
Softw Syst Model
DOI 10.1007/s10270-015-0466-0

REGULAR PAPER

Using contexts to extract models from code

Lucio Mauro Duarte1 · Jeff Kramer2 · Sebastian Uchitel2

Received: 15 June 2014 / Revised: 3 March 2015 / Accepted: 13 April 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract Behaviour models facilitate the understanding
and analysis of software systems by providing an abstract
view of their behaviours and also by enabling the use of
validation and verification techniques to detect errors. How-
ever, depending on the size and complexity of these systems,
constructing models may not be a trivial task, even for
experienced developers. Model extraction techniques can
automatically obtain models from existing code, thus reduc-
ing the effort and expertise required of engineers and helping
avoid errors often present in manually constructed models.
Existing approaches for model extraction often fail to pro-
duce faithful models, either because they only consider static
information, which may include infeasible behaviours, or
because they are based only on dynamic information, thus
relying on observed executions, which usually results in
incomplete models. This paper describes a model extrac-
tion approach based on the concept of contexts, which are
abstractions of concrete states of a program, combining
static and dynamic information. Contexts merge some of
the advantages of using either type of information and, by

Communicated by Dr. Juergen Dingel.

This work was sponsored by CAPES and CNPq.

B Lucio Mauro Duarte
lmduarte@inf.ufrgs.br

Jeff Kramer
jk@doc.ic.ac.uk

Sebastian Uchitel
su2@doc.ic.ac.uk

1 Institute of Informatics, Federal University of Rio Grande do
Sul (UFRGS), Av. Bento Gonçalves, 9500, Porto Alegre, RS
91501-970, Brazil

2 Department of Computing, Imperial College London, 180
Queen’s Gate, London SW7 2AZ, UK

their combination, can overcome some of their problems.
The approach is partially implemented by a tool called LTS
Extractor, which translates information collected from exe-
cution traces produced by instrumented Java code to labelled
transition systems (LTS), which can be analysed in an exist-
ing verification tool. Results from case studies are presented
and discussed, showing that, considering a certain level of
abstraction and a set of execution traces, the produced mod-
els are correct descriptions of the programs from which they
were extracted. Thus, they can be used for a variety of analy-
ses, such as program understanding, validation, verification,
and evolution.

Keywords Behaviour models · Model extraction ·
Model analysis

1 Introduction

Behaviour models are abstractions that provide a restricted
view of the behaviour of systems. They can be used for pro-
gram documentation and comprehension, as artefacts to be
presented to stakeholders for validation, or as a basis for
automated validation and verification techniques, such as
model-based testing [58] and model checking [13]. There
are many tools that are able to carry out these analyses based
on a model, such as GraphWalker,1 Spin [32], LTSA [45],
ModelJUnit [57], and JTorX [5].However, constructing these
models normally requires some effort and expertise and is
often a non-trivial task, even for experienced designers [33].
Furthermore, after producing a corresponding implementa-
tion, one cannot always guarantee its correctnesswith respect
to the specification, as properties preserved in the model may

1 http://graphwalker.org.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-015-0466-0&domain=pdf
http://graphwalker.org

L. M. Duarte et al.

not have been carried over to the program [27]. Hence, there
is a need for (semi-)automatic techniques that could help
construct the model as well as keep conformance with the
most recent version of the corresponding implementation.
Moreover, because building a model requires some effort
and expertise, many systems are implemented without any
type of model to document their behaviour, which might
cause problems for future maintenance and evolution. There-
fore, it would also be necessary to have techniques and tools
that could generate a model from an implementation so as
to enable all model-based analyses, taking advantage of the
existing tool support, and to guarantee that the model faith-
fully represents the behaviour of the corresponding program.

Model extraction [35] is a process that generates an
abstraction of a system based on an existing implementa-
tion, allowing models to be constructed and used even in
situations where there is no model or models are out of date.
It can also be used for reverse engineering legacy code, thus
providing information about the code behaviour and facilitat-
ing software maintenance and evolution. The process defines
a mapping from information obtained from the code to a
behaviour model description, which means that the devel-
oper might not need to know either the programming or the
modelling language. It also favours conformance between
model and code, because if the code is modified, then a new
execution of the same extraction process would generate an
updated model. However, any model extraction process has
to deal with themodel construction problem [15], which cor-
responds to finding a mapping from the concrete program to
the abstract behaviour model that produces a faithful repre-
sentation of the program behaviour. A faithful model should
describe the complete behaviour of the code and include only
feasible behaviours, so that an analysis on model would cor-
respond, in a given level of abstraction, to an analysis on the
program itself.

Motivating example As an example of this problem, consider
the piece of code of a simple editor presented in Fig. 1. It
uses two attributes: one to control whether a document is
currently open (isOpen) and another to check whether this
document has been saved after modifications (isSaved).
There are two relevant properties for this program: (P1) only
opened documents can be edited, printed, saved, or closed;
(P2) it is only possible to save modified documents that have
not been saved yet. This code preserves both properties, and
therefore, a faithful model of this program would have to
preserve them too.

There have been proposedmany approaches to try to over-
come the model construction problem, such as [2,8,11,14,
30,34,43,47,60], that we could use to create a model of our
code. These techniques can be divided into two groups: sta-
tic approaches, which build models based on information
from the source or compiled code, and dynamic approaches,
which infer models from samples of execution. To compare
these groups, Figs. 2 and 3 show models based on the static
approach and the dynamic approach, respectively. We use
the formalism of Labelled Transition Systems (LTS) [38]
to present our example models because most of the model
extraction approaches deal with similar formalisms, based
on finite state machines, and thus, it is possible to see a result
close to what these approaches would produce. Moreover,
using the same formalism makes it easier to compare the
models. Transitions are labelled with the method names, rep-
resenting actions of the program, so that a transition labelled
with method m represents that action m has been executed.
State 0 is the initial state. In these models, we ignore method
readCmd as it only represents the way the program reads
the inputs. We leave the command in line 25 to be discussed
later, as part of our approach description.

Techniques based on static information usually produce
over-approximations of the system behaviour, such as the

Fig. 1 Editor code 1 public class Editor {
2 private boolean isOpen;
3 private boolean isSaved;

4 public Editor () {
5 isOpen=false;
6 isSaved=true;
7 int cmd=-1;
8 String name=null;

9 while(cmd!=4){
10 cmd=readCmd();
11 switch (cmd) {
12 case 0: if(!isOpen)
13 name=open();
14 break;
15 case 1: if(isOpen)
16 edit(name);
17 break;
18 case 2: if(isOpen)

19 print(name);
20 break;
21 case 3: if(!isSaved)
22 save(name);
23 break;
24 case 4: exit();
25 default: #action:"incorrectCmd";
26 }}
27 }
...
28 void exit (String n) {
29 if (!isSaved) {
30 int opt=readCmd();
31 if (opt==0)
32 save(n);
33 }
34 if (isOpen) close(n);
35 }
36 }

123

Using contexts to extract models from code

one in Fig. 2, which guarantees completeness but may lead
to the inclusion of infeasible behaviours. For example, the
model considers the sequences allowed by the control flow
but, because it does not correctly represent the order between
the actions of the system, it allows edit to be executed
even before a document has been opened (loop transition
in state 0), which violates property P1, even though it is
preserved by the code. On the other hand, techniques that
use samples of execution build models based only on fea-
sible behaviours (i.e. observed executions), but there is no
guarantee of completeness, because it might require observ-
ing all possible executions. However, they can also have a
correctness problem due to the generalisation of the system
behaviour based on these samples. The model in Fig. 3 was
built based on trace 〈open, edit, save, print,
edit, edit, print, save, print, edit,
exit, save, close〉. The basic idea of the model is
that each action has the effect of leading the system to a
specific state, so that every execution of an action takes the
system back to the corresponding state. The model correctly
allows the behaviour observed in the trace; however, it also
allows infeasible behaviours, such as saving a document that
has not been previously edited, as action save from state
4 to state 5 can happen after a previous save from state
4 to state 5 and subsequent print from state 5 to state
4. This occurs because the model cannot distinguish when
an action happens in different situations (for instance, when
save occurs before closing a document and when it hap-

Fig. 2 Editor model using static information

pens after the document has been modified). In this case, the
behaviour present in the model violates property P2. Hence,
the model in Fig. 2 would mislead us into thinking that there
was no determined order for executing a set of actions due to
the absence of information about control predicates based on
program variables, while the model in Fig. 3 would include
a feasible behaviour but, because there is no information
on how this behaviour was produced by the code, it would
mistakenly infer a model that contains invalid sequences of
actions. Nimmer and Ernst [52] proposed a hybrid approach
that aims to use static and dynamic information in combi-
nation to overcome their limitations. Nevertheless, they do
not actually combine the types of information, but use sta-
tic information to confirm behaviours that are dynamically
inferred. Therefore, such confirmation is still limited by the
capacity of the static checker of determining whether some
behaviour is feasible or not, which has been seen to be a
problem.

Contexts Wepropose a hybrid approach formodel extraction
that effectively combines static and dynamic information,
so that it is possible to identify how a given trace was pro-
duced in the code and support the safe merging of multiple
traces. Our model extraction process is based on the concept
of contexts [20], which represent abstract states of a system.
Each context describes a combination of an execution point
in the system control flow graph, a set of values of selected
program variables (system state), and a call stack, represent-
ing the stack of method calls waiting for a return. Contexts
are identified based on recorded execution traces contain-
ing the necessary information. Hence, contexts combine the
control flow information, used in approaches based on static
information, with execution traces from which approaches
based on dynamic information infer models, adding infor-
mation about the program variables and unfinished method
calls/executions. This enables the construction of models
from sequential and concurrent systems that describe only
feasible behaviours based on observed samples. Moreover,
because contexts also take into account the situation of
unfinished method calls/executions, our models can describe

Fig. 3 Editor model using dynamic information

123

L. M. Duarte et al.

Fig. 4 Editor model using
contexts

blocking situations, which are common in concurrent sys-
tems.

Figure 4 shows the model we generated applying our
approach and using the same trace used to create the model
in Fig. 3 (enhanced with information about the control flow
and program variables). It is clear that it correctly describes
the order between actions, preserving the properties of the
Editor program. Even though it considers only one observed
sample of execution, the combination of static and dynamic
information with the addition of values of program variables
(in this case, variables isOpen and isSaved) allowed the
identification of abstract states (contexts) and which set of
actions is enabled in each one of them. Therefore, it is possi-
ble to distinguish actionsave happening after an edit (state 2
to 1) and after an exit occurring after a previousedit (state 3
to state 4). Moreover, additional behaviours were included in
themodel, such as the loopswith actionprint in states 1 and
2, even though the original trace did not include any sequence
of two or more consecutive occurrences of this action. This
is a result of having contexts that help us know exactly where
multiple traces intersect and, therefore, how to merge them
without introducing invalid behaviours. Therefore, contexts
make it possible the generalisation over samples of execu-
tion to create a single model that includes all the observed
behaviours and no invalid sequences of actions. Thus, this
model could also be easily enhanced with the later addition
of traces without affecting its correctness.

Contributions Contexts have been successfully used to
extract models from sequential and concurrent systems [18],
and the analyses carried out using our models in a number
of case studies [19] have demonstrated that they are correct
abstractions of the systems they describe, at a certain level
of abstraction and according to a set of observed behaviours
(traces). Hence, the extracted models are useful for many
analysis purposes. Initial models can be refined by reduc-
ing their level of abstraction. This is particularly important
when there are some known properties of the program that
should be preserved by the model. Moreover, new behav-
iours can be incrementally included in the model in order
to improve completeness, without the need of rebuilding the
whole model. The approach is partially supported by a tool
called LTS Extractor (LTSE) [18], and the generated mod-
els can readily serve as inputs to the LTSA tool [45], which
supports visualisation, model execution, and verification of
temporal properties.

The main contributions of this work towards a process for
extracting faithful models from existing implementations are
as follows:

– The concept of a context, which combines static and
dynamic information from the existing code to build
behaviour models that correctly represent the behaviour
of the code at a certain level of abstraction;

– The creation of a hybrid model extraction process that
producesmodels from sequential and concurrent systems
(including the representation of mechanisms of synchro-
nisation) based on contexts that can serve as inputs to an
existing tool, where these models can be visualised and
analysed. This process allows the possibility of tailoring
the model to a specific purpose by adjusting its level of
abstraction and selecting the set of behaviours to achieve
a certain coverage criterion;

– The approach enables the incremental construction of
behaviour models, allowing the developer to start with a
very restricted set of behaviours (such as in our example)
and, gradually, add new behaviours, without rebuilding
the entire model;

– The LTSE tool, which partially automates the process
based on execution traces containing the necessary infor-
mation for the identification of contexts.

Structure This article is organised as follows. The next sec-
tion presents the formalism we adopt and discusses model
faithfulness. Section 3 introduces the concept of a context
and describes how it can be used to extract models. Section 4
presents in more detail our approach for model extraction,
discussing all the steps involved, how to refine models, how
to apply our approach to concurrent systems, and existing
tool support. Section 5 discusses the formal foundations of
our approach. In Sect. 6, we describe some case studies that
demonstrate practical results of our context-based approach,
and we discuss possible threats to validity. Section 7 presents
some of the related work and how our approach advances the
research on model extraction. And, finally, Sect. 8 contains
the conclusions and possible future work.

2 Background

An easy and intuitive way of describing behaviours is to
represent them as sequences of actions that the system can

123

Using contexts to extract models from code

execute, where an action normally represents the execution
of amethod. Onewell-known formalism for describingmod-
els using this action-based approach is Labelled Transition
Systems (LTS) [38]. LTS models have well-defined math-
ematical properties [45] and, consequently, can be used to
reason about sequential, concurrent, and distributed systems.
An LTS can be formally defined as follows:

Definition 1 (Labelled Transition System) A LTS M =
(S, si ,Σ, T) is a model where:

– S is a finite set of states,
– si ∈ S represents the initial state,
– Σ is an alphabet (set of action names), and
– T ⊆ S × Σ × S is a transition relation.

