need to
prevent a student from being assigned to more than one class in a
particular time-slot. In addition, the timetable specifically requires
the conditions are satisfied regarding the number of classes in the
course assigned to and the distribution of the classes assigned to a
student on a given day:
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Inequalities (15) and (16) state the correspondence between
variables x y,ac cvs and variables xsacs. Constraints (17) force that
students are assigned to not more than one event in a time-slot, in
order to provide each student with a feasible schedule, and con-
straints (18) establish that within a day a student cannot have
scheduled more than two events belonging to the same course.
This characteristic is imposed by the university due to pedagogical
aspects.

Finally, although students are assumed to have full-time status,
the university decided not to generate assignments for students in
which they are required to attend a class in the first and last time-
slot of a day, without having activities in between. For this pur-
pose, constraints (19) establish that if student events are sched-
uled in the first and last time-slot of a single day, then at least one
of the intermediate time-slots must have an event assigned as
well.

3.3.5. Class-faculty feasibility constraints
The model must consider the feasibility of the schedule re-

garding the information provided by the faculty members, based
on their availability and the overlap of events assigned to the same
professor. For this purpose, constraints (20) prevent the model
from considering solutions with more than one event assigned to
the same professor in the same time-slot. In addition, inequalities
(21) and (22) are necessary to satisfy the restrictions imposed by
each professor regarding the maximum number of days they are
willing to give classes. In particular, inequalities (21) activate
variables zfd if professor f has at least one block of events assigned
to day d, and inequalities (22) limit the number of these variables
that can take value 1 based on the maximum number informed to
the administration office:
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3.4. Objective function and ILP formulation

In order to complete the description of the ILP formulation, we
model the objective function. For each student ∈a , we consider
a weighted sum between the preference value of a course ∈m Ma

and his/her rank priority. In particular, given the structure of the
courses and the feasible patterns defined, a student ∈a is en-
rolled in a course if and only he/she is enrolled in one of its lec-
tures. Taking into account the decision variables xac , we further
define =wc wac am for ∈a , ∈m Ma, ∈c T m. Thus, considering
nonnegative weights α and β , the ILP formulation maximizes the
total weighted preference for the assignments of students to
courses subject to the feasibility constraints:
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This formulation has a large number of both variables and
constraints for real-world instances, making it difficult to be
solved by a general purpose ILP solver such as CPLEX. Indeed, on
preliminary computational experiments, CPLEX default algorithm
showed difficulties firstly in finding feasible solutions and, also, in
improving the upper bound, even after enumerating a large
number of nodes. Finding a feasible solution is a difficult problem
due to the large number of operational constraints imposed. Re-
garding the upper bounds, since both the schedule of events into
time-slots and the assignment of students to courses are tackled
together, traditional techniques used in ILP algorithms are not as
powerful as in other problems. For example, the preprocessing
phase applied to the PECTP cannot be directly applied in the
GPECTP, since incompatibility of events depends on the assign-
ments of students to courses, which in turn depends on the as-
signments of events to time-slots. A similar observation can be
made regarding the standard branching rules.
4. Solution methodology

4.1. Overall approach

Due to the reasons mentioned before, we develop a two stage
heuristic procedure based on the formulation described in the
previous section. The sketch of the procedure is as follows. In the
first stage we generate assignments of classes to time-slots con-
sidering a subset of students and a relaxation of the ILP formula-
tion, named GPECTP-RED. Then, for each generated assignment,
we proceed to solve the model GPECTP-ILP but fixing some of the
variables to the values of the solution obtained in the first stage.
Finally, the best timetable is selected as the final solution.

As mentioned before, the idea behind the second stage is rather
simple: given an output produced by GPECTP-RED, fix the as-
signment of classes to time-slots and solve the formulation
GPECTP-ILP. However, considering only one assignment of classes
to time-slots from the first stage may result in a poor quality so-
lution or, even worse, not being able to find a feasible timetable
satisfying all the constraints. Thus, we randomly generate l re-
duced subsets of students ¯ ¯A A,..., l1 to be used in the first stage. By
considering these subsets we are introducing in the first stage
some of the information used in the second stage. Indeed, despite
some relaxed constraints and the objective function which was
partially reformulated, solving GPECTP-RED is somehow similar to
solving GPECTP-ILP but on a smaller scale.

