
This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 144, Number 4, April 2016, Pages 1509–1521
http://dx.doi.org/10.1090/proc/12841

Article electronically published on October 6, 2015

THE IRRATIONALITY EXPONENTS

OF COMPUTABLE NUMBERS
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Abstract. We establish that there exist computable real numbers whose ir-
rationality exponent is not computable.

The irrationality exponent a of a real number x is the supremum of the set of
real numbers z for which the inequality

0 < |x− p/q| < 1/qz

is satisfied by an infinite number of integer pairs (p, q) with q > 0. Rational
numbers have irrationality exponent equal to 1, irrational numbers have it greater
than or equal to 2. The Thue–Siegel–Roth theorem states that the irrationality
exponent of every irrational algebraic number is equal to 2. Almost all real numbers
(with respect to the Lebesgue measure) have irrationality exponent equal to 2. The
Liouville numbers are precisely those numbers having infinite irrationality exponent.

For any real number a greater than or equal to 2, [Jarńık, 1931] used the theory
of continued fractions to give an explicit construction, relative to a, of a real number
xa such that the irrationality exponent of xa is equal to a. For a = 2, we can take
x2 =

√
2. For a > 2, we construct inductively the sequence of partial quotients of

xa = [0; a1, a2, . . .].
For n ≥ 1, set pn/qn = [0; a1, a2, . . . , an]. Take a1 = 2 and an+1 = �qa−2

n �, for
n ≥ 1, where �·� denotes the integer part function. Then, the theory of continued
fractions (see [Schmidt, 1980]) directly gives that the irrationality exponent of xa

is equal to a.
The theory of computability defines a computable function from non-negative

integers to non-negative integers as one which can be effectively calculated by some
algorithm. The definition extends to functions from one countable set to another,
by fixing enumerations of those sets. A real number x is computable if there is a base
and a computable function that gives the digit at each position of the expansion of
x in that base. Equivalently, a real number is computable if there is a computable
sequence of rational numbers (rj)j≥0 such that |x− rj | < 2−j for j ≥ 0.

The construction cited above shows that for any computable real number a
there is a computable real number xa whose irrationality exponent is equal to a.
What of the inverse question? Are there computable numbers with non-computable
irrationality exponents? Theorem 1 gives a characterization of the irrationality
exponents of computable real numbers.
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Theorem 1. A real number a greater than or equal to 2 is the irrationality exponent
of some computable real number if and only if a is the upper limit of a computable
sequence of rational numbers.

A real number x is said to be right-computably enumerable (see [Soare, 1987]) if
and only if the set of rational numbers r such that r > x is computably enumerable,
which is to say that x is right-computably enumerable if and only if there is an
algorithm to output a listing (pn, qn)n≥0 of all integer pairs whose quotients are
greater than x. By only enumerating rational numbers smaller than any previously
enumerated, one can show that x is right-computably enumerable if and only if
there is a computable strictly decreasing sequence of rational numbers with limit x.
The set of left-computably enumerable real numbers is defined similarly but with
non-decreasing sequences.

The computable real numbers are exactly those that are both, right and left,
computably enumerable. There are numbers that are just left-computably enu-
merable or just right-computably enumerable. For example, if A is a computably
enumerable but not computable subset of the non-negative integers, such as could
be obtained from the Halting Problem (see [Soare, 1987]), then the real number
xA =

∑∞
n=1 an2

−n, where for each n ≥ 1, an = 1 if n ∈ A and an = 0 otherwise, is
left-computably enumerable but not computable.

The theory of computability extends to algorithms that use external data sets in
the course of their computations. For historical reasons, these external data sets are
called oracles. Here, an oracle A is simply an infinite set of non-negative integers,
and algorithms relative to A are allowed to use information about membership in A.
In practical terms, any method to examine data and extract statistical information,
such as mean or median, provides an example of an algorithm relative to an oracle.
If a function can be calculated by an algorithm relative to oracle A we say that it
is computable relative to A. Similarly, if a set can be calculated by an algorithm
relative to oracle A we say it is computable relative to A. For example, the function
mapping n to the density of a given set A below n, that is, the number of elements
of A less than n divided by n, is computable relative to A. And the set {2n : n ∈ A}
is computable relative to A. In contrast, there are properties of a set which are not
necessarily computable relative to it. For example, there is a set A of integers such
that the set

{
n : (∃k ∈ Z)

[
kn ∈ A

]}
is computably enumerable relative to A but

not computable relative to A, because computations are finite and can only make
use of finitely many facts about A. In general, no finite amount of information
about elements in A is sufficient to draw the infinite conclusion that A omits every
multiple of n.