Transitions are labelled with the names of actions from
the alphabet that trigger a change from the origin state to the
destination state. Therefore, given two states s0, s1 ∈ S and
an action a ∈ Σ , then a transition s0

a→ s1 means that it is
possible to go fromstate s0 to state s1 through the execution of
action a. A behaviour of an LTS M is then a finite sequence
of actions π = 〈a1 . . . an〉 such that a1, . . . , an ∈ Σ . The
set L(M) = {π1, π2, . . .} of all behaviours of M is called
its language. For a state s ∈ S, E(s) = {a ∈ Σ |∃s′ ∈
S · (s, a, s′) ∈ T } represents the finite set of actions enabled
in s. A path λ = 〈s1, a1, s2, a2, s3, . . .〉 is a sequence of
alternating states s1, s2, s3, . . . ∈ S and actions a1, a2, . . . ∈
Σ labelling transitions connecting these states, such that, for
i ≥ 1, for every transition t = (si , a, si+1) composing λ,
t ∈ T . A path always starts and—if finite—ends with a state.
We use Λ(M) to denote the set of all paths of M .

2.1 Model faithfulness

In order to have confidence on the results of any analysis on
a behaviour model extracted from an existing implementa-
tion, it is necessary to guarantee that it faithfully describes
the system behaviour. In this work, we define faithfulness as
a relation between a behaviour model and the behaviour of
the implementation the model represents. An LTS model M
is a faithful representation of the behaviour of an implemen-
tation Imp iff all and only feasible behaviours of Imp are
present in M (at a certain level of abstraction). Considering
properties of a program, M faithfully represents Imp if, for
any property Prop, the satisfaction/violation of Prop by M
implies that Imp also satisfies/violates Prop. This means
that, ideally, L(M) = L(Imp), where L(M) is the language
described by M (i.e. the set of all behaviours described in M)
and L(Imp) represents the language of Imp (i.e. the set of all
feasible behaviours of Imp). Hence, when building a behav-
iour model, the objective is to achieve a faithful abstraction
of the implementation it represents, so that any analysis on

the model would correspond, at a certain level of abstraction,
to an analysis on the actual program.

Because the level of faithfulness essentially depends on
the quantity and quality of information used to build the
model, we consider the faithfulness of a model in terms of
its completeness and correctness:

Definition 2 (Completeness) M is complete with respect to
Imp iff L(Imp) ⊆ L(M).

Definition 3 (Correctness)M is correctwith respect to Imp
iff L(M) ⊆ L(Imp).

Therefore, both completeness and correctness are related
to language containment. Completeness refers to the inclu-
sion of all feasible behaviours of the program in the model,
whereas correctness means that the model contains only the
feasible behaviours of the program. If the model is not com-
plete, then feasible behaviours of the program are missing,
which means that properties that hold in the model might
be violated by the program. If the model is not correct, then
it includes at least one infeasible behaviour that violates a
property not violated by the actual program. A faithful model
guarantees, therefore, that the set of behaviours it describes
is the exact set of feasible behaviours of the program. Never-
theless, as this set of feasible behaviours might be too large
or even infinite, and depending on the purpose of the model,
it may be reasonable to reduce the requirement of complete-
ness and correctness to the minimum necessary to achieve a
certain goal. For instance, if the model will be used to check
whether the code preserves some specific property, then the
model should, at least, be complete and correct with respect
to this property. If, on one hand, this approach might pre-
vent the construction of a model of the whole behaviour of
the system, on the other hand, it allows engineers to build
separate models to analyse different portions of the system
independently, producing models that can be more easily
visualised and handled by analysis tools. As will be dis-
cussed in Sect. 4.5, producing individual models also help
create models of concurrent systems, allowing the separate
analysis of each component and, then, the analysis of their
composition.

3 Context information

An abstract state of a program, defined as a context, can
be seen as a combination of a control component, which
indicates the current execution point, and a data component,
representing the current values of program variables. In this
work, we consider a control component obtained based on
the control flow graph (CFG) of the implementation of a
system.

123

L. M. Duarte et al.

Definition 4 (Control flow graph) Let Imp be a program.
Then, its control flow graph is defined as CFGImp =
(Q, qi , Act,Δ), where

– Q is a finite set of control components of Imp, where
each control component q ∈ Q is a pair (bc, cp), with bc
representing a block of code (statement or method body)
and cp describing the logical test associated with bc (i.e.
its control predicate);

– qi = (bci , true)where, qi ∈ Q and bci is the initial block
of code;

– Act is the set of actions (method calls or any other events
of interest) of Imp; and

– Δ ⊆ Q × Act × Q is a transition relation.

The data component represents the values of a set of pro-
gram variables (system state). Let PImp be the finite set of
variables of Imp and val(x) a function that provides the
current value of a given expression x , where expressions can
be single variables or composed expressions involving, for
instance, arithmetic and logic operators. A finite set of values
v = {val(p1), . . . , val(pn)} represents one possible valua-
tion of variables p1, . . . , pn ∈ PImp. The possibly infinite
set V (PImp) = {v1, v2, . . .} is composed of all possible val-
uations of variables of Imp, such that v1 = ∅ represents the
beginning of the execution,when the values are yet unknown.
The finite set V (P) ⊆ V (PImp) represents all possible val-
uations of variables p1, . . . , pn ∈ P , such that P ⊆ PImp.
The program variables considered in this work include the
state of the call stack, which contains the names of methods
that have been initiated but have not yet terminated. Thus,
there might be different contexts depending on whether a
certain method execution is pending or not.

The data component adds, to each context, the valuation
of the system state at each point of the control flow, so that
we can distinguish different situations in which a certain part
of the code can be executed. Thus, by the combination of
the control component and the data component, it is possible
to identify different states of execution for the same point
in the control flow. Depending on this combination, different
actionsmay be enabled to execute next. Hence, we can define
contexts as follows:

Definition 5 Context. Given a program Imp, a context C =
(bc, cp, val(cp), v, cs) is the combination, at a certain point
of the execution of Imp, of the control component rep-
resented by the block of code bc, described by a unique
identifier (block ID), its control predicate cp, and the value
val(cp) of cp, and the data component represented by the
current valuation v ∈ V (P) of variables in P ⊆ PImp and
the state of the call stack cs, describing the stack of method
calls awaiting for a return.

The combination of a control component (control flow
information) with a data component (state information)
to identify a context is denominated context information.
According to our definition of contexts, the execution of
a system can then be seen as a sequence of contexts, with
sequences of actions happening in between them. An execu-
tion starts in an initial context, where no control predicates
have yet been evaluated, and the initial values of variables
have not been assigned. As the execution continues, changes
in context occur, indicating that at least one of the compo-
nents of context information has beenmodified. For instance,
given the code in Fig. 1, at the beginning of the execution,
the program is in the initial contextC0 = (0,−, true, {}, 〈〉),
which is assigned the block ID 0, and has no associated con-
trol predicate (we then use true as a default value for its
control predicate) and no current value for the system state.
As the execution proceeds, it reaches the block of code in
line 9, which determines a new context C1 = (1, (cmd! =
4), true, { f alse, true}, 〈〉), where the block ID is 1; the
control predicate is (cmd! = 4), which is evaluated as
true (variable cmd is initialised with −1); the values of
the attributes isOpen and isSaved are f alse and true,
respectively; and no method is in execution. Hence, the sys-
tem has moved from context C0 to C1, which means that
any action happening at this point executes in context C1

(i.e. it is enabled by C1). Reaching line 11 determines a
new context defined by the switch statement, defined as
C3 = (2, (cmd), v, { f alse, true}, 〈〉), where v corresponds
to the value read in line 10, and the system state remains the
same. Hence, the system now has moved from context C2 to
C3. Note that, as the value v read as input changes, it deter-
mines different contexts. This means that the same block of
code can represent multiple contexts depending on the con-
text information. Also note that the execution might reach
the same block of code multiple times, which may cause the
system to go back to previous context (if the context infor-
mation is the same) or identify a new context (if at least
one value of the context information has changed). More-
over, contexts help determine conditions for a certain action
to happen. For instance, the occurrence of the action corre-
sponding to method open, in line 13, requires, at least, that
the test in line 9 be evaluated as true, the control predicate
evaluated in line 11 be equal to 0, and the control predicate
in line 12 be also evaluated as true. As this last control pred-
icate needs the program variable isOpen to be f alse for
it to be true, then the referred action can only happen in a
context where all the previous requirements are fulfilled, and
the value of attribute isOpen is f alse. Therefore, contexts
not only show when an action happens under different cir-
cumstances, which may influence its result and the next set
of enabled actions, but also determine whether an action can
be executed or not.

123

Using contexts to extract models from code

4 Model extraction based on contexts

Our ultimate goal was to produce models that faithfully rep-
resent the behaviour of existing systems and could be used
for several types of analysis. As previously discussed, faith-
fulness is an ideal requirement, but it is usually unattainable
due to the complexity and size of current systems. The use
of contexts, which are identified in execution traces, guar-
antees that the model will contain only valid behaviours
according to a certain level of abstraction (we shall more
formally discuss this in Sect. 5), ensuring correctness. How-
ever, as commented in Sect. 2.1, completeness might not be
easy—or even possible—to achieve. For this reason, com-
pleteness should be evaluated in terms of certain coverage
criteria, depending on the objective of the model. We, there-
fore, focus on producing models that are faithful abstractions
of the behaviour of the systems they represent in the sense
that they are correct with respect to a level of abstraction and
complete with respect to some coverage criteria. The level of
abstraction and the type of coverage to be used to produce the
model will depend on the purpose of having a model. Thus,
we propose an approach that is flexible enough to allow users
to adjust these parameters according to their needs.

As our current focus is on Java programs, we work on
systems divided into classes, and the variables that deter-
mine the system state (in addition to the call stack) are the
attributes of these classes. Our model extraction approach
begins with the instrumentation of the code of the classes for
which we need a model to include annotations to collect the
necessary information. The execution of the annotated code
produces traces from which we extract context information
and the actions that happened in each context. This informa-
tion is then used to create a model of the system using the
Finite State Processes (FSP) process algebra [45], which can
serve as input to the LTS Analyser (LTSA) [45], where it can
be visualised and analysed. A general view of this process
is presented in Fig. 5, where ellipses represent processing
phases and boxes represent inputs/outputs of these processes.
Arrows show the sequence of information processing, and the
large block delimited by a dashed line on the lower part of
the figure represents the part of the process automated by our
tool (presented in Sect. 4.6), called LTSE. Each part of the
approach is described in more detail next. We refer to the
code in Fig. 1 to exemplify results from each phase.

4.1 Information gathering

Wehave been using the TXL engine [16] and a Java grammar
specified using the TXL language2 to automatically create an
annotated version of Java codes based on TXL rules already

2 Available from http://www.txl.ca/.

Fig. 5 General view of the model extraction process

developed.3 Each rule describes a transformation in the code
according to the identified patterns, such as control flow state-
ments, method bodies, and call sites. The application of the
rules introduces the necessary annotations for each pattern.
It is important to mention that we use the TXL language and
engine to simplify the annotation process, but any other tech-
nique or tool could be used to instrument the code, as long
as the instrumentation follows the same patterns described
in the annotation rules.

Annotation format The annotations can be of three differ-
ent types. An enter-context annotation (labels SEL_ENTER
for selection statements, REP_ENTER for repetition state-
ments, CALL_ENTER for method calls, and MET_ENTER
for method bodies) is an annotation regarding the begin-
ning of a control structure (selection or repetition structure,
method call, or method body); exit-context annotations
(labels SEL_END, REP_END, CALL_END, and MET_END)
represent, on the other hand, the end of a control structure;
and anactionannotation (labelACTION) indicates the occur-
rence of an action. Each enter-context annotation regarding a
repetition or selection statement contains the label that iden-
tifies the type of the control structure; the control predicate
associated with this structure; the value of this predicate; the
name of the annotated class; an object ID (OID), which is a
Java identifier associated with each object; a list of attribute
names and their respective values; and a block ID (BID), rep-
resenting an identificationof the specificblockof code,which
can be interpreted as an abstraction of the program counter.
Annotations representing method calls or method executions
include all the information of the other enter-context annota-
tions except for the control predicate and its value as there is
no control predicate associated with a method call or method
body. Annotations of type exit-context contain only the label,
the control predicate, the name of the class, the OID, and
the BID. They do not require the information about values
because they are only used to mark the end of a context. All
action annotations contain only the label ACTION, the name
of the action, the name of the class, the OID, and the BID.

3 The complete description of the annotation rules and their correspond-
ing TXL code can be found in http://www.inf.ufrgs.br/~lmduarte/doku.
php?id=ltse.

123

http://www.txl.ca/
http://www.inf.ufrgs.br/~lmduarte/doku.php?id=ltse
http://www.inf.ufrgs.br/~lmduarte/doku.php?id=ltse

L. M. Duarte et al.

Besides the automatically identified actions (method calls
and method executions), we allow users to define their own
actions. User-defined actions can be introduced in any part
of the class body using the format:

#action:"<name>";

where name is the name used to identify the action. They are
important in situations where, for example, reaching a given
point in the code, other than a method body or a call site,
has some particular meaning, such as the completion of a
task (e.g. a set of methods that should be executed in order to
realise some specific computation), a certain variable assign-
ment, or a particular situation. If the TXL engine is used, they
are automatically converted into action annotations when the
code is instrumented. As an example, we have introduced a
user-defined action, named incorrectCmd in line 25 of
the code in Fig. 1 to identify the situation where the user
enters an invalid option. Note that without this action, there
would be no record of this specific situation, which means
that the model would not describe this possibility.

In the sameway that we allow a user to define new actions,
we provide support for the definition of additional variables.
We call these user-defined attributes, which represent expres-
sions over the values of the original attributes. User-defined
attributes are, therefore, used to provide a simple form of data
abstraction, which is particularly useful for model refine-
ment, thus reducing the possible number of contexts (see
Sect. 4.4). They should be used when the interest is not on
the concrete value of an attribute but rather on some predi-
cate over this value. For instance, consider an attribute temp
that represents the temperature of a boiler. To understand the
boiler control behaviour, it might be more important to know
whether or not the temperature of the boiler is above some
threshold limit than knowing the exact current tempera-
ture. Hence, a user-defined attribute could be used to monitor
whether the limit temperature is reached or not. This could
be defined by the annotation:

#attribute:"tempOK" = (temp <= limit);

where tempOK is the name of the attribute and
(temp <= limit) is the expression used to define its
value. Note that the expression of a user-defined attribute
can only refer to values of other attributes or constants (in
this case, attribute temp and constant limit). Also notice
that, unlike user-defined actions, user-defined attributes can
only be defined in the area of attribute definitions, so that they
can be processed along with the other attributes and incor-
porated into the annotations that record the system state. Not
only the use of these attributes helps focus onwhat is relevant
to know about the values of attributes, but also it reduces the
state space of the model to be constructed. Instead of dealing
with a possibly infinite range of values (e.g. all valid tem-

peratures), it makes it possible to work with a binary set of
possibilities (e.g. above or not the threshold).