In addition, for each of these subsets we decided to consider
more than one solution in the first stage, applying the second
stage for each of them. This is done by means of CPLEX routine
populate, which given an ILP formulation tries to generate alter-
native optimal or sub-optimal solutions and to store them in a
pool. Under this scheme, the first stage acts as a sort of con-
struction phase and the second stage as a local search procedure.

For the construction of the subsets ¯ ¯A A,..., l1 we adopt the fol-
lowing strategy. Initially, all subsets contain the following students:

1. all students that are in the K% top ranking, and
2. for each student having at least one required subject not in-

cluded in 1, we include an artificial student considering only the
required subjects.

Then, students not considered in the previous definition are
randomly assigned to exactly one of the l subsets. It should be
mentioned that the artificial student included in 2 is replaced if
the original student is assigned to the subset.

Before describing the heuristic in detail, we first discuss a
particular issue identified during the deployment of the algorithm.
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Although the university required the construction of the timetable
based on the ranking of the students, in practice they analyzed the
quality of the timetables also considering the percentage of as-
signments of students to courses. Formally, let
π = ( )⁎ ⁎ ⁎ ⁎ ⁎ ⁎ ⁎ ⁎x xs y z w rc rc, , , , , , be the characteristic vector of a
feasible solution of GPECTP-ILP, then they are also interested in the
following metrics:
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which gives the ratio between the number of assignments of
students to courses in the solution and the possible maximum
number of assignments, where the timetable assigns to each stu-
dent the maximum possible number of courses. Considering the
objective function defined in GPECTP-ILP, solutions with a better
objective value do not necessarily have a higher value of r.
Therefore, we adopted the following strategy: whenever a new
current solution is found during the second stage, it is stored and
reported once the execution is completed. With this information,
it is possible to analyze more than one timetable and to select the
one the scheduler prefers.

In Algorithm 1 we show the sketch of the overall procedure. As
input parameters, in addition to the definition of the instance, the
user chooses the number of subsets l and the number of solutions
(N) to be generated for each subset in the first stage, the time limit
for the second stage (TILIM), and the threshold (K) to compute the
restricted subsets Ā. The latter is a value between 0 and 100, re-
presenting the K percent of the students with the highest ranking.

Algorithm 1. OVERALL ALGORITHM.
Inp
Ou
1. F

2.
3.
4.

5.

6.

7.

8.

9.

10.
11.
ut: Instance, l, N, TILIM, K
tput: Set Δ of feasible timetables for GPECTP.
ormulate GPECTP-ILP model. Compute UB as the optimal
value of its LP relaxation to report a quality metric on the
final solutions.
Compute ¯ … ¯A A, , l1 according to K.
Set = − ∞BESTLB and Δ = ∅ as the timetable solution pool.
for = …j l1, , do:

Formulate the phase-one ILP for subset Āj, solve it and
generate N feasible assignments of classes to time-slots
using the populate routine. Let Γj be the solution pool.
for Γ∈i j do:

Let ( )x i be the i-th solution from the first phase. Con-
struct the ILP model and fix variables assigning classes to
time-slots. Set ( )UB i as the objective function of the LP
relaxation.

If ≤( )UB BESTLBi , then skip this solution and return to
7 with solution +i 1 of Γ .

Otherwise, solve current ILP for (at most) TILIM sec-
onds. Let ( )z i be the objective function of the best solution
found during the optimization of the second stage. If

>( )z BESTLBi , then set = ( )BESTLB z i , store the solution in Δ
and continue with solution +i 1 of Γj.

end for
end for
Report all solutions in Δ.
12.