There is a distinguished oracle in the theory of computability that encodes all
the truths of first-order Peano arithmetic that can be expressed with just one block
of existential quantifiers. It is called 0′. There are many possible equivalent presen-
tations of oracle 0′ (see [Soare, 1987], Chapter IV). For example, the assertion that
a polynomial p in several variables with integer coefficients has an integer-valued
solution is expressible with just one block of existential quantifiers; written for-
mally it would appear as (∃z1 . . .∃zk)[p(z1, . . . , zk) = 0], where (∃z1 . . .∃zk) is the
leading block of existential quantifiers.1 By a theorem of Matiyasevich, we can fix

1There are assertions which are not expressible with just one block of existential quantifiers.
For example, the assertion that there are arbitrarily large integers m such that m and m+ 2 are
prime, requires a universal quantifier: (∀n)(∃m > n)[. . . ]).
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a computable enumeration of all the polynomials in several variables with integer
coefficients and we can take oracle 0′ to be exactly the set of positive integers n
such that the nth polynomial in this enumeration has an integer-valued solution.

For a real number x, if the set of rational numbers r such that r > x is com-
putably enumerable relative to 0′ then we say that x is right-computably enumerable
relative to 0′. The real numbers computable relative to 0′ are exactly those that are
both, right and left, computably enumerable relative to 0′. In Lemma 4, we give
other equivalences. In particular, x is right-computably enumerable relative to 0′

if and only if it is the upper limit of a computable sequence of rational numbers,
which is the condition cited in Theorem 1.

Now, consider the case of the irrationality exponent of a computable real num-
ber x. If x is rational, its irrationality exponent is equal to 1. If x is irrational
algebraic, its irrationality exponent is equal to 2. In these cases, the irrationality
exponents are clearly right-computably enumerable relative to 0′. Now, suppose
that x is not algebraic. Then, for every pair of rational numbers p/q and b, the
quantity |x−p/q| is not equal to 1/qb. Consequently, it is computable to determine
whether |x−p/q| is less than 1/qb by computing both quantities to sufficient preci-
sion to determine which is larger. This implies that the set of rational numbers b for
which there are only finitely many rational numbers p/q such that |x− p/q| < 1/qb

is computably enumerable relative to 0′: Since x is computable, given a rational
number b and an integer k, the existential statement “there are integers p and q
such that q is greater than k and |x − p/q| < 1/qb ” constitutes a single query
to 0′. Then, we can examine all pairs b and k (fix one enumeration) and list b upon
discovery of some k for which this query to 0′ is answered negatively; that is, there
are no p and q such that q is greater than k and |x− p/q| < 1/qb. It follows that,
if the irrationality exponent of x is finite, then it is right-computably enumerable
in 0′.

Thus, to complete the proof of Theorem 1, we only need to show that for every
real number a greater than 2, if a is right-computably enumerable in 0′, then there
is a computable real number x such that x has irrationality exponent equal to a.
Since there are numbers that are right-computably enumerable in 0′ that are not
computable, the proof of this direction of the theorem, the existence direction, nec-
essarily involves approximations of sets and real numbers which cannot be directly
computed. It also immediately implies the following corollary.

Corollary 2. There are computable real numbers whose irrationality exponent is
not computable.

Similarly and more generally, there are computable real numbers whose irra-
tionality exponents have no monotonous approximations by a computable sequence
of rational numbers.

We give two proofs of Theorem 1. The first one is more combinatorial and is
based on a construction given by [Bugeaud, 2008]. The second one, more geomet-
ric and based on a construction given by [Jarńık, 1929], also yields the following
corollary.

Corollary 3. For each real number a greater than or equal to 2 and right-
computably enumerable relative to 0′, there is a computable Cantor-like construction
whose limit set contains uncountably many real numbers with irrationality exponent
equal to a, and countably many of them are computable.
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In fact, the natural measure on this Cantor set concentrates on the set of numbers
with the prescribed irrationality exponent.

