
A Branch-and-Price Algorithm for the (k,c)-Coloring
Problem

Enrico Malaguti
DEI, University of Bologna, Viale Risorgimento, 2—40136 Bologna, Italy

Isabel Méndez-Díaz
Department of Computer Science, FCEyN, University of Buenos Aires, Buenos Aires, Argentina

Juan José Miranda-Bront and Paula Zabala
Department of Computer Science, FCEyN, University of Buenos Aires, Buenos Aires, Argentina
and Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina

In this article, we study the (k,c)-coloring problem, a gen-
eralization of the vertex coloring problem where we have
to assign k colors to each vertex of an undirected graph,
and two adjacent vertices can share at most c colors. We
propose a new formulation for the (k,c)-coloring problem
and develop a Branch-and-Price algorithm. We tested the
algorithm on instances having from 20 to 80 vertices and
different combinations for k and c, and compare it with
a recent algorithm proposed in the literature. Computa-
tional results show that the overall approach is effective
and has very good performance on instances where the
previous algorithm fails. © 2014 Wiley Periodicals, Inc.
NETWORKS, Vol. 000(00), 000–000 2014

Keywords: vertex coloring; multicoloring; branch-and-price;
computational experiments; column generation; heuristics; fre-
quency assignment

1. INTRODUCTION

In the vertex coloring problem (VCP), one is required to
assign a color to each vertex of an undirected graph in such
a way that adjacent vertices receive different colors, and the
objective is to minimize the number of colors used. Several
problems where a resource (color) has to be shared among
conflicting users (vertices connected by an edge in the graph)
can be modeled as VCPs. Many applications can be repre-
sented as generalizations of the VCP. In the multicoloring

Received August 2013; accepted August 2014
Correspondence to: E. Malaguti; e-mail: enrico.malaguti@unibo.it
Contract grant sponsor: ECI
Contract grant sponsor: MIUR (Italy; to E.M.)
Contract grant sponsors: PICT-2010-0304, PICT-2011-0817, and UBACyT
20020100100666 (to I.M.-D, J.J.M.-B., and P.Z.)
DOI 10.1002/net.21579
Published online in Wiley Online Library (wileyonlinelibrary.com).
© 2014 Wiley Periodicals, Inc.

problem, for example, users require more than one copy of
the resource (see, e.g., [6]). In some applications, the resource
cannot be duplicated more than a fixed amount of times, and it
is acceptable to have the resource partially shared among con-
flicting users. This is common in frequency assignment. As an
example, Koster and Tieves [10] consider a problem where
a group of transmitters has to receive a set of frequencies
(colors), in such a way that, when each transmitter chooses at
random one frequency among those assigned to its group, the
total expected interference among groups (conflicting users)
is minimized. The problem is solved in two phases, where the
first one is based on a column generation algorithm. Another
related problem is studied in Zymolka [22] and Koster and
Zymolka [11], and considers the wavelength assignment to
lightpaths in optical networks. Wavelengths are modeled as
colors in a multicoloring formulation of the problem, where
several wavelengths have to be assigned to each lightpath
on each link of a given network. A wavelength can be used
several times, depending on the link features. Reference [11]
describes three formulations for the problem, where the latter
has exponential size and is solved through column genera-
tion. See Aardal et al. [1] for other examples of frequency
assignment problems.

In this article, we consider a generalization of the VCP
where each vertex has to receive more than one color, and
each pair of conflicting vertices can share a given number of
colors.1

Formally, the (k,c)-coloring problem (KCVCP) is defined
as follows. Let G = (V , E) be an undirected graph, with
V = {1, . . . , n} the set of vertices, E ⊆ {uv : u, v ∈ V , u �= v}
the set of edges, and R = {1, . . . , |R|} the set of available col-
ors. Each vertex v ∈ V is required to be assigned exactly k

1 A preliminary version of this work appeared in [13].

NETWORKS—2014—DOI 10.1002/net

different colors and each pair of adjacent vertices u, v can-
not share more than c colors. The objective is to minimize the
total number of colors used. This is called the (k,c)-chromatic
number of G, which we denote by χ c

k (G). Throughout the
article, we assume that k > c and that |R| ≥ χ c

k (G). The prob-
lem is NP-Hard in the general case and reduces to the VCP
when k = 1 and c = 0 (see Garey and Johnson [4] for com-
plexity results on VCP, and Malaguti [12] and Malaguti and
Toth [15] for other NP-Hard generalizations of the VCP).
The problem remains NP-Hard for the special case when
c = k − 1 (see Méndez-Díaz and Zabala [20]) while the
complexity when c < k − 1, c > 0, is open.

Coloring problems are very challenging from the com-
putational viewpoint. Considering the classical VCP and
restricting our attention to exact algorithms, the most effec-
tive methods are based on solving mixed integer linear
programming models (MIPs) through advanced techniques.

The so-called natural formulation of the VCP, where
variables denote the assignment of colors to vertices, was
considered by Méndez-Díaz and Zabala [18, 19]. The formu-
lation was strengthened with additional inequalities, added
to eliminate symmetries and to obtain a stronger linear
programming (LP) relaxation. In this way, different MIP
models for VCP were obtained, which were computation-
ally tested, in terms of their LP relaxation and obtaining
exact solutions, both on random instances and on instances
from the literature. The most successful alternative model
for the VCP is the exponential-size formulation proposed
by Mehrotra and Trick [16], where variables are associated
with independent sets of vertices (i.e., sets of pairwise non-
adjacent vertices). Recently, Malaguti et al. [14], Gualandi
and Malucelli [5], and Held et al. [7] achieved very good
computational results by solving these formulations through
Branch-and-Price (BP) algorithms.

Concerning the KCVCP, Méndez-Díaz and Zabala [21]
extended the natural formulation of VCP to the KCVCP,
and solved the corresponding model through a Branch-and-
Cut (BC) algorithm. The formulation includes symmetry-
breaking inequalities and is strengthened by additional
inequalities which are generated during the solution process.
The authors report computational results on a set of instances
with 20 vertices.

As the exponential-size formulation [16] has proved to
be very effective in solving not only the classical VCP but
also some generalizations (see, e.g., Methrora and Trick [17],
Hoshino et al. [8], Furini and Malaguti [3]), in this arti-
cle, we propose and computationally evaluate an exponential
formulation for the KCVCP. The corresponding model is
solved through a BP algorithm. To accomplish this task, we
develop a primal heuristic and a column generation heuristic
as well. Our algorithm is tested on the instances from [21],
and compared with the BC algorithm proposed therein.

The rest of the article is organized as follows. In Section
2, we present the MIP formulation proposed in Méndez-Díaz
and Zabala [21] and introduce an exponential-size formu-
lation for the KCVCP. In Section 3, we describe the main

characteristics of our BP algorithm, including the approach
for solving the column generation subproblem, the branching
scheme, and a primal heuristic. Computational results are
shown in Section 4, and finally, in Section 5, we present some
conclusions and future directions.

2. MODELS

We begin by showing the model proposed by Méndez-
Díaz and Zabala [21], slightly modified for the particular case
of the KCVCP. They consider three different sets of variables.
The first one regards binary variables xvj, for v ∈ V and j ∈ R,
taking value 1 if and only if color j is assigned to vertex v.
Second, for each arc uv ∈ E and a color j ∈ R, the binary
variable yuvj = 1 if and only if color j is assigned to both u and
v. Finally, the binary variables wj, j ∈ R, take value 1 if and
only if color j is used by some vertex. The formulation for
KCVCP, which we name KCVCP-ASS (colors are assigned
to vertices) is the following:

(KCVCP-ASS) z1 = min
∑
j∈R

wj (1)

s.t. :
∑
j∈R

xvj = k v ∈ V (2)

∑
j∈R

yuvj ≤ c uv ∈ E (3)

xuj + xvj − yuvj ≤ 1 uv ∈ E, j ∈ R (4)

xvj ≤ wj v ∈ V , j ∈ R (5)

xvj ∈ {0, 1} v ∈ V , j ∈ R (6)

yuvj ∈ {0, 1} uv ∈ E, j ∈ R (7)

wj ∈ {0, 1} j ∈ R (8)

The objective function (1) minimizes the number of col-
ors used. Constraints (2) establish that exactly k colors are
assigned to vertex v and constraints (3) restrict the number
of colors that can be shared by two adjacent vertices. Con-
straints (4) impose yuvj = 1 if color j is assigned to both u and
v, and constraints (5) set wj = 1 if color j is used by some
vertex. Finally, constraints (6–8) establish that all variables
must be binary.