4.2. Stage 1: Class-time-slot construction

To generate a feasible assignment of classes to time-slots we
simplify the problem in two different ways. Firstly, we consider a
restricted set of students ¯ ⊆A in order to reduce the size of the
model. Secondly, we discard the room capacity constraints of the
model and include only one quantitative restriction. Let nri be the
number of rooms of type ∈i Types and ⊆Classesi the set of
classes that can be assigned to rooms of type i, then for each time-
slot the number of assigned classes of type i cannot exceed nri.
Clearly, this is a relaxation of the overall problem and does not
guarantee the fixed seating capacity of the rooms.

Since in this stage we are only interested in the assignment of
classes to time-slots, considering a restricted set of students Ā may
result in timetables with an undesired characteristic: for courses
that are not required by any student in Ā, the events of these
courses may overlap in such a way that no feasible assignment can
be done. This may lead to myopic assignments of classes to time-
slots, which are only reasonable (or even feasible) in the case of
students included in Ā, resulting in poor quality overall solutions
in the second stage. On the other hand, forcing the schedule to
assign each class of the course to non-overlapping time-slots may
be too demanding in terms of feasibility, specially for courses
having several commissions.

To overcome this issue, we impose on the ILP formulation that
from this stage at least one feasible pattern must be assigned to
non-overlapping time-slots. For courses where the pattern is just a
lecture class, clearly the feasibility is imposed by the inequalities
set by the original formulation. For courses where the pattern is
lecture and exercise-class, we impose that each lecture must have
at least one feasible exercise-class to conform a pattern, and vice
versa. A similar idea is enforced for classes where feasible patterns
must have one of each type of class, i.e., lecture, exercise-class and
lab. In the latter, we consider adding these constraints in pairs (for
example, one lecture with one lab) or in groups of three (for a
lecture there must exist an exercise-class and a lab that together
consist in a feasible pattern).

We begin by modeling the first case, where the feasible pat-
terns are lecture and exercise-class. Formally, let ∈m , ∈q Qm

such that = ∅Labq , and consider ∈c Lecq
1 , ∈c Exq

2 , we define
binary variables rcc c1 2 that take value one iff class c1 is related to
class c2, where the term related means that they form a feasible
pattern. In addition, we consider variables ycvs, wc , xac and xsacs

defined previously and restricted, when necessary, to the set Ā. For
all these inequalities, unless otherwise stated, we are assuming

≠ ∅Lec Ex,q q and = ∅Labq :
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Constraints (24) and (25) establish that every lecture must be
related to at least one exercise-class, and vice versa. Based on this
relation, constraints (26) and (27) enforce that if one class is
scheduled, then its related classes are scheduled too. Constraints
(28) forbid related classes to be assigned to the same time-slot.
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Constraints (29) establish that if no lecture class is scheduled for a
particular course, then neither are exercise-classes since there is
no possibility of constructing a feasible pattern. Constraints (30)
establish that the number of classes requiring a particular type of
room does not exceed the availability of such room type.

We consider a similar approach for courses having as a feasible
pattern one class of each type, i.e., one lecture, one exercise-class
and one lab belonging to the same commission. Let rctpl be a binary
variable that takes value one iff classes ∈t Lecq, ∈p Exq and

∈l Labq are related, for ∈q Qm, ∈m . The combination of classes
t p, and l represents a feasible pattern for a student enrolled in
commission q of course m. The following inequalities guarantee
that the combination is feasible. Similarly to the previous case, we
assume that Lec Ex,q q and Labq are non-empty sets:
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Constraints (31) establish that if a lecture class is scheduled,
then its related exercise and lab classes are scheduled as well.
Constraints (32)–(34) force that each class must be related to at
least one pair of classes of the remaining types. Constraints (35)
prevent related classes from overlapping in the same time-slot.

With these new sets of variables and constraints, we now for-
mulate the ILP model for the first stage. Since the idea is to use its
outcome as an input for the second one, mainly setting the as-
signment of classes to time-slots, we consider an alternative ob-
jective function: a weighted combination between maximizing the
number of lecture classes assigned and the objective function (23)
by considering non-negative weights γ δ, , respectively. As we
mention before, each feasible pattern contains one lecture class;
moreover, the new inequalities force the assignment of the other
type of classes to consist in feasible patterns for the students. We
next show the formulation, named GPECTP-RED. Recall that con-
straints and variables involving room assignment are discarded at
this stage:
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Finally, we make some comments regarding this stage. It
should be noted that, since the final timetable in the second stage
is based on the assignment of classes to time-slots obtained in the
Table 1
Description of the instances 1-2013, 2-2014 and 1-2015.