The next lemma states three equivalent, and useful, formulations of the property
of right-computable enumerability relative to 0′.

Lemma 4. For any real number a, the following properties are equivalent.

(1) There is a computable sequence (aj)j≥0 of rational numbers such that
lim supj≥0 aj = a.

(2) There is a strictly decreasing sequence (bj)j≥0 of rational numbers that is
computable relative to 0′ and has limit equal to a.

(3) There is a computable doubly-indexed sequence (a(j, s))j,s≥0 of rational
numbers satisfying that, for each j ≥ 0, the sequence (a(j, s))s≥0 is even-
tually constant and the sequence

(
lims→∞ a(j, s)

)
j≥0

is strictly decreasing

with limit a. Without loss of generality, the following can be assumed:
(a) The number a(0, 0) is an integer greater than or equal to a(j, s), for

j ≥ 0 and s ≥ 0.
(b) For each j ≥ 0, a(j, 0) = a(0, 0).
(c) For each s ≥ 0, the sequence (a(j, s))j≥0 is strictly decreasing.

Proof. (1) ⇒ (2) If a is rational, then the sequence (bj)j≥0 = (a+1/2j)j≥0 verifies
condition (2). Assume that a is not rational and that (aj)j≥0 is a computable
sequence of rational numbers with limit supremum equal to a. Let M be an integer
strictly greater than each of the values aj , for j ≥ 0 (this value M may not be
found computably in 0′, but it does exist). Define b0 = M and j0 = 0.

Let (ck)k≥0 be a computable enumeration of the rational numbers. For n > 0,
let jn be the least j > jn−1 for which there is a k < j such that bn−1 is greater
than ck and ck is greater than the supremum of (aj)j≥jn . Let bn = ck for the least
such k.

Since a is irrational, jn is well defined and, since jn and bn are the least integers
satisfying “for-all” properties, they can be computed uniformly in 0′. Thus, (bn)n≥0

is computable relative to 0′.
By construction, (bn)n≥0 is strictly decreasing and all of its elements are greater

than a. Let b be the limit of (bn)n≥0. For a contradiction, suppose that b is greater
than a and consider ck∗ for k∗ the least index of a rational number strictly between
b and a. Let n∗ be greater than k∗ and also so large that ck∗ is greater than
the supremum of (aj)j≥jn∗ . For every n greater than or equal to n∗, ck∗ satisfies
the for-all property used to define bn. But then (bn)n≥n∗ must be contained in
{ck : k < k∗}, a contradiction.

(2) ⇒ (3) Assume (bj)j≥0 is computable relative to 0′ with limit a. Let bj [s] be
the computable approximation of the value bj such that the questions to the oracle
0′ are answered using the set of numbers less than s that are enumerated into 0′

by computations of length less than s, if that computation produces a value, and
let bj [s] be 2, otherwise. It follows that, for each j ≥ 0, there is an integer sj such
that for every s ≥ sj , bj [s] = bj .

Let M be an integer greater than b0. For each s ≥ 0, we define the sequence
(a(j, s))j≥0. We let a(0, s) = M . For j > 0, we let

a(j, s) = bj [s],
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provided that for all k < j it holds bk[s] > bk+1[s] > 2. If this condition fails, then
we let

a(j, s) = (a(j − 1, s) + 2)/2,

the midpoint between a(j− 1, s) and 2. By construction, a(j, s) satisfies conditions
(a), (b) and (c). Set s̃j = max{sk : k ≤ j}. Then, for each k ≤ j, we have
bk[s] = bk for every s ≥ s̃j . By hypothesis, (bj)j≥0 is strictly decreasing. Then, for
each s ≥ s̃j , we deduce that a(j, s) = bj . This ensures that the sequence (a(j, s))s≥0

is eventually constant and that (lims→∞ a(j, s))j≥0 is strictly decreasing with limit
a.

(3) ⇒ (1) Assume (a(j, s))j,s≥0 is a sequence of rational numbers such that
for each j ≥ 0 the sequence (a(j, s))s≥0 is eventually constant and the sequence(
lims→∞ a(j, s)

)
j≥0

is strictly decreasing with limit a. Let �(s) be the computable

function defined by �(0) = 0 and, for s ≥ 1, let �(s) be the least j less than or
equal to s − 1 such that a(j, s− 1) 
= a(j, s), if there is such, and let �(s) be s − 1
otherwise. We define the computable sequence (as)s≥0 by

as = a(�(s), s).

