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Abstract In a recent detailed research program we proposed to study the
complex physics of topological phases by an all optical implementation of a
discrete-time quantum walk. The main novel ingredient proposed for this study
is the use of non-linear parametric amplifiers in the network which could in
turn be used to emulate intra-atomic interactions and thus analyze many-body
effects in topological phases even when using light as the quantum walker. In
this paper, and as a first step towards the implementation of our scheme, we
analize the interplay between quantum walk lattice topology and spatial cor-
relations of bi-photons produced by spontaneous parametric down-conversion.
We also describe different detection methods suitable for our proposed exper-
imental scheme.

1. INTRODUCTION

Phase transitions play a fundamental role in physics. From melting ice to
the creation of mass in the Universe, phase transitions are at the center of
most dynamical processes which involve an abrupt change in the properties
of a system. Phase transitions are usually driven by some form of fluctuation.
While classical phase transitions are typically driven by thermal noise, quan-
tum phase transitions are triggered by quantum fluctuations. Quantum phase
transitions have been extensively studied in a large number of fields ranging
from cosmology to condensed matter and have received much attention in the
field of ultra-cold atoms since the observation of Bose-Einstein condensation
[1], and the subsequent experimental realization of Superfluid-Mott Insulator
phase transition in optical lattices [2]. A common feature of quantum phase
transitions is that they involve some form of spontaneous symmetry breaking,
such that the ground state of the system has less overall symmetry than the
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Hamiltonian and can be described by a local order parameter.

A rather distinctive class of quantum phases is present in systems characterized
by a Hilbert space which is split into different topological sectors, the so called
topological phases. Topological phases have received much attention after the
discovery of the quantum Hall effect [3] and the interest increased following
the prediction [4] and experimental realization [5] of a new class of material
called topological insulators. Topological insulators are band insulators with
particular symmetry properties arising from spin-orbit interactions which are
predicted to exhibit surface edge states which should reflect the non-trivial
topological properties of the band structure, and which should be topolog-
ically protected by time reversal symmetry. Unlike most familiar phases of
matter which break different kinds of symmetries, topological phases are not
characterized by a broken symmetry, they have degenerate ground states which
present more symmetry than the underlying Hamiltonian, and can not be de-
scribed by a local order parameter. Rather, these partially unexplored type
of phases are described by topological invariants, such as the Chern number
which is intimately related to the adiabatic Berry phase, and are predicted to
convey a variety of exotic phenomena, such as fractional charges and magnetic
monopoles [6]. It has recently been theoretically demonstrated that it is possi-
ble to simulate a large “Zoo” of topological phases by means of discrete-time
quantum walks (DTQWs) of a single particle hopping between adjacent sites
of an optical lattice, through a sequence of unitary operations [7,8].

In this review, we propose a detailed research program for the study for
non-linear effects in photonic quantum walks and their interplay with topolog-
ical phenomena [9]. This paper is based on an original proposal written in the
year 2010 by G. Puentes [10], [11]. More specifically, we analyze the interplay
between a non-trivial topology determined by a linear quantum walk Hamilto-
nian (HQW), on the phase-matching condition characterizing bi-photons pro-
duced by the non-linear process of spontaneous parametric down conversion
(SPDC), characterized by a non-linear Hamiltonian (HSPDC). By considering
both a linear and non-linear contributions in the overall bi-photon Hamilto-
nian, we analyze the coupling efficiency and emission probability in different
topological scenarios.

Random walks have been used to model a variety of dynamical physical pro-
cesses containing some form of stochasticity, including phenomena such as
Brownian motion and the transition from binomial to Gaussian distribution
in the limit of large statistics. The quantum walk (QW) is the quantum ana-
logue of the random walk, where the classical walker is replaced by a quantum
particle, such as a photon or an electron, and the stochastic evolution is re-
placed by a unitary process. The stochastic ingredient is added by introducing
some internal degrees of freedom which can be stochastically flipped during
the evolution, which is usually referred to as a quantum coin. One of the main
ingredients of quantum walks is that the different paths of the quantum walker
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can interfere, and therefore present a complicated (non Gaussian) probability
distribution for the final position of the walker after a number of discrete steps.
In recent years, quantum walks have have been successfully implemented to
simulate a number of quantum phenomena such as photosyntesis [12], quan-
tum diffusion [13], vortex transport [14] and electrical brake-down [15], and
they have provided a robust platform for the simulation of quantum algorithms
and maps [16]. QWs have been experimentally implemented in the context of
NMR [17], cavity QED [18], trapped ions [19], cold atoms [20] as well as optics,
both in the spatial [21] and frequency domain [22]. In recent years, quantum
walks with single and correlated photons have been successfully introduced
using wave-guides [23] and bulk optics [25], and time-domain implementations
[24].