Inst | | av m̄a av | |Ma | | ∑ | |∈ Qm
m | |

1-2013 981 4.15 7 118 131 341
2-2014 915 4.24 6.88 122 136 335
1-2015 1065 4.12 6.31 111 118 329
first one, it may not be possible to satisfy the minimum student's
demand. Intuitively, the definition of Ā may have an impact on the
quality of the output generated in the first stage. The larger the
number of students included in Ā, the better the quality of the
resulting assignments. On the other hand, the computation time
and memory requirements increase as well.

4.3. Stage 2: Student-class assignment

Given a timetable consisting of the assignment of classes to
time-slots, the second stage focuses on obtaining a complete fea-
sible solution by assigning students to courses, as well as de-
termining which room is reserved for each event in a class. We
remark that these two aspects are not completely covered in the
first stage. Regarding the students, only a reduced subset is con-
sidered, and the assignment of classes to rooms is relaxed to
simplify the problem. Formally, let π = ( )⁎ ⁎ ⁎ ⁎ ⁎ ⁎ ⁎ ⁎x xs y z w rc rc, , , , , ,
be the solution vector from the first stage representing the (fea-
sible) class-time-slot timetable. Then, the second stage consists in
formulating the model GPECTP-ILP and setting variables = ⁎y y ,

= ⁎w w and = ⁎z z .
The second stage can be stopped by two different criteria.

Firstly, we consider a time limit, specified by the user, for the ex-
ecution time on each run. Secondly, once we have at least one
feasible timetable, we use the upper bound provided by the LP
relaxation of the formulation to abort the optimization whenever
it is worse than the objective value of the best solution found. This
allows us to avoid solving unnecessary ILPs if the current solution
cannot be improved.
5. Computational results and case description

In order to evaluate the behavior of the algorithm, we con-
ducted different experiments at the early stages of the develop-
ment using artificial instances generated by the university ad-
ministrative staff. In addition, by the end of 2012, the final tuning
and evaluation of the algorithm had been conducted using the
information provided by both the students and the faculty staff to
construct the timetable for the first semester of 2013. We report
the results obtained in the latter, as well as the instances corre-
sponding to the second semester of 2014 and the first semester of
2015, named 1-2013, 2-2014 and 1-2015, respectively. Indeed, we
noted that real instances are much harder to solve compared to
the artificial one. The experiments were run on a workstation with
an Intel(R) Core(TM) i7 CPU (3.40 GHz) and 16 Gb of RAM. The
algorithms are coded in Cþþ using CPLEX 12.1 Callable Library as
LP and MIP solver.

Table 1 reports a summary including some characteristics of
the instance, such as the number of students ( | |), the average
number of courses per preference list (av | |Ma ), the total number of
courses ( | |) and the corresponding number of classes ( | |). We
also provide the total number of time-slots defined for a week (| |)
as well as the number of professors (| |) and the average number of
available time-slots per professor (av | |S f ), among other para-
meters. Finally, in the last two columns we report the number of
variables (vars) and constraints (const) in the formulation GPECTP-
∑ | |∈ Vc
c | | | | av | |S f | | vars const

473 30 220 7.55 31 310 063 751 086
461 36 211 8.66 31 259 395 769 712
450 36 216 9.5 31 303 229 804 693
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ILP. Regarding the different weights involved in the algorithm, we
set for the experiments, unless otherwise stated, α, β, γ and δ to
one. Although some preliminary experiments were conducted
with different values, they are mainly considered to provide the
scheduler with the possibility to generate different scenarios
during the process.

Concerning the remaining parameters, the student ranking rka

is a value between 1 and 10 provided by the university and all
students assign similar preference values to courses, relative to the
order in the preference list. In both cases, a higher value re-
presents a higher ranking and preference. The configuration of the
solver is the default one. Regarding the algorithm, a time limit of
1000 s is imposed to each generation of the initial assignment of
classes to time-slots (Step 5 in Algorithm 1).