By assumption on (a(j, s))j,s≥0, we deduce that lims→∞ �(s) = ∞. Further, there
is an arbitrarily large t with at = a(�(t), t) = lims→∞ a(�(t), s). Thus, (as)s≥0

and
(
lims→∞ a(j, s)

)
j≥0

have a common subsequence. Since
(
lims→∞ a(j, s)

)
j≥0

is strictly decreasing with limit a, we get that lim sups≥0 as is greater than equal to
a. Dually, given any number b greater than a, we can fix j so that lims→∞ a(j, s) < b
and fix t so that for all s > t, �(s) > j. Then, for all s > t,

as = a(�(s), s) < a(j, s) = lim
s→∞

a(j, s) < b

and so

lim sup
s≥0

as < b,

as required. �

1. First proof of Theorem 1

First proof of Theorem 1. Let b ≥ 2 be an integer. Recently, [Bugeaud, 2008] con-
structed a class C of real numbers whose irrationality exponent can be read off from
their base-b expansion. The class C includes the real numbers of the form

ξn =
∑
j≥1

b−nj ,

for a sequence n = (nj)j≥1 of positive integers satisfying nj+1/nj ≥ 2 for every
large integer j. To obtain good rational approximations to ξn, we simply truncate
the above sum. Thus, we set

ξn,J =

J∑
j=1

b−nj =
pJ
bnJ

, J ≥ 1.

It then follows from ∣∣∣ξn − pJ
bnJ

∣∣∣ < 2

(bnJ )nJ+1/nJ
, J ≥ 1,
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that the irrationality exponent μ(ξn) of ξn satisfies

μ(ξn) ≥ lim sup
j→∞

nj+1

nj
.

[Shallit, 1982] proved that the continued fraction expansion of some rational trans-
late of any such ξn can be given explicitly, and [Bugeaud, 2008] proved that its
irrationality exponent is given precisely by

μ(ξn) = lim sup
j→∞

nj+1

nj
,

and hence can be read off from its expansion in base b. This means that the
denominators of the best rational approximations to ξn are (except finitely many
of them) powers of b.

Consequently, given a real number a ≥ 2 for which there is a computable se-
quence (aj)j≥0 of rational numbers such that lim supj→∞ aj = a, it is sufficient to
construct a computable strictly increasing sequence n = (nj)j≥1 of positive integers
satisfying nj+1/nj ≥ 2 and

lim sup
j→∞

nj+1

nj
= a,

which we do as follows. By substituting 2 for any smaller values, we may assume
that each aj is greater than or equal to 2. We construct the desired sequence n by
induction as follows. Let n1 = 2. Given n1, . . . , nj , let nj+1 be the least n such
that n/nj ≥ aj+1. By construction, for all j, nj+1/nj ≥ 2. Consequently, nj ≥ 2j .
Since (nj+1− 1)/nj < aj+1, nj+1/nj −aj+1 is less than or equal to 1/2j . It follows
directly that lim supj→∞ nj+1/nj is equal to lim supj→∞ aj = a. �

2. Second proof of Theorem 1

For each real number a greater than 2, [Jarńık, 1931] gave a Cantor-like con-
struction of a fractal subset K of [0, 1] such that the uniform measure ν on K has
the property that the set of real numbers with irrationality exponent equal to a has
ν-measure equal to 1. Thus, for all real numbers b greater than a, the set of real
numbers in K with irrationality exponent equal to b has ν-measure equal to 0.

Lemma 5 ([Jarńık, 1931]). For every real number a greater than or equal to 2, the
set of numbers with irrationality exponent equal to a has Hausdorff dimension 2/a.

We note that [Jarńık, 1929] and [Besicovitch, 1934] independently established
that the set of real numbers with irrationality exponent greater than or equal to a
has Hausdorff dimension 2/a. Actually, Lemma 5 is not explicitly stated in [Jarńık,
1931]; however, it is an immediate consequence of the results of that paper.

In the following and throughout this text, we denote by |I| the length of the
interval I.