It is relevant to point out that any implementation of a quantum walk so
far has introduced passive linear elements only for the composing elements
of the random network. A full class of topological insulators can be realized
in a system of non-interacting particles, with a binary (psuedo) spin space
for (bosons) fermions, via a random walk of discrete time unitary steps as
described in Ref [7]. The particular type of phase is determined by the size
of the system (1D or 2D) and by the underlying symmetries characterizing
the Hamiltonian, such as particle-hole symmetry (PHS), time-reversal sym-
metry (TRS), or chiral symmetry (CS). The 1D discrete time quantum walk
(DTQW) can be specified by a series of unitary spin dependent translations T
and rotations R(θ), where θ specifies the rotation angle. Thus, the quantum
evolution is determined by applying a series of unitary operations or steps:

U(θ) = TR(θ). (1.1)

The generator of the unitary evolution operator (or map) in Eq. [1] is the time-
independent Hamiltonian H(θ), for which the discrete time evolution operator
U(θ) can be defined as:

U(θ) = e−iH(θ)δt, (1.2)

where we have chosen h̄ = 1, and the finite time evolution after N steps is
given by UN = e−iH(θ)Nδt.

The Hamiltonian H(θ) determined by the translation and rotation steps T
and R(θ), posses particle hole symmetry (PHS) for some operator P (i.e.
PHP−1 = −H) and it also contains chiral symmetry (CS). The presence of
PHS and CS guaranties time reversal symmetry (TRS). The presence of TRS
and PHS imply that the system belongs to a topological class contained in the
Su-Schrieffer-Heeger (SSH) model [31] and can thus be employed to simulate
a class of SSH topological phase. An extension to 2D topological insulator can
be obtained by extending the lattice of sites to 2D. Different geometries such
as square lattice or triangular lattice are described in Ref [7]. In this work we
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propose to study the dynamical evolution given a general overall Hamiltonian
of the form:

H = HQW +HSPDC, (1.3)

where the first term is the linear contribution given by the non-trivial
topology of the quantum walk lattice, and the second term is the non-linear
contribution due to the spontaneous parametric down conversion in non-linear
media along the lattice.

2. Split-Step Quantum Walk Hamiltonian (HQW)

The basic step in the standard DTQW is given by a unitary evolution operator
U(θ) = TRn(θ), where Rn(θ) is a rotation along an arbitrary direction n =
(nx, ny, nz), given by:

Rn(θ) =

(
cos(θ)− inz sin(θ) (inx − ny) sin(θ)
(inx + ny) sin(θ) cos(θ) + inz sin(θ)

)
, (2.4)

in the Pauli basis [39]. In this basis, the y-rotation is defined by a coin
operator of the form

Ry(θ) =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
(2.5)

This is followed by a spin- or polarization-dependent translation T given by

T =
∑
x

|x+ 1〉〈x| ⊗ |H〉〈H|+ |x− 1〉〈x| ⊗ |V 〉〈V |, (2.6)

where H = (1, 0)T and V = (0, 1)T . The evolution operator for a discrete-
time step is equivalent to that generated by a Hamiltonian H(θ), such that
U(θ) = e−iH(θ) (h̄ = 1), with HQW (θ) =

∫ π
−π dk[Eθ(k)n(k).σ] ⊗ |k〉〈k| and

σ the Pauli matrices, which readily reveals the spin-orbit coupling mecha-
nism in the system. The quantum walk described by U(θ) has been realized
experimentally in a number of systems [24,25,19,?], and has been shown to
posses chiral symmetry, and display Dirac-like dispersion relation given by
cos(Eθ(k)) = cos(k) cos(θ).

Here we analize a DTQW protocol consisting of two consecutvie spin-
dpendent translations T and rotations R, such that the unitary step becomes
U(θ1, θ2) = TR(θ1)TR(θ2). The so-called “split-step” quantum walk, has been
shown to possess a non-trivial topological landscape characterized by topolog-
ical sectors with different topological numebers, such as the winding number
W = 0, 1. The dispersion relation for the split-step quantum walk results in
[7]:

cos(Eθ,φ(k)) = cos(k) cos(θ1) cos(θ2)− sin(θ1) sin(θ2). (2.7)
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The 3D-norm for decomposing the quantum walk Hamiltonian of the sys-
tem in terms of Pauli matrices HQW = E(k)n · σ becomes [7]:

nxθ1,θ2(k) = sin(k) sin(θ1) cos(θ2)
sin(Eθ1,θ2 (k))

nyθ1,θ2(k) = cos(k) sin(θ1) cos(θ2)+sin(θ2) cos(θ1)
sin(Eθ1,θ2 (k))

nzθ1,θ2(k) = − sin(k) cos(θ2) cos(θ1)
sin(Eθ1,θ2 (k))

.

(2.8)

Diagonalization of HQW gives the lattice Bloch eigen-vectors, characteriz-
ing the quantum walk Hamiltonian, result in:

u±(k) =
1

N
(1,

nx(k) + iny(k)

nz(k)± λ(k)
)T , (2.9)

with λ2 = n2x + n2y + n2z, and N a normalization factor. We note that
the relation between the two components of u± will eventually determine the
phase-matching condition for down converted photons, and for this reason it
is of relevance for our analysis.

For the particular case that nz(k) = 0, the eigen-vectors take the simple
form:

u±(k) =
1√
2

(1, e−iφ(k))T , (2.10)

with φ(k) = atan(
ny
nx

). For the split-step quantum walk this relative phase
results in:

φ(k) = atan(
cos(k) sin(θ1) cos(θ2) + sin(θ2) cos(θ1)

sin(k) sin(θ1) cos(θ2)
). (2.11)

2.1 Zak Phase

We can gain further insight by calculating the Zak phase of this system, which
is analogous to the Berry phase on the torus (i.e., the Brillouin zone). Consider
the general Hamiltonian:

H ∼ nxσx + nyσy + nzσz, (2.12)

Since the eigenvalues are the only quantities of interest for the present problem,
the overall constants of this Hamiltonian can be safely ignored. The explicit
expression for this Hamiltonian is

H =

(
nz nx − iny
nx + iny − nz

)
, (2.13)

with eigenvalues

λ = ±
√
n2x + n2y + n2z (2.14)
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The normalized eigenvectors then result

|V± >=


nx+iny√

2n2
x+2n2

y+2n2
z∓2nz

√
n2
x+n

2
y+n

2
z

nz∓
√
n2
x+n

2
y+n

2
z√

2n2
x+2n2

y+2n2
z∓2nz

√
n2
x+n

2
y+n

2
z

 (2.15)

Note that the scaling ni → λni does not affect the result, as should be.
The overall Zak phase for the problem is:

Z = i

∫
(< V+|∂kV+ > + < V−|∂kV− >)dk. (2.16)

For the split-step quantum walk, the Zak phase results in an analytic ex-
presssion of the form [11]:

Z = φ(−π/2)− φ(π/2) =
tan(θ2)

tan(θ1)
. (2.17)

3. Spontaneous Parametric Down-Conversion (SPDC) Hamiltonian
(HSPDC)

We can decompose the HSPDC in terms of the Bloch eigen-vectors u±(k) by
defining Bloch waves of the form Âp(k) =

∑
n ânu±(k)eikn, with ân=(ân,1, ân,2, ..., âN,m)

and âN,m the anihilation operator of the mth sublattice. The SPDC Hamilto-
nian results in:

HSPDC =
∑
ps,i

∫
dks

∫
dkiΓps,i(ks, ki)Â

†
ps(ks)Â

†
pi(ki), (3.18)

where the coupling efficiency Γps,i(ks, ki) to the Bloch wave results in the
contribution of N sublattices of the form:

Γps,i(ks, ki) = γ

N∑
n=1

Epn(ks + ki)ups,j(ks)upi,j(ki). (3.19)

For the case of a pump mode coupled to only two sublattices labeled by
n = 1, 2, substituting the eigen-mode profile determined by the topology of
the Quantum Walk Hamiltonian us,i (Eq. 8), we obtain an expression for
Γps,i(ks, ki) of the form:

Γps,i(ks, ki) = γ(Ep1 (ks + ki) + Ep2 (ks + ki)
nx(k) + iny(k)

nz(k)± λ(k)
). (3.20)

For the particular case that nz = 0 we obtain the simplified expression:

Γps,i(ks, ki) = γ(Ep1 (ks + ki)e
−i|φs(k)+φi(k)| + Ep2 (ks + ki)), (3.21)
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Where φs,i(k) are the phase matching functions for signal and idler, which
depend on the quantum walk topology. For the particular case of the split-step
quantum walk, this results in Eq. (9), for each of the bi-photons independently.

4. Numerical Results

We first performed simulation in order to quantify the impact of the pump
envelope Ep1 (ks + ki) on the coupling efficiency Γps,i(ks, ki). This in turn can
provide information about the spatial correlations between the bi-photons pro-
duced by SPDC, since the efficiency is proportional to the probability ampli-
tude of emission of bi-photons. In particular, a tilted coupling efficiency param-
eter in the ks,i-plane, will characterize spatial correlations or anti-correlation
between the bi-photons. In order to further analyze the impact of the quan-
tum walk lattice topology on the type of coupling efficiency that can be ex-
pected, we performed simulations considering a constant amplitude for the
pump Ep(ks + ki) = Ep, with no dependence on k in Fourier Space. We con-
sider two cases, corresponding to phase parameters θs,i1,2 defining different phase
matching conditions φs,i(k) for signal and idler photons. This is illustrated in

Fig. 2: Fig. 2 (a) θs,i1 = 0.01, θs,i2 = 9×π/20 and φs(k) = φi(k), Fig. 2 (b) θs,i1 =

0.01, θs,i2 = 0.001 and φs(k) = φi(k), Fig. 2 (c) θs,i1 = 0.01, θs,i2 = 9×π/20 and

φs(k) = −φi(k), Fig. 2 (d) θs,i1 = 0.01, θs,i2 = 0.001 and φs(k) = −φi(k). Fig.
2 reveals the emergence of a non-trivial 2D-imensional grid in the coupling
efficiency for quantum walk lattice parameters in distinct topological sectors
(Fig. 1 (a) and (c)). The periodicity in the grid is a clear consequence of the
periodicity in lattice parameters and k-space. On the other hand for lattice
parameters in the same topological sector (Fig. 1 (b) and (d)), we obtain the
same type of coupling coefficient as expected for standard SPDC, of course
with no k-dependence since this was ignored in the approximation of constant
pump envelope Ep(ks + ki) = Ep.

5. Experimental Methods

5.1 Fiber Network

In Ref [25] the authors performed an optical implementation of the operator
defined by Eq. (2), using polarization degrees of freedom of single photons and
a sequence of half-wave plates and calcite beam-splitters. On the other hand,
in Ref [23] the authors implemented a quantum walk in a lattice of coupled
wave-guides. In this work we propose to use a fiber network to implement a
quantum walk to simulate 1D and 2D topological phases. One of the main
ingredients is the implementation of an optical non-linearity which can intro-
duce the production of bi-photons, for instance via the process of Spontaneous
Parametric Down Conversion (SPDC) as described in the previous sections.
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Fig. 1 Numerical simulation of coupling efficiency Γps,i (ks, ki) in Fourier Domain. (a)

θs,i1 = 0.01, θs,i2 = 9 × π/20 and φs(k) = φi(k), (b) θs,i1 = 0.01, θs,i2 = 0.001 and φs(k) =

φi(k), (c) θs,i1 = 0.01, θs,i2 = 9 × π/20 and φs(k) = −φi(k), θs,i1 = 0.01, (d)θs,i2 = 0.001 and
φs(k) = −φi(k).

We argue that in this way, one could simulate both attractive and repul-
sive interactions (for the case of correlated or anti-correlated down-converted
bi-photons). A similar idea was already proposed in [33], where attractive in-
teractions were introduced in a planar AlGaAs waveguide characterized by
a strong focussing Kerr non-linearity. Likewise, repulsive interactions can be
simulated using defocusing non-linearities [33], though this would remain part
of future efforts. A suitable alternative kind of waveguide for the simulation
of attractive interactions are photonic band gap fibers with a Raman active
gas, which are predicted to have a strong non-linearity. These fibers consist
of a hollow core photonic crystal fiber filled with an active Raman gas which
are capable of exceeding intrinsic Kerr non-linearities by orders of magnitude
[34].

5.2 Input state preparation

For the linear (non-interacting) case (QW with SU(2) symmetry) we plan to
use single-mode states both with Poissonian and Subpoissonian statistics, such
as coherent states and squeezed coherent or single-photon states. The non-
classical nature of the squeezed and single-photon states should be revealed
in the intensity distribution of counts as well as in the standard deviation.
On the other hand, for the non-linear (interacting) case (SPDC with SU(1,1)
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symmetry) quantum theory predicts that the probability amplitudes of the
modes should interfere leading to an enhancement/reduction of the initial cor-
relations. One of the goals of the project is to analyze the sensitivity of the
non-linear network to phase relations dictated by the topology of the network
in the input state and to the amount of gain. We also plan to analyze the effect
of correlations and entanglement in the input state on localized edge states
and to find some kind of non-local order parameter characterizing topological
order [36]. Finally, one of the aims of this research plan is to demonstrate the
feasibility of entanglement topological protection [9].

5.3 Detection Schemes

– Intensity probability distributions and standard deviation
The most direct form of measurement is to detect the statistics of counts
by studying intensity histograms of photons and their standard deviation,
as described in Ref [25]. In particular, by placing a photo-diode/APD at
the output of each fiber, characterizing a given site in the network, it is
possible to obtain a probability distribution of counts and its standard
deviation along the N steps of the quantum walk. While in the case of
input states with Poissonian statistics we expect to find a classical binary
distribution of counts as the output of the quantum walk, in the non-
classical case we expect to find a localized edge state at the boundary
between two different topological sectors. Furthermore, we plan to measure
the normalized standard deviation σN for the classical and non-classical
case, where we expect to find a markedly different dependance on the
number of steps N ; namely, while for the classical walk (coherent states)
we plan to obtain σN ∝

√
N diffusive dependance, for the non-classical case

(squeezed states, single photons) we plan to obtain an σN ∝ N ballistic
dependance with the number of discrete steps.

– HBT correlation measurements
When using non-linear fibers in the amplifying network, it would be inter-
esting to analyze 1-mode (g1(∆r)) and 2-mode (g2(∆r)) spatial correla-
tions functions by means of Hanbury-Brown-Twiss (HBT) like interferom-
eters between different output modes in the network, as described in Ref
[33]. In particular, while in the case of attractive interactions, as simulated
by Kerr non-linearities in fibers, the correlations are expected to increase,
for the repulsive case the correlations are expected to decrease. We also
plan to analyze the dependance of spatial correlations on the amount of
gain present in the medium. In particular, for some critical value of the
overall gain Gc we expect to find a decay of the correlations, which in turn
can be related to the classical-quantum transition in amplifying media [32,
35]. Finally, we will also investigate the response of the amplifying network
to different phases in the input states dictated in turn by the topology of



10 Graciana Puentes

n=1$

n=N$

n=2$

&$

n=3$

Coincidence$
Detec1on$

La4ce$$

Sub8la4ce$index$

Fig. 2 Experimental setup for measurement of spatial correlation via coincidence counts
between different sublattice modes (n).

the network, as well as the response to phase noise, by introducing phase
averaging mechanisms (see Fig. 2).

6. OUTLOOK

In this work we propose an experimental implementation of topological phases
by means of an optical implementation of a discrete time quantum walk ar-
chitecture (DTQWs). One of the main novel ingredients is the inclusion of
non-linear media and non-linear effects in the DTQW via the possibility of
spontaneous parametric down conversion (SPDC) in the lattice. By means of
numerical simulations, we have analyzed the interplay between quantum walk
topology and spatial properties of photon pairs produced by spontanenous
parametric down conversion. In particular, have numerically described how
the topology of the quantum walk lattice can play an important role in the
phase-matching function of bi-photons produced by spontaneous parametric
down conversion. As a future work, we expect to characterize the robustness
of such topological phases and their characteristic bound states against ampli-
tude and phase noise as well as to decoherence, by tracing over spatial modes
of the field. One of the main goals of the proposed work is to investigate the
use of parametric amplifiers as a means of simulating many-body effects in
topological phases. In particular, we expect to link such phases with the clas-
sical or quantum statistics of the fields by means of intensity distribution and
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spatial correlation measurements, and we intend to find a link between some
measure of entanglement and a non-local order parameter characterizing the
topology of the phase [36], or the feasibility of entanglement topological pro-
tection approaches [9]. Some significant signatures of many-body dynamics in
topological order are expected to be apparent, such as charge fractionalization
and Hall quantization, which motivate the extension of the research to the
non-linear (many-body) scenario. Furthermore, other more complex topolog-
ical phases (such as spin Hall phase) could be simulated in the future by all
optical means by using 2D quantum walks and higher dimensional internal de-
grees of freedom of the radiation field, such as the orbital angular momentum
[37]. Furthermore, topological order has been considered as a useful ingredient
for fault tolerant quantum computation, as it can protect the system against
local perturbations which would otherwise introduce decoherence and loss of
quantum information [38].
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