For each of these real-world instances,1 we conducted the fol-
lowing experiment to evaluate the effectiveness and the quality of
the solutions generated. We executed the algorithm considering

=l 0, 5, 10, 20 and =K 0% (i.e., students assigned to compulsory
courses), =K 5% and =K 10%. The results are presented in Ta-
bles 2–4. For each combination we report the number of feasible
solutions found Δ(| |), the objective function and the number of
assignments in the best solution found, with their corresponding
optimality gaps, and the overall computing time required (in
seconds).

To compute the gaps, let zfeas be the objective value of a feasible
solution and zLP the value of the LP relaxation of GPECTP-ILP. Then,
the optimality gap is computed as = ( − )⁎ z z z%Gap 100 /LP LPfeas .
Regarding the number of assignments, the gaps are computed in a
similar fashion. The only difference relies in that zfeas stands for the
number of assignments of students to courses (that is,

= ∑ ∑ ∑∈ ∈ ∈z xa m M c T acfeas a m ) and zLP is the value of the LP re-
laxation of a version of GPECTP-ILP that maximizes this objective.
This can be done by setting α = 0, β = 1 and the preference values

=wc 1ac for all ∈ ∈ ∈a m M c T, ,a m, and solving the corre-
sponding LP.

In addition, whenever the required memory in the first stage
exceeds the available memory no results are reported for that
combination of parameters.

The results obtained are as expected, where larger values of K
and l produce in general better results. From the results corre-
sponding to the instance 1-2013 we note that small values of l
(5,10) generate large reduced sets Ā, and therefore the model
GPECTP-RED becomes very difficult to solve and exceeds the
available memory. The particular case where l¼0 does not con-
sider other students than the ones specified in 1 and 2, and
therefore the first stage can be solved in this case. For l¼20 we
observe the best results, both in terms of the objective function
and the number of assignments. This is justified by the fact that
more initial timetables are constructed in the first stage for the
reduced sets of students considered as input, and by the fact that
each of these problems can be solved with the proposed strategy.
Regarding the values of K, we also note an increment in the quality
of the solutions as K increases, but at a higher computational ef-
fort. Finally, we remark that for =K 10% the first stage does not
finish for any of the values of l since it exceeds the memory limit. A
similar tendency is observed for instances 2-2014 and 1-2015,
where increasing values of l and K produce the best results, except
for the case = =l K0, 20 where the solution found is slightly
worse than the one having =K 5%. However, for these two in-
stances we observe that the heuristic is able to find solutions for
some combinations of l and =K 10%, since it is possible to solve
the first stage for l¼0 and l¼20. This difference may rely on the
1 Instances can be retrieved from http://www.dc.uba.ar/Members/pzabala/
GPECTP-instances.tar.gz.
fact that the average number of available time-slots for the faculty
staff is greater compared with the instance 1-2013 in both cases, as
shown in Table 1.

In order to get a deeper insight into the behavior of the algo-
rithm and the quality of the resulting timetable, we conducted a
further experiment using instance 1-2013 to test the impact of
increasing the threshold K. However, since the instance is quite
tight regarding the set of feasible time-slots for each class, we
decided to slightly modify the instance by setting =S f for all

∈f , i.e., professors do not impose constraints for the assign-
ments of classes to time-slots. We also consider l¼0 for the
parameter settings, considering only the students detailed in 1 and
2, since the impact of the value of l has been already studied.

The results are shown in Table 5. For each value of K, we report
the execution time (in seconds) in Stage 1. For Stage 2, for each
feasible solution in Δwe report its corresponding value in terms of
the objective function (23) and the number of assignments, both
with their corresponding gaps. We also report the overall execu-
tion time required to find the solution.