Lemma 6 (Mass Distribution Principle). Let ν be a finite measure, d a positive
real number and X a set with Hausdorff dimension less than d. Suppose that there
is a positive real number C such that for every interval I, ν(I) < C |I|d. Then we
have ν(X) = 0.

Lemma 7. Let a be a strictly decreasing sequence of rational numbers greater than
2 which is computable relative to 0′ and has limit equal to a, greater than 2. There is
a Cantor-like construction of a fractal K, with uniform measure ν, and a function
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C, computable relative to 0′, from Q ∩ (0, 2/a) to Q such that for each rational
number d < 2/a, for every interval I, ν(I) ≤ C(d)|I|d.

Proof. We follow the proof of Jarńık’s Theorem as presented in [Falconer, 2003]. Let
a be (aj)j≥0. Fix a computable doubly-indexed sequence (a(j, s))j,s≥0 of rational
numbers such that for all j, lims→∞ a(j, s) = aj . Without loss of generality, we
assume that for every s, the sequence a(j, s)j≥0 is strictly decreasing, a(0, 0) is an
integer and for all s, a(0, s) = a(0, 0). Further, we fix a rational number β greater
than 2 and assume that β is a lower bound for the numbers a(j, s).

We fix some notation to be applied in the course of our eventual construction.
For a positive integer q and a real number b greater than β, let

Gq(b) =

{
x ∈

(
1

qb
, 1− 1

qb

)
: ∃p ∈ Z,

∣∣∣∣pq − x

∣∣∣∣ < 1

qb

}
.

For M a sufficiently large positive integer according to β, and p1 and p2 primes
such that M < p1 < p2 < 2M , the sets Gp1

(b) and Gp2
(b) are disjoint and the

distance between any point in Gp1
(b) and any point in Gp2

(b) is greater than or
equal to

1

4M2
− 2

M b
≥ 1

8M2
.

For such M the set

HM (b) =
⋃

p prime
M<p<2M

Gp(b)

is the disjoint union of the intervals composing the sets Gp(b), so HM (b) is made
up of intervals of length less than or equal to 2/M b which are separated by gaps
of length at least 1/(8M2). If I ⊆ [0, 1] is any interval with 3/|I| < M < p < 2M ,
then at least p|I|/3 > M |I|/3 of the intervals in Gp(b) are completely contained in
I. By the prime number theorem, for sufficiently large M the number of primes
between M and 2M is at least M/(2 logM). Thus, for such M and I, at least
M2|I|/(6 logM) intervals of HM (b) are contained in I. With M1 sufficiently large
as above and larger than 3× 2a(0,0), let

Mk = Mk
k−1 = Mk!

1 (k ≥ 1).

For a positive integer k, let j be the least integer less than k such that a(j+1, k) 
=
a(j+1, k−1), if such exists, and let j be k−1, otherwise. That is, j is the greatest
index less than k such that the approximation to a remains unchanged at positions
less than or equal to j from step k − 1 to step k. Let

bk = a(j, k).

Let E0 = [0, 1] and for k = 1, 2, . . . let Ek consist of those intervals of HMk
(bk) that

are completely contained in Ek−1. By discarding intervals if necessary, we arrange
that all intervals in Ek−1 are split into the same number of intervals in Ek. The
intervals of Ek are of length at least 1/(2Mk)

bk and are separated by gaps of length
at least

gk =
1

8M2
k

.

Thus, each interval of Ek−1 contains at least mk intervals of Ek where m1 = 1 and

mk =
M2

k

(2Mk−1)bk6 logMk
≥ cM2

k

(Mk−1)bk logMk
,
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if k ≥ 2 and c = 1/(2a(0,0)6). Let

K =
⋂
k≥1

Ek.

Define a mass distribution ν on K by assigning a mass of 1/(m1× . . .×mk) to each
of the m1 × . . .×mk many k-level intervals. Let S be a subinterval of [0, 1]. For a
lighter notation we write 2ε to denote the length |S| of S. We estimate ν(S). Let
k be the integer such that gk ≤ 2ε < gk−1. The number of k-level intervals that
intersect S is

• at most mk, since S intersects at most one (k − 1)-level interval,
• at most 1 + 2ε/gk ≤ 4ε/gk, since the k-level intervals have gaps of at least
gk between them.