Similarly, as with the VCP, this formulation allows sym-
metric solutions. To eliminate some symmetries, the authors
propose to include in the formulation inequalities wj ≤ wj+1,
for 1 ≤ j ≤ |R| − 1.

In this article, we propose a new formulation which does
not suffer from symmetry issues. Let S = 2V \ {∅} be the
power set of V excluding the empty set, and define inte-
ger variables xs, s ∈ S, representing the number of colors
assigned to all vertices in s. Actually, in our model any sub-
set of vertices can be feasibly colored by one color when c >
0; in the exponential-size formulation for the VCP from [16],
instead, only independent sets of vertices are considered. The

2 NETWORKS—2014—DOI 10.1002/net

FIG. 1. Graph example.

KCVCP can be formulated as follows:

(KCVCP-EXP) z2 = min
∑
s∈S

xs (9)

s.t.
∑

s∈S:v∈s

xs ≥ k, v ∈ V (10)

∑
s∈S:u,v∈s

xs ≤ c, uv ∈ E (11)

xs ∈ Z
+, s ∈ S (12)

The objective function (9) minimizes the number of colors
used. Constraints (10) establish that a vertex must receive at
least k colors. To speed up the column generation algorithm,
we consider maximal sets s ∈ S and modify slightly the
definition of KCVCP, where each vertex is required to be
assigned at least k colors. Formally, a set s ∈ S is maximal if
for all v ∈ V , v /∈ s, there exists a vertex u ∈ V , u ∈ s such
that uv ∈ E. Consider the following example: let G = (V , E)

be an undirected graph, with V = {v1, v2, v3, v4, v5, v6} and
E = {v1v6, v2v3, v3v4, v4v5} (see Fig. 1). Sets {v3, v5, v6} and
{v1, v2, v3, v4} are maximal, but set {v3, v4, v5} is not because
either v1 or v6 can be included as well without having the set
inducing a new edge.

Note that any solution obtained by this formulation can
be easily transformed into one having exactly k colors per
vertex. In addition, any solution obtained having exactly k
colors can be transformed into an equivalent one considering
only maximal sets and having the same objective value. The
procedure is rather simple: given a nonmaximal sets solution,
for each s ∈ S iteratively add vertices v ∈ V , v /∈ s until s is
maximal. In case of obtaining a maximal set s′ as the outcome
for more than one s ∈ S, set the value of the corresponding
variable as the sum of the original ones. Finally, constraints
(11) restrict the number of colors assigned to pairs of adjacent
vertices in G and constraints (12) require variables xs, s ∈ S,
to be nonnegative integers. Unless otherwise stated, through
the rest of the article we assume S ⊆ 2V including maximal
sets only.

Similarly to the VCP, we can establish a dominance rela-
tion for the LP relaxation of both formulations. Let zLP

1 and

zLP
2 be the value of the LP relaxation of formulations KCVCP-

ASS and KCVCP-EXP, respectively. We also denote by Kn

the complete graph on n vertices. The following two propo-
sitions provide results on the quality of the lower bounds for
each of the considered formulations.

Proposition 1. Let G = (V , E), with E �= ∅. Then zLP
2 ≥

2k − c.

Proof. Let x* be an optimal solution of the LP relax-
ation of KCVCP-EXP. As E is nonempty, consider edge
uv ∈ E and define S(u, v) = {s ∈ S : u ∈ s or v ∈ s}. Using
this definition, we have

zLP
2 =

∑
s∈S

x∗
s ≥

∑
s∈S(u,v)

x∗
s =

∑
s∈S,
u∈s

x∗
s +

∑
s∈S,
v∈s

x∗
s −

∑
s∈S,

u,v∈s

x∗
s

≥ k + k − c = 2k − c,

where the last inequality is implied by constraints (10) for
vertices u and v and constraint (11) for edge uv. ■

Proposition 2. Let G = (V , E), with E �= ∅. Then zLP
1 = k.

Proof. Let (x∗, y∗, and w∗) be an optimal solution of
the LP relaxation of KCVCP-ASS. We first show that k is a
lower bound on zLP

1 , and then provide a feasible (fractional)
solution with exactly this objective function. Let v ∈ V be any
vertex; by adding up constraints (5) for j ∈ R and considering
Equation (2) for v, we have

k =
∑
j∈R

x∗
vj ≤

∑
j∈R

w∗
j = zLP

1 .

To prove the second condition, we consider the following
solution (x̄, ȳ, and w̄). Define variables x̄vj = k

|R| for v ∈
V , j ∈ R, w̄j = k

|R| for j ∈ R, and ȳuvj = c
|R| for uv ∈ E, j ∈ R.

It is easy to check that this solution satisfies constraints (2),
(3), and (5). Regarding constraints (4), for uv ∈ E and j ∈ R
we have

x̄uj + x̄vj − ȳuvj = k

|R| + k

|R| − c

|R| = 2k − c

|R| .

as 2k − c ≤ χ c
k (G) ≤ |R|, the ratio is less than or equal to

one and thus (4) is satisfied. Finally,
∑

j∈R w̄j = k, which
completes the proof. ■

Based on these two results, the next corollary holds. The
proof follows directly from Propositions 1 and 2 given that
k > c.

Corollary 1. Given G = (V , E), with E �= ∅, zLP
1 < zLP

2 .

In the context of the VCP, the lower bound provided by the
LP relaxation of the exponential-size formulation is at least
the value of the optimal coloring of a maximum clique in the
graph. However, in the context of the KCVCP this is not true

NETWORKS—2014—DOI 10.1002/net 3

in the general case and depending on the relation between k
and c, the result may hold or not. We next show two cases,
one for each situation.

In Méndez-Díaz and Zabala [20] it is shown that, for the
special case c = k − 1, χ k−1

k (Kn) is the minimum j ∈ N such
that (j

k) ≥ n. Furthermore, the following remark provides a
basic relation regarding χ c

k for arbitrary graphs.

Remark 1. Let G = (V , E). Then χ c
k (G) ≤ χ c′

k (G), for
c′ < c, and χ c

k (G) ≤ χ c
k′(G), for k < k′.

When restricting to k ≤ 2c, we can establish also an upper
bound on the value of the LP relaxation of KCVCP-EXP, zLP

2 .

Lemma 1. Let G = (V , E), and consider k ≤ 2c. Then
zLP

2 < 2k.

Proof. Consider S̃ = 2V \ {∅}, and define the solution
x̄s = k

2|V |−1 for each s ∈ S̃. Recall that we can construct a
solution having only maximal sets and with the same objec-
tive value, as mentioned before in this section. This solution
satisfies constraints (10) and (11), and its objective value is
smaller than 2k. ■

Under the assumption that k ≤ 2c, the upper bound for
the value of zLP

2 depends only on the value of k, indepen-
dent of the size of the graph. In particular, if c = k − 1,
then we can construct a clique of arbitrary size n such that
χk−1

k (Kn) > 2k. Furthermore, by Remark 1 this same clique
satisfies χ c

k (Kn) > 2k, for c ≥ k/2.
On the contrary, for the case where k = c(n − 1) + r,

with r ≥ 0, we can show that zLP
2 is at least the value of

the optimal coloring of a maximum clique in the graph. The
following lemma establishes an upper bound on χ c

k (Kn) for
this particular setting of k and c.

Lemma 2. Let k = c(n−1)+r, with r ≥ 0. Then, χ c
k (Kn) ≤

n(n−1)c
2 + rn

Proof. First, we consider n(n−1)c
2 different colors that

can be distributed by assigning c to each edge uv ∈ E in
such a way that for any two of them, the intersection among
the colors assigned is empty. Then, we assign to each v ∈
V the colors of the incident edges. As a result, each vertex
has assigned c(n − 1) colors, sharing exactly c with all the
remaining vertices. To complete the coloring, for each vertex
v ∈ V we assign r new colors, obtaining a feasible (k, c)-
coloring with n(n−1)c

2 + rn colors in total. ■

Similarly to Proposition 1, we can derive a lower bound
on zLP

2 in the particular case where the graph is complete.