As expected, we observed that an increase in the value of K
produces better final solutions, although the overall computational
time increases as well. For =K 0%, the gap of the final solution
regarding the objective function (23) is 7.14% and the overall ex-
ecution time is 2520 s. For =K 10%, these values are 3.74% and
7920. It should be noted that the difference in the execution time
relies on mainly in the first phase, where for =K 0% it requires
3.33 s and for =K 10% it increases to 5653 s. This increment in the
execution times has also an impact on the behavior of the second
stage. This is observed in both the number and the quality of the
solutions generated, as shown in Fig. 2(a). Restricting the analysis
to the execution time of the second stage, higher K values imply
the procedure is able to find better solutions in less time. For ex-
ample, for =K 10% the procedure finds a solution within a 4.07%
gap in 287 s, while for =K 0% it requires nearly 960 s to find a
solution with an 8.70% gap. This behavior is clearly justified by the
fact that the assignments generated during the first stage tend to
be better as K increases, at the expense of a higher computation
time.

We next analyze the quality of the best solution obtained for
each value of K. For each student ∈a , we consider his/her sa-
tisfaction value as the sum of the weights of the courses enrolled
in, i.e.,

∑=
( )∈

sv w x .
37

a
m M

am
am

a

In addition, we considered an upper bound on this value for each
student ∈a , s̄va, computed by the LP relaxation of the for-
mulation obtained replacing the objective function (23) of
GPECTP-ILP by (37). Students usually have preference lists of dif-
ferent sizes, with different preference values for each course.
These two definitions allow us to normalize the satisfaction value
for each student and compare the level of satisfaction among
them. In Fig. 2(b) we report the five-number summary considering
the ratio

¯
sv
sv

a

a
for all ∈a , ordered by their ranking weight rka and

partitioned into three subsets of equal size. We remark that for
students having all of their courses marked as mandatory this
value is considered as 1.0, and that the three sets are defined in the
same way for the three values of K considered. From a general
perspective, we can observe that the satisfaction level increases
when K is larger, with higher median values and less dispersion of
the satisfaction ratios. This is consistent with the results in Table 5,
where the objective values for higher values of K increase. In ad-
dition, as K increases the satisfaction values tend to vary according
to the students rankings. For example, for =K 10% the dispersion
of each group tends to be larger for low ranking students, while for

http://www.dc.uba.ar/Members/pzabala/GPECTP-instances.tar.gz
http://www.dc.uba.ar/Members/pzabala/GPECTP-instances.tar.gz


Table 2
Objective function and computational time required in a real-world instance for different K and l values, 1-2013.

l K/ 0% 5%

Δ| | Obj. %Gap #Assign. %Gap Time Δ| | Obj. %Gap #Assign. %Gap Time

0 2 50 514 6.61 3898 4.01 1680 3 51 421 4.95 3929 3.25 1500
5 ml – – – – – ml – – – – –

10 ml – – – – – 1 52 449 3.03 3999 1.53 63 902
20 8 52 232 3.44 3979 2.01 8580 9 52 457 3.02 3997 1.58 67 500
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=K 0% there is no clear pattern. This behavior is justified by the
construction of the timetables in stage one, where increasing the
value of K provides additional information to the algorithm in-
cluding students' requirements which are not necessarily
mandatory.

We conducted two other experiments to provide further evi-
dence and a deeper insight into the behavior of the approach,
mainly regarding the impact of the decision made for the con-
struction of the timetables in the first stage. Recall that the time-
tables generated in the first stage are driven by the reduced set of
students in Ā. The objective function defined in GPECTP-
RED considers partially their preferences and the courses selected
by them. For each instance, we consider three different config-
urations for the algorithm:

� Conf-base: l¼0 and K¼0, and therefore the first stage only
considers the required subjects. These are the values reported in
Tables 2–4?, which are used as a baseline.

� Conf-no-prefs: we take the best configuration obtained for each
instance, and set δ = 0. As a result, the objective function of
GPECTP-RED maximizes the assignments of classes to time-
slots. The assignment of mandatory course and the minimum
number of courses assigned to the top K% are guaranteed by the
constraints in the model. The configurations are l¼20, δ = 0,

=K 5% for instance 1-2013 and =K 10% for instances 2-2014
and 1-2015.

