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Abstract. We present a discrete-time formulation for the autonomous learning conjecture. The main feature
of this formulation is the possibility to apply the autonomous learning scheme to systems in which the
errors with respect to target functions are not well-defined for all times. This restriction for the evaluation
of functionality is a typical feature in systems that need a finite time interval to process a unit piece of
information. We illustrate its application on an artificial neural network with feed-forward architecture for
classification and a phase oscillator system with synchronization properties. The main characteristics of
the discrete-time formulation are shown by constructing these systems with predefined functions.

1 Introduction

The autonomous learning conjecture for the design of dy-
namical systems with predefined functionalities has been
previously proposed by the authors [1]. It extends the
dynamics of a given system to a new one where the pa-
rameters are transformed to dynamical variables. The ex-
tended dynamical system then operates decreasing some
cost function or error by varying the parameters through
dynamics that include a delayed feedback and noise. The
central feature of this idea is that the original variables and
the parameters evolve simultaneously on different time
scales. Because of an intimate connection with the pre-
vious publication, we do not provide here a detailed intro-
duction and literature review, all of which can be found
in reference [1].

The original formulation of the autonomous learn-
ing scheme works properly for systems where the cost
functions are defined at all times during their evolution.
However, many dynamical systems cannot satisfy this re-
striction since they need a finite time interval in order to
process a piece of information and produce its response. As
a result, the errors of such systems with respect to target
functions are not defined during these processing inter-
vals. Examples of these systems are feed-forward neural
networks [2], spiking neural networks [3], gene regulatory
systems with adaptive responses [4,5], signal transduction
networks [6], etc.

In order to treat these kinds of systems we propose
to define an iterative map for the evolution of their
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parameters. Between successive iterations, a dynamical
system is allowed to evolve during a long enough tran-
sient time for its error function to be evaluated. With the
error thus computed we update the parameters in the next
iteration according to our proposed autonomous learning
scheme. This approach can be seen as an adiabatic real-
ization of the original learning scheme for continuous-time
evolution.

Note that the aim of this work is to define dynam-
ical systems that evolve by themselves (autonomously)
to target functionalities. Thus, no external control (op-
timization algorithms) nor internal central processing is
employed. This feature is quite different from common
learning methods where an external agent can modify the
learning system by applying an algorithm. As a result, in
the current state of development, the autonomous learning
conjecture is generally less efficient than well established
optimization methods for each particular system. How-
ever, we think that the theoretical and practical implica-
tions of this conjecture are important and they deserve to
be studied.

To illustrate the application of this new formulation we
consider two systems: a feed-forward neural network and
a Kuramoto system of phase oscillators. With the former,
we have a classic example of a system that needs a time
interval to process some input signal and produce its cor-
responding output. Since the system may classify several
input patterns, the network does not only need time to
process each signal, it also needs to restart the process for
each one of them. We show that this system can not only
learn to classify a set of patterns but also to be robust
against structural damages, namely, deletion of one of its
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nodes in the processing layer. In the case of the Kuramoto
system, we repeat the problem of synchronization treated
in our previous work [1], now using the new formalism.
We then proceed to compare some aspects of the discrete
and continuous-time approaches.

The work is organized as follows. In Section 2 we write
down the original continuous-time autonomous learning
scheme, followed by the proposed discrete-time approach.
In Section 3 we describe the two systems where we apply
the new scheme. In Section 4 we present our numerical
investigations of these systems. Finally, in the last section
we discuss our results and present our conclusions.

2 Autonomous learning theory

The continuous-time version of the autonomous learn-
ing scheme considers a simple dynamical system with
N variables x = (x1, . . . , xN ), and Q parameters w =
(w1, . . . , wQ) with dynamics given by

dx

dt
= f(x, w), (1)

and an output function F (x) which defines the task the
system is responsible of executing. We further define a cost
function or error ε between the output function and some
target performance R0 as

ε = |F (x) − R0|. (2)

Finally, to allow for a self-directed (or autonomous) min-
imization of the deviation ε, we extend the original sys-
tem (1) by defining a dynamics for the parameters w as
follows:

dw

dt
= −1

τ
δw(t)δε(t) + ε(t)Sξ(t). (3)

In this expression δw(t) = w(t) − w(t − Δ) and δε(t) =
ε(t)−ε(t−Δ) are temporal differences at time t and t−Δ,
where Δ is a time delay. The constant τ fixes the time
scale of the evolution of w. In the last term, S plays the
role of a noise intensity, and ξ(t) = (ξ1(t), ξ2(t), . . . , ξQ(t))
are independent random white noises with 〈ξ(t)〉 = 0 and
〈ξα(t)ξβ(t′)〉 = 2δαβδ(t − t′).