Each k-level interval has measure 1/(m1 × . . .×mk) so that

ν(S) ≤ min(4ε/gk,mk)

m1 × . . .×mk
≤ (4ε/gk)

s m1−s
k

m1 × . . .×mk
,

for every s between 0 and 1. Hence,

ν(S) ≤ 2s

(m1 × . . .×mk−1) ms
kg

s
k

(2ε)s.

Thus, ν(S) is at most

1
M b2

1 logM2

cM2
2

M b3
2 logM3

cM2
3

. . .
M

bk−1

k−2 logMk−1

cM2
k−1

2s

ms
kg

s
k

(2ε)s

=
M b2

1 logM2

cM2
2

M b3
2 logM3

cM2
3

. . .
M

bk−1

k−2 logMk−1

cM2
k−1

(
M bk

k−1 logMk

cM2
k

)s

(8M2
k )

s2s (2ε)s

=
(
logM2 . . . logMk−1

)(
M b2

1 M b3−2
2 . . .M

bk−1−2
k−2

)
× (logMk)

s(16)sc−k+2−sM bks−2
k−1 (2ε)s.

We want to verify that for every j and for every s < 2/aj there is a C such that
ν(S) < C(2ε)s. It suffices to show that there is a C such that for every k,

(*)

(
logM2 . . . logMk−1

)(
M b2

1 M b3−2
2 . . .M

bk−1−2
k−2

)
× (logMk)

s(16)s c−k+2−s < C M2−bks
k−1 .

Fix k0 such that for every k ≥ k0, a(j+1, k) = a(j+1, k0). Thus, for every k ≥ k0,
a(j + 1, k) = aj+1. Then, define δ > 0 as follows so that for every k ≥ k0,

2−
(
bk

2

aj

)
≥ 2− 2

(
aj+1

2

aj

)
≥ 2− 2

aj+1

aj
= δ.

By the choice of k0 and the definition of bk, for all k > k0, it holds that bk < aj+1.
Hence, the left hand side of the inequality (*) is at most a constant multiple of(

logM2 . . . logMk−1

)(
M

aj+1

1 M
aj+1−2
2 . . .M

aj+1−2
k−2

)
(logMk)

s(16)s c−k+2−s.

Furthermore, there is a constant C such that(
logM2 . . . logMk−1

)(
M

aj+1

1 M
aj+1−2
2 . . .M

aj+1−2
k−2

)
× (logMk)

s(16)s c−k+2−s < C Mδ
k−1.
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The above inequality follows by noticing thatM� = M �!
1 for � ≥ 1, taking logarithms

on each side and recognizing that the contribution of Mk−1 is the dominating term
for sufficiently large k. The value of C is determined by the value k0, which is
computable relative to 0′ as a function of j. �

Second proof of Theorem 1. Let a be a real number right-computably enumerable
in 0′ and greater than 2 (for a equal to 2, taking x equals

√
2 suffices). Fix a

computable doubly-indexed sequence (a(j, s))j,s≥0 of rational numbers satisfying
property (3) of Lemma 4. That is, we assume that limj→∞ lims→∞ a(j, s) = a,
for all s the sequence (a(j, s))j≥0 is strictly decreasing, for all j ≥ 0 the sequence
(a(j, s))s≥0 is eventually constant, for all s, we have a(0, s) = a(0, 0) and a(1, s) =
a(1, 0). The last condition gives an appropriate initialization of the construction.
Let K be the fractal with measure ν and C be the function associated with this
approximation of a in Lemma 7. Fix a computable function C(r, s) : Q×Z>0 → Q

such that for every r in Q, (C(r, s))s≥0 is eventually equal to C(r). We may also
assume that for all s, C(a(1, s), s) = C(a(1, 0), 0).

We compute a real number x in K. By recursion on s we construct a sequence
of nested intervals (I(s))s≥0 such that if I(s) is different from I(s− 1), then I(s) is
an element of the s-level of K. We define an auxiliary function �(s), with infinite
limit, to approximate the convergence of the sequence a(j, s). We also define an
auxiliary integer-valued function q(j, s) where j is an integer in [0, �(s)), with the
intention that x avoids approximation by rational numbers with denominator q
greater than or equal to q(j, s) within 1/qa(j,s). This intention will be realized in
the construction at step s onwards provided that at every step t ≥ s, �(t) is greater
than j; in particular, provided that a(j, s) and C(a(j, s), s) have reached their limit
values relative to s.