� Conf-best: the best configuration regarding the results in Ta-
bles 2, 3 and 4, including the preferences of the students. The
same as Conf-no-prefs but setting δ = 1.

The results obtained are shown in Table 6. We observe that the
overall results of the best solution found, as well as the number of
assignments, are improved by including the preferences of the
(reduced set) of students in the first stage. In particular, this can be
observed when comparing Conf-no-prefs with Conf-best, since the
only difference between them is the objective function of GPECTP-
RED.

In general, many algorithms in the related literature (see, e.g.,
[22,10] where classes are assigned to days of the week) propose a
first stage consisting of the assignment of classes to time-slots
which, once fixed, are used as input in a subsequent procedure to
assign rooms and students. However, our proposal performs an
initial assignment using partial information of the second stage,
that is, conditioning the assignment by using a reduced set of
Table 3
Objective function and computational time required in a real-world instance for differe

l K/ 0% 5%

Δ| | Obj. %Gap #Assign. %Gap Time Δ| | Obj. %Gap #

0 3 46 199 9.44 3635 6.25 1245 4 48 588 4.75 3
5 ml – – – – – ml – – –

10 3 48 926 4.09 3773 2.43 19 324 ml – – –

20 13 49 059 3.83 3769 2.53 11 694 8 49 281 3.4 3
students (those with required subjects plus the top K%) to influ-
ence the outcome. In addition, by considering l different reduced
student sets Ā, the multi-start nature of the approach increases
the chances to find better overall solutions.

Finally, we aim to evaluate the impact of the students rankings
as well as the preferences established for the courses in the al-
gorithm. Therefore, we generated a scenario where the objective
function accounts for neither the students rankings nor their
course preferences. The results are shown in Table 7, where we
report the overall objective function and the computation time
required compared to the best solution found in the standard case.
The objective function reported in both cases considers the pre-
ferences and the students ranking. In those cases where no pre-
ference was selected, we compute these values using the in-
formation provided in the original instance.

The results show that considering the priorities has an impact
on the solution, increasing the overall satisfaction value by nearly
9–10%. This means that allowing the students to provide a pre-
ference list with their corresponding weights has a positive impact
regarding the overall solution and the selection of the students.
Nevertheless, the computational times show an increment on the
three instances.

Finally, we make some comments regarding the outcome of the
project at an organizational level. The algorithm has been im-
plemented and used to construct the timetables since the first
semester of 2013, and it is still being used at the beginning of each
semester. From the organizational standpoint, the implementation
of this tool produced several benefits. The process of constructing
the timetable has been reduced from two months to just a few
days, and the scheduler is now able to consider different scenarios
(for example, with faculty staff availability) to select the best
timetable according to their needs. In addition, the students now
have a higher level of freedom to decide how to organize their
semester and program of study, being able to include their pre-
ferences in the course assignment. Since prior to this new policy
enrollment was compulsory, the requests for modifications to the
assignments at the beginning of the semester have been con-
siderably reduced, allowing the administrative staff to focus on
more important adjustments (operational, last minute availability
changes) to the timetable. In general, the first feasible solution is
obtained after 30 min of execution, and on average approximately
10 solutions are reported after 3 h. A complete run of the algo-
rithm takes usually about 10 h, and is in general run overnight.
nt values of K and l, 2-2014.

10%

Assign. %Gap Time Δ| | Obj. %Gap #Assign. %Gap Time

750 3.02 1457 5 48 657 4.62 3766 2.61 1977
– – ml – – – – –

– – ml – – – – –

792 1.93 35 575 8 49 356 3.25 3790 1.99 81 934



Table 4
Objective function and computational time required in a real-world instance for different values of K and l, 1-2015.

l K/ 0% 5% 10%

Δ| | Obj. %Gap #Assign. %Gap Time Δ| | Obj. %Gap #Assign. %Gap Time Δ| | Obj. %Gap #Assign. %Gap Time

0 2 45 321 10.84 3935 8.68 9159 3 46 391 8.74 4039 6.27 3099 4 46 021 9.47 3994 7.31 9661
5 ml – – – – – ml – – – – – ml – – – – –

10 3 47 040 7.46 4065 5.66 56 214 2 46 946 7.65 4052 5.96 66 772 ml – – – – –

20 5 47 366 6.82 4104 4.76 77 646 11 47 482 6.59 4119 4.41 77 575 8 47 833 5.9 4140 3.92 102 042

Table 5
Objective function and computational time required in a real-world instance 1-2013 for different values of K, l¼20.