Proposition 3. If G = Kn, then zLP
2 ≥ kn − n(n−1)c

2 .

Proof. First, we remark that as the graph is complete,
every nonempty set of vertices is maximal, that is, S = 2V \

{∅}. By adding constraints (10) for v ∈ V we get the following
inequality

∑
v∈V

∑
s∈S,
v∈s

xs ≥ kn. (13)

The left-hand side can be rewritten and bounded as shown
below, using the fact that i − 1 ≤ (

i
2

)
for i ≥ 2.

∑
v∈V

∑
s∈S,v∈s

xs =
∑
s∈S

xs +
n∑

i=2

(i − 1)
∑

s∈S,|s|=i

xs

≤
∑
s∈S

xs +
n∑

i=2

(
i
2

) ∑
s∈S,|s|=i

xs (14)

Given a set s ∈ S, as the graph is complete we note that
| {uv ∈ E : u, v ∈ s} | = (|s|

2

)
. By adding constraints (11) for

each uv ∈ E, we get the following inequality

c(n − 1)n

2
≥

∑
uv∈E

∑
s∈S,

u,v∈s

xs =
∑
s∈S

∑
uv∈E,

u,v∈s

xs

=
n∑

i=2

∑
s∈S,|s|=i

∑
uv∈E,

u,v∈s

xs =
n∑

i=2

(
i
2
)
∑

s∈S,|s|=i

xs.

Finally, by inequalities (13) and (14), we obtain the following
lower bound on the objective function

∑
s∈S

xs ≥ kn − c(n − 1)n

2
(15)

which proves the result. ■

From the results in Lemma 2 and Proposition 3 we can
state the following corollary. The proof is omitted as it follows
directly by replacing k = c(n − 1) + r.

Corollary 2. If G = Kn and k = c(n−1)+r, then χ c
k (Kn) =

zLP
2 = c(n−1)n

2 + rn.

Given a graph G = (V , E), it is straightforward to check
that for every subgraph H of G, zLP

2 (G) ≥ zLP
2 (H). When

k = c(n − 1) + r, this property combined with Corollary 2
allows us to state that, similarly to the VCP, the value of the
LP relaxation of KCVCP-EXP is at least the optimal (k,c)-
coloring of the maximum clique in the graph.

3. BP ALGORITHM

In this section, we present the details of the exact algo-
rithm proposed for the KCVCP, which is built on formulation
KCVCP-EXP. This formulation has an exponential number of
variables (columns), and therefore, it cannot be formulated
explicitly, even for medium size instances. The algorithm

4 NETWORKS—2014—DOI 10.1002/net

starts by executing the greedy heuristic proposed in Méndez-
Díaz and Zabala [21]. The solution returned by the heuristic
is used as the initial set of columns for formulation KCVCP-
EXP, and its value as an initial upper bound for the problem.
Then, we solve the LP relaxation of model KCVCP-EXP by
means of a column generation procedure. In the following, we
denote the LP relaxation of model KCVCP-EXP as the master
problem. The main idea behind this technique is to start with
a restricted set of columns, obtaining as a result a restricted
master problem, and iteratively add columns with negative
reduced cost until the master problem is solved to optimal-
ity. This procedure is later included within a BP scheme,
which has been proven to be quite effective in solving this
kind of model. At each node of the enumeration tree, we exe-
cute a primal heuristic aiming to improve the upper bound
by exploiting the information provided by the solution of the
LP relaxation.

3.1. Initialization

The initial heuristic proposed in Méndez-Díaz and Zabala
[21] follows a greedy criterion to construct a feasible color-
ing. The procedure begins with an ordered list L = {1, . . . , k}
and in every step an uncolored vertex is chosen and it is
assigned the first k colors from L that are compatible with its
neighbors. In case the colors in L are not enough, new colors
are added. The colors used in the assignment are moved to
the end of L. The procedure runs twice, considering different
ordering for the selection of the next vertex.

The output produced by the heuristic is used in two differ-
ent ways. First, the value of the solution is used as an initial
upper bound, which may reduce the size of the enumeration
tree within the BP scheme. Second, the solution is used as a
part of the initial set of variables for the model KCVCP-EXP.
For each color, we construct a set containing all vertices col-
ored with it to generate the corresponding column for model
KCVCP-EXP. In addition, we consider as initial columns
sets s = {v}, for v ∈ V , and s = V (i.e., the set containing all
vertices).

With this set of variables, we generate an initial restricted
master problem and start the column generation procedure.

3.2. Column Generation

Let S̄ ⊂ S be this restricted set of columns (e.g., before
starting the algorithm, the set of columns described in Section
3.1). The restricted master problem is defined by

min
∑
s∈S̄

xs (16)

s.t.
∑

s∈S̄:v∈s

xs ≥ k, v ∈ V (17)

∑
s∈S̄:u,v∈s

xs ≤ c, uv ∈ E (18)

xs ≥ 0 s ∈ S̄ (19)

which is solved to optimality.

Let (π , ρ) be the optimal values of the dual variables asso-
ciated with constraints (17) and (18), respectively, with π ≥ 0
and ρ ≤ 0. Aiming to identify sets s ∈ S for which variable xs

has negative reduced cost, we formulate the following column
generation subproblem. Let zv, v ∈ V , be a binary variable
that takes value one if and only if vertex v belongs to s and,
for each uv ∈ E, let yuv be a binary variable that takes value
1 if vertices u and v are both in s. The formulation for the
subproblem is

max
∑
v∈V

πvzv +
∑
uv∈E

ρuvyuv (20)

s.t. zu + zv − yuv ≤ 1, uv ∈ E (21)

zv ∈ {0, 1} , v ∈ V (22)

yuv ∈ {0, 1} , uv ∈ E (23)

The objective function (20) maximizes the reduced cost of
the set characterized by variables zv. Inequality (21) forces
variable yuv to take value 1 when both u and v belong to
the set. Finally, constraints (22) and (23) establish integrality
conditions.

As the subproblem is a maximization problem and ρ is
nonpositive, the only case where yuv takes value 1 but u or v
are not in the set s requires ρuv = 0, and thus does not affect
the value of the reduced cost. Instead, when a dual variable
πv = 0, it can be that the optimal solution of model (20–23)
corresponds to a set s which is not maximal. This can happen
when the vertex v associated with πv has no neighboring
vertices in s, that is, u ∈ s, uv ∈ E. To forbid this situation,
we add the following constraints to the subproblem:

zv +
∑

u∈V ,uv∈E

zu ≥ 1, v ∈ V . (24)

If the objective value of the optimal solution of the sub-
problem is less than or equal to 1, then the master problem
has been solved to optimality. Otherwise, the optimal solu-
tion represents a maximal set s∗ with negative reduced cost,
to be added to the restricted master problem. Then, we set
S̄ = S̄ ∪ {s∗} and repeat the procedure.

The problem defined by formulation (20–24) stands for
a generalization of the maximum weighted stable set prob-
lem, where there is a penalization for each pair of conflicting
vertices simultaneously included in the set. Therefore, the
subproblem is NP-Hard and we have to resort to heuris-
tic procedures to find as quickly as possible columns with
negative reduced costs. However, in case the heuristic does
not find an entering column, we still have to check if the LP
relaxation has been solved to optimality. For this purpose,
we consider solving the subproblem by means of an MIP
solver.