We will employ the following estimate. For a positive integer number q0 and a
real number b greater than or equal to 2, let

V (q0, b) =
⋃
q≥q0

{
x ∈

(
1

qb
, 1− 1

qb

)
: ∃p ∈ Z,

∣∣∣∣pq − x

∣∣∣∣ < 1

qb

}
.

Suppose that b1 > b2 > a. By Lemma 7, we can estimate ν(V (q0, b1)) by

ν
(
V (q0, b1)

)
≤

∑
q≥q0

∑
0<p<q

C
(
2/b2

)( 2

qb1

)2/b2

≤ 2C
(
2/b2

) ∑
q≥q0

q
( 1

qb1

)2/b2

≤ 2C
(
2/b2

) ∑
q≥q0

1

q2b1/b2−1
.

Thus, for any ε > 0 there is a q0, uniformly computable from ε, b1, b2 and C(2/b2),
such that ν(V (q0, b1)) is less than ε.

Initial step 0. Start with I(0) equal to the unit interval and �(0) = 0.
Step s, greater than 0. Let �(s) be the least j less than or equal to s such
that

a(j + 1, s− 1) 
= a(j + 1, s) or C
(
2/a(j + 1, s), s− 1

)

= C

(
2/a(j + 1, s), s

)
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if such exists; otherwise, let �(s) be s. By our assumptions on a(j, s) and
C(a(1, 0), s), for every s > 0, we have that �(s) ≥ 1.

Let m(s) be the ν-measure given to a level-s interval in K. We find h(s)
so that the following inequality holds for each j such that 0 ≤ j < �(s),

2C
(
2/a(j, s), s

) ∑
q≥h(s)

1/q
2a(j,s)

a(j+1,s)
−1 <

1

s

m(s)

2s
.

We define q(j, s) for each j ∈ [0, �(s)) as follows: if q(j, s − 1) is defined,
then let q(j, s) = q(j, s− 1); otherwise, let q(j, s) = h(s).

Let I(s) be the leftmost level-s interval in K that is included in I(s− 1)
and satisfies

ν
(
I(s) ∩

⋃
0≤j<�(s)

V
(
q(j, s), a(j, s)

)
\ V

(
h(s), a(j, s)

))
< m(s)− 2

m(s)

2s

if such exists; otherwise, let I(s) be I(s− 1). Note that m(s) ≤ ν(I(s)).

We now verify that the construction works. Define �min(s) = mint≥s �(t). We
show by induction on s that

ν
(
I(s) ∩

⋃
0≤j<�min(s)

V
(
q(j, s), a(j, s)

))
≤ ν(I(s))

(
1− 1

2s

)
.

Since �min(0) = 0, the inductive claim holds for s = 0. Assume the inductive claim
for s− 1:

ν
(
I(s− 1) ∩

⋃
0≤j<�min(s−1)

V
(
q(j, s− 1), a(j, s− 1)

))
≤ ν

(
I(s− 1)

)(
1− 1

2s−1

)
.

Consider those integers j such that j < �min(s). By the definition of �min, we have
a(j, s) = limt→∞ a(j, t) and C(2/a(j, s), s) = limt→∞ C(2/a(j, s), t) = C(2/a(j, s)).
Further, by the discussion above,

ν
(
V
(
h(s), a(j, s)

))
≤ 2C

(
2/a(j, s), s

) ∑
q≥h(s)

1/q
2a(j,s)

a(j+1,s)
−1.

In the construction we choose h(s) so that for each j less than �(s), the term on
the right side of this inequality is less than m(s)/(s2s). This ensures that for each
j less than �min(s), the same upper bound holds for ν(V (h(s), a(j, s))).

Now, consider the action of the construction during step s. If I(s) is equal to
I(s− 1), then

I(s) ∩
⋃

0≤j<�min(s)

V
(
q(j, s), a(j, s)

)

=
(
I(s) ∩

⋃
0≤j<�min(s−1)

V
(
q(j, s− 1), a(j, s− 1)

))

∪
(
I(s) ∩

⋃
�min(s−1)≤j<�min(s)

V
(
q(j, s), a(j, s)

))
.