0% 5% 10%
Stage 1 Time Time Time

3.33 676 5653

Stage 2 Obj. %Gap #Assign. %Gap Time Obj. %Gap #Assign. %Gap Time Obj. %Gap #Assign. %Gap Time

1 49 383 8.70 3846 5.29 960 51 476 4.83 3948 2.78 1200 51 888 4.07 3974 2.14 5940
2 49 869 7.81 3870 4.70 1080 51 805 4.23 3963 2.41 1440 51 986 3.89 3979 2.01 6000
3 50 231 7.13 3894 4.11 1440 51 842 4.16 3954 2.63 1740 52 003 3.86 3980 1.99 6060
4 51 921 4.01 3966 2.33 1860 52 015 3.84 3979 2.02 6120
5 52 067 3.74 3975 2.12 6900

Total time 2520 2820 7920
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6. Conclusions and future directions

In this paper we study the Generalized Post-Enrollment Course
Timetabling Problem (GPECTP), a new problem that generalizes two
known problems from the related literature, motivated by a real-
world application in the university context. We propose an ILP for-
mulation for this problemwhich models all constraints related to the
selections made by students as well as the operational constraints
imposed by the university, and develop a two stage heuristic solution
approach based on this mathematical formulation.

The heuristic has been tested on three real-world instances,
obtaining good quality results that were used in practice to sche-
dule the semester. The approach is able to find solutions within a
3–4% quality gap while satisfying nearly a similar percentage of the
students' requests. The proposed solution has been deployed and
used to schedule each semester since the first semester of 2013.

As future research, we first make some remarks about possible
extensions of GPECTP-ILP. Some of them have already been
Fig. 2. Graphic overview of the solutions found by the heuristic for each value of K. (a) Qu
three groups and sorted by ranking priority in descending order.
incorporated into the formulation and the heuristic without major
changes despite some extra definitions. These extensions are:

� Set of feasible time-slots for each room: During some time-slots a
subset of the rooms are not available since they are reserved for
other academic activities. These feature has been incorporated
into the formulation by restricting the assignment of events to
rooms in some particular time-slots.

� Reserved number of places per class: the university has blocked a
certain number of places per class in case of unforeseen events.
It will therefore be possible for the university to make changes
to the timetable. In addition, this fixed number of places is
useful for first-year courses in each program of study, where the
demand for them is estimated based on historical records and
variations in these estimations may occur.

Finally, regarding the computational aspects of the approach, it
would also be interesting to derive valid inequalities for GPECTP-
ality of solutions found during Phase 2. (b) Students' satisfaction boxplot divided in



Table 6
Results corresponding to the three instances with different settings for the first
stage.

Inst Conf-base Conf-no-prefs Conf-best

Δ| | Obj. Time Δ| | Obj. Time Δ| | Obj. Time

1-2013 2 50 514 1680 15 50 843 15 180 9 52 457 67 500
2-2014 3 46 199 1245 10 48 054 18 360 8 49 356 81 934
1-2015 2 45 321 9159 5 46 615 31 200 8 47 833 102 042

Table 7
Results for the three instances varying the students' preferences.

Inst l K w/o prefs. With prefs.

Obj. Time Obj. Time

1-2013 20 5 48 435 14 700 52 457 67 500
2-2014 20 10 45 597 18 660 49 356 81 934
1-2015 20 10 44 460 49 020 47 833 102 042
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ILP, in order to evaluate whether it can be used in practice.
Moreover, some of them may be included in the heuristic as well,
and further inequalities can be derived for the formulation con-
sidered in the first stage, aiming to reduce the overall computa-
tional time of the approach.
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