3.2.1. Heuristic Approach. Given a set s, the associated
profit in the subproblem (20–24) is computed as π(s) =∑

v∈s πv − ∑
uv∈E,

u,v∈s
ρuv. For a vertex v /∈ s, we define the

NETWORKS—2014—DOI 10.1002/net 5

residual profit r(v) = πv − ∑
uv∈E,
u∈s

ρuv, similarly, for a ver-

tex v ∈ s we define r(v) = −πv + ∑
uv∈E,
u∈s

ρuv. Here, r(v)
denotes the change in π(s) when a vertex v /∈ s (resp., v ∈ s)
enters (resp., leaves) set s. The procedure starts by randomly
constructing a set s of maximal profit, that is, a subset of V
such that no vertex with positive residual profit exists. For a
specified number of iterations, the procedure starts from the
(current) maximal profit set s and randomly adds a vertex
v /∈ s to s. Residual profits are updated, and then, the pro-
cedure randomly selects a vertex v with r(v) > 0 and either
(i) adds it to s when v /∈ s, or (ii) removes it from s when
v ∈ s. Residual profits are again updated and the procedure is
repeated until set s is of maximal profit, which concludes one
iteration of the procedure. Before updating the best incum-
bent solution, set s is made maximal in a greedy way. To avoid
cycling, an anticycling rule is implemented, that is, the vertex
initially selected to enter the initial set s of maximal profit,
cannot be selected again for a specified number (tenure) of
iterations. The procedure is stopped before the specified iter-
ations are completed if a solution of profit larger than a given
threshold is produced. The heuristic procedure is described
in Algorithm 1.

Algorithm 1 Column Generation Heuristic

3.2.2. Exact Approach. When the heuristic procedure
cannot find a column with negative reduced cost, we still need
to check if the LP relaxation has been solved to optimality.
For this purpose, we consider solving the subproblem integer
formulation (20–24) using a general purpose MIP solver.

In some cases, solving the subproblem to optimality can
be very time consuming. To overcome this issue, we follow
a common approach (see, e.g., [5, 7, 14]) and under certain
circumstances we stop the optimization of the subproblem
before reaching optimality. If during the solution process the
solver finds a column with negative reduced cost, the solver
is stopped and the column is added to the master problem.
Constraints (24) guarantee that the column corresponds to a

maximal set. The aim behind this idea is to save the poten-
tial time required by the MIP solver to (eventually) prove
optimality of the subproblem solution.

In addition, during the solution of the subproblem, we
exploit dual information to eventually stop the column gen-
eration procedure or to fathom the current node before
convergence. By following the same argument as in Farley
[2], we have the next result.

Remark 2. Let Z* be the optimal solution value to the cur-
rent restricted master problem and let UBSP be an upper
bound on the optimal solution value of the subproblem. Then,
a valid lower bound LB on the optimal solution value of the
master problem is

LB = Z∗

UBSP
(25)

Actually, Z* is the value of a primal-feasible dual-
infeasible solution, and UBSP is an upper bound on the
left-hand side of any dual constraint. If UBSP > 1, by dividing
the value of each dual variable of the dual-infeasible solu-
tion by UBSP, we obtain a dual-feasible solution of value
Z∗/UBSP. By weak duality, this value is a lower bound on
the optimal solution value of the master problem.

We use the value of LB in two different ways:

• If �LB
 is greater than or equal to the value of the best incum-
bent solution, then the incumbent solution cannot be improved
and the node can be fathomed.

• If �LB
 = �Z∗
, then the column generation can be stopped
as the LP relaxation cannot be improved at the current node.

Note that the computation of such a bound is computation-
ally costless (the value UBSP is returned by the MIP solver
through a callback) and it has the only effect of reducing the
LP solution time (i.e., the later behavior of the BP algorithm
is not affected).

3.3. Branching Scheme

After solving the LP relaxation of model KCVCP-EXP,
if the solution is not integer or the node is not fathomed as
mentioned in the previous section, we need to continue with
the BP algorithm and partition the actual problem into smaller
problems by means of a branching scheme. In our case, the BP
algorithm branches on the original (primal) variables xs, s ∈
S, as we describe in this section.

Let x* be the (noninteger) optimal solution of the LP
relaxation, and let xs, s ∈ S, be a fractional variable. As
the variables are defined as nonnegative integers, we parti-
tion the solution space and generate two new subproblems
defined by the following inequalities

xs ≤ ⌊
x∗

s

⌋
or xs ≥ ⌈

x∗
s

⌉
. (26)

In each case, the feasible range of values for variable xs is
imposed by adjusting the corresponding bound in the mas-
ter problem for the descendant nodes. Although the scheme

6 NETWORKS—2014—DOI 10.1002/net

showed to be effective in practice, it is not robust in the sense
that adding any of the above inequalities to the formulation
modifies the structure of the column generation subproblem
solved at each node of the Branch-and-Bound (BB) tree.
We then need to account for this situation when solving the
subproblem.

When a variable xs is selected for branching, its bounds
in the master problem are adjusted to reflect the new range
of feasible values.

Each time we branch on a xs ≤ ⌊
x∗

s

⌋
condition, we have

to properly translate the information on the new bound to
the subproblem. Otherwise, the upper-bounded variable xs,
that would have negative reduced cost in the master problem,
would be regenerated in the subproblem. A way to handle this
situation is to remove set s from the set of feasible solutions
of the subproblem in the descendant nodes. When solving
the subproblem by means of the MIP formulation, this can
be achieved by adding to the model (20–24) the following
constraint:

∑
u∈s

zu ≤ |s| − 1 +
∑
u/∈s

zu. (27)

Constraint (27) imposes that any feasible solution of
(20–24) cannot be exactly the same set defined by s.

Each time we branch on a xs ≥ ⌈
x∗

s

⌉
condition, we do not

have to worry about regenerating variable xs in the subprob-
lem (actually xs is not upper bounded in the master problem),
but instead we look for the constraints (18) which become
tight, that is, we look for those uv ∈ E for which the branch-
ing conditions determine

∑
s∈S:u,v∈s xs = c. In this case, any

column xs, such that s /∈ S̄, u, v ∈ s, cannot enter the solu-
tion with a positive value. Again, this information has to be
reflected in the subproblem, by explicitly imposing

zu + zv ≤ 1.

This can be easily handled considering inequality (21) for
edge uv and setting yuv = 0.

Regarding the heuristic solution of the subproblem, we
also need to account for sets which must not be generated dur-
ing the process. For this purpose, we keep a pool of forbidden
sets which is checked by the heuristic algorithm before updat-
ing the incumbent solution. In particular, when we branch on
a variable xs, the set s is stored in a hash table which is later
checked by the heuristic in the descendant nodes.

It is important to remark that, as variables x are defined as
nonnegative integers, the same variable can be chosen more
than once as the branching variable—but considering a dif-
ferent branching value. In this case, the addition of constraint
(27) to the subproblem and the inclusion of the correspond-
ing set into the hash table have to be done only the first time
the variable is selected for branching, considered in all the
descendant nodes of the BB tree and removed when moving
to the parent node. Thus, our algorithm includes additional
information to keep track of the number of times each vari-
able has been selected as the branching one to maintain the

correspondence between the subproblem and the actual state
of the node in the BB tree.

The branching variable is selected as the one having the
largest fractional part in the (noninteger) solution of the cur-
rent LP relaxation. We never branch on the initial columns
corresponding to sets s = {v} , v ∈ V , to guarantee the feasi-
bility of the master problem. Actually, after branching on a
fractional valued variable xs = x∗

s , the restricted master prob-
lem for the child node may become infeasible even when the
LP relaxation is feasible but only by including additional
variables not considered so far. The consequence is that dual
information for the problem is not available, making difficult
the task of solving the LP relaxation of the new node in the
BB tree.

The following remark states that it is always possible to
branch on a variable other than the initial ones.

Remark 3. Let x* be an optimal (noninteger) solution of the
LP relaxation of a restricted master problem of KCVCP-EXP.
For each v ∈ V, x∗{v} cannot be the only fractional variable
covering vertex v.

This is because the right-hand side of constraints (10) is
integer and KCVCP-EXP is a minimization problem.