The first component of the union has ν-measure at most ν(I(s))(1− 1/2s−1) and
the second component has ν-measure at most m(s)/2s. The union has measure at
most ν(I(s))(1− 1/2s), as required.
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Otherwise, I(s) is a proper subinterval of I(s− 1) and satisfies

ν
(
I(s) ∩

⋃
0≤j<�(s)

V
(
q(j, s), a(j, s)

)
\ V

(
h(s), a(j, s)

))
< m(s)− 2

m(s)

2s
.

Then,

I(s) ∩
⋃

0≤j<�min(s)

V
(
q(j, s), a(j, s)

)

=
(
I(s) ∩

⋃
0≤j<�min(s)

V
(
q(j, s), a(j, s)

)
\ V

(
h(s), a(j, s)

))

∪
(
I(s) ∩

⋃
0≤j<�min(s)

V
(
h(s), a(j, s)

))
.

The ν-measure of the first component of the union is less than

m(s)− 2
m(s)

2s
= ν

(
I(s)

)(
1− 1

2s−1

)
.

As in the previous case, the ν-measure of the second component is less than
ν(I(s))/2s. Again, the union has measure at most ν(I(s))(1− 1/2s), as required.

It remains to show that there are infinitely many s such that I(s) is a proper
subinterval of I(s− 1). Consider an s such that �(s) is equal to �min(s). Since

ν
(
I(s− 1) ∩

⋃
0≤j<�min(s−1)

V
(
q(j, s− 1), a(j, s− 1)

))
< ν

(
I(s− 1)

)(
1− 1

2s−1

)
,

we may fix an s-level subinterval I of I(s− 1) such that

ν
(
I ∩

⋃
0≤j<�min(s−1)

V
(
q(j, s− 1), a(j, s− 1)

))
< ν(I)

(
1− 1

2s−1

)
.

For this I,

I ∩
⋃

0≤j<�(s)

V
(
q(j, s), a(j, s)

)
\ V

(
h(s), a(j, s)

)

⊆
(
I ∩

⋃
0≤j<�min(s−1)

V
(
q(j, s), a(j, s)

))

∪
(
I ∩

⋃
�min(s−1)≤j<�(s)

V
(
q(j, s), a(j, s)

)
\ V

(
h(s), a(j, s)

))
.

For each j such that �(s − 1) ≤ j < �(s), q(j, s) is equal to h(s), so the second
component of the union is empty. Thus,

ν
(
I ∩

⋃
0≤j<�(s)

V
(
q(j, s), a(j, s)

)
\ V

(
h(s), a(j, s)

))
< ν(I)

(
1− 1

2s−1

)

= m(s)− 2
m(s)

2s
.

Hence, the conditions for the construction to define I(s) to be a proper subinterval
of I(s− 1) are satisfied, as required.

Consider the sequence given by the closures of the intervals I(s), s ≥ 0. This
is a computable nested sequence of intervals whose lengths approach zero in the
limit. Let x be the unique real number in their intersection. By construction, x is



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.
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computable (as is its base-b expansion, for every integer b greater than or equal to
2.)

We now prove that the irrationality exponent of x is equal to a. For each j ≥ 0,
let bj = lims→∞ a(j, s). The sequence (bj)j≥0 is strictly decreasing with limit a.
The construction ensures that for every j, there is a step s such that I(s) is a level-s
interval of K containing real numbers that have at least one rational approximation
p/q within 1/qbj . Thus, the real number x has irrationality exponent greater than
or equal to a. We now show it can not be greater than a. Suppose that b is greater
than a. Let j be such that b is greater than bj and let s be such that �min(s) is
greater than j. Then, for all t > s, a(j, t) = a(j, s) = bj and q(j, t) = q(j, s).
Further, for any t > s, ν(I(t) \ V (q(j, t), bj)) is positive. If there were an integer
q > q(j, s) and an integer p such that∣∣∣∣x− p

q

∣∣∣∣ < 1

qb
,

then there would be a t greater than s such that

I(t) ⊂
(p
q
− 1

qbj
,
p

q
+

1

qbj

)
.

But then I(t) \V (q(j, t), bj) would be empty, a contradiction to the fact that it has
positive measure. �
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