
This journal is© the Owner Societies 2017 Phys. Chem. Chem. Phys.

Cite this:DOI: 10.1039/c7cp02106b

The bouncing threshold in silica
nanograin collisions

Maureen L. Nietiadi,a Philipp Umstätter,a Tiffany Tjong,b Yudi Rosandi,b

Emmanuel N. Millán,c Eduardo M. Bringac and Herbert M. Urbassek *a

Using molecular dynamics simulations, we study collisions between amorphous silica nanoparticles. Our

silica model contains uncontaminated surfaces, that is, the effect of surface hydroxylation or of

adsorbed water layers is excluded. For central collisions, we characterize the boundary between sticking

and bouncing collisions as a function of impact velocity and particle size and quantify the coefficient of

restitution. We show that the traditional Johnson–Kendall–Roberts (JKR) model provides a valid description

of the ingoing trajectory of two grains up to the moment of maximum compression. The distance of

closest approach is slightly underestimated by the JKR model, due to the appearance of plasticity in the

grains, which shows up in the form of localized shear transformation zones. The JKR model strongly

underestimates the contact radius and the collision duration during the outgoing trajectory, evidencing

that the breaking of covalent bonds during grain separation is not well described by this model. The

adhesive neck formed between the two grains finally collapses while creating narrow filaments joining

the grains, which eventually tear.

I. Introduction

Collisions of dust grains are ubiquitous in astrophysics, occurring
in diverse places such as protoplanetary disks1,2 and the dust tails
of comets.3,4 While the grain composition may vary, grains are
typically classified as silica and ice grains. Dust particles have a
complex structure; they are aggregates of small grains with sizes
o1 mm.5 The collision of dust particles is studied theoretically by
means of granular-mechanics codes, which treat each grain as an
entity with only a few degrees of freedom (translation, rotation).6–8

In these codes, a variety of physical forces and torques must be
taken into account, which describe the details of attractive,
repulsive, dissipative and frictional interactions. These forces are
often modeled by laws and parameters based on macroscopic
concepts.9 It remains unclear to what extent they apply to the
collision of micro- or nanoscopic grains.

Molecular dynamics simulations may be used to test the
assumptions underlying the granular-mechanics models. Such
simulations have been carried out, in particular, for energetic
grain collisions.10,11 But they can also analyze the behavior at
smaller collision velocities, and thus determine the sticking

and bouncing behavior. Only a few such simulations have been
reported, and mostly for generic interaction potentials such as
the Lennard-Jones potential.12–14 The sticking process is relevant
for understanding the evolution of dust growth, since only
sticking collisions will lead to grain agglomeration.9

An important exception is provided by the work of Sun
et al.15 who studied the collision of silica nanospheres (radii
of 4 nm and below) using a non-reactive force field. This force
field models the interatomic bonding and the van-der-Waals
attraction between atoms, but does not allow for bonds to break
and new bonds to form. This study showed that the collision
of silica grains can be well described by the Johnson–Kendall–
Roberts (JKR)16 theory of adhesive contacts; in particular,
the force-displacement curves and the contact radii are well
reproduced.

However, more energetic collisions may lead to close
encounters of the two grains where bonds may dissociate and
new bonds may form. In particular, at the high pressures
present in the compression phase, strong bonds may form
between the two grains; such effects could not be considered in
the previous study.15

In the present paper, we want to understand specifically the
collisional behavior of silica grains. To this end, we use amorphous
silica particles colliding at relatively small velocities, where their
interaction is described by either sticking or bouncing. We
compare the collision results with the available macroscopic
JKR model. In addition, we characterize the changes induced in
the material by the collision.
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II. Method
A. Simulations

We use the potential devised by Munetoh et al.17 to characterize
the atomic interaction in silica. It is based on the bond-order
scheme developed by Tersoff18,19 to model the environment-
dependent bonding of Si and O atoms. It was tested to describe
the structural properties of various silica polymorphs, including the
amorphous state, satisfactorily. Bonds are treated as covalent. We
note that similar non-ionic potentials have been used previously to
model the energetic impacts of silica clusters.20–22

We amorphized a large block of silica; in order to obtain an
optimum structure we followed the procedure outlined in the
study by Huff et al.23 as number 2-VIII. Spheres with radii of
R = 15, 20 and 25 nm – containing 0.96, 2.26, and 4.42 million
atoms, respectively – were cut from this sample to be used as
collision grains, and relaxed for 50 ps to the final temperature
of 300 K before starting the collision.

The collision is started by duplicating the grain and shooting
the two copies onto each other with a relative velocity v. Only
central collisions are considered. At high enough velocities at
which bouncing is observed, we calculate the relative center-of-
mass velocity, v0, of the two grains after the collision. The
coefficient of restitution is then defined as

e = |v0|/v. (1)

At small velocities, at which the two grains stick, it is e = 0.
The lowest velocity at which bouncing occurs is denoted as

the bouncing velocity, vb. In our simulations, we find a largest
velocity without bouncing, vo, and a lowest velocity with
bouncing, v4. We note that we did not find bouncing for
smaller grains, R o 15 nm; we investigated grains with radii
of 3.5, 5, and 10 nm for collision speeds between 200 and
3000 m s�1 and found sticking at smaller velocities followed by
shattering (fragmentation) at larger velocities.

The molecular dynamics simulations are performed using the
LAMMPS code.24 Atomic snapshots are generated using OVITO.25

B. Materials parameters

Our a-SiO2 sample exhibits a mass density of r = 2.25 g cm�3, in
good agreement with the experimental data (2.20 g cm�3).26,27

We determined the elastic properties by uniaxial and triaxial
compressions; this gave us the bulk modulus of B = 49.9 GPa
and the longitudinal modulus of c11 = 81.4 GPa. These values
are larger than the experimental data of B = 36.8 GPa and
c11 = 77.3 GPa;27,28 note that the potential devised by Munetoh
et al.17 was not fitted to the elastic data of silica polymorphs;
however, a recent study29 reported that the elastic constants of
a-quartz are reproduced within 10%. Amorphous samples are
subject to inherent structural inhomogeneities; we created an
ensemble of 10 further a-SiO2 samples and estimated the
uncertainty of our moduli to be �5 GPa. From our results, we
can calculate the Young’s modulus E = 61.2 GPa and the
Poisson ratio n = 0.16 (experiment: E = 71.5 GPa, n = 0.176).
For further use, we note that the indentation modulus amounts
to Eind = E/(1 � n2) = 67.1 GPa (experiment: Eind = 73.8 GPa).

We determined the specific surface energy g of our silica
specimens by using a standard procedure.30 The energy of a
bulk silica specimen containing N molecules is given by NEcoh

with a cohesive energy of Ecoh = 19.64 eV per molecule. Let us
denote the energy of a silica system containing a planar surface
of area A by Etot. Then, the specific surface energy is given by

g ¼ Etot �NEcoh

A
: (2)

Our simulation gives g = 1.43 � 0.09 J m�2. We note that this
value is strongly affected by the details of the atomic configuration
at the surface; a high number of dangling bonds increases this
value, while the formation of siloxane (–Si–O–Si–) bridges would
decrease it.31

The experimental data of the surface energy of silica show a
large variety, g = 0.02–2.5 J m�2 as reviewed in the recent
compilation of Kimura et al.32 This compilation also explains
the reason for this variety by dividing the silica specimens into
three groups according to the silica–water surface chemistry:31

(i) silica covered by water multilayers has low surface energies,
g t 0.1 J m�2; (ii) silica covered with a single water layer has
g t 0.3 J m�2; (iii) naked silica has the highest surface energy,
g 4 0.3 J m�2. Our large value is in agreement with several
measurements and calculations of the surface energy of pure
silica in vacuum.32

III. Results

Fig. 1 illustrates the familiar result of a sticking collision below
the bouncing threshold.14,33 Upon contact, an adhesive neck is
formed, Fig. 1(a), which increases while the two grains are
driven deeper into each other. After the moment of largest
compression, Fig. 1(b), the velocities are reversed, and the two
grains increase their distance again. However, if the resulting
adhesion is too large, the two grains will not separate but
remain connected by the neck, Fig. 1(c). Oscillations are excited
in the 2-grain system, Fig. 1(d). The final neck, Fig. 1(e), is
smaller than the one at the moment of largest compression, but
larger than the initial neck. This shows the hysteresis of the
neck formation process. Note, furthermore, that around the
final neck, several atoms have changed their places and moved
from one grain to the other; this happened during the compression
phases where the neck was at maximum width.

In the following sections, we shall investigate more energetic
collisions which allow for grain separation.

A. Bouncing

Fig. 2 shows the coefficient of restitution for the collisions
investigated. For each grain size investigated, bouncing occurs
at velocities above the bouncing velocity, vb. We note that we
did not find bouncing for smaller grains, R o 15 nm.

The velocity dependence of the coefficient of restitution
above vb has been fitted to the law34

eJKRðvÞ ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� vb

v

� �2r
: (3)
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Such a law (with a = 1) can be justified theoretically for elastic
collisions of adhesive spheres within the framework of the JKR
theory of adhesive contacts.16,33,35 The physical picture is as
follows: when the two grains approach, they form an adhesive
neck upon contact. During the collision, the kinetic collision
energy is transformed into elastic energy, but released again to
accelerate the two grains from each other. At low velocities, v o vb,
the kinetic energy of the two grains does not suffice to overcome
the adhesive force of the neck; this scenario is compatible to our
findings for sticking collisions, Fig. 1. At higher velocities, the
neck is broken and the two grains separate. We add the constant
factor a to account for energy dissipation during the collision,
such as the excitation of oscillations in the 2-grain system,
see Fig. 1.

Fig. 2 shows that the JKR estimate describes the coefficient
of restitution quite well in the velocity regime beyond the
bouncing velocity that we explored. We may obtain an estimate
for vb also from the fit to eqn (3); as shown by Table 1, it agrees
well with our immediate simulation results. The values of a

increase with grain size; this means that the influence of
dissipation becomes relatively smaller for larger grains.

Theoretical estimates are available for the bouncing velocity
from JKR theory. For two identical spheres, the estimate reads33–35

vb ¼
C

r

� �1=2 g5

Eind
2R5

� �1=6

; (4)

where r denotes the mass density. This formula features as basic
ingredients the increase of the bouncing velocity with intergrain
adhesion (as quantified by the surface energy g) and the decrease
with the grain elastic modulus (quantified by Eind). Here, C is a
materials independent constant which depends on the assumptions
underlying the derivation. In a straightforward approach, the
collision energy (m*/2)vb

2 (m* is the reduced mass of the 2-grain
system) is set equal to the adhesive work, i.e., the line integral of
the intergranular adhesive force. This gives C = 4.265.34,35

Brilliantov et al.33 pointed out that the work of adhesion is
not clearly defined since the value of the initial contact area –
that is when, after approaching, the two grains jump into
contact – is not well-defined under the dynamic conditions of
a collision; they therefore derived C = 0.30–5.25, but provided
arguments for the larger value. They also pointed out that
dissipative processes will increase vb. This idea was taken up

Fig. 1 Snapshots showing a sticking collision of two R = 20 nm grains at a velocity, v, = 450 m s�1, slightly below the bouncing threshold at (a) the
moment of contact, 3.75 ps, (b) the moment of deepest compression, 17.25 ps, (c) ensuing maximum elongation, 55.5 ps, (d) second compression,
82.5 ps, and (e) the final stage, 88.5 ps. Atoms are colored according to the original grain affiliation.

Fig. 2 Coefficient of restitution, COR, as a function of impact velocity, v.
Symbols: simulation results. Lines: fit to eqn (3).

Table 1 Bouncing velocity, vb, and dissipation constant, a, as obtained
from a fit of our simulation data, Fig. 2, for silica spheres of radius R to
eqn (3). vo and v4 denote the largest velocity at which the grains stick and
the lowest velocity at which grains bounce, respectively, found in our
simulations

R (nm) vo (m s�1) vb (m s�1) v4 (m s�1) a

15 594 594 625 0.48
20 450 469 475 0.57
25 350 375 375 0.63
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by Krijt et al.34 who set up a model including viscoelastic
damping to study the effects on bouncing and the coefficient
of restitution; they quantified the increase of vb in terms of the
viscoelastic parameters. In earlier work, Dominik and Tielens9

argued that, in particular, dissipation by excitation of elastic
waves will increase the value of vb beyond that provided by the
adhesive forces; they arrived at C = 18.33. Note that this paper
corrects an error in their previous work.36 Finally Kimura et al.32

used C = 57.9 and demonstrated that this value provides a
satisfactory agreement with experiments on the bouncing of small
silica spheres (radii of 0.6 and 0.25 mm) from flat surfaces.37 In the
following sections, we shall use the latter value of C = 57.9.

In Fig. 3, we compare our simulation data with the prediction
of eqn (4). Our results are compatible with the predicted R�5/6

dependence on grain size. In detail, we observe that vb decreases
with R as a power law, vb p R�m, where m = 0.88 � 0.05.
However, our data are a factor of about 3.4 too large. In view of
the above discussion on the origin of that formula, we assume
that energy dissipation during the collision as well as the nature
of the adhesive neck – see the discussion on the intergranular
filament formation in Section IIIB below – is responsible for this
deviation.

Recently, the collision between two silica spheres was modeled
by a non-reactive force field.15 There, a tiny surface energy of
g = 0.03 J m�2 was determined, which was caused by the fact
that only van-der-Waals forces were included between the two
grains without the possibility of forming covalent bonds. We
note that such small values are adequate for silica covered by
multiple water layers. In correspondence with the small value
of g, the authors also observed bouncing at smaller velocities
than in our study, even though they did not study systematically
the bouncing transition.

B. Materials processes at the bouncing threshold

Fig. 4 illustrates the materials processes occurring at the
bouncing threshold. We choose R = 20 nm grains colliding with
475 m s�1. In this figure, atoms are colored according to the

atomic shear strain they suffer. In technical terms, this quantity
is the von-Mises invariant of the local shear strain tensor describing
the atomic-level deformation with respect to a reference
configuration, which is here taken as the initial grain configuration
before collision.38,39 In Fig. 4(a) we display the shear strain at
the moment of largest compaction for a R = 20 nm collision.
Unsurprisingly, the strongest sheared region is in the vicinity
of the contact area. Note that the highest strains, surpassing
e = 0.25, appear in strongly localized small volumes, which
indicate the occurrence of localized shear transformation zones
(STZs). The relevance of STZs for the plasticity of amorphous
materials has been known for long,40–42 but here we demonstrate
it in the formation of nanoplasticity in silica grain collisions.
Note that plasticity in amorphous materials such as silica
requires the breaking and reformation of bonds, in contrast to
bond stretches or bends characterizing elastic deformation;43

such processes cannot be modeled in non-reactive force fields.
STZs may combine to form shear transformation bands, which
soften the amorphous material since they allow shear and thus
high energy dissipation. It is also in these regions that eventually
cracks may form.

The volumetric stress in the compaction zone stays below
10 GPa, and reaches such high values only in isolated atoms,
but not in connected regions. It is known that stresses of this
order of magnitude, such as those for instance reached under
shock loading, may permanently transform the amorphous
silica to a higher-density amorphous phase;43 this behavior
also occurs for the potential17 used in the present study.29 We
note that such a densification renders silica more ductile due to
the 5-fold Si coordination defects (bonded to 5 O neighbors)
created in this process.44 However, we did not observe such a
phase transformation, presumably because the dense phase
lasts only in the order of 20 ps. We note that the temperatures
in the grain during collision rise in the contact zone, but the
values remain below around 600 K.

We can estimate the pressures occurring during collision
from p = rvcl, where the longitudinal velocity of sound amounts
to cl = 5900 m s�1.27 This relationship originates from a
simplification of the Hugoniot relationship13 and is expected
to work well under our conditions. At the bouncing velocity of
the 20 nm grain, vb = 475 m s�1, this predicts p = 6.3 GPa, in fair
agreement with our simulation results.

After the collision, Fig. 4(b), the strains have generally
decreased. They are still considerable at the positions where
the two grains met; these effects on the immediate contact zone
will be discussed below. However, also in the grain interiors,
close to the contact zone, strong shears remain; the clustering
of the strongly sheared atoms gives evidence of the survival of
the STZs. As a result, we found that the strong compression
during the collision gave rise to defect formation in the grain
interior – down to a depth corresponding to the radius of
the contact area, cf. Fig. 4(a). After a multitude of impacts,
such defects may lead to surface modifications of the grains
resulting in a weakening of the mechanical properties of the
grains and make them more sensitive to crack initiation and
growth.

Fig. 3 Bouncing velocity, vb, as a function of grain radius, R. Simulation
data, Table 1, are compared to the prediction of JKR theory, eqn (4). The
largest velocity at which the grains stick and the lowest velocity at which
grains bounce are included in the simulation results in the form of error
bars. The line connecting the simulation data presents a fit to a power law,
vb p R�m, where m = 0.883.
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We note that previous studies of crystalline grain collisions
showed the occurrence of dislocation-based plasticity which –
starting from the collision area – spanned the entire crystal.13,14

We found here that the situation is different for amorphous
grains, since the defect-induced plasticity remains concentrated
in the vicinity of the collision area.

The surface of the contact zone has become strongly roughened
on the atomic scale due to the high-pressure contact and separation
that occurred. Such a roughening will be important in the space
environment, since it will result in an enhanced surface area, with
consequences for gas adsorption and possibly catalytic activity.45

In Fig. 5, we display the separation process of the two
collided grains. The neck that has formed between the two
grains due to grain adhesion is under strongly tensile stress;
while the centers of the two grains move away from each other,
the neck collapses to an array of thin filaments which are torn
apart. Note how during the separation process the grain material
is strongly mixed. These filaments may finally be of monoatomic
thickness, occasionally branching. The silica structure is built on
SiO4 tetrahedra; when the contact neck is stretched, some Si–O
bonds are broken, while the surviving bonds form the Si–O–Si–O
filaments, as shown in Fig. 5, especially Fig. 5(c). Similar
silica filaments have been observed in silica nanowires under
tension,46 where for small-diameter nanowires ductile fracture

is observed in both experiments and simulations using a 3-body
potential devised by Vashishta et al.,47 while the two-body
Beest–Kramer–Santen (BKS) potential48 displays a different
behavior. These figures illustrate the atomistic origins of the
hysteresis in the neck formation and destruction process; while
neck formation may be thought of as a quite generic (macro-
scopic) phenomenon that is well described by the surface
energies of the two colliding grains, neck separation is best
analyzed via atomistic simulations which allow taking the
breaking of atomic bonds into account.

C. Comparison to JKR theory

The peculiarities of this neck separation process are also
responsible for the quantitative increase of the bouncing velocity
by a factor of 3.4 beyond the prediction of JKR theory, eqn (4). To
demonstrate this effect, we plot in Fig. 6 the temporal evolution
of the contact radius, a, between the two grains. It has been
estimated by determining at each time the set of contact atoms;
because of symmetry, these are situated in the mid-plane
between the two grain centers. The largest distance of a contact
atom to the line connecting the two centers of the grains then
determines the radius of the contact area.

In the plot, we also include the prediction of JKR theory; it
provides a connection between the overlap d = 2R � d (d is the

Fig. 4 Strained regions at the moment of largest compression (a) and after the collision (b) for the R = 20 nm grains colliding with v = 475 m s�1. Only
atoms experiencing a shear strain in excess of 0.2 (a) and 0.1 (b) are plotted, see the color bars.

Fig. 5 Details of the separation of the two R = 20 nm grains (v = 475 m s�1) at three consecutive times of (a) 56.25 ps, (b) 57 ps, and (c) 57.75 ps after
impact. Atoms are colored according to the original grain affiliation. Si atoms are drawn slightly larger than O atoms.
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distance between the centers of the two grains) and the contact
radius a. The center of each grain is identified by the position of
its central atom; since strains in the grain centers are negligible,
see Fig. 4, the identity of the central atoms is preserved during
the collision. For two equal spheres, JKR predicts33,49

d ¼ 2aJKR
2

R
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8p

gaJKR

Eind

r
: (5)

We use this equation to determine aJKR from the simulation
data of d(t).

For orientation, we note that the contact radius aequ
JKR of two

unforced spheres, i.e., when no external force is acting, amounts to

aequJKR ¼
9p
2

gR2

Eind

� �1=3

: (6)

For our system, it is aequ
JKR = 4.94 nm. At contact, d = 0, the radius

is a0
JKR = (4/9)1/3aequ

JKR = 3.77 nm. JKR theory also predicts that
a contact becomes unstable if the contact radius falls below
(1/4)1/3aequ

JKR = 3.11 nm.
In Fig. 6, the times when the centers of the two grains are

at a distance of 2R (zero overlap) are marked. During the
incoming trajectory, JKR reproduces well our simulation
results. However, the maximum contact radius is slightly larger
than the JKR prediction; we assume that this is due to the
plastic deformation occurring during maximum compression,
see Section IIIB above; this is not included in the elastic JKR
theory. The largest differences occur in the outgoing trajectory;
there, the simulation results are considerably larger than the
prediction. At the time, when the two grains separate – d = 0, at
37.5 ps – the contact radius is still 7.50 nm, far above the JKR
value of 3.77 nm. The actual separation takes another 18.75 ps
until the contact radius has decreased to zero, i.e., until
the filamented neck has completely torn. Note during the
separation process the extended period of time from around
40–50 ps, where the contact radius stays constant; this is the
time when the formation of filaments prevents the separation
of the two grains. We conclude from this discussion that the
deviation from JKR theory occurs, in particular, during the

separation stage; while many bonds have been created during
the compression phase, the breaking of these bonds leads to
considerable deviations from the continuum picture provided
by JKR theory.

Besides JKR theory, other continuum theories have been set
up to describe adhesive elastic contacts. Among them, the most
widely known is the Derjaguin–Muller–Toporov (DMT) theory.50

The DMT theory is assumed to describe stiff and small spheres,
while JKR theory applies to compliant large spheres.49,51 DMT
theory is based on the idea that adhesive forces are only active
in an annular ring around the contact zone, which is described
by Hertz theory; however, this scenario is clearly ruled out by
our MD observation of strong covalent forces acting in the
contact zone itself. Also quantitatively, DMT theory does not
describe our observations. Indeed, the DMT contact radius is
smaller than that calculated by JKR theory;49 for instance in the
load-free case, aequ

DMT is a factor (1/3)1/3 = 0.69 of aequ
JKR, eqn (6). In

view of the good description of our simulated contact radius by
JKR theory during the ingoing trajectory, Fig. 6, the small values
predicted by DMT theory are clearly not adequate to describe
our data.

IV. Summary

We studied the collision of silica nanograins using atomistic
simulations. We focus on bare silica whose surface is not
chemically modified by adsorbates, and which can hence form
strong bonds between the colliding grains. This is in contrast to
studies which assume the silica surfaces to be passivated by
hydroxylation or by the adsorption of water layers; such surfaces
are only able to exert weak van-der-Waals forces on each other,
besides electrostatic interactions that may have length scales of
up to 1 mm.52 The conditions investigated by us may for instance
prevail for dust collisions in the vicinity of a star, where
temperatures are so high (above around 190 1C) that all water
layers have desorbed.31

We note that high temperatures might influence the dynamics
of grain–grain collisions; further simulations would be required
to understand quantitatively the influence of elevated temperatures
on the bouncing velocity. Elastic properties only change around
10–15% up to near 1500 K,53,54 and also show little changes55,56

at and beyond the glass temperature (1475 K57). Significant
changes would only occur closer to the melting point of silica
(1986 K [ref. 58, p. 4-84]).

The available experiments on collisions of silica spheres are
performed in an environment which provides silica with a
hydroxylated surface, in which dangling bonds are passivated,
or even with one or multiple adsorbed water layers, see the
extended discussion in the review article by Kimura et al.32

Such a surface leads to a small surface energy in the range of
g = 0.02–0.1 J m�2, and consequently to bouncing velocities that
are a factor of one to two orders of magnitude smaller than
those found for bare silica surfaces in the present study.

Concentrating on processes occurring around the bouncing
threshold, we found the following.

Fig. 6 Temporal evolution of the contact radius of two R = 20 nm grains
colliding with v = 475 m s�1. The simulation results are compared to the
estimate of JKR theory, eqn (5). The arrows mark the times when the two
grains are at a distance of d = 2R (overlap d = 0), t = 2.25 and t = 37.5 ps.
The contact ends at t = 56.25 ps in the simulations.

Paper PCCP

Pu
bl

is
he

d 
on

 3
0 

M
ay

 2
01

7.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ita
t K

ai
se

rs
la

ut
er

n 
on

 1
4/

06
/2

01
7 

11
:4

8:
12

. 
View Article Online

http://dx.doi.org/10.1039/C7CP02106B


This journal is© the Owner Societies 2017 Phys. Chem. Chem. Phys.

(1) The traditional JKR model provides a good model to
describe the coefficient of restitution in the vicinity of the
bouncing transition. However, dissipation of energy prevents
the coefficient of restitution to reach the value of 1 at high
velocities and has to be included ad hoc in the model.

(2) The JKR model also provides an estimate of the magnitude
of the bouncing velocity. It is in qualitative agreement with the
results obtained from atomistic simulations. In particular, the
R�5/6 dependence of the bouncing velocity on grain size predicted
by the model is followed by our results.

(3) Quantitatively, our results are a factor of around 3.4
larger than the estimate. We argue that the peculiarities of the
breaking of the adhesive neck is responsible for this deviation,
which are outside the continuum JKR model.

(4) JKR theory describes quantitatively well the ingoing
trajectory of the two colliding grains. Deviations occur at maximum
compression and, most pronouncedly, in the outgoing trajectory.

(5) During the high-pressure compression phase of the
collision, nanoplasticity is generated in the amorphous grains.
This leads to a slightly larger grain overlap at maximum
compression than that predicted by the elastic JKR model. In
addition, we see evidence for the formation of STZs that are
confined to the collision zone, extending around one contact
radius towards the grain interior. Multiple collisions might
then lead to the formation of shear bands, thus inducing softening
or cracking of the grains.

(6) This behavior is opposed to the nanoplasticity observed
in crystalline grains, where grain-spanning dislocations are
created such that the effect of a collision does not remain
localized within the collision region.

(7) Another consequence of the collision is the roughening
of the surface in the vicinity of the contact area, which is
created during the grain separation stage. Such a roughening
may be important in astrophysical contexts, since it will result
in an enhanced surface area, with consequences for gas adsorption
and possibly catalytic activity.

(8) Neck separation is best analyzed via atomistic simulations
which allow taking the breaking of atomic bonds into account. In
the case of silica grains studied here, the neck collapses upon the
creation of filaments joining the grains, which ultimately tear.

These simulations neglect the role of possible net charging
of the silica nanoparticles. Electrostatic forces and charge
exchange during collisions might affect the contact radius
and possibly increase even further the bouncing velocity. There
are schemes for charge exchange in classical simulations,59 but
they are extremely expensive computationally compared to the
Tersoff-type 3-body potential used here. Future simulations of
colliding water-covered silica clusters would likely entail considering
such electrostatic effects.

Other continuum models like DMT theory also fail to
describe the complex bonding in silica.

The formation of filaments upon collisions seen in silica
grain collisions in the present study might be a general feature
also for other materials like silicon carbide, or carbon, where
similar filaments have been seen in graphitic allotropes under
tension,60,61 and, in particular, under diamond–grain collisions.62
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