We illustrate the case of a problem that becomes infea-
sible after branching with the following example. Consider
the graph from Section 2, where V = {v1, v2, v3, v4, v5, v6}
and E = {v1v6, v2v3, v3v4, v4v5}, k = 2, c = 1. Sup-
pose x{v3} ≤ 0 has been imposed at a previous level
when branching. Let also s1 = {v3, v5, v6} , s2 =
{v1, v2, v4, v5} , s3 = {v2, v3, v4, v6} , s4 = {v1, v3, v4, v6},
and s5 = {v1, v2, v3, v5, v6}, and define x̄s2 = 1 and x̄si = 0.5
for i = 1, 3, 4, and 5. Note that all sets si correspond to maxi-
mal sets, and that x̄ is an optimal solution of the LP relaxation
of the initial master problem as it is feasible and its objective
value is 3 (which is a lower bound by Proposition 1). The
constraint matrix for these sets is shown below.

xs1 xs2 xs3 xs4 xs5

v1

v2

v3

v4

v5

v6

v3v4

v2v3

v1v6

v4v5

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 1 1
0 1 1 0 1
1 0 1 1 1
0 1 1 1 0
1 1 0 0 1
1 0 1 1 1
0 0 1 1 0
0 0 1 0 1
0 0 0 1 1
0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

If variable xs1 is chosen, when branching on xs1 ≤ 0 the
corresponding LP becomes infeasible as the constraint (10)
for vertex v3 cannot be satisfied. However, this new restricted
master problem is feasible, for example, setting variables
x{vi} to an appropriate value to satisfy the corresponding con-
straints. This shows the benefit of not branching on the initial
variables x{v}, v ∈ V .

NETWORKS—2014—DOI 10.1002/net 7

We mention that the BB tree is traversed in a Depth First
Search fashion.

Finally, concerning the possibility of developing a robust
branching rule for the KCVCP, we note that the well-known
idea proposed by Mehrotra and Trick [16] cannot be eas-
ily adapted. In particular, the resulting subproblems are not
instances of the KCVCP as the maximum number of colors
that two adjacent vertices can share is different from the input
value c.

3.4. Primal Heuristic

After solving the LP relaxation at a node (or stopping the
column generation if no improvement can be achieved), we
execute a heuristic procedure which tries to use the infor-
mation in the (fractional) solution aiming to improve the
incumbent solution.

The heuristic considers two phases. In the first stage, the
algorithm tries to assign vertices to sets using the variables in
the solution of the LP relaxation which have strictly positive
values. If, after the first phase, all vertices have been assigned
to at least k sets, then the solution is feasible. Otherwise, we
execute the second phase to complete the assignment and
obtain a feasible solution. If the value of the solution improves
the value of the incumbent solution, then the latter is updated
and the algorithm continues.

Let x* be the current solution of the LP relaxation. For the
first phase, we consider variables xs such that x∗

s > 0 and sort
them according to nonincreasing value. We try to round-up
the value of x∗

s and, if the assignment is feasible, assign the
vertices in the set s, update the information and continue with
the next set, as explained in the following. It is important to
note that, after an assignment is done, the resulting problem is
not a KCVCP but it has a similar structure. In particular, each
vertex v ∈ V is required to be colored with kv colors and each
pair of adjacent vertices u and v (edge uv ∈ E), has associated
a capacity cuv that represents the number of colors that can be
shared between u and v. Thus, for a currently considered set
s ⊆ V , we define a parameter αs as the maximum number of
times set s can be used in a feasible solution without covering
some vertex more than needed. Formally,

αs = min

{
min
uv∈E,

u,v∈s

cuv, max
v∈s

kv

}

Each set s is assigned a number of times which is the
minimum between the rounded-up value of the associated
variable x∗

s and the value of parameter αs. The procedure for
this phase is described in Algorithm 2.

After the first phase, we still may need to color some ver-
tices to obtain a feasible solution. To complete the coloring
and obtain a feasible solution, we consider the following
heuristic strategy. We iteratively construct sets s ⊆ V and
decide how many times it is used until all vertices v ∈ V
belong to at least kv sets.

At each iteration, we start by removing from G vertices
v ∈ V such that kv ≤ 0. On the resulting induced subgraph,

Algorithm 2 Primal Heuristic (Phase 1)

we compute a maximal independent set s and its associated
value αs as previously defined. Then, we iteratively insert
vertices into the set in a greedy fashion. For this purpose, we
define the following measures for a given set s ⊆ V :

1. f (s,β)

1 , which stands for the number of times that, after
using β times the set s, there are pairs of vertices u, v ∈
V , uv ∈ E, with ku = 0 or kv = 0 and cuv > 0 in the
resulting problem. The insight of this measure is to try
to detect situations where the number of colors that two
adjacent vertices can share is not fully used.

2. f (s,β)

2 , which counts the number of vertices v ∈ V for
which kv = 0 in the resulting problem, after using β

times the set s. This is the number of vertices that are
completely colored by set s.

3. f (s,β)

3 , which counts the number of edges uv ∈ E for
which cuv = 0 but ku, kv > 0, after using β times the set s.
This is the number of edges whose capacity is consumed
when using set s.

Let s be the current set and β = αs, and consider a vertex
w /∈ s. We say that w is a candidate vertex to be added to s if for
s′ = s ∪ {w} and β ′ = αs′ , we have f (s′,β ′)

1 < f (s,β)

1 , or in case

of a tie, if f (s′,β ′)
2 > f (s,β)

2 . In case of a further tie, we finally

say that w is a candidate vertex if f (s′,β ′)
3 < f (s,β)

3 . When
there is at least one candidate vertex, we add the best one
according to this criterion to s and iterate again. Otherwise,
we color the vertices in s and look for another set repeating
this procedure. The pseudocode for the second phase is shown
in Algorithm 3.

When the second phase finishes, if z1 + z2 is smaller
than the objective value of the incumbent solution, then the
best known upper bound has been improved. The incumbent
solution is updated and the optimization continues.

4. COMPUTATIONAL RESULTS

We conducted computational experiments to evaluate the
behavior of the approach proposed in this article and compare
the results with another exact algorithm from the related lit-
erature. The experiments were run on a workstation with an
Intel(R) Core(TM) i7 CPU (3.40GHz) and 16 GB of RAM.
The algorithms are coded in C++ using CPLEX 12.1 Callable
Library as the LP and MIP solver.

8 NETWORKS—2014—DOI 10.1002/net

Algorithm 3 Primal Heuristic (Phase 2)

We consider a first set of instances from [21], which consist
of randomly generated graphs having 20 vertices and varying
the density in terms of the number of edges, considering val-
ues of 10, 20, . . . , 90 percent of the edges. For each of these
values we consider 10 instances. We also consider different
combinations for k and c, with 2 ≤ k ≤ 5 and 1 ≤ c ≤ k −1,
giving a total of 900 instances.

We evaluated the following exact algorithms:

1. BC: the BC algorithm from Méndez-Díaz and Zabala
[21],

2. BP: the BP algorithm presented in Section 3, and
3. BP-Clique: the BP algorithm, including an initial lower

bound obtained by computing a clique and computing
the minimum number of colors required to color it. As
opposed to the VCP, for the KCVCP the coloring of a
clique is not solved unless c = k − 1. Thus, we con-
structed a priori a table for different combinations of k,

c and the size of a clique, and used a backtracking algo-
rithm to obtain the value of the optimal clique coloring
(a time limit of 1 s for each run is imposed). Then, before
starting BP, we compute the size of a maximum clique
on the input graph by means of the algorithm proposed
by Konc and Janezic [9] and use the precalculated table,
in combination with the size of the clique, to obtain a
feasible initial lower bound which is incorporated into
BP.

We group the instances into three classes of density: low
(10% – 30%), medium (40% – 60%), and high (70% – 90%).
For medium and high density instances, we report aggre-
gated results in Figures 2 and 3, respectively. This aggregated
information is not reported for low density instances, as all
algorithms have similar behavior for these problems. Detailed
results and computation times are reported in Table 5 in the
Appendix.

For each group and each value k – c, the first figure reports
the optimality gap for:

• the root node of the BC, that is, the LP relaxation of the
KCVCP-ASS formulation, strengthened by valid inequalities
described in [21] and including an initial lower bound obtained
by computing the optimal coloring of a clique,

• the root node of the BP, that is, the LP relaxation of the
KCVCP-EXP formulation,

• the root node of the BP-Clique, that is, the LP relaxation of the
KCVCP-EXP formulation, including an initial lower bound
obtained by computing the optimal coloring of a clique.