Trace generation Traces can be generated by randomly exe-
cuting the annotated code. However, as the resulting model
will reflect the quality and the quantity of the traces, the
observed traces should be selected according to the specific
purpose of the model. If the focus is on specific behaviours,
the traces to be observed should include these behaviours.
Our experience has shown that the best way to produce traces
is applying a test suite based on some coverage criteria. The
creation of test cases allows the selection of which behav-
iours will be observed and, consequently, included in the
model (besides the possibility of detecting some existing
error when applying the tests). Moreover, the application of
coverage criteria restricts the evaluation of the completeness
to the defined criteria. It is also important to note that, due to
the incremental aspect of our approach, an initial set of traces
can be used to create a model that can then be improved by
the later addition of new traces.

Part of a trace of the editor code is shown in Fig. 6. It
describes that a documentwas opened (lines 1–10), an invalid
optionwas entered (lines 11–15), and then, the next inputwas
the command to edit the document (lines 16–23).Lines 24–33
represent the execution of option print, followed by a docu-
ment save (lines 34–42). Note that, for simplification, anno-
tations produced by the method readCmd are not included.

Line 1 presents an example of an enter-context annotation,
where a repetition structure has been executed; the con-
trol predicate evaluated was (cmd!=4), which was true;
the class that produced the annotation was Editor; the
OID was 31505416; the values of attributes isOpen and
isSaved were f alse and true, respectively; and the BID
of this structure was 18. This annotation corresponds to the
while statement in line 9 of the code in Fig. 1. The annota-
tion in line 2 was produced by the execution of the switch
statement in line 11 of the code, the annotation in line 3 was
produced by the if statement in line 12 of the code, and so on.
Line 13 shows the action annotation produced by the execu-
tion of our user-defined action included in line 25 of Fig. 1.

4.2 Context identification

After producing the traces, the next step is to parse each one
of them to identify which contexts have occurred. In this
parsing, annotations present in the trace are processed in the
order they appear, which provides the sequence of contexts.
For each annotation, we collect the necessary context infor-
mation. All context information collected from the traces is
recorded in a context table (CT), which serves as a memory
of all contexts already identified. Each entry of the CT corre-
sponds to adifferent enter-context annotation found in a trace.

123

Using contexts to extract models from code

Fig. 6 Example of a recorded
execution trace

1 REP_ENTER:(cmd != 4)#true#Editor=31505416#{isOpen=false^isSaved=true}#18;
2 SEL_ENTER:(0)#0#Editor=31505416#{isOpen=false^isSaved=true}#17;
3 SEL_ENTER:(! isOpen)#true#Editor=31505416#{isOpen=false^isSaved=true}#11;
4 CALL_ENTER:open#Editor=31505416#{isOpen=false^isSaved=true}#4;
5 MET_ENTER:open#Editor=31505416#{isOpen=false^isSaved=true}#19;
6 MET_END:open#Editor=31505416#19;
7 CALL_END:open#Editor=31505416#4;
8 SEL_END:(! isOpen)#Editor=31505416#11;
9 SEL_END:(0)#Editor=31505416#17;
10 REP_END:(cmd != 4)#Editor=31505416#18;
11 REP_ENTER:(cmd != 4)#true#Editor=31505416#{isOpen=true^isSaved=true}#18;
12 SEL_ENTER:(cmd)#5#Editor=31505416#{isOpen=true^isSaved=true}#17;
13 ACTION:incorrectCmd#Editor=31505416;
14 SEL_END:(cmd)#Editor=31505416#17;
15 REP_END:(cmd != 4)#Editor=31505416#18;
16 REP_ENTER:(cmd != 4)#true#Editor=31505416#{isOpen=true^isSaved=true}#18;
17 SEL_ENTER:(1)#1#Editor=31505416#{isOpen=true^isSaved=true}#17;
18 CALL_ENTER:edit#Editor=31505416#{isOpen=true^isSaved=true}#5;
19 MET_ENTER:edit#Editor=31505416#{isOpen=true^isSaved=true}#20;
20 MET_END:edit#Editor=31505416#20;
21 CALL_END:edit#Editor=31505416#5;
22 SEL_END:(1)#Editor=31505416#17;
23 REP_END:(cmd != 4)#Editor=31505416#18;
24 REP_ENTER:(cmd != 4)#true#Editor=31505416#{isOpen=true^isSaved=false}#18;
25 SEL_ENTER:(2)#2#Editor=31505416#{isOpen=true^isSaved=false}#17;
26 SEL_ENTER:(isOpen)#true#Editor=31505416#{isOpen=true^isSaved=false}#12;
27 CALL_ENTER:print#Editor=31505416#{isOpen=true^isSaved=false}#6;
28 MET_ENTER:print#Editor=31505416#{isOpen=true^isSaved=false}#21;
29 MET_END:print#Editor=31505416#21;
30 CALL_END:print#Editor=31505416#6;
31 SEL_END:(isOpen)#Editor=31505416#12;
32 SEL_END:(2)#Editor=31505416#17;
33 REP_END:(cmd != 4)#Editor=31505416#18;
34 REP_ENTER:(cmd != 4)#true#Editor=31505416#{isOpen=true^isSaved=false}#18;
35 SEL_ENTER:(3)#3#Editor=31505416#{isOpen=true^isSaved=false}#17;
36 SEL_ENTER:(! isSaved)#true#Editor=31505416#{isOpen=true^isSaved=false}#13;
37 CALL_ENTER:save#Editor=31505416#{isOpen=true^isSaved=false}#7;
38 MET_ENTER:save#Editor=31505416#{isOpen=true^isSaved=false}#22;
39 MET_END:save#Editor=31505416#22;
40 CALL_END:save#Editor=31505416#7;
41 SEL_END:(! isSaved)#Editor=31505416#13;
42 SEL_END:(3)#Editor=31505416#17;
43 REP_END:(cmd != 4)#Editor=31505416#18;
...

By ‘different’, we mean that, considering the context infor-
mation, they can be distinguished (i.e. they differ in some part
of the control or data component of the context, as described
in Sect. 3). During the parsing of the trace, every time an
enter-context annotation is found, and its context informa-
tion is collected and compared to each existing entry of the
context table. If none of the entries of the CT contains the
same context information collected from the annotation, then
a new context has been found, and a new entry is created to
store its information. This newentry is assigned a new context
ID (CID), which is a unique sequential numeric identifier. If,
however, an existing entry contains the samecontext informa-
tion obtained from the current annotation, thenwehave found
an already known context, and the CT remains the same.

The call stack information is controlled based on annota-
tions regardingmethods.The enter-annotationsCALL_ENTER
and MET_ENTER cause the corresponding method name

to be included in call stack, whereas the exit-annotations
CALL_END andMET_END have the opposite effect. The idea
is that, an enter-context annotation generated by a method m
indicates that this method started at that point. If, before the
corresponding exit-context annotation, another enter-context
annotation is found, then this new context corresponds to the
current values of the control component, the values of the
attributes, and the call stack where method m is still execut-
ing, awaiting for a return.

In parallel with the construction of the CT, we build a
set of context traces. Basically, a context trace is the original
trace, but with every enter-context annotation replaced by the
corresponding CID from the CT, all exit-context annotations
removed,4 and every action annotation replaced by the name
of the action. As methods are the basic actions, every enter-

4 They serve for purposes that will be discussed in Sect. 4.5.

123

L. M. Duarte et al.

annotation regarding methods also produces an action name
in the context trace. More formally:

Definition 6 (Context trace) Given a program Prog with
a set of actions Act , a context trace t of Prog is a finite
sequence 〈C1α1C2α2 . . . αnCn〉, where C1,C2, . . . ,Cn are
CIDs of contexts of Prog and α1, . . . , αn are (possibly
empty) finite sequences of actions from Act .

We produce the context traces because they make it easier
to later generate the model. As the CIDs compactly repre-
sent the contexts and their order describes the sequence of
contexts that happened during the generation of the trace, we
can produce the models without having to consult the CT.
Therefore, whereas the CT stores information about all con-
texts identified in the original traces, context traces present

the ordering of occurrences of contexts and sequences of
actions in each trace. This means that, analysing their con-
tents, we can identify the contexts the system went through
to be able to execute a certain sequence of actions. Moreover,
it is possible to know in which context each execution of an
action happened and, therefore, detect executions of the same
action in different contexts.

Algorithm 1 describes the procedure applied to create the
CT and generate context traces. The inputs are a finite set
of traces and a finite set of attribute names, used to deter-
mine which values of attributes will be used to distinguish
contexts. The algorithm produces a CT containing the infor-
mation from all contexts identified in the traces and a set
of contexts traces, one for each original trace. We use vari-
able ta to represent the type of an annotation (enter-context,

123

Using contexts to extract models from code

exit-context, or action) and bida , cpa , and vala to represent,
respectively, the BID, the control predicate, and the value of
the control predicate recorded in ta . Variable va represents
the valuation of the system state present in the annotation,
and acta describes the name of the corresponding action,
when applicable. All variables with index c refer to a context
c recorded in the context table. Hence, variable csc refers to
the call stack of context c.

The algorithm initiates with an empty CT, with the initial
CID set to 0, and the set of context traces is empty (lines
9–11). The CT is initialised with the initial context, updat-
ing the CID counter (lines 12–14). The loop in lines 15–45
represents the processing of each trace. For each trace, the
call stack is reset (line 16), a new context trace is created
(line 17), and all its annotations are parsed (lines 18–43).
Enter-context annotations are processed by comparing their
information with contexts already stored in the CT (lines
20–21) to check whether it is a known context. Note that
the attribute comparison is restricted to the set of attributes
P , received as input. This is necessary because, even though
the value of every single attribute is always recorded in the
annotations, just a subset of them might actually be used to
build the model. By increasing the cardinality of this subset
with the addition of other attributes, we modify the level of
abstraction of themodel, which is the basic idea of our refine-
ment process described in Sect. 4.4. After the comparison, if
the context is already in theCT, its CID is added to the context
trace (line 22); otherwise, a new entry is created in the CT
containing the information from the annotation, and the new
CID is added to the context trace (lines 24–28). If the annota-
tion is related to a method, then the method name is added to
the call stack and to the context trace (lines 30–32), since the
name of the method is used as predicate for contexts repre-
senting a method call or method execution. If the annotation
is of the type exit-context and is related to a method, then the
first method name in the call stack is removed (lines 35–36).
If the annotation is an action annotation, then the name of
the action is added to the context trace (lines 38–39). When
all annotations of the current trace have been processed, the
generated context trace is added to the set that will be the
algorithm output (line 44). Once all traces from the set have
been processed, the resulting set is returned, along with the
produced CT (line 46).

Table 1 shows part of the CT generated for the Editor
program, based on the trace presented in Fig. 6. No pred-
icate is associated with the initial context, and we use the
word INITIAL to represent it. Method names with the prefix
call identify method calls, whereas method names with-
out this prefix refer to the execution of the corresponding
method body. The fourth column of the table presents the
evaluation of the control predicate, and the fifth and sixth
columns contain the system state (respectively, the valuation
of the selected attributes and the state of the call stack). The

last column is not part of the CT, but has been added to help
understand the mapping from annotations to CT entries. It
contains the line numbers of the corresponding annotations
in Fig. 6. Hence, the entry with CID 1 contains the informa-
tion from the annotation in line 1 of the trace, the entry with
CID 2 stores the information collected from the annotation in
line 2, and so on. Note that the entry with CID 6 corresponds
to the annotations in lines 11 and 16 of Fig. 6, which means
that the trace shows the same context been reached twice.
The entry with CID 0 corresponds to the initial context and
is not associated with any annotation, as it is automatically
introduced during the creation of the CT.

To better understand the importance of the data compo-
nent in the context information, consider, for instance, the
contexts with CIDs 1, 6, and 11 (derived from the anno-
tations in lines 2, 11, and 24, respectively, of the trace
presented in Fig. 6). They all have the same control com-
ponent (i.e. the same BID, the same control predicate, and
the same value of the control predicate), which would indi-
cate that they represent the same context. However, when we
analyse the data component, we see that they have different
values for the attributes. Hence, from the control perspec-
tive, they are the same context but, when we add the data
component, they represent three different contexts, and for
this reason, there is one entry in the CT for each one of
them.

Part of the context trace created based on the trace shown
in Fig. 6 can be seen in Fig. 7, where the context trace can be
read from top to bottom.CIDs are precededby the symbol # to
differentiate them from action names. CID #0 of the context
trace corresponds to the initial context (first entry of the CT
in Table 1). The CID #1 was created based on the first anno-
tation of the trace presented in Fig. 6. Similarly, the second
and the third lines of the trace were translated, respectively,
into the CIDs #2 and #3 of the context trace. The fourth
and fifth lines of the trace were generated when the program
reached the call to method open. The enter-context anno-
tation generated the context identified as #4. Because every
method call also represents an action of the system, the same
annotation originates the action name call.open as well.
CID #5 represents the entry point of method open. As hap-
penedwith themethod call, this annotation also creates a new
context and includes an action name (open). CID #6 repre-
sents the annotation in line 11 of the original trace, describing
the situation where the main loop of the program has been
reached again, but the values of the attributes have changed,
thereby creating a new context. Note that the occurrence of
action incorrectCmd, our user-defined action recorded
in the annotation in line 13 of the trace in Fig. 6, causes the
action name to be added to the context trace. Because this
action signals an incorrect input value, the next enter-context
annotation (line 16 of Fig. 6) contains the same context infor-
mation as the one in line 11. This means that they represent

123

L. M. Duarte et al.

Table 1 Example of context
table

CID Predicate BID Value Attributes Stack Annotation lines

0 INITIAL −1 T {} 〈〉 –

1 (cmd != 4) 18 T {false, true} 〈〉 1

2 (0) 17 0 {false, true} 〈〉 2

3 (!isOpen) 11 T {false, true} 〈〉 3

4 call.Editor.open 4 T {false, true} 〈〉 4

5 Editor.open 19 T {false, true} 〈call.Editor.open〉 5

6 (cmd != 4) 18 T {true, true} 〈〉 11, 16

7 (cmd) 17 5 {true, true} 〈〉 12

8 (1) 17 1 {true, true} 〈〉 17

9 call.Editor.edit 5 T {true, true} 〈〉 18

10 Editor.edit 20 T {true, true} 〈call.Editor.edit〉 19

11 (cmd != 4) 18 T {true, false} 〈〉 24, 34

12 (2) 17 2 {true, false} 〈〉 25

13 (isOpen) 12 T {true, false} 〈〉 26

14 call.Editor.print 6 T {true, false} 〈〉 27

15 Editor.print 21 T {true, false} 〈call.Editor.print〉 28

16 (3) 17 3 {true, false} 〈〉 35

17 (!isSaved) 13 T {true, false} 〈〉 36

18 call.Editor.save 7 T {true, false} 〈〉 37

19 Editor.save 22 T {true, false} 〈call.Editor.save〉 38

. .