Taken together, equations (1) and (3) define an ex-
tended dynamical system with combined variables x and
w, evolving according to two different characteristic times.
In effect, if the time scale of subsystem (1) is taken as unity
and τ � 1, the dynamics of subsystem (3) will be slower.
Additionally, the time delay Δ must satisfy τ � Δ � 1.

Our conjecture is that, under an appropriate choice
of τ , Δ and S, this autonomous system will evolve along
an orbit in the space of variables w which minimizes the
system’s deviation ε from the target performance. In [1] we
show that this learning method works properly for systems
of oscillators where different levels of synchronization must
be reached.

Equation (3) has been designed in order to perform
the weight evolution aiming to reduce the error ε. The

interpretation of the first term on the right-hand side of
this equation is the following. If, as a consequence of the
delayed feedback (memory), the system performance im-
proves, i.e. δε < 0, with the weight correction satisfying
δwi < 0, then the weight wi should next decrease. If in-
stead δwi > 0, wi should increase. The opposite behavior
is obtained in the case that the system performance de-
cays with δε > 0. The second term on the right-hand side
of equation (3) is a noise proportional to the error ε. Its
function is to keep the dynamics from being trapped in
local minima, vanishing when the error is zero.

Another interpretation of equation (3) is that the
weight evolution is controlled by a drift term (first term
on the right) whose corrections are given by the memory
(feedback) of the system. The second term is a stochastic
exploration in parameter space proportional to the error
ε. As a result, this dynamics can be seen as a competi-
tion between a drift term of intensity 1

τ and a stochastic
term of intensity εS. As we will later show, a proper bal-
ance between these two terms is needed in order to obtain
successful evolutions.

For the application of (1) and (3) it is necessary that
the error ε(t) be defined for all t. As we mentioned in the
introduction, this restriction cannot be satisfied by sys-
tems which need a finite amount of time T to execute the
task given by F (x) and, consequently, to yield a corre-
sponding value for ε.

Our discrete-time autonomous learning approach for
the optimization of such systems considers that during
each time interval T the system’s parameters w are fixed.
After this transient, the system function F (x) assumes a
value, allowing the error function ε to be evaluated and
the parameters w to be accordingly updated. Taking each
iteration step as comprising one complete processing in-
terval T , we define an iterative map analogous to equa-
tion (3) as:

w(n + 1) = w(n) − Kτδw(n)δε(n) + ε(n)Sξ(n). (4)

Here, n is the iteration index, δw = w(n) − w(n − Δη)
and δε = ε(n) − ε(n − Δη), with Δη ∈ N a delay given
by a certain number of iterations. The other quantities
are analogous to those of equation (3). The constant Kτ

determines the characteristic time for the evolution of the
parameters and is equivalent to 1/τ . In this way, the new
formulation replaces (3) with an iterative map as the new
dynamics for w, and allows the system to evolve according
to (1) during an interval of time T between successive
iterations.

3 Dynamical models

In this section we present the two models we set out to
design through optimization with the discrete-time au-
tonomous learning scheme. We note that the goal of these
models in this work is only to serve as examples of appli-
cation and we do not pretend to analyze their properties
in detail nor to compare our procedure with other meth-
ods of optimization. We focus only on the autonomous
learning procedure.
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3.1 Neural network model

The first example we consider is a classical feed-forward
artificial neural network [2] able to classify bitmaps. This
kind of system is prototypic for our interest. The neural
network must process different signals with a fixed set of
weights, requiring a finite time interval to compute the in-
put information and retrieve its response. During this pro-
cessing interval the error is not defined, making it difficult
to implement the original scheme of autonomous learning.