Gaps are computed as 100*(BESTUB - ROOT)/ROOT,
where BESTUB is the best solution found by any of the
algorithms and ROOT is the value of the root node of the
corresponding algorithm. The LP relaxation of the KCVCP-
ASS formulation with no additional inequalities is very weak
(between 39%, for low density graphs and k − c = 1, and
269%, for high density graphs and k − c = 4, on average)
and is not reported.

We observe that the root node of the BP always has a
very small optimality gap, zero or almost zero for low and

FIG. 2. Percentage optimality gaps for the root node of the BC, BP, and BP-Clique algorithms (left). Percentage
of unsolved instances after 3600 s of computation time for the BC, BP, and BP-Clique algorithms (right). Medium
density graphs.

NETWORKS—2014—DOI 10.1002/net 9

FIG. 3. Percentage optimality gaps for the root node of the BC, BP, and BP-Clique algorithms (left). Percentage
of unsolved instances after 3600 s of computation time for the BC, BP, and BP-Clique algorithms (right). High
density graphs.

TABLE 1. Computational results for larger instances

Dens. = 10% n = 60 Dens. = 20% n = 45 Dens. = 30% n = 30

(k, c) Opt. Time Opt. Time Opt. Time

(5,1) 7 497.49 6 143.04 10 3.75
(5,2) 9 165.14 5 195.41 9 180.88
(5,3) 9 75.10 10 34.70 10 1.96
(5,4) 10 137.87 10 36.81 10 2.00

medium density instances, showing the benefit of considering
an exponential formulation for the problem. For high density
instances, the optimality gap is always smaller than 10%, and
at most 3.1% for the BP-Clique. The root node of the BC has
an optimality gap never exceeding 4.73%, but it is nonzero for
small and medium density instances. This is reflected also in
the computation times and the number of tree nodes explored,
where BP shows on average a reduction compared to BC (see
also the Appendix).

For medium and high density instances, we also report, in
a second figure, the percentage of unsolved problems after
3600 s of computation time by each algorithm. For low
density instances, the BP and BP-Clique solve all instances
within the time limit while the BC reached the time limit for
one instance with k − c = 4. On the whole set, the BC is
able to solve 756 instances while BP solves 783. By includ-
ing the clique computation in the BP algorithm, BP-Clique
increases the number of solved instances to 828. In terms of
the characteristics of the instances, BC is able to solve all
instances where c = k − 1, independent of the density of the
graph. However, it finds difficulties on instances where c is

TABLE 2. Computational results for larger instances, k = 5, c = 4

Dens. n Opt. Time

10% 80 6 2203.74
20% 60 10 2271.25
30% 50 7 1602.24

not close to k. Conversely, BP can solve almost all instances
when k − c > 2, and produces good results in the remaining
cases. In particular, it can solve all instances but three for low
and medium density graphs (60% or less), independent of the
values of k and c.

For high density graphs, the number of instances solved by
BP tends to decrease when c becomes close to k. In general,
for both algorithms, instances seem to be harder to solve as
the density of the graph increases, with a tendency to solve a
smaller number of instances and to increase the computation
times.

4.1. Larger Instances

With a second set of instances, we investigate the limit
of the BP-Clique in solving the KCVCP for larger graphs;
we concentrate on k = 5. We generate groups of 10 homoge-
neous instances with the previously described structure, that
is, densities of 10, 20, . . . , 90 percent of the edges, k = 5 and
1 ≤ c ≤ k − 1. For each density, we are interested in finding
the largest n for which we can solve at least five instances
for all values of c; thus, we considered increasing values of
n = 25, 30, 35, . . . , etc. In Table 1, we report the largest n
for which we can solve at least five instances for all values
of c, the number of solved instances (Opt.) and the average
time in seconds (calculated over solved instances only). For
graphs with densities ≥ 40% and n = 30, we could not solve
at least five instances for all values of c.

Table 1 shows that the easiest combination for the BP-
Clique is c = k − 1 (k = 5, c = 4), thus, in Table 2 we

10 NETWORKS—2014—DOI 10.1002/net

TABLE 3. Average computation times for solving the LP relaxation of KCVCP-EXP with and without the column generation heuristic

Low Medium High

k – c Heur. + MIP MIP Heur. + MIP MIP Heur. + MIP MIP

1 0.03 0.34 0.32 4.18 1.90 11.07
2 0.05 1.02 0.41 11.83 2.62 89.03
3 0.03 0.63 0.39 27.24 1.72 229.74
4 0.01 0.20 0.30 13.63 1.27 73.93

report the largest n for which at least five instances are solved
in this case, the number of solved instances and the average
time in seconds (for solved instances).

These experiments show that the difficulty of the KCVCP,
when solved with the BP-Clique, largely depends on the
density of the corresponding instances, which cannot be con-
sistently solved for n ≥ 30 and density ≥ 40% while for
density = 10% it is possible to solve instances with n = 80.

4.2. Evaluation of the BP Algorithm Components

We discuss here some ingredients which are important for
the behavior of BP-Clique.

The heuristic procedure developed to solve the column
generation subproblem (Section 3.2.1) proved to be very
effective, finding columns with negative reduced cost to
include in the master problem avoiding unnecessary calls
to the MIP solver. The procedure is invoked with the fol-
lowing parameters: iterations = 1000, tenure = 10, threshold
= 1.1. Over all the tested instances, columns with negative
reduced cost are found by the heuristic procedure in 94%
of the cases. To evaluate the reduction in computing time
obtained by introducing the column generation heuristic, we
solved, for all the instances of the first set, the LP relaxation of
KCVCP-EXP (i.e., the master problem) with and without the
column generation heuristic. Table 3 reports the average com-
putation times in seconds grouped by values of k – c, when
only the MIP solver is used (column MIP), and when the col-
umn generation heuristic is used as well (column Heuristic +
MIP). Note that the same value of threshold = 1.1 is used to
stop the MIP solver when a column with negative reduced
cost is found. The table shows the importance of the column
generation heuristic within the overall BP algorithm. Using
the column generation heuristic, the reduction in computa-
tion times for solving the LP relaxation of KCVCP-EXP is
between one and two orders of magnitude.

TABLE 4. Average computation times for large graphs from Table 1,
solved with and without the primal heuristic

(k, c) Without primal heuristic With primal heuristic

(5,1) 367.96 190.35
(5,2) 178.11 114.1
(5,3) 55.18 35.95
(5,4) 85.34 58.89

This, combined with the lower bound computed during the
solution process of the MIP formulation, allows BP-Clique
to solve the LP relaxation effectively and to enumerate, if
necessary, a large number of nodes in the BB tree.

Regarding the primal heuristic (described in Section 3.4),
we conducted a further experiment. Considering all instances
solved within the time limit by BP, we repeated the exper-
iment using the same framework but without including the
primal heuristic. For instances of the first set, the total compu-
tation times increased 21%. For the second set (corresponding
to larger graphs), we considered all the instances from Table
1, that is, n = 30 and density of 30%, n = 45 and density of
20%, n = 60 and density of 10%. For k = 5 and 1 ≤ c ≤ k−1,
we report in Table 4 the average computation times for solv-
ing the corresponding instances without including the primal
heuristic and with the primal heuristic. The results show that
the use of the primal heuristic can produce a good reduction
in computation times especially for those instances whose
features are at the limit of the performance of the BP-Clique
algorithm.

5. CONCLUSIONS

This article presents an exact algorithm for the KCVCP,
a generalization of the VCP. We propose an exponential-size
formulation for the problem. Based on this formulation, we
develop a BP algorithm which proved to be very effective.
Compared with the BC approach from the related literature
proposed by Méndez-Díaz and Zabala [21], the proposed
algorithm is capable of solving 72 more instances out of a
total of 900. In particular, the formulation proposed in this
article produces in general tight LP relaxations and the overall
approach produces very good computational results.