#0
#1
#2
#3
#4
call.open
#5
open
#6
#7
incorrectCmd
#6
#8
#9
call.edit
#10
edit
#6
#11
#12
#13
call.print
#14
print
#6
#15
#16
#17
call.save
#18
save
...

Fig. 7 Example of context trace

the same context; thus, CID #6 is again added to the context
trace. The rest of the trace was processed following the same
procedure.

4.3 Model generation

As previously stated, we use context information to gen-
erate LTS models. They describe the actions that trigger
state transitions, no matter what the state represents. Hence,
they require only the information about the valid sequences
of actions. Because we use contexts, which comprise con-
trol flow and data information, thus giving a meaning to
states, we need an intermediate structure that can deal with
both actions and states (i.e. contexts) to guarantee that only
valid behaviours are included in the model. This structure
helps us understand the valid sequences of actions based
on the contexts and, this way, guarantee that only behav-
iours that respect the correct transitions between contexts
are included in the model. Once these valid sequences have
been determined, we can ignore the meaning of the states,
thus producing an LTS.

The formalism we have adopted is labelled Kripke struc-
ture (LKS), described as follows, based on the definition
presented in [10]:

Definition 7 Labelled Kripke Structure. A Labelled Kripke
Structure (LKS) K = (S, si , P, Γ,Σ, T) is a model where:

123

Using contexts to extract models from code

– S is a finite set of abstract states,
– si ∈ S represents the initial state,
– P is a finite set of attributes used to label states in S,
– Γ :S → N P is a state-labelling function, where N is the
sum of the ranges of all attributes in P ,

– Σ is a finite set of actions, i.e. an alphabet, and
– T ⊆ S × Σ+ × S is a transition relation.

Our definition slightly differs from that presented in [10]
in thatweuse attributes instead of propositions.Nevertheless,
the only difference is that attributes are not always boolean
variables and, consequently,mayhave awider rangeof values
than that of propositions. Another difference is that we use
a singleton set of initial states, which is compatible with the
LTS that will be ultimately generated (see Definition 1). One
last small difference is that we allow a sequence of actions to
label transitions. This represents the possibility of more than
one action occurring in between two consecutive contexts.
The use of sequences of actions does not affect the LKS
definition, because a transition is still a connection between
two states,which is labelledwith actions from the alphabet. In
our case, this label can be compound, comprising all actions
that can happen in between two states.

4.3.1 LKS construction

Algorithm 2 describes the generation of an LKS model
from a set of context traces, using an alphabet and a set of
attributes as parameters. In our example of the editor, we used
the alphabet Σ = {open,edit,print,save,close},
incorrectCmd}, the set of attributes P = {isOpen},
isSaved}, and the context trace presented in Fig. 7, which
was created by the execution of Algorithm 1 using the trace
in Fig. 6 and the same set P of attributes .

Lines 9–12 initialise all the necessary variables, which
include the variables that control the initial state of the
model, the current state, and the previous state. These two
last variables determine how to build a transition (from
previousState to currentState. The loop from line
13 to line 43 describes how each context trace is processed.
Each component of the context trace is parsed and identi-
fied (loop from line 15 to line 35). CIDs represent contexts
and are mapped to states of the LKS (line 18), whereas
actions are mapped to labels of the model. Whenever a CID
is found in the context trace, it is checked whether it is the
first context found, so that variables initialState and
previousState are set (lines 19–20). If it is not the first
context, it means that there has been a context found before,
and variable previousState contains its CID. As a con-
sequence, a new transition should be added, connecting the
previous state to the current state. The transition between
these states is labelled with the sequence of actions identi-
fied in between them when parsing the context trace (lines

31–33) or with the empty sequence if no action was found
(lines 22–23). After creating the new transition (line 25), the
sequence of actions is reset (line 26), and the new transition is
added to the set (line 27). Lines 36–38 describe the addition
of a state called F I N AL , which is used to represent the ter-
mination of the execution and is added when the first context
trace has been completely parsed. The state corresponding
to the last identified context is connected to F I N AL , and
an infinite loop of an artificial action _EX IT is added to
it (lines 39–42 of Algorithm 2). Although there are systems
that do not terminate, we cannot really tell when the termi-
nation was successful or not. Hence, we use state F I N AL
to indicate how far we were able to identify that the execu-
tion could go. The loop labelled with action _EX IT (line
41) prevents that deadlock alarms be generated in case the
model is used for verification. The user can, later on, man-
ually modify the model to eliminate the F I N AL state, if
necessary. The resulting set of states and transitions is used
to build the LKS, considering the provided alphabet and the
set of attributes (line 44).

4.3.2 Final model generation

Finally, the LKS model is translated into a Finite State
Process (FSP) [45] description. FSP is a process algebra for
describing LTS models that provides an action prefix oper-
ator (->) e a choice operator (|). In FSP, components of
a system are described in terms of processes, where each
process represents the execution of a sequential program.
Following the semantics of LTS, the behaviour of a process
is represented as a sequence of actions. FSP also allows the
definition of subprocesses, which describe partial behaviours
of processes.

We translate an LKSmodel K = (S, si , P, Γ,Σ, T) built
byAlgorithm 2 into an FSP description in the followingman-
ner:

– A process definition Proc(K) is created to represent the
behaviour of K ;

– For each state s ∈ S, a subprocess SubProc(s) is
included in Proc(K);

– For each transition (s, α, s′) ∈ T , where α = 〈a1 . . . an〉
anda1, . . . , an ∈ Σ∪ε, the behaviour (a1 -> . . . ->
an -> SubProc(s′)) is added to SubProc(s). Transi-
tions where α == 〈〉 are labelled with the empty action
null, which is our representation of the empty sequence
ε in the generated FSP description;

– Alternative behaviours of a subprocess are defined using
the choice operator.

Figure 8 presents the FSP description generated for
our example of the editor. Subprocess Q0 represents the
initial state. It can be seen that our models may have non-

123

L. M. Duarte et al.

deterministic choices, in particular involving action null.
This is usually a consequence of the chosen alphabet and of
the level of abstraction. If a transition should be labelled with
an action that is not part of the alphabet of the model, then it
will be turned into a null action and will be ignored when
processing the context traces. Therefore, if multiple alterna-
tive behaviours of a state involve actions in this situation, we
end up having the non-determinism caused by action null,
such as the one in the subprocess Q6. With the FSP descrip-
tion of the editor, we used the LTS Analyser (LTSA) [45]
to produce the graphical representation of the LTS shown in
Fig. 9. Note that, a hiding operation [45] has been applied to
action null to simplify the model. We also have hidden the
actions related tomethod calls, so that there is only one action
to represent the execution of each method. To allow a better

visualisation of the model presented here, we also applied
a minimisation operation and made the model deterministic
using features provided by the LTSA tool.

Even though it is based on a single trace, this model
already shows some correct relations between actions of the
editor, according to its implementation (Fig. 1). For exam-
ple, action save can only happen after an occurrence of
action edit. Moreover, the model also describes that open
must happen before any occurrence of the other actions. This
model also includes behaviours that were not described in
the trace, such as the possibility of repeating the command
print infinitely often once a document has been opened. In
fact, the trace did not even include a sequence of two consec-
utive actionsprint. This additional behaviourwas included
in the model because the context trace shows that this action

123

Using contexts to extract models from code

happens in between two occurrences of the same context
(indicating a loop) and that this action is always enabled after
a file has been opened (when attribute isOpen is true). If
on one hand all the behaviours in the model are valid behav-
iours of the real system, on the other hand the model does not
include many other valid behaviours. As commented before,
after building the model, it is possible to add new behav-
iours to it using the same CT build for the initial model and,
of course, considering the structure of the original model.
For instance, consider a new trace generated by the execu-
tion of the sequence of inputs that cause the editor to open
a document, edit it twice, save it, and then exit. The first
annotation of the trace, describing the while statement at the

Editor = Q0,
Q0 = (null -> Q1),
Q1 = (null -> Q2),
Q2 = (null -> Q3),
Q3 = (null -> Q4),
Q4 = (call.open -> Q5),
Q5 = (open -> Q6),
Q6 = (null -> Q7
|null -> Q8
|null -> Q20),
Q7 = (incorrectCmd -> Q6),
Q8 = (null -> Q9),
Q9 = (call.edit -> Q10),
Q10 = (edit -> Q11),
Q11 = (null -> Q12
|null -> Q16),
Q12 = (null -> Q13),
Q13 = (null -> Q14),
Q14 = (call.print -> Q15),
Q15 = (print -> Q11),
Q16 = (null -> Q17),
Q17 = (null -> Q18),
Q18 = (call.save -> Q19),
Q19 = (save -> Q6),
Q20 = (null -> Q21),
Q21 = (call.exit -> Q22),
Q22 = (exit -> Q23),
Q23 = (null -> Q24),
Q24 = (null -> Q25),
Q25 = (call.close -> Q26),
Q26 = (close -> Q27),
Q27 = (null -> FINAL),
FINAL = (_EXIT -> FINAL).

Fig. 8 Example of created FSP description

beginning of the execution, would be the same as that of the
trace presented in Fig. 6. This means that, when comparing
the context information from this annotation with the entries
of the CT, a match would be found, including the CID 1 in
the context trace. The second annotation, related to the switch
statement, would also be the same, thus leading to the addi-
tion of the corresponding CID to the context trace. However,
a different context would be found when the second call to
method edit would be identified. It would contain context
information similar to the entry identified by CID 9 in the
CT (see Table 1), but it would differ on the value of attribute
isSaved. Hence, a new entry would be created in the CT,
and a different CID would be added to the context trace.
The new LTS, including all the original behaviours plus the
behaviour described in the new trace, is shown in Fig. 10.

Note that the only difference to the original model is the
possibility of executing edit after a previousedit. As it
happened with action print, after executing the second
edit, the system remains in the same context (the value of
attribute isSaved has already changed to false), and for
this reason, the model shows that the document can be edited
an arbitrary number of times after the first edit, keeping
the system in the same state.

4.4 Refining models

The level of abstraction of our models can be adjusted by
modifying the set of attributes considered in the data compo-
nent of contexts. Hence, whenever a new attribute is added to
this set, the level of abstraction is decreased, and the model
gets closer to the implementation of the system. The impact
of a refinement is, therefore, that contexts that were identi-
fied before as the same (i.e. there was no context information
that could distinguish them) may now be seen as distinct.
Refinements are necessary to achieve model correctness in
situations where the model is so abstract that some important
characteristic of the system behaviour is not represented due
to the absence of the specific information.

As an example, consider the model in Fig. 11, which is a
model extracted from the code in Fig. 1, based on the same
trace used to produce the models presented in Sect. 1, and
created with a set of attributes containing only the value of

Fig. 9 LTS model generated from the FSP description

123

L. M. Duarte et al.

Fig. 10 LTS model with additional trace

Fig. 11 Editor model with set of attributes {isOpen}

attribute isOpen. It correctly describes the known property
that no action can be taken prior to open. However, the other
known property, which states that save can only occur as
a response to an edit, is violated. In this case, we would
need to include the value of attribute isSaved to achieve
correctness, thus producing the model presented in Fig. 4.
Although the refinement idea is quite simple, it is key to the
process to identify which attribute should be used to refine a
model.

We do not currently provide an automated refinement
process, whichmeans that the identification and the inclusion
of the necessary attribute has to be done manually. In our
experiments, however, we have followed a process similar
to the ideas of the CEGAR approach [12]. The require-
ment to use this process is the existence of a specification
of the system. Having a specification, we provide the model
and the specification (as a property automaton or formula in
LTL [46]) to the LTSA and check whether the model violates
the specification. If a counterexample is found, we then use it
to identify the necessary attribute according to the following
steps:5

1. We use the counterexample to traverse our model from
the initial state to the statewhere occurs the specific action
that, based on the behaviour prefix, violates the specifi-
cation;

2. We then execute a backtracking on the specific path of
the model where, for each state in the path, we check the
control predicate of the corresponding context in the CT;

3. When we find a control predicate that mentions an
attribute a that is not in the system state, we add a to
the set of attributes for the model refinement.

5 Considering that it is not a real violation, i.e. it is a false alarm.

The heuristic behind this process is that the invalid path
might exist because contexts did not include some infor-
mation that would prevent it from being executed. This
information would most probably be related to some test
about the value of an attribute.When the value of this attribute
is considered, contexts can correctly identify it as infeasible
depending on the current value. In our example, checking the
model in Fig. 11 against a property that states that save can
only occur if edit has previously occurred generates the
counterexample 〈open,save〉. Looking at the model, we
identify that the following path, alternating states and actions,

leads to the violation: Q0
null→ Q1

null→ Q2
null→ Q3

null→
Q4

null→ Q5
open→ Q6

null→ Q15
null→ Q16

null→ Q17
null→

Q18
save→ Q6. Traversing this path backwards, from Q18,

we discover that Q16 represents the point of the code where
it is checked whether the document has been modified, thus
enabling or not the execution of save. Its control predicate is
!(isSaved), indicating that the value of attribute isSaved
determines the feasibility of this path. Consequently, we add
attribute isSaved to the system state, refining the model
and eliminating the violation.