Our model is defined as follows: a network G has Nin

nodes in the input layer, M nodes in the hidden layer
and Nout nodes in the output layer. A weight wc,c−1

ij is
associated with a directed connection from node j in layer
c − 1 to node i in layer c. The dynamics xc

i of node i in
layer c is

xc
i = f

(
n∑

j=1

wc,c−1
ij xc−1

j + wc
iθθ

)
, (5)

where the activation function f is given by f(x) =
tanh(x). For each node i in layer c, we include a thresh-
old value in the activation function by adding a weight
wc

iθ from a threshold node θ to the node in question. The
threshold node is always activated with θ = 1.

The neural network operates with a discrete-time dy-
namics. In the first iteration the input neurons read an
input pattern ζ and get their values. In the second itera-
tion the neurons in the hidden layer compute their state
as a function of the states of the input neurons. Finally, in
the third iteration the output nodes compute their states
using the states of the neurons in the hidden layer. As a
result, the output layer yields the response of the network
after it processes the input pattern ζ.

A network may repeat this K times in order to com-
pute the set of patterns ζ = ζ1, . . . , ζK . We thus define
the error of the network as

ε =
1

KNout

K∑
i=k

Nout∑
i=1

(yk
i − xk

i )2. (6)

In this expression yk
i and xk

i are the ideal and actual re-
sponses (respectively) of the output node i when the pat-
tern ζk is processed by the network.

3.1.1 Functionality

In order to construct functional networks, i.e., networks
with small ε, we use our new discrete-time formalism of
autonomous learning. We set the iterative map (4) as the
evolution law for the weights of the neural network. In
order to use this equation we sort all the weights wc,c−1

ij
and wc

iθ in one linear array w.

3.1.2 Robustness

We are also interested on retaining the functionality of a
network when destructive mutations or damages alter the

network structure. This property of structural robustness
is a key feature of neural networks [2,7] and several bio-
logical systems [8]. Our aim is to employ the autonomous
learning scheme as well to improve the robustness of a
given system. The following ideas concerning robustness
have already been applied to flow processing networks [9].

Consider a network G with error ε. If we delete one if
its M nodes in the hidden layer, we get a new network
Gi with error εi. In general, the damage introduced will
worsen the functionality of the original network G, that is,
we will have ε < εi. We say that a damaged network is no
longer functional if εi > h, where h is thus defined as the
maximum error below which a network is still considered
functional. We can repeat this process of deletion for all
nodes in the hidden layer to define the robustness ρ(G) of
network G as the ratio between the number of damaged
functional networks and the total number of possible dam-
ages M :

ρ(G) =
1
M

M∑
i=1

Θ[h − εi(G)]. (7)

Here, Θ is the Heaviside function with Θ(x) = 0 if x < 0
and Θ(x) = 1 if x ≥ 0.

Since our goal is the construction of functional and
robust networks, we must aim for ε → 0 and ρ → 1.
We propose the simultaneous optimization of these two
quantities through the use of a biparametric autonomous
learning scheme for the weights as follows:

w(n + 1) = w(n) − δw(n)
[
Kεδε(n) − Kρδρ(n)

]
+
[
ε(n)Sε +

(
1 − ρ(n)

)
Sρ

]
ξ(n). (8)

In this expression, we have two constants Kε and Kρ re-
lated to the drift term, and two constants Sε and Sρ re-
lated to the noise intensity. It is directly seen that this
biparametric prescription for the evolution of w is essen-
tially a superposition of (4) as applied individually to the
optimization of ε and ρ. Note that the robustness must be
calculated in each iteration, and therefore the M nodes
are removed one by one in each iteration.

3.2 Kuramoto system

We take as a second example of a dynamical system
the Kuramoto model studied in our previous article [1],
now applying the discrete-time autonomous learning pre-
scription for the evolution of the coupling weights. Note
that a similar model has been studied before by Yanagita
et al. [10]. There, they optimize the synchronization prop-
erties of the system by varying its network structure with
a metropolis algorithm.

The Kuramoto model [11] of coupled phase oscillators
is described by equations

dφi

dt
= ωi +

1
N

N∑
j=1

wij sin(φj − φi) (9)
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where φi is the phase and ωi is the natural frequency of
oscillator i. The interactions are characterized by weights
wij . They are symmetric, i.e., wij = wji, and can be pos-
itive or negative.

The synchronization of the system is quantified by the
Kuramoto order parameter

r(t) =
1
N

∣∣∣∣∣
N∑

j=1

exp(iφj)

∣∣∣∣∣. (10)

Due to time fluctuations, we work with the mean order
parameter R(t) defined as

R(t) =
1
T

∫ t

t−T

r(t′)dt′, (11)

where T is the time interval we consider for its calculation.
R(t) can vary between zero and one. In the case of full
phase synchronization, R(t) → 1.

The aim of this example is to construct a system of
oscillators able to autonomously learn to reach a target
order parameter P . The error associated to this function
is defined as

ε(t) = |P − R(t)|. (12)

The discrete-time autonomous learning scheme dictates
that the system (9) evolve for a time T after each learning
iteration. The iterative map for the weights is a variation
of equation (4) for our system of oscillators:

wij(n + 1) = wij(n) − Kτδwij(n)δε(n)

+ λ
wij(n)
v(n)

(
W − v(n)

)
+ ε(n)Sξij(n). (13)

Note that we compute the weights wij (with i, j =
1, . . . , N) only for j > i, because of the symmetry of the
interactions.

As in our previous work, we add a term to control the
total interaction in the system. The mean absolute weight
v(t) is defined as

v(n) =
1

N(N − 1)

N∑
i,j=1

|wij(n)|. (14)

The control parameter λ determines how strong the re-
distribution of the weights is, W being the ideal absolute
value of v.

As a result of this dynamics the system of oscillators
evolves to a mean order parameter R(t) = P by redis-
tributing the weights and maintaining the total absolute
value v(t) = W .

4 Numerical results

We present several numerical studies of the proposed sys-
tems. We show examples of evolutions where the au-
tonomous learning scheme is able to lead the system to
the target states and we analyze particular aspects of it
which arise in connection with each particular model.

Fig. 1. (a) Set of K = 5 input patterns ζ. Each one encodes a
vowel as a rectangular matrix of 35 bits. We show each pattern
ζi and its ideal response on the output layer. A black pixel in-
dicates activation and a white one inactivation. (b) Schematic
representation of the feed-forward neural network with three
layers.

4.1 Feed-forward neural network

The neural network we work with must learn to classify
the vowels, i.e., there are K = 5 input patterns ζ. The
letters are given as matrices of binary pixels, as shown in
Figure 1a. Each pixel acts on an input neuron, with black
squares indicating activation and white ones inactivation
of the associated neuron.

The network has Nin = 35 input neurons, one hidden
layer with M = 15 nodes and Nout = 5 output neurons.
A schematic representation of the network is shown in
Figure 1b.

4.1.1 Functional networks

Our first experiment consists in the realization of a full
evolution through the iterative map (4) to construct a
functional network able to classify the letters. Figure 2
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Fig. 2. Evolution of the error ε as a function of the num-
ber of iterations for the learning of functionality by using the
discrete-time autonomous learning (blue curve), a stochastic
back-propagation algorithm (SPB, gray curve) and a standard
back-propagation algorithm (BP, black curve).

presents a typical evolution of the error as function of the
number of iterations (blue curve). We observe that the
error decreases to a relatively small value at the end of
the simulation, indicating a proper average classification
of the patterns. The learning parameters used in the sim-
ulation were Kτ = 79.43, S = 0.13, and Δη = 1. As the
initial conditions for the weights we set w(0) = 0 and
w(−Δη) = 0.

As a matter of comparison, we add a stochastic back-
propagation and a standard back-propagation realization
for a supervised learning for this system in Figure 2. We
observe that the error as a function of the number of it-
erations for the back-propagation algorithms converges to
small values faster than for the discrete-time autonomous
learning scheme (blue curve). This important difference in
performance is due to the analytic character of the back-
propagation algorithm in contrast with the trial-and-error
searching of the autonomous learning. The learning factor
used in the back-propagation realization was α = 0.01.

4.1.2 Convergence

As we have seen from the interpretations of equations (4)
and (3), there is a competition between the drift term
controlled by Kτ and the stochastic term of exploration
controlled by S. As a result, there exist certain combina-
tions of these two values Kτ and S where the learning is
optimum. Generally, combinations which differ from such
optimum ones result in failed evolutions where the system
cannot learn.

The second numerical experiment is related to find-
ing these optimum values for Kτ and S, that is, those
values for which the evolutions converge to the smallest
values of ε in a fixed number of iterations. In order to find
them, we run several simulations with ensembles of 100
networks, fixing for each ensemble the value of Kτ and S,
and evaluating the mean error 〈ε〉 over the ensemble af-
ter 1× 104 iterations. The results are shown in Figure 3a,
where it can be seen that there is a clear minimum of 〈ε〉
at (log Kτ = 1.75, logS = −0.75).

The previous study considered only five input patterns
for classification. Now, in order to get more robust results
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Fig. 3. Mean error 〈ε〉 as a function of Kτ and S. We observe
a minimum of this function at (log Kτ = 1.75, log S = −0.75),
where 〈ε〉 = 0.08. In panel (a) we consider the classification
problem only for five input pattern (only vowels), and, in panel
(b) we consider this problem for 15 input patters (vowels and
digits).

against the number of patterns to be classified, we consider
15 input patterns with the same network characteristics.
This set of 15 patterns consists of the five vowels shown
in Figure 1a and the ten numerical digits from 0 to 9.
The number of output nodes is now 15. The mean error
〈ε〉 as a function of Kτ and S is shown in Figure 3b. We
observe that almost the same error surface is found as in
the previous study, with the same optimum values for Kτ

and S.

4.1.3 Robust networks

We now consider the biparametric weight evolution given
by equation (8) that aims to minimize the error ε and
maximize the robustness ρ. We set the values of Kε and
Sε as the ones that guarantee the best convergence in the
optimization of functionality, i.e., those found in the pre-
vious study. Performing a similar study to find the opti-
mum parameters associated with the optimization of ro-
bustness, we found the minimum of 〈1 − ρ〉 at (log Kρ =
0.75, logSρ = −1.75). For the functionality threshold we
take h = 0.0509.

An evolution for this case is shown in Figure 4. We
observe that at the beginning of the learning process the
error ε is high and, as a result, the network has zero robust-
ness. When the error is reduced and close to the threshold
h the learning of robustness is automatically turned on,
owing to the fact that a damaged functional network has
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Fig. 4. Evolution of the error ε (a) and robustness ρ (b) as a
function of time for the biparametric learning of functionality
and robustness.

more chances to possess an error lower than the threshold
as compared with a nonfunctional network with high er-
ror. As the evolution progresses, the error is kept below
h and the robustness increases until it reaches its opti-
mum value. Thus, the resulting network is functional and
robust.

In order to fix the threshold value h we proceed as
in article [6]. We optimize an ensemble of 100 networks
only by functionality (testing ensemble), computing the
resulting final errors and those of the associated damaged
networks. The corresponding histograms of the errors ε are
shown in Figures 5a (original ensemble) and 5c (associated
damaged ensemble), respectively. We choose h as the value
for which the functional ensemble has a mean robustness
〈ρ〉 = 0.50. Hence, increasing the mean robustness from
〈ρ〉 = 0.50 to 〈ρ〉 = 1 will represent a 100% increase in
robustness with respect to the testing ensemble.

Figures 5b and 5d show the histograms for an ensem-
ble of 100 networks (original and damaged, respectively)
optimized to be functional and robust through the appli-
cation of the biparametric autonomous learning scheme
(reference to Eq. (8)) during 2× 105 iterations. The mean
robustness of this ensemble is 〈ρ〉 = 0.83. This notable in-
crease in robustness can be clearly seen by comparing the
histograms corresponding to the damaged set of networks
in each case (Figs. 5c and 5d). In the case of the ensemble
of networks optimized solely with respect to functionality,
the error window below the threshold h is much less pop-
ulated than in the case for the ensemble optimized to be
both functional and robust. The relative increment in ro-
bustness of the latter with respect to the testing ensemble
is approximately 66%.

4.2 Kuramoto system

This system presents an interesting characteristic concern-
ing the error function. This function is evaluated by using
the mean order parameter R(t) from equation (11), that is,
a mean value over a time interval T . In the previous formu-
lation for continuous-time parameter dynamics the error
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Fig. 5. Histograms D(ε) of the errors for four ensembles of
networks, all normalized to unity. (a) Histogram D(ε) for 100
networks optimized only with respect to functionality. (b) His-
togram D(ε) for 100 networks optimized with respect to both
functionality and robustness. (c) Histogram D(ε′) for the en-
semble of networks obtained by removal of hidden nodes from
functional networks. (d) Histogram D(ε′) for the ensemble of
networks obtained by removal of hidden nodes from robust
networks. The vertical dashed lines indicate the functionality
threshold value h = 0.0509.

can be evaluated at any time. However, we are then forced
to make a prescription concerning the set of weights which
are most responsible for this mean value. In effect, during
the interval T the weights are continuously changing and
it is therefore not clear which set of assumed values during
T is the effective one in determining the error ε(t). The
prescription we used then was that the error ε(t) be related
to the weights at time t − T , that is, we considered that
the weights at the beginning of the time interval T are the
ones responsible for the behavior of the system at the end
of the interval. Of course, we can always use a different
prescription such as, for example, using the mean value
of the weights over T . This problem has been previously
considered in a different implementation of reinforcement
learning for spiking neural networks [12].

A second problem related to this situation is that in
the case of large enough T , the correlation between the
weights and the error is missing. At the same time, we
need a long enough period T in order to minimize the
variations of R(t). This problem can be avoided by using
our new formulation with discrete-time evolution for the
parameters.

We take a full connected system with N = 10 phase
oscillators with natural frequencies ωi = (i − 1)/15 − 0.3
(i = 1, 2, . . . , 10). The integer delay is set to Δη = 1,
and the target values to P = 0.6 and W = 0.3. As the
initial conditions, we set wij(0) = wij(−Δη) = W and
the initial phases φi(0) uniformly distributed between 0
and 2π, which altogether results in the system’s order
parameter R having an approximate initial value of 0.3.
Our aim is to increase the synchronization level to 100%.
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Fig. 6. Example of the discrete autonomous learning for the
Kuramoto model. (a) Error ε as a function of time. (b) Mean
absolute weight v(t) as a function of time. The target weight
value W = 0.3 is shown with a black dashed line. (c), (d) Order
parameters r(t) as a function of time for the initial and final
systems respectively. Black dashed lines show the target order
parameter value P = 0.6.

The system is numerically integrated using an Euler algo-
rithm with time step dt = 0.01. Note that between itera-
tions of the learning algorithm the phases φ preserve their
values, therefore the initial conditions are not restarted as
in our previous example. We use this protocol to acceler-
ate the simulations and to avoid transients as well as cases
of multistability.

4.2.1 An evolution

Figure 6 illustrates a typical successful evolution for this
system. The weights of the system evolve according to
equation (13). In this simulation we use Kτ = 10, S = 0.1
and λ = 0.01. The time interval to compute the mean
value R(t) is T = 300. In Figure 6a we plot the error as
a function of the number of iterations. We observe that
it decreases from ε ≈ 0.3 to ε ≈ 0 in 3000 iterations. Not
all the realizations converge to small errors in this given
number of iterations. A study of the learning efficiency is
presented later on in this work.

Figure 6b displays the mean absolute weight v(t) as
a function of the number of iterations. We see that at
the beginning of the learning process there are relatively
strong fluctuations around the target weight W . When
the system is reaching low error values, these fluctuations
vanish almost entirely as v(t) → W .
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Fig. 7. Mean order parameter 〈R〉 (a) and mean absolute
weight 〈v〉 (b) as a function of λ for ensembles of networks
after the learning process. Errors bars indicate the dispersion
of the distributions.

Figures 6c and 6d show the order parameter r(t) as a
function of time for the initial and the final systems, re-
spectively. The simulation is performed for a time interval
longer than T . We observe the relative improvement in the
behavior of the order parameter r(t) between the initial
and final systems. The dashed black line shows the target
value P prescribed for the learning evolution. We see that,
for the final system, r(t) varies consistently around P .

4.2.2 Dependence on λ

Controlling the total absolute weight v(t) imposes a strong
restriction on the learning process. Effectively, the cor-
responding correcting term implies that the difference
W − v(n) is distributed in proportion to the strength of
the connections. This way of redistributing the weights
opposes their differentiation and, in general, resists the
heterogeneities needed in order to find a solution. The
stronger the correction by λ, the more difficult it is to
reach small errors.

Figure 7a shows the mean order parameter 〈R〉 as a
function of λ for ensembles of 100 networks after the learn-
ing process. Each evolution is done with 5000 iterations,
T = 200, Kτ = 10.0 and S = 0.1. In Figure 7b we show the
mean absolute weight 〈v〉 of these ensembles as a function
of λ. We observe that, for large values of λ, the learning
scheme cannot find good solutions and the mean value 〈R〉
is far from the target value P . However, the mean absolute
weight 〈v〉 is near its target W with very small dispersion.

The opposite situation is found for small values of λ.
There, the mean order parameter 〈R〉 is close to the tar-
get value P with small dispersion, but the mean absolute
weight 〈v〉 is much larger than W . As a compromise be-
tween these two tendencies, we may settle with λ = 0.01.
In such a case, we find that 25% of the optimized networks
have R > 0.5. For this sub-ensemble of networks, we have
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Fig. 8. Mean order parameter 〈R〉 (a) and mean absolute
weight 〈v〉 (b) as a function of T for ensembles of networks
after the learning process. Errors bars indicate the dispersion
in each ensemble.

〈R〉 = 0.57 and 〈v〉 = 0.306. Thus, the efficiency of the
learning process to find acceptable solutions is about 0.25.

4.2.3 Dependence on time interval duration

We now study the dependence of the learning process on
the time interval T . As done in the previous analysis, we
optimize several ensembles of networks, this time fixing
λ = 0.01 and varying T . We keep the previous values for
the rest of the learning parameters.

Figures 8a and 8b show, respectively, the mean or-
der parameter 〈R〉 and the mean absolute weight 〈v〉 as
a function T . The average values are computed only with
successful learning cases, i.e., systems with R > 0.5. Thus,
the number of averaged systems can be different for any
two points, but approximately close to 25.

We observe that, for any value of T , we can find net-
works with order parameters close to the target P . How-
ever, for short periods of time T the fluctuations are strong
and the weight restriction does not work properly. As a re-
sult, the total absolute weight 〈v〉 grows to values much
larger than W . When we increase T we observe that the
weight control operates correctly and all the solutions ap-
proach 〈v〉 = W . Additionally, it is interesting to note
that the learning scheme works well for relatively short
time windows of T = 50, considering that in our pre-
vious work [1] with the continuous-time version of au-
tonomous learning we worked with a much longer time
interval T = 200. This result indicates that the discrete-
time formulation is more efficient than the continuous ver-
sion in terms of convergence speed. This fact can be un-
derstood by considering that the weights values are fixed
during the interval T in the new formulation and the error
can be better estimated that way.

5 Conclusions and discussions

In this work we presented a new formulation for the au-
tonomous learning scheme by defining an iterative map
for the evolution of the parameters of a dynamical sys-
tem. The utility of this discrete-time formulation resides
in including within the scope of application of the au-
tonomous learning scheme those systems which need an
intrinsic time interval of finite duration to process a unit
amount of information and therefore cannot measure a
cost function at all times during their dynamics.

The first system treated, a feed-forward neural net-
work responsible for classifying several input patterns, is
a typical example of a system subject to this restriction.
We showed that our learning scheme works properly for
this system, with the resulting networks able to classify
the assigned patterns. Furthermore, we showed that we
can implement the discrete-time scheme in biparametric
form by setting a double feedback signal in the evolution
prescription for the weights, allowing us to optimize the
networks with respect to the error ε and the robustness
ρ simultaneously. Our results show that the final systems
can in this manner improve their robustness 66% with re-
spect to a testing ensemble.

Despite the slower convergence speed of our method
with respect to the back-propagation algorithms, we want
to remark the important conceptual difference between
these two ideas. In the first case, the autonomous learn-
ing defines an extended dynamical system (here a map)
that evolves to the target functionality. Thus, if the dy-
namics of this system can be implemented, for example,
by analog electronics, the hardware can learn a task au-
tonomously without a central processing or external con-
trol. This characteristic is quite different from employing
a back-propagation algorithm where an external agent is
needed in order to apply it to the system.

In the second example, a system of phase oscilla-
tors, we showed that the discrete-time formulation of au-
tonomous learning can help to avoid the inherent fluctu-
ations of the error function generated by the dynamics of
a continuous-time dynamical system.
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