As future research, it would be interesting to deeper inves-
tigate the behavior of the BP algorithm for the combinations
of k and c for which the algorithm has reduced perfor-
mance. One of the possible aspects to consider is the node
selection strategy, and study whether a different approach
would improve the results. Furthermore, based on the results
obtained in this research, it would be worth considering a
combined approach between our approach and the one from
Méndez-Díaz and Zabala [21], and by means of a decom-
position of the formulation develop a Branch-Cut and Price
algorithm. The inclusion of specific-purpose cuts may help
to improve the quality of the LP relaxations on difficult
instances.

NETWORKS—2014—DOI 10.1002/net 11

APPENDIX

In Table 5, we present more detailed results of our exper-
iments, aggregated by groups of 10 homogeneous instances.
In the first two columns of the table, we indicate the features
of the instances and then, for each algorithm, the average
computation times (in seconds) and the number of explored

BB tree nodes. For BC, we report the optimality gaps of
the LP relaxation (%lpG) of the corresponding KCVCP-ASS
formulation, computed as 100*(BESTUB - LB)/LB, where
BESTUB is the best solution found by any of the algorithms
and LB is the value of the LP relaxation. Similarly, we also
show the optimality gaps at the root node (%lpR), after apply-
ing problem-specific cuts and including an initial lower bound

TABLE 5. Computation times, number of tree nodes explored, and gap of the linear relaxation—root node for all algorithms (averages)

BC BP BP-Clique

(k, c) Density (%) Time Nodes %lpG %lpR Time Nodes %lpG Time Nodes %lpG

(2,1)

10 0.00 0.00 50.00 0.00 0.00 1.20 0.00 0.00 0.30 0.00
20 0.04 2.80 80.00 3.33 0.04 1.30 0.00 0.02 0.60 0.00
30 0.04 0.00 100.00 0.00 0.06 1.00 0.00 0.00 0.00 0.00
40 0.20 1.30 100.00 0.00 0.39 2.10 0.00 0.25 1.70 0.00
50 0.65 9.00 105.00 0.00 (9) 1.51 15.33 2.50 1.33 13.80 0.00
60 8.04 149.20 100.00 0.00 62.09 331.70 0.00 61.33 331.70 0.00
70 0.50 0.80 150.00 0.00 * ** 7631.8 25.00 1.53 13.60 0.00
80 3.21 50.70 150.00 0.00 *** 6453 25.00 (4) 681.77 1171.50 0.00
90 1.03 0.50 200.00 0.00 *** 5424.9 50.00 (5) 0.00 0.00 0.00

(3,1)

10 0.01 0.00 86.67 0.00 0.01 1.40 0.00 0.00 0.50 0.00
20 0.09 1.30 100.00 0.00 0.04 2.40 0.00 0.03 1.80 0.00
30 0.88 25.30 100.00 0.00 0.27 3.50 0.00 0.26 3.50 0.00
40 42.96 827.10 126.67 3.33 0.33 2.50 0.00 0.24 2.20 0.00
50 4.17 12.60 133.33 0.00 0.89 14.10 0.00 0.66 13.70 0.00
60 19.41 84.60 133.33 0.00 1.20 4.10 0.00 1.17 4.10 0.00
70 (4) 255.61 1539.50 160.00 5.54 (8) 98.89 355.00 1.25 (8) 97.34 355.00 1.25
80 (8) 121.89 103.00 200.00 2.50 *** 4653.1 12.50 (5) 9.84 36.00 2.50
90 (3) 1.067.67 1946.67 240.00 13.33 *** 4189.2 27.50 *** 4191.6 13.33

(3,2)

10 0.01 0.00 33.33 0.00 0.00 1.00 0.00 0.00 0.00 0.00
20 0.01 0.00 33.33 0.00 0.00 1.00 0.00 0.00 0.00 0.00
30 0.15 2.70 36.67 0.00 0.12 1.60 0.00 0.11 1.50 0.00
40 0.15 0.60 60.00 0.00 0.15 1.70 0.00 0.06 1.10 0.00
50 0.17 0.20 66.67 0.00 0.22 1.20 0.00 0.03 0.30 0.00
60 0.62 1.40 66.67 0.00 0.70 6.90 0.00 0.62 6.70 0.00
70 6.27 9.70 66.67 0.00 2.42 15.50 0.00 2.43 15.50 0.00
80 21.84 51.60 66.67 0.00 (5) 8.34 119.00 0.00 (5) 8.46 119.00 0.00
90 1.99 1.50 96.67 0.00 (1) 14.02 160.00 18.00 (6) 3.26 27.67 0.00

(4,1)

10 0.03 0.00 120.00 0.00 0.00 2.10 0.00 0.00 1.30 0.00
20 0.15 0.20 140.00 0.00 0.05 6.10 0.00 0.04 5.80 0.00
30 1.63 18.00 147.50 0.00 0.19 7.80 0.00 0.19 7.70 0.00
40 21.41 151.10 150.00 0.00 0.40 6.70 0.00 0.41 6.70 0.00
50 (4) 861.92 8497.25 172.50 4.91 0.83 5.40 0.00 0.84 5.40 0.00
60 (3) 34.71 152.67 190.00 3.73 (9)66.20 240.11 0.00 (9)66.62 240.11 0.00
70 (4) 427.57 585.75 200.00 1.82 36.01 99.30 0.91 36.22 99.30 0.91
80 (1) 455.76 297.00 205.00 1.67 6.83 6.20 0.00 6.92 6.20 0.00
90 (2) 2.873.65 3743.00 225.00 0.00 6.44 6.60 0.00 6.51 6.60 0.00

(4,2)

10 0.02 0.00 50.00 0.00 0.00 1.00 0.00 0.00 0.10 0.00
20 0.17 4.40 65.00 0.00 0.05 4.00 0.00 0.04 3.90 0.00
30 1.13 21.80 75.00 3.33 0.13 4.70 0.00 0.13 4.70 0.00
40 3.54 31.90 75.00 0.00 0.35 5.20 0.00 0.35 5.20 0.00
50 19.13 45.60 75.00 0.00 0.78 3.90 0.00 0.78 3.90 0.00
60 279.05 555.90 75.00 0.00 1.38 3.90 0.00 1.39 3.90 0.00
70 (4) 189.39 146.50 95.00 7.14 1.97 5.40 0.00 1.99 5.40 0.00
80 239.12 97.00 100.00 0.00 5.54 5.60 0.00 5.60 5.60 0.00
90 (4) 1.104.17 6864.50 102.50 1.25 (9) 6.07 5.11 1.25 (9) 6.14 5.11 1.25

12 NETWORKS—2014—DOI 10.1002/net

TABLE 5. (Continued)

BC BP BP-Clique
(k, c) Density (%) Time Nodes %lpG %lpR Time Nodes %lpG Time Nodes %lpG

(4,3)

10 0.01 0.00 25.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
20 0.04 0.00 25.00 0.00 0.01 1.10 0.00 0.01 0.40 0.00
30 0.33 10.20 25.00 0.00 0.11 2.50 0.00 0.11 2.40 0.00
40 4.54 174.80 30.00 2.00 0.24 2.20 0.00 0.22 2.10 0.00
50 15.19 271.20 42.50 8.00 0.42 1.70 0.00 0.37 1.50 0.00
60 0.35 0.10 50.00 0.00 0.58 3.30 0.00 0.43 2.90 0.00
70 0.67 0.50 50.00 0.00 1.37 5.60 0.00 1.14 5.40 0.00
80 1.64 1.40 50.00 0.00 3.13 18.40 0.00 3.16 18.40 0.00
90 22.54 39.60 50.00 0.00 (3) 6.93 33.00 0.00 (3) 6.98 33.00 0.00

(5,1)

10 0.13 4.10 118.00 1.11 0.01 2.40 0.00 0.01 1.60 0.00
20 0.13 1.70 144.00 0.00 0.01 3.20 0.00 0.01 2.60 0.00
30 (9) 0.76 3.44 180.00 0.83 0.07 6.10 0.00 0.06 5.60 0.00
40 51.58 301.60 184.00 0.00 0.28 11.00 0.00 0.28 11.00 0.00
50 (8) 848.21 4969.63 202.00 0.67 0.61 10.80 0.00 0.61 10.80 0.00
60 (6) 1.228.79 5146.33 220.00 1.33 1.26 9.10 0.00 1.26 9.10 0.00
70 (4) 2.088.30 5089.00 244.00 0.67 67.49 213.50 0.00 67.50 213.50 0.00
80 *** *** 268.00 0.56 (9) 75.28 107.33 0.56 (9) 75.15 107.33 0.56
90 *** *** 296.00 1.50 (7) 420.65 413.29 1.50 (7) 421.41 413.29 1.50

(5,2)

10 0.06 2.00 74.00 0.00 0.01 1.90 0.00 0.00 1.10 0.00
20 0.55 17.30 80.00 0.00 0.07 6.70 0.00 0.07 6.60 0.00
30 3.81 26.80 98.00 0.00 0.18 6.60 0.00 0.18 6.60 0.00
40 29.52 136.50 100.00 0.00 1.17 25.00 0.00 1.19 25.00 0.00
50 (8) 150.44 622.40 100.00 0.00 2.41 23.60 0.00 2.44 23.60 0.00
60 (2) 444.42 1430.00 108.00 1.00 6.34 42.60 0.00 6.41 42.60 0.00
70 (2) 359.08 353.00 120.00 2.00 7.04 14.50 0.00 7.10 14.50 0.00
80 *** *** 120.00 0.00 5.32 6.80 0.00 5.40 6.80 0.00
90 *** *** 148.00 4.17 (5) 326.50 232.20 4.17 (5) 327.87 232.20 4.17

(5,3)

10 0.03 0.30 40.00 0.00 0.01 1.90 0.00 0.01 1.10 0.00
20 0.18 22.80 46.00 0.00 0.06 2.40 0.00 0.04 2.00 0.00
30 14.78 1197.40 60.00 2.86 0.14 3.70 0.00 0.14 3.70 0.00
40 1.49 16.00 60.00 0.00 0.23 5.60 0.00 0.23 5.60 0.00
50 15.80 91.70 60.00 0.00 0.51 6.80 0.00 0.51 6.80 0.00
60 109.76 174.70 60.00 0.00 (9) 37.59 438.67 0.00 (9) 38.18 438.67 0.00
70 (5) 570.41 573.80 70.00 5.00 (3) 50.91 201.67 6.25 (4) 39.07 152.75 5.00
80 (9) 123.85 76.78 78.00 1.25 (1) 1.34 8.00 11.25 (9) 2.25 7.89 1.25
90 (6) 628.75 7115.33 86.00 3.33 *** 5311.5 16.25 (6) 8.75 15.67 3.33

(5,4)

10 0.01 0.00 20.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
20 0.05 0.20 20.00 0.00 0.03 2.30 0.00 0.03 1.70 0.00
30 0.20 3.90 20.00 0.00 0.08 2.40 0.00 0.08 2.20 0.00
40 0.46 7.50 20.00 0.00 0.18 4.10 0.00 0.18 4.10 0.00
50 39.21 283.60 22.00 1.67 0.38 3.20 0.00 0.38 3.20 0.00
60 68.07 345.50 28.00 3.33 0.73 2.10 0.00 0.67 2.00 0.00
70 46.52 182.40 40.00 1.67 1.01 4.40 0.00 0.75 4.10 0.00
80 1.32 0.70 40.00 0.00 (9) 1.91 7.67 0.00 (9) 1.81 7.56 0.00
90 5.39 1.50 40.00 0.00 (6) 3.74 10.33 0.00 (6) 3.51 10.17 0.00

provided by a clique. For BP and BP-Clique the optimality
gaps at the root node (%lpR) of the corresponding algo-
rithm are reported. For each instance, we impose a time limit
of 3600 s for the overall time required by each algorithm.
The average computation times and number of nodes are
calculated only over instances for which the corresponding
algorithm finishes before reaching the time limit. A cell filled
with *** means that the algorithm was not able to solve any of
the instances (in this case only, the average number of nodes

is for unsolved intances), and a number between parenthesis
stands for the number of instances effectively solved within
the time limit.

ACKNOWLEDGMENTS

This work was started when Enrico Malaguti was visiting
the University of Buenos Aires on the occasion of the ECI
winter school. The authors are grateful to two anonymous

NETWORKS—2014—DOI 10.1002/net 13

referees for their careful reading and useful comments, that
helped very much in improving the article.

REFERENCES

[1] K. Aardal, S. van Hoesel, A. Koster, C. Mannino, and A.
Sassano, Models and solution techniques for the frequency
assignment problem, 4OR 1 (2003), 261–317.

[2] A.A. Farley, A note on bounding a class of linear program-
ming problems, including cutting stock problems, Oper Res
38 (1990), 922–923.

[3] F. Furini and E. Malaguti, Exact weighted vertex coloring via
branch-and-price, Discrete Optim 9 (2012), 130–136.

[4] M. Garey and D. Johnson, Computers and intractability: A
guide to the theory of NP-completeness, DIMACS Series
in Discrete Mathematics and Theoretical Computer Science,
Freeman, New York, 1979.

[5] S. Gualandi and F. Malucelli, Exact solution of graph col-
oring problems via constraint programming and column
generation, INFORMS J Comput 24 (2012), 81–100.

[6] M. Halldórsson and G. Kortsarz, Multicoloring: Problems
and techniques, mathematical foundations of computer sci-
ence 2004, Lect Notes Comput Sci 3153 (2004), 25–41.

[7] S. Held, W. Cook, and E. Sewell, Maximum-weight stable
sets and safe lower bounds for graph coloring, Math Program
Comput 4 (2012), 363–381.

[8] E. Hoshino, Y. Frota, and C.C. de Souza, A branch-and-price
approach for the partition coloring problem, Oper Res Lett
39 (2011), 132–137.

[9] J. Konc and D. Janezic, An improved branch and bound algo-
rithm for the maximum clique problem, MATCH Commun
Math Comput Chem 58 (2007), 569–590.

[10] A. Koster and M. Tieves, Column generation for frequency
assignment in slow frequency hopping networks, EURASIP
J Wireless Commun Networking 253 (2012), 1–14.

[11] A. Koster and A. Zymolka, Tight LP-based lower bounds
for wavelength conversion in optical networks, Stat Neerl 61
(2007), 115–136.

[12] E. Malaguti, The vertex coloring problem and its generaliza-
tions, 4OR Q J Oper Res 7 (2009), 101–104.

[13] E. Malaguti, I. Méndez-Díaz, J. Miranda-Bront, and P.
Zabala, (k, c)-Coloring via column generation, Electron
Notes Discrete Math 41 (2013), 447–454.

[14] E. Malaguti, M. Monaci, and P. Toth, An exact approach
for the vertex coloring problem, Discrete Optim 8 (2011),
174–190.

[15] E. Malaguti and P. Toth, A survey on vertex coloring
problems, Int Trans Oper Res 17 (2010), 1–34.

[16] A. Mehrotra and M. Trick, A column generation approach
for graph coloring, INFORMS J Comput 8 (1996), 344–
354.

[17] A. Mehrotra and M. Trick, “A branch-and-price approach for
graph multicoloring,” Extending the horizons: Advances in
computing, optimization, and decision technologies, Opera-
tions Research/Computer Science Interfaces Series, E. Baker,
A. Joseph, A. Mehrotra, and M. Trick (Editors), Springer,
2007, Vol. 37, pp. 15–29.

[18] I. Méndez-Díaz and P. Zabala, A branch-and-cut algorithm
for graph coloring, Discrete Appl Math 154 (2006), 826–
847.

[19] I. Méndez-Díaz and P. Zabala, A cuttting plane algorithm
for graph coloring, Discrete Appl Math 156 (2008), 159–
179.

[20] I. Méndez-Díaz and P. Zabala, The (k, k – 1) coloring problem,
Proc Int Symp Comb Optim, Warwick, UK, 2008.

[21] I. Méndez-Díaz and P. Zabala, Solving a multicoloring prob-
lem with overlaps using integer programming, Discrete Appl
Math 158 (2010), 349–354.

[22] A. Zymolka, Design of survivable optical networks by
mathematical optimization, Ph.D. Thesis, TU Berlin, 2006.

14 NETWORKS—2014—DOI 10.1002/net