As we commented before, this is just a heuristic for iden-
tifying attributes for refinement. It might happen that we
backtrack all theway to the initial state without finding a suit-
able attribute. This could occur because context information
might not be enough to represent the code behaviour when
it depends on the value of local variables, as one of the case
studies in Sect. 6 shows.Hence, even though this heuristic has
been quite effective, it is restricted by the limitations of our
abstraction, and we need to further investigate better ways
of finding appropriate refinements. Nevertheless, we aim to
improve it and eventually define an automatic process.

4.5 Contexts in concurrent systems

Thus far, we have discussed the extraction of single models,
describing the behaviour of an isolated process (component).
However, systems are normally formed by several processes
that execute concurrently and may interact. Hence, we pro-
vide, as part of our approach, a strategy to create models of
concurrent systems. This strategy involves three steps:

123

Using contexts to extract models from code

1. Weuse the process previously described to create amodel
for each single component;

2. When all the models have been created (ideally, they are
correct and complete abstractions of each component’s
behaviour), we define how the components will synchro-
nise to represent their interactions;

3. We apply a parallel composition of the models of the
components to create a composite model.

As our model is based on actions, we use these actions
to represent local behaviour as well as interactions between
models. A local action of a process is an action that is visible
only to the process itself and, thus, does not affect the execu-
tionof other processes (e.g. an internalmethod call).A shared
action, on the other hand, represents an interaction between
processes, definingwhen two ormore processes synchronise.
We use the parallel composition operation of the LTSA tool
to generate a composite model. This operation is based on
the CSP definition [31], considering local and shared actions,
characterised by a mechanism of synchronisation on shared
actions. Therefore, given two LTS models M1, with alpha-
bet Σ(M1), and M2, with alphabet Σ(M2), if there exists
an action with name a that is in Σ(M1) ∩ Σ(M2), then M1
andM2will synchronise on a. In practice, thismeans that the
two processes need to execute the action simultaneously, cor-
responding to a method invocation. Whereas shared actions
cause synchronisation betweenmodels, the execution of local
actions occurs independently. For this reason, their execution
in composed models is described following the interleaving
semantics [31]. Therefore, they are executed one at a time,
in any order.

This strategy of creating one model from each compo-
nent and then using parallel composition to create a global
model provides the possibility of running analyses on isolated
models, on partial combinations of models (integrating just
a subset of processes), or on the entire system, thus explor-
ing different scenarios. Moreover, it supports the possibility
of reuse, as a model of a certain component can be used in
several different composed models, just as, for instance, the
corresponding component could be used in different projects.
Evolution is also supported, because if a component of the
system is modified, there is no need to recreate the models
of all the other components; only the model of the modified
component has to be extracted again, unless some shared
action has been affected, in which case the synchronisation
between processes would have to be checked.

Modelling synchronisation Process synchronisation in pro-
gramming language implies some type of blocking mecha-
nism. Themost simple type of blocking ismethod invocation,
where the caller has to wait for the callee to finish execut-
ing the method and return the control to it. Hence, the caller
process blocks to wait for a response. Because we mark the

beginning and the end of method calls and method bodies,
we have the possibility of using this information to model
blocking situations. As a default, the actions in our models
represent the beginning of the execution of the method (call
mode). However, when processes synchronise, the called
method might not execute right away (e.g. if the method is
guarded by a wait-notify mechanism) or it might take some
extra actions from the callee process before it responds to
the caller. To represent these situations, we can associate an
action to the beginning of the method and another to the end,
thus describing the point where the processes synchronise
with the caller invoking a method from the callee, blocking
the caller, and the point where the callee responds, releasing
the caller. We call it an enter-exit mode, where, for a method
m, its beginning is represented by an action m.enter and its
end, by an action m.exi t . Although this makes it explicit in
the model the blocking and releasing points, it significantly
increases the number of states and transitions, since there
are two actions for each method executed. Another option to
represent a blocking situation, but in an implicit way, is to
use a termination mode, where we include in the model only
the actions marking their end. This way, the actions labelling
transitions show the effective execution of themethod. These
three types ofmodels allow the user to define different visions
of the program execution, and the representation of synchro-
nisation points, and choose the most appropriate for their
needs.

Example As an example, we present a program based on
the bounded buffer system described in [29]. The system
is composed of three processes: a producer, a consumer,
and a buffer. The producer and the consumer run as active
processes, i.e. they have their own thread, whereas the buffer
is a passive process, which receives calls from the other
processes. Thesemodelswere extracted executing the system
considering different scenarios involving the number of items
produced/consumed and the order in which the processes
start. The (minimised and deterministic) LTS models of the
producer, the consumer, and the buffer are shown, respec-
tively, in Figs. 12, 13, and 14. The producer and the buffer
synchronise on shared actions put and halt, whereas the
consumer and the buffer synchronise through the executionof
actions get and halt_exception, where this last action
represents the generation of a HaltException, which
happens when the consumer is still trying to read from the
buffer, but the producer is no longer active and the buffer is
empty. In this example, we used the terminationmode, which
means, for instance, that the action get in the model means
that the corresponding method has been executed. Hence,
the model of the buffer does not allow method get in the
initial state because it cannot be thoroughly executed. Note,
however, that it does not mean that method get cannot be
invoked by the consumer, but rather that, if invoked when

123

L. M. Duarte et al.

Fig. 12 LTS model of the producer

Fig. 13 LTS model of the consumer

Fig. 14 LTS model of the buffer

there is nothing to consume from the buffer, it will start and
block until an item is produced and put in the buffer (tran-
sition from state 0 to state 1). Based on these models, we
could build the composite model ||BoundedBuffer =
(Producer || Consumer || Buffer) anduse it to
analyse the global behaviour of the system considering the
local and shared actions.

Comments on modelling concurrency Using the call, termi-
nation, and enter-exit modes to represent synchronisations
allows us to deal with different types of mechanisms used in
programming languages. Our experiments have shown that
we can correctly describe blocking situations using the dif-
ferent representations, specially in combination with context
information, which includes the stack of blocked methods.
This way, we can detect when a method is executed in a nor-
mal context (i.e. the method is called and executed without
any blocking) and when the same method blocks during its
execution or executes while another method is blocked. This
type of information is not considered in other approaches
that extract models from code. Another situation we found
during our experiments was the need to mix the types of
modes. In some situations, for example, we used the termi-
nation mode to represent passive processes, as they normally
require synchronisation and include some blocking mech-

anism, and the call mode for active processes. The reason
for that is that, from the active processes’ perspective, when
they call a method, they remain blocked until the method has
been completely executed. Hence, focusing on the termina-
tion does not improve the model, but rather might make it
confusing due to the order of the actions. Note, however, that
composing models using different meanings for their actions
does not prevent them from correctly representing the behav-
iour of the system. Since, when calling a method, a process
does not need to know whether it will have a quick return or
remain blocked for a while, it makes sense that they see it as
just any other method call. In this situation, it is the process
receiving the call who has to know how to handle it. This
control has to appear in the model, thus the different model
representations.

4.6 Tool support

The LTSE tool6 partially automates the model extraction
process. It implements the part of the process related to the
processing of traces to collect context information, the stor-
age of this information in a context table, the creation of
an implicit LKS model, and the subsequent generation of
an FSP description. It accepts inputs from a command line
and generates results to the standard output. These results
include messages of successful completion of tasks, error
messages, and the contents of the context table created dur-
ing the execution. The inputs to the tool are a list of action
names (alphabet), a list of attribute names (system state), and
a list of file names (files containing the execution traces). As
it is implemented in Java, the only real requirement to exe-
cute the LTSE tool is the presence of a Java Virtual Machine.
An additional requirement would be the installation of the
TXL engine7 to automatically instrument the source code.
However, as commented before, it is not essential. Any form
of instrumentation—even manual—may be used, provided
that the appropriate annotations are introduced in the code
following the predefined patterns.

If annotations from different instances of the same class
are found in file, they are split so as to separate the particular
behaviour recorded for each individual instance. However,
the LTSEwill eventuallymerge these behaviours into a single
process guided by context information so as to produce a gen-
eral model of the class, showing all the alternative observed
behaviours. Annotations of different classes are also split,
which means that the tool is able to work with files contain-
ing annotations from various classes and produce separate
models for each different class identified during the parsing
of the files. The representation of actions regarding the exe-
cution of method bodies and method calls can be selected

6 Available at http://www.inf.ufrgs.br/~lmduarte/doku.php?id=ltse.
7 Available from http://www.txl.ca.

123

http://www.inf.ufrgs.br/~lmduarte/doku.php?id=ltse
http://www.txl.ca

Using contexts to extract models from code

according to what the user would like to observe, using a
parameter of the LTSE tool. As we commented in Sect. 4.5,
there can be three ways of representing the behaviour of a
component. The call mode (option -c) associates one action
to every enter-context annotation of the types CALL_ENTER
and MET_ENTER, thus representing the call of a method
and beginning of a method body execution, respectively; the
termination mode (option -t), on the other hand, creates
actions for exit-context annotations of the types CALL_END
and MET_END, representing the return of a method call and
end of execution of a method body, respectively; the enter-
exit mode (option -e) combines the other two, representing
both the beginning and the end of method calls and method
executions, where the actions representing the beginning are
marked with the suffix .enter and the ones representing
the end with the suffix .exit. The use of these options
has already been discussed in Sect. 4.5 and depends on the
type of the process being modelled and on the purpose of the
model.

5 Formal foundations

When we identify contexts, we are representing concrete
states of the system using abstract states. Let Imp be a
program with CFG(Imp) = (Q, qi , Act,Δ) and a set of
possible valuations of the system state V (Imp). A concrete
state θ = (q, v) of Imp comprises a control component
q = (bcq , cpq) ∈ Q, where bcq is a block of code and
cpq is its corresponding control predicate, and a data com-
ponent v ∈ V (Imp). We use Θ(Imp) = {θ1, θ2, . . .} to
denote the set of all possible concrete states of Imp and
Ω(Imp) ⊆ Θ(Imp) × Act∗ × Θ(Imp) to represent the
transition relation between concrete states.

5.1 Mapping from code to an LKS model

Our mapping from the context information collected from
Imp to an LKS K = (S, si , P, Γ,Σ, T) involves translat-
ing (a set of) concrete states of Imp to abstract states of K
andmodelling the change between concrete states as abstract
transitions in K . This occurs as described bellow:

– Every concrete state θ = (q, v) ∈ Θ(Imp), where
v = {val(p1), . . . , val(pn)} ∈ V (Imp), is modelled
by an abstract state s ∈ S. This abstract state s is derived
from a context ID from the context traces generated
by Imp and includes only the values of attributes in a
selected set P ⊆ P(Imp), such that Γ (s) = v′, where
v′ ⊆ v. For this reason, each abstract state s may rep-
resent a set of concrete states Θ(Imp)′ = {θ1, . . . θx },
where Θ(Imp)′ ⊆ Θ(Imp). These concrete states are
indistinguishable when the information to be used for

comparison is restricted to system states considering only
the attributes in P;

– The initial state si ∈ S models a concrete state θi =
(qi , vi) ∈ Θ(Imp), where vi = ∅ and, thus, Γ (si) = ∅;

– Σ ⊆ Act and, therefore, the alphabet of the model can
also be restricted to a subset of that program;

– The transition relation T is defined in the following way.
Given a set of attributes P ⊆ P(Imp), let s and s′
be two abstract states of K . Abstract state s models a
set of concrete states Θ(Imp)s = {θ1, . . . , θn}, such
that Θ(Imp)s ⊆ Θ(Imp), where, for 1 ≥ l ≥ n,
θl = (ql , {vl} ∩ V (P)). Abstract state s′ models a
set of concrete states Θ(Imp)s′ = {θ ′

1, . . . , θ
′
m}, such

that Θ(Imp)s′ ⊆ Θ(Imp), where, for 1 ≥ j ≥ m,
θ ′
j = (q ′

j , {v′
j }∩V (P)). Letα = 〈a1 . . . at 〉be a sequence

of actions such that a1, . . . , at ∈ Σ ∪ {ε}. A transition
(s, α, s′) ∈ T exists in K iff there exists a concrete tran-
sition (θ, α, θ ′) ∈ Ω(Imp) such that θ ∈ Θ(Imp)s and
θ ′ ∈ Θ(Imp)s′ .

This mapping guarantees that no invalid paths of Imp
will be included in K , according to the level of abstraction
provided by the set of attributes P . Hence, at the selected
level of abstraction, there will be no transitions connecting
two abstract states if the system does not allow a transition
between their corresponding sets of concrete states. Note,
however, that this does not mean that infeasible paths will not
be part of the model, as the model describes the behaviour of
the system at an abstract level. As we discussed in Sect. 4.4,
it is possible to decrease the level of abstraction to eliminate
some of these invalid behaviours, if necessary. In Sect. 5.3,
we formally show that our refinement process is property-
preserving.

5.2 Mapping from an LKS to an LTS

Aswedo not explicitly build anLKSmodel,we apply a trans-
formation from this intermediate structure, which implicitly
includes state labels, to a simpler structure that does not. This
process is necessary for the creation of the FSP description.
For this reason and for simplicity, we will call this mapping
a state-label elimination (SLE) process.

Let K = (S, si , P, Γ,Σ, T) be an LKS model of a pro-
gram Imp (as presented in Definition 7) that was obtained
through the previously described translation. Using K , we
apply a new translation to generate an LTS model M =
(S′, s′

i ,Σ
′, T ′). Essentially, an LKS is an LTS where states

are labelled with values of attributes using a state-labelling
function Γ . Therefore, an LTS can be obtained from an LKS
simply by ignoring state labels, i.e. the values of attributes in
P labelling states of K are not taken into consideration. This
can be done in the following manner:

123

L. M. Duarte et al.

– Every state s′ ∈ S′ corresponds to a state s ∈ S, such
that s′ is the same as s but without its label, i.e. Γ (s′) =
Γ (s)\P;

– Σ ′ = Σ ; and
– T ′ = T .

As can be seen, the alphabet and the transition relation
do not change when mapping an LKS into an LTS. Based
on that, we claim that this mapping is property-preserving
when we consider LTL properties that do not predicate over
attributes of K , but only refer to actions in Σ . In this restric-
tion of LTL formulas, we follow the ideas presented in [41],
where LTL is applied to CSP according to an association of
propositions with actions (called ALTL in [25]). Considering
this association, the set of propositions of an LTL formula
about a certain model corresponds to the set of actions in the
model alphabet Σ . In this case, LTL formulas are defined on
behaviours (traces) of a model such that a model K satisfies
an LTL property φ over Σ iff, for all π ∈ L(K), π |� φ.

Theorem 1 Let K = (S, si , P, Γ,Σ, T) be an LKS.
Applying the SLE process to K results in an LTS M =
(S′, s′

i ,Σ
′, T ′) such that, given an LTL property φ over Σ ,

if K |� φ, then M |� φ.

Proof Let us assume that K |� φ. If K satisfiesφ, then, for all
π ∈ L(K), π |� φ. This means that all behaviours in L(K)

preserve property φ. Remember that a behaviour is a possible
sequence of actions, determined by a sequence of transitions
labelled with these actions. Hence, the set of behaviours is
directly dependent on the alphabet (which defines the actions
used to label transitions) and on the transition relation. The
transition relation results from the actions enabled in each
state, which are associated with outgoing transitions and the
destinations of these transitions. Because the alphabet and
the transition relation do not change when mapping an LKS
into an LTS using the SLE process (Σ ′ = Σ and T ′ = T),
they share the same set of behaviours, i.e. L(M) = L(K).
Consequently, for all π ′ ∈ L(M), π ′ |� φ, and thus,M |� φ.

��
From this, we can conclude that this mapping preserves

LTL properties over Σ . Note that we could use either the
LKS or the LTS model to check properties. We map from an
LKS to an LTS model only because of the formalism used in
the tool we have adopted. Also remember that we build an
implicit LKS, and therefore, the elimination of state labels in
practice onlymeans that we no longer use the CT, but analyse
directly the context traces. This means that it does not matter
any more how contexts were distinguished (i.e. the context
information used to identify them) but only the sequences
of context IDs and the actions happening in between these
contexts, which will be used to create the FSP description as
described in Sect. 4.3.

5.3 Refinement relation

In [10], the following definition is presented for an abstrac-
tion relation considering LKS models:

Definition 8 Abstraction. Let K = (S, si , P, Γ,Σ, T) and
KA = (SA, siA , PA, ΓA,ΣA, TA) be two LKS models. KA

is an abstraction of K , denoted by K � KA, iff:

1. PA ⊆ P ,
2. ΣA = Σ , and
3. For every path λ = 〈s1a1 . . .〉 ∈ Λ(K), there exists a

path λ′ = 〈s′
1a

′
1 . . .〉 ∈ Λ(KA) such that, for each n ≥ 1,

a′
n = an and ΓA(s′

n) = Γ (sn) ∩ PA.

Hence, KA is an abstraction of K if the propositional lan-
guage accepted by KA contains the propositional language
accepted by K when the language is restricted to the set of
propositions of KA.Ultimately, thismeans that KA is an over-
approximation of K , such that L(K) ⊆ L(KA). Remember
that we consider this relation in terms of attributes, which
just means that the set of values for each element of state
labels may be different from {true, f alse}.

Our goal was to demonstrate that our refinement process
creates this relation of abstraction between an initial model
and a more refined one using attributes, rather than proposi-
tions. We now show that our refinement process produces a
model K that is a refinement of an initial model KA, given
that KA has a smaller set of attributes than K . If K is a refine-
ment of KA, then all properties valid for KA are also valid
for K , but K does not contain some behaviours allowed in
KA, since there is more information to distinguish states that
were considered the same in KA.

Theorem 2 Let KA = (SA, siA , PA, ΓA,ΣA, TA)beanLKS
model obtained from Imp following our mapping, using
the set of context traces CTraces(Imp) generated dur-
ing the context table construction, and a set of attributes
PA ⊆ P(Imp). If CTraces(Imp) is used with a set of
attributes P ⊆ P(Imp), such that PA ⊆ P, then we obtain
an LKS K = (S, si , P, Γ,Σ, T) such that K � KA.

To prove the theorem, we have to show that all items of
our definition of abstraction (Definition 8) are satisfied by
our refinement process. Item 1 of the definition is trivially
satisfied by our definition of refinement: since we add more
attributes to the initial set, it is always the case that PA ⊆ P .
Item 2 is also readily satisfied, because we do not alter the
alphabet8 and, thus, ΣA = Σ .

Proof of item 3 is broken into three separate partial
proofs, presented next, considering the focus on showing
state abstraction, proving that the set of actions enabled in

8 Remember that both alphabets also include action ε.

123

Using contexts to extract models from code

a refined state is a superset of the set of actions enabled in
the more abstract state, and demonstrating that the refine-
ment process is path-preserving. These three parts together
determine behaviour preservation from the abstract to the
refined model with respect to common attributes. After this,
we discuss our proof of refinement based on them. In all
proofs, we use KA = (SA, siA , PA, ΓA,ΣA, TA) and K =
(S, si , P, Γ,Σ, T) to represent the initial and the refined
model, respectively. Note that, to simplify the discussion, we
will refer to states of the models rather than to the contexts
originating these states. Since there is a one-to-one relation
between contexts and abstract states, it does not change the
results of the proofs. Therefore, when we talk about a trace,
wewill treat it as a sequence of stateswith actions in between,
instead of a sequence of contexts. It is also important to men-
tion that, in the proofs, we will use only transitions labelled
with single actions, rather than with sequences of actions.
This makes the proofs simpler and yet does not affect the
results, since we are just using sequences of actions that con-
tain only one action.

Partial Proof 1: state abstraction The first step is to show
that every state of K is related to a state of KA. As states
are created based on the labels they receive, we will use the
following relation:

Definition 9 State-Labelling Relation (SL). Given two LKS
models, defined as KA = (SA, siA , PA, ΓA,ΣA, TA) and
K = (S, si , P, Γ,Σ, T), such that ΣA = Σ and PA ⊆ P ,
SL ⊆ SA × S is a state-labelling relation such that, given a
state sA ∈ SA and a state s ∈ S, (sA, s) ∈ SL iff ΓA(sA) =
Γ (s) ∩ PA.

This relation determines that, for every state in the more
abstract LKS, there is a corresponding state in the refined
LKS. This relation is determined by the set of attributes
labelling these states and their respective values. Considering
this definition, we have the following lemma:

Lemma 1 For every state s ∈ S, there is a state sA ∈ SA
such that (sA, s) ∈ SL.

Proof Let us suppose a state sA ∈ SA labelled with a set
vA of values of attributes in a set PA. Let us also define
An = {an1, . . . , ann} as the set of context annotations in the
set of traces Tr(Imp) that refer to the context represented
by state sA. Since the inclusion of new attributes expands the
labels used to distinguish states, there can be two possible
situations when analysing the context annotations in An if a
new attribute p is added to the set PA, creating a set P:

1. In every context annotation an ∈ An, p has the same
value; or

2. p has more than one value registered in context annota-
tions in An.

In situation 1, the addition of p to the set of attributes
does not reveal any new state from sA. Hence, all context
annotations in An will result in the inclusion in the model of
a single state s labelled with v = vA ∪ {val(p)}, that is, the
addition of the value of p is ignored, sA and s have the same
label and, consequently, represent the same state. Therefore,
ΓA(sA) = Γ (s) ∩ PA, which confirms that (sA, s) ∈ SL .

As for situation 2, the inclusion of p does make a differ-
ence. Because p has more than one value when analysing
annotations in An, given two states s, s′ ∈ S, where Γ (s) =
vA ∪ {val(p)}, Γ (s′) = vA ∪ {val(p)′}, and val(p) �=
val(p)′, these states are distinguishable. Nevertheless, it is
easy to see that s and s′ are the same state when the value
of p is abstracted away. Then, if the set of attributes was
restricted to PA, Γ (sA) = Γ (s)∩ PA = Γ (s′)∩ PA. Hence,
(sA, s), (sA, s′) ∈ SL .

Therefore, every state s ∈ S is related to a state sA ∈ SA
in a way such that, if attributes labelling s and not labelling
sA are ignored, then they represent the same abstract state
and, thus, (sA, s) ∈ SL . ��

Partial Proof 2: enabled actions preservation The next step
is proving that every action enabled in a state sA of KA is
also enabled in at least one of the refined states of K related
to sA through relation SL .

Lemma 2 Given s1, . . . , sn ∈ S and sA ∈ SA such that
(sA, s1), . . . , (sA, sn) ∈ SL, E(sA) = ⋃n

j=1 E(s j).

Proof Lemma 1 showed that, if an attribute p is ignored,
such that p ∈ P and p �∈ PA, then a set of states S′ ⊆ S will
have the same label as a more abstract state sA ∈ SA. When
generating K , the only input to the algorithms that changes
is the set of attributes. The alphabet remains the same and so
does the set of traces Tr(Imp) used to build KA.

Let us suppose that a state sA ∈ SA originates a set of
states S′ in K when an attribute p is added to the set of
attributes PA, originating a set P , such that PA ⊂ P (i.e. for
every state s ∈ S′, (sA, s) ∈ SL). Because the set of traces
Tr(Imp)will also be used to construct K , the effect of using
P instead of PA will be that, in every context trace derived
from traces in Tr(Imp), the context represented by sA will
now be identified as one of the contexts represented by states
in S′.

Remember that the algorithm creates a transition between
two consecutive contexts (states) in a context trace and labels
it with the sequence of actions happening in between. Thus,
given an action a ∈ ΣA, if there is a transition (sA, a, s′

A) ∈
TA, itmeans that the context representedby sA and the context
represented by a state s′

A happen consecutively in a context
trace ctr , created based on a trace in Tr(Imp), and action a
occurs in between them. If sA is replaced in ctr by a state s ∈
S′, then a transition (s, a, s′

A) is obtained, since the sequence
of contexts in ctr did not change, but just the states used to

123

L. M. Duarte et al.

represent these contexts (i.e. the CIDs created when building
the CT). This means that if a ∈ E(sA) in the more abstract
model, then now a ∈ E(s) in the refined model. Because
each refined state in S′ will take a share of the transitions of
sA, the union of all actions enabled in states s1, . . . sn ∈ S′
will result in the same set of actions enabled in the more
abstract state sA. Therefore, E(s1) ∪ . . . ∪ E(sn) = E(sA).

��

Partial Proof 3: abstract path preservation The last proof
involves showing that every refined path in K can be mapped
into an abstract path in KA.

Lemma 3 For every pair (sA, s) ∈ SL, if (s, a, s′) ∈ T ,
then there exists (sA, a, s′

A) ∈ TA, such that (s′
A, s′) ∈ SL.

Proof Given a state s ∈ S, Lemma 1 determines that there
exists a state sA ∈ SA such that (sA, s) ∈ SL . Let us now
suppose that there is a transition t = (s, a, s′) ∈ T , where
a ∈ ΣA and s′ ∈ S. Based on Lemma 2, E(s) ⊆ E(sA).
Hence, if a ∈ E(s), then a ∈ E(sA), and therefore, there
must be a transition tA = (sA, a, s′) ∈ TA, where the more
concrete state s is replaced in t by the more abstract state sA,
which it is related to through relation SL .

According to Lemma 1, s′ must be state-labelling related
to a state s′

A ∈ SA. Consequently, if (s′
A, s′) ∈ SL , then

s′ can be replaced in tA by s′
A just as s was replaced by

sA. This results in a transition (sA, a, s′
A) ∈ TA, which is

the more abstract representation of transition t , such that
(sA, s), (s′

A, s′) ∈ SL . ��

Proof of property-preserving refinement

Proof Proving Theorem 2. As a result of Lemmas 1, 2, and 3,
every state of the more refined model K is related to a state
of the more abstract model KA through the state-labelling
relation, and all outgoing transitions of a state sA of KA are
preserved in K as outgoing transitions of a set of states related
to sA. Furthermore, every transition of the refined model can
be mapped back into an abstract transition. Hence, every
path λ = 〈s1a1s2a2s3 . . .〉 ∈ Λ(K) can be mapped into a
path λA = 〈s′

1a
′
1s

′
2a

′
2s

′
3 . . .〉 ∈ Λ(KA) such that, for n ≥ 1,

an = a′
n and (s′

n, sn) ∈ SL . Therefore, Theorem 2 holds.
��

In [10], the authors present a logic that is a superset of LTL,
called SE-LTL. They show that, if a property φ is expressed
in this logic and mentions only actions in the alphabet ΣA,
then if φ holds for KA, then it also holds for K . Based on
this and on Theorem 2, we can conclude that:

Corollary 1 For every LTL property φ overΣA, if KA |� φ,
then K |� φ.

Therefore, our refinement process between LKS mod-
els preserves LTL properties that consider only actions of
the alphabet of the more abstract model. Hence, given that
there is a property-preserving refinement relation between
two LKS models built with different sets of attributes and
that the mapping from an LKS to an LTS model is property-
preserving (see Theorem 1), the generated LTS models also
have a property-preserving relation between them. This rela-
tion is also a refinement:

Theorem 3 Let KA = (SA, siA , PA, ΓA,ΣA, TA) and K =
(S, si , P, Γ,Σ, T) be two LKS models such that K � KA.
If KA is mapped into an LTS MA = (S′

A, s′
i A

,Σ ′
A, T ′

A) and
K is mapped into an LTS M = (S′, s′

i ,Σ
′, T ′), then, given

an LTL property φ over ΣA, if MA |� φ, then M |� φ.

Proof The proof of Theorem1demonstrated that eliminating
the state labels from an LKS, we obtain an LTS that preserves
the same properties. Hence, given an LTL property φ over
ΣA, if KA |� φ, then MA |� φ, and if K |� φ, then M |� φ.
Since Corollary 1 holds, guaranteeing that a refined LKS
preserves the same LTL properties of its abstraction when
these properties are restricted to actions in the alphabet of
the more abstract model, if KA |� φ, then K |� φ.

Therefore, if KA preserves φ, then so does the LTS MA

derived from it, and sowill its refinement K . BecauseM is an
LTS obtained from K through the same property-preserving
process that generated MA from KA and K |� φ, then M
also preserves this property. As a result, if MA |� φ, then
M |� φ. ��

Note that, ignoring the state labels, the relation described
in Definition 8 is a simulation relation [50], where the more
abstractmodel simulates themore refined one. Therefore, it is
possible to say that MA simulates M . This relation between
the models guarantees inherent properties of a simulation
relation.

6 Case studies

This section presents four case studies developed using our
model extraction approach based on contexts. They involve
part of the code of a remote agent described in [59], the
PipedOutputStream class from the JDK 1.7, the SMTPProto-
col class from the ristretto library, and the ThreadedPipeline
application presented in [15]. We discuss the results of these
case studies9 considering the use of the approach to pro-
duce models of sequential and concurrent systems. Our main
goal was to evaluate the applicability and scalability of our

9 The complete data and results are available at http://www.inf.ufrgs.
br/~lmduarte/doku.php?id=ltse.

123

http://www.inf.ufrgs.br/~lmduarte/doku.php?id=ltse
http://www.inf.ufrgs.br/~lmduarte/doku.php?id=ltse

Using contexts to extract models from code

approach, including our data abstraction and model refine-
ment techniques, as well as its effectiveness in different
scenarios. To do so, we focused our choice of case studies
on programs whose source code is publicly available and for
which there is some type of specification, so that we had a
description of the intended behaviour of the program, which
could be used as an oracle to evaluate our models.

We initiated all experimentswith an empty set of attributes,
which means that the initial models considered only the con-
trol component of contexts. In some cases, we had to modify
parts of the original code to enable the correct automatic
instrumentation, due to difficulties we encountered using the
TXL language. For instance, we had to split some compound
commands into multiple simpler ones (e.g. changing int
i = 1 + m();, where m returns an integer, into the fol-
lowing sequence of commands:int r; r = m(); int
i; i = 1 + r;). However, these modifications did not,
in any way, alter the program behaviour.

RAX This case study involved part of the code of the Remote
Agent, which is an AI-based spacecraft controller [29,59]
used in a NASA project. The agent executes processes in
the form of tasks, which exchange events. There are three
classes involved in this part of the code: the Event class,
which implements the events, and classes FirstTask
and SecondTask that implement two different tasks that
exchange signals using events. In [59], a deadlock situation in
this system is reported, which was uncovered using the Java-
PathFinder (JPF) tool. Hence, we selected this case study to
analyse whether our strategy for concurrent systems could
be used to detect this error even though we generate a sepa-
rate model for each element of the system. The models were
created using only two traces, considering the two possible
orders of initialisation of the tasks, obtained by manually
modifying the main class code to force the necessary situ-
ations. The produced models were composed in the LTSA
tool, where we manually created two instances of Event,
one associatedwith (synchronisedwith) eachoneof the tasks.
When checking the composed model for deadlock-freeness,
we obtained a counterexample showing the situation where
the SecondTask signals an event, notifying all the waiting
threads, and, right after that, the FirstTask starts to wait
for the signal. Because the FirstTask missed the signal,
it blocks (calls method wait). After sending the signal, the
SecondTaskwaits for the return signal and blocks as well.
Since both threads are suspended, the system reaches a dead-
lock situation. Note that neither of the traces used to create
the models presented a deadlock situation, but the behaviour
captured for each component and their composition allowed
us to identify the problem.

PipedOutputStream The Java classPipedOutputStream
implements an output stream that connects to a correspond-

Fig. 15 Property automaton for the PipedOutputStream created
based on the iLTS shown in [26]

ing input stream (PipedInputStream) to exchange data.
This code is part of the open source libraries of the Java lan-
guage, included in the java.io package of the JDK 1.7.
The work described in [26] presents an iLTS (interface LTS)
model as a specification for the PipedOutputStream,
which was obtained using a combination of an inference
algorithm and symbolic execution. The original iLTS model
has three states and nine guarded transitions, containing an
error state to represent that an exception has been thrown.
The guards represent conditions for the transitions, where
the most important guard is that of the transition represent-
ing the execution of method connect, which is successful
if the PipedInputStream received as a parameter is not
null and is not currently connected. We used this iLTS as
specification to evaluate the correctness and completeness of
our model. To work with this iLTS as specification, we con-
verted it to anLTS, representing theguards and the error states
using actions: action connected occurs after a connect
in the initial state if the connection is successful; otherwise,
the next action is exception, representing the transition to
the error state of the iLTS; the same action exceptionwas
used to represent other situations that lead to errors. This pro-
cedure produced the LTS described in Fig. 15, which, when
converted to a property, determines that any behaviour not
described in the LTS is considered a violation (i.e. it leads to
an error state). We created two user-defined actions to rep-
resent actions connected and exception. The first one
was placed at the end of method connect, representing
a successful connection, whereas action exception was
introduced in all points of the code where an exception could
be thrown.

A test suite with a total of 12 JUnit10 test cases is distrib-
uted by Oracle (available with the openJDK source11) and
theApacheHarmony project.12 They provide 85.7%of state-
ment coverage and 72.2% of branch coverage.13 We applied
the test suite to generate the traces to build an initial model

10 http://junit.org.
11 http://openjdk.java.net.
12 http://opensourcejavaphp.net/java/harmony/org/apache/harmony/
luni/tests/java/io/PipedOutputStreamTest.java.html.
13 Measured with CodeCover: http://codecover.org.

123

http://junit.org
http://openjdk.java.net
http://opensourcejavaphp.net/java/harmony/org/apache/harmony/luni/tests/java/io/PipedOutputStreamTest.java.html
http://opensourcejavaphp.net/java/harmony/org/apache/harmony/luni/tests/java/io/PipedOutputStreamTest.java.html
http://codecover.org

L. M. Duarte et al.

and evaluated the correctness and completeness of thismodel
with respect to the specification.Weused themodel-checking
capability of the LTSA to compare the specification model
with the model we produced, resulting in the detection of
a violation that allowed the stream to successfully connect
even if already connected. We detected that it was a spurious
counterexample, since method connect has a guard that
only allows a successful connection if no previous connec-
tion exists. Therefore, we detected a correctness problem due
to the level of abstraction of our model. We applied the ideas
presented in Sect. 4.4 to identify that adding attribute sink
to the system state should eliminate the spurious behaviour.
The value of this attribute determines the current state of a
connection, where a null value indicates that the stream is
not connected. Because any value other than null signals that
a connection exists and the set of possible values is, there-
fore, potentially infinite, we created a user-defined attribute
called isSinkNull and associated it with the expression
sink == null. Hence, since what matters is whether sink
is null or not, we created a predicate that checks specifi-
cally this. Checking the refined model, a new violation was
found: 〈connectconnectedwriteexception〉. The
counterexample indicates that, after a successful connection,
the execution of method write could produce an excep-
tion, which is not allowed by the specification model. This
behaviour was identified as real, because there are two imple-
mentations ofmethod write in the class: one that takes only
an integer as input—and that indeed never generates excep-
tions if there is a connection—and another that takes an array
of bytes and two integers as parameters, which generates an
exception if the array is null or the integers provided are out-
side a certain range. Introducing one user-defined action for
each method to differentiate them, we observed that the vio-
lation occurred because the specification model was created
based on a version with a single method write, which only
fails if invoked when there is no valid connection. However,
the counterexample contained the added action that shows
that the violation was related to the other implementation of
method write. Hence, in this case, not only our model cor-
rectly described the behaviour of the code at the defined level
of abstraction, but alsowe could detect a problem in the spec-
ification regarding a simplification due to the overloading of
a method. In a real scenario, our model would help improve
the specification or, at least, the situation could be taken to
stakeholders for a decision. To proceed with our experiment,
we removed the transitions related to the execution of the ver-
sion of method write that violated the specification, and no
more counterexamples were found. Thus, we concluded that
we found a correct representation of the system behaviour
with respect to the specification.

To analyse the completeness of ourmodel,wedid a reverse
checking, using the specification as model and our model
as a property automaton. This way, we could detect which

behaviours allowed by the specification are not present in our
model. To avoid differences in alphabet, we hid all actions not
mentioned in the specification. We also added action _EXIT
as an outgoing transition from state 4 of Fig. 15 to a created
FINAL state, where we introduced a loop of action _EXIT
so as to avoid a possible alarm of a deadlock situation dur-
ing verification (this procedure follows the idea presented
in Algorithm 2). The first missing behaviour detected was
the possibility of executing close in the initial state. With
this information, we added a new JUnit test case to force the
execution of close as the first action and produced a new
trace. The new trace was added to the existing model, creat-
ing a transition from the initial state to the FINAL state. We
repeated this procedure until no more violations were found,
concluding that our model included all behaviours present
in the specification. This cycle involving model checking
and test cases was executed 22 times, adding 22 new test
cases to the test suite, reaching 88.1% of statement coverage
and 83.3% of branch coverage. As the introduction of new
behaviours could have included some behaviour that could
violate the specification, we executed a new checking of our
model against the specification, wherewe detected violations
related to action _EXIT. As commented before, we use this
action because we do not know whether, in order to pro-
duce finite traces, the program successfully terminated or its
execution was interrupted at some point. In this case, since
class PipedOutputStream describes a passive process,
it is expected that the execution could end at any moment
(i.e. there should be a transition labelled with action _EXIT
from every state to the FINAL state). Nevertheless, the spec-
ification assumed that the execution would only terminate
when an exception occurred. Just to guarantee that every-
thing else was correct, we removed all occurrences of action
_EXIT not allowed by the specification, checked again, and
no more violations were found, which means that our model
was correct and complete with respect to the specification.

SMTPProtocol The source code for this experiment is an
implementation of the client side of the SMTP protocol14

obtained from the ristretto library.15 The traces for this case
study were generated using the 5 JUnit test cases distributed
along with the source code. In [17], the authors present type-
state [56]models representing this class. For this experiment,
we considered the three models available from the authors’
online repository:16 one initialmodel, built by their tool using
the test suite from the ristretto library, an enrichedmodel also
built by their tool, containing the results of mutant test cases,
and a complete model manually created by the authors. We

14 http://tools.ietf.org/html/rfc821.
15 http://ostatic.com/ristretto.
16 http://www.st.cs.uni-saarland.de/models/tautoko/materials.html.

123

http://tools.ietf.org/html/rfc821
http://ostatic.com/ristretto
http://www.st.cs.uni-saarland.de/models/tautoko/materials.html

Using contexts to extract models from code

applied the same idea used in the previous case study, focus-
ing on determining the correctness and completeness of the
extracted model with respect to the specifications. We pro-
duced a model based on the traces generated by the set of
five test cases. Visually comparing this model with the ini-
tial model, which contained three states and 10 transitions,
we noticed that the specification did not include some actions
present in ourmodel (which had 10 states and 13 transitions),
such as action ehlo, and it did not present the descrip-
tion of exceptional states, as discussed in [17]. We checked
our model against this model, resulting in a counterexample
that described the sequence of actions 〈openPort auth
authReceive〉. However, one of the test cases provided
with the programandused to build themodels showed that the
mentioned sequence is a feasible behaviour. In this case, in a
real scenario, there would have to be a discussionwhether the
specification was incomplete or the program was incorrect.
In any case, our model correctly included this behaviour that
was observed during the trace generation, based on the same
test suite used by the authors of the specification. We then
proceeded to use the enriched model as specification. This
model had five states and 33 transitions, including behaviours
describing situations where an exception could be gener-
ated. We modelled a transition labelled with a given action
a from a state S to the exception state (Ex) as a transition
labelled with a from S to an intermediate state and a tran-
sition from this state, labelled with an action exception,
to a STOP state. Doing the check, we found the counterex-
ample: 〈openPort noop〉, which was produced because
action noop did not appear in our model (i.e. it was not
on the observed traces). We then created a new JUnit test
case to force this sequence and included the produced trace
in our model. However, when checked again, we obtained
the same counterexample, because the enriched model did
not include this behaviour as valid. Once again, we found
a feasible behaviour of the code that is prohibited by the
specification and should, therefore, be analysed. Consider-
ing that the authors produced it based on test case generation
and specification mining, this is probably because of the
specification incompleteness. For this reason, we decided
to compare our model with the complete model, manually
created by the authors, which contained seven states and 89
transitions. Our first verification presented the absence of
action verify in our model (indicated by the counterex-
ample 〈openPort verify〉), which led to the creation of
a new test case to observe this specific behaviour, which was
a feasible behaviour. Checking themodel with this additional
behaviour against the completemodel, the sameviolationwas
found, presenting this as an invalid behaviour. Nevertheless,
the execution of the test case showed it to be feasible. Hence,
in comparison with all three models, our model built with a
test suite with an equal or smaller number of test cases (i.e.
observed traces) could detect discrepancies betweenwhat the

models (used as specifications) described and the real behav-
iour of the program. More importantly, even with a small set
of traces, our model correctly described only feasible behav-
iours of the program and provided more coverage than their
initial model.

ThreadedPipeline This program is described in [15] and
implements the transportation of integer values through
stages of a pipeline. Each one of the three stages runs on
its own thread, and they are connected to each other by a
connector, which is responsible for receiving the values from
the previous stage and passing them on to the next . The con-
nector implements a monitor, which means that it includes
a wait-notify mechanism used in Java for synchronisation.
Besides stages and connectors, the program also includes
a Main class (used to create all elements of the program,
start the threads, and provide values to the pipeline) and a
Listener class, which is connected to the last stage of the
pipeline, consuming the value produced by the stages and
printing it out. The following two properties proposed and
codified in LTL by the authors in [15] were used as spec-
ification, since the authors demonstrated them to be valid
for this system: (i) calling method stop of a pipeline stage
eventually leads it to shut down, and (ii) no pipeline stage
stops prematurely (i.e. they do not stop sending new values
without receiving the message to stop, after the first stage has
stopped). We created one model for each element of the sce-
nario and then manually composed them in the LTSA tool,
creating the necessary instances of connectors and establish-
ing the appropriate synchronisations between actions from
each element. We did not create a model for class Main, as
it just starts all other elements. This way, we can analyse the
general behaviour of the application and not only the par-
ticular scenario defined in the Main class. The traces were
generated by randomly executing the application 10 times.
We again used the model-checking feature of LTSA to check
our composed model against the specification. The result of
the verification was a violation of the property that ensures
that no stage can shut down before the first connector of
the pipeline stops. This was not a real behaviour because a
Connector instance does not allow the next stage to read a
value (executemethodtake) prior to having received avalue
from the previous stage (executing method add) or stopping
(methodstop). Therefore, itwas identified that itwas neces-
sary to consider whether the value of attribute queue is less
than 0, which is the condition used to block threads (mean-
ing that neither a value has been received or the pipeline
has stopped). This attribute was used to refine the model.
Verifying the properties against the refined model produced
the counterexample 〈stage1.start stage2.start
stage3.startlistener.startc1.addc1.take
c2.stop stage1.stop c1.stop〉 to the same prop-
erty, where stage1, stage2, and stage3 represent the

123

L. M. Duarte et al.

pipeline stages, listener is the component that reads
the value from the last stage, and c1 and c2 are the
connectors between stage1 and stage2 and between
stage2 and stage3, respectively. The counterexample
shows that stage2 could be told to stop before stage1
stops. Analysing the code, we discovered that it could be a
feasible behaviour. This would happen in the following situ-
ation:

1. Main generates a single value, which is 0; hence, it adds
this value to Connector c1 and then stops c1;

2. stage1 reads the value from c1 and tests it. Because
the value is 0, it identifies that the pipeline has shutdown,
tells c2 to stop, and then stops;

3. Depending on the scheduling of the machine, the order
in which Main tells c1 to stop and stage1 stops may
cause the sequence presented in the counterexample.

However, considering the original scenario (based on the
code of classMain), where the values to be transmitted range
between 1 and 9 (therefore, no possibility of being 0), this
would be an infeasible behaviour. This means that, in this
particular scenario, the violation is spurious, whereas in a
generic scenario, where one may use different versions of
the Main class to instantiate and start the pipeline compo-
nents, this would be a possible behaviour that would violate
the property. If we consider the particular scenario proposed
by the authors, we would need to control the number of val-
ues sent to the pipeline, so that we could guarantee that
it would only stop after sending all the values. Hence, we
would have to create a model for the Main class to count
the number of calls to method add before sending a stop
signal. This model cannot be produced automatically using
the extraction approach because the value that controls the
repetition comes from a local variable and, therefore, can-
not be used as part of the context information. Hence, we
would have to build it manually. In order to differentiate the
case when a connector has stopped and when it has some
value to pass on, we would have to introduce a user-defined
attribute that would tell whether the value of attribute queue
is equal to 0. This way, we would create two equivalence
classes of behaviour: one where the connector stops (value of
queue is 0) and another where the connector is still active
(any value different from 0). Carrying out these modifica-
tions, another violation was detected during the verification
of the new model: 〈stage1.start stage2.start
stage3.start listener.start c1.add c1.add
c1.add c1.add c1.add c1.add c1.add c1.add
c1.addc1.takec2.stopstage1.stopc1.stop〉.
This is due to the fact that, even though the model describes
that there is more than one value to be transmitted, it does
not contain the information about the specific value that is
being transmitted; thus, it still includes the possibility that a

value 0 could be added to the pipeline, causing stage1 to
terminate right after the first value is received from connector
c1. Given the information used to identify contexts, this sort
of knowledge about the program behaviour is not accessible.
Even if each method call is labelled with the concrete value
added/read, the limitations of our approach make it not pos-
sible to automatically identify that, for instance, after adding
1 to a connector, the take action from the next connector
would work on the same value 1. Moreover, it is not possi-
ble to know that, after a stop, the value returned by calling
method take must be 0.

6.1 Evaluation of results

Table 2 summarises the results of the case studies in terms of
the number of classes involved, the total number of lines
of code, the total number of states and transitions in the
extracted models, and the physical space used and the total
time consumed to build all the models. The space is the sum
of the size of the context table and the size of the temporary
structures used to store the model before generating the FSP
description. The total time considers the time elapsed from
the moment that the first log file (the file containing a trace)
starts being parsed until the point where the complete FSP
description was generated. The number of states and number
of transitions for the case studies with a single class (Piped-
OutputStream and SMTPProtocol) correspond to the model
described in the FSP file created by our tool, i.e. it contains
the null transitions, which can then be hidden to reduce
the number of transitions and, perhaps, cause the merging
of states. In the case of applications with multiple elements
(RAX and ThreadedPipeline), the number of states and num-
ber of transitions refer to the composed model, and the total
space and time are the sum of the space and time used to
build the model of each element.

The case studies demonstrated the applicability and use-
fulness of our approach for extracting models that can be
used to describe the behaviour of a program. Even if not
complete, the use of contexts guarantees that they include
only valid behaviours considering a certain level of abstrac-
tion. For this reason, any violation of a specification is either
a real problem or a false alarm caused by an incorrect level
of abstraction. Hence, they can serve for property check-
ing to uncover existing errors, such as the one detected in
the RAX case study, which could not have been identified
by testing alone, and the problems with the specifications
in the PipedOutputStream and SMTPProtocol, cre-
ated based on inference methods. However, it might be
required that they be, at least, complete with respect to the
specification in order to check more complex safety prop-
erties. Liveness properties might call for a higher level of
completeness, nevertheless. The case studies also showed
that completeness can be achieved through an incremental

123

Using contexts to extract models from code

Table 2 Results from the case
studies

Program Classes LoC States Transitions Space (b) Time (ms)

RAX 3 60 141 365 3294 941

PipedOutputStream 1 165 34 70 8462 881

SMTPProtocol 1 982 255 269 253,050 1132

ThreadedPipeline 7 96 28,056 146,133 13,992 3315

process, even though it might require multiple steps to reach
the desired model. Our strategy for building models of con-
current systems has produced good results, and its greatest
advantage is the fact that the user can concentrate on the spe-
cific behaviour of each element rather than worrying about
the integrated behaviour. This way, as achieving complete
coverage of a single component is easier than covering all
the combined behaviours, it is possible to generate traces to
produce a complete model of each component, which can
be checked against local properties, and then combine these
models in the LTSA to check program properties. More-
over, because each model is independent of the particular
system being analysed, they represent the generic behav-
iour of the components, allowing the possibility of reuse
and exploring different scenarios, as we discussed in the
ThreadedPipeline case study.

Next, we discuss some aspects of our approach based on
the results of the case studies and on our experience with
other experiments.

Applicability of the approach Even though our approach cur-
rently extracts LTS models from Java source code, it can be
used to generate LTS models from programs in other pro-
gramming languages, as long as the source code is available
for instrumentation. The real effort would be to adapt the
annotation rules. Our extracted models have been used for
program comprehension, validation, model checking, and
model-based testing. Due to the possibility of incrementally
enhancing themodel, this approach couldbeused as part of an
agile development process, gradually constructing the model
as the system grows, providing an artefact to be presented to
stakeholders. It also can be part of a CEGAR process [12], as
we presented in the case studies, although the refinement is
still not automatic. The output of our approach could also be
adapted to serve as input to tools other than the LTSA, such
as Spin [32] and PRISM [40], thus allowing the models to
be used for other types of analysis.

Customisation of models Our approach provides a high level
of flexibility, allowing the user to customise the model and
the process. This way, it is possible to define actions other
than methods, select the program variables for the system
state, create predicates over program variables to refine the
model, define the model alphabet, and select the interpreta-
tion of method actions. However, this requires some effort

and, in some cases, some expertise. In the case of concur-
rent systems, the possibility of creating individual models
for the components of the system and then composing them
might reduce the effort to generate traces, as each component
can be instrumented and, for example, tested independently.
Because creating test cases for individual classes is relatively
simple (it took us just a few seconds to build the test cases for
our case studies), this is an advantage. Nonetheless, to com-
pose these individual models, the user needs to know how to
correctly synchronise the necessary actions and instantiate
each element.

Effort to run the experiments The PipedOutputStream
was the one that took longer (about 30min) and was harder
to execute. Much of the time and effort was due to the cycles
to complete the model based on the specification. Each cycle
would take two minutes on average, considering a refine-
ment or a new trace generation and the production of the
new model. In general, the instrumentation process, even if
manual corrections are required, is simple and takes less than
a minute. Trace generation can be done with random exe-
cutions or using a test suite. Random executions reduce the
time to start producing traces, but we have no control over the
traces to be observed. Test suites, on the other hand, allow
to determine the traces to be generated based on a given
coverage criterion (e.g. a testing coverage or a specification
coverage). Because we have been working on Java, we can
create JUnit test cases, which is a simple task, in particular
because these test cases usually only involve instantiating
the necessary objects and applying the desired sequence of
method calls. For the same reason, creating new test cases
based on counterexamples is straightforward. In the exper-
iments with concurrent systems, an additional effort was
dedicated to composing the models, which required basic
knowledge of the FSP language and semantics.

Complexity to extract models The extraction process is
affected by the length, the quantity, and the quality of the
traces used to build the model. The length of the trace refers
to the number of annotations collected during the execution:
the larger this number, the longer it takes to process the trace.
As a consequence, the number of traces to be analysed also
increases the time to complete the parsing process. However,
the quality of the traces—i.e. the coverage of all the possi-
ble different contexts that the program can produce—does

123

L. M. Duarte et al.

not have much effect on the time to extract the model, as
all the annotations are processed, one by one, anyway. Nev-
ertheless, it influences the space required to complete the
extraction. Remember that each different context means a
new entry in the context table, which, in turn, means more
space used to store the context information required to con-
struct the model. Hence, there is no direct relation between
time and space when building models using our approach.
For instance, the SMTPProtocol was the case study that
consumed more space because of its variety of contexts, but
it was not the one that took longer to finalise.

Scalability The two elements that affect the most the space
and time required to complete the extraction process are the
length of the traces and the size of the CT. The length of the
traces determines the number of annotations that have to be
processed, but also the type of the annotation defines its effect
on the size of the CT and the model. Each new enter-context
annotation found produces a new entry in the CT and the
inclusion of a new state in the model. Hence, the number of
states in themodel is exactly the number of different contexts
identified in the traces (which is also the number of entries in
the CT). Exit-context annotations do not produce anymodifi-
cations in the context table nor in the model, as they are only
used to control the end of contexts. Thus, themaximum num-
ber of contexts that can be identified from a trace is equal to
the total number of enter-context annotations. Because there
is a corresponding exit-context annotation for each enter-
context annotation, given a tracewith n annotations, there can
be identified n/2−a different contexts,wherea is the number
of action annotations. The number of transitions in the model
corresponds to the number of changes in context (each pair of
consecutive enter-action annotations, ignoring exit-context
and action annotations). Each change in context causes the
inclusion of a new transition in the model (labelled with the
null action if no action happened between the two consec-
utive contexts). Hence, the maximum number of transitions
created based on a trace containing n annotations is n − 1.
Regarding the time necessary to process the traces, it takes
O(n ∗ m) to process n annotations and a context table with
m entries. The elements that affect the size of a CT are those
structures that originate contexts (i.e. method bodies, method
call sites, and selection and repetition statements) and the set
of attributes composing the system state. Method bodies and
call sites create each at least one entry in the context table.
Depending on the observed traces, each guarded command
will also create at least one entry in the CT (if only one pos-
sible evaluation of the control predicate has been observed,
and the set of attributes is empty). Hence, let m be the num-
ber of method bodies of a class, c be the number of call
sites, and g be the number of guarded commands (selection
and repetition statements), the minimum size of the corre-
sponding CT is m + c + g. However, in general, the control

predicates of guarded commands are either Boolean expres-
sions (structures of the typesif-then-else,while-do,
do-while, or for-do) or expressions over types that
can be converted into integers or enumerations (structures
of the type case or switch). Thus, the size of the CT
is affected by the cardinality of the set of possible values
resulting from the evaluation of expressions used as control
predicates, since there can be a different context for each
possible different value. Therefore, the maximum number of
contexts that a given program can produce with an empty set
of attributes is given by m + c+∑g

i=1 rangeO f (gi), where
rangeO f (gi) gives the number of distinct values that the
control predicate of the guarded command gi can assume.
If the set of attributes (system state) is not empty, then the
maximum number of contexts that a program can produce
is (m + c + ∑g

i=1 rangeO f (gi)) ∗ v, where v is the num-
ber of different valuations of the system state. Therefore, the
size of the CT grows exponentially according to the ranges
of values of the attributes that are added to the system state.
For this reason, it is important that only attributes that are
really necessary be added to the system state. A sensible
approach is to start with an empty set of program variables
and add attributes as they are needed to achieve correctness.
User-defined attributes also help reduce the possible number
of valuations when it is only necessary to evaluate a certain
predicate over the value of an attribute.

Termination Even if some variable has an infinite range of
possible values, it does not prevent the model extraction
process from terminating. All traces given as input to the
approach are finite. Hence, we always have, for each trace,
a finite number of annotations to analyse to build a model,
which means that every context trace created based on these
traceswill also be finite. Likewise, as the set of traces is finite,
the set of context traces is finite aswell. Therefore, Algorithm
1 always terminates. BecauseAlgorithm1 always terminates,
producing a finite CT and a finite set of finite context traces,
Algorithm 2 also always terminates.

6.2 Threats to validity

The results presented in this section are subject to some
threats to validity. We describe these threats below, distin-
guishing between threats to internal, external, and construct
validity.

Threats to internal validity The flexibility of our approach
is strongly related to the possibility of the user customising
the model. However, too many configurations, most of them
manual, can also increase the chance of making some mis-
take that could affect the final result. Hence, the user has to, at
least, have a good knowledge of the modelling formalism, so
that they can appropriately adjust these parameters and check

123

Using contexts to extract models from code

the resulting model to see whether they are correct for the
specific purpose. When dealing with concurrent systems, the
global model is a composition of the models of the elements
of the system. As the composition is also created manually,
the choice of which actions to hide/relabel/synchronise is left
to the user. Once again, there is a trade-off between customi-
sation and required knowledge to obtain the desired results.

An important issue is the fact that our refinement process
is still manual, which means that the user has to define how
to select the attributes to be added to the system state. Since
the values of program variables may have an infinite range,
data abstraction is required to avoid state-space explosion.
So far, we provide user-defined attributes as a means of cre-
ating predicates over the values of attributes when the actual
values are not necessary at the required level of abstraction.
However, this data abstraction demands manual effort and
knowledge, and has a limited effect if the actual value of an
attribute is necessary to achieve correctness.Moreover, as the
refinement is manual, introducing new values to the system
state may also lead to a state-space problem if the additional
attributes are not correctly chosen and data abstraction is
not appropriately implemented. Although we provide some
insight on how to select these attributes, these are still pre-
liminary ideas and might not be applicable to all situations.

As mentioned at the beginning of this section, in some of
the experiments, we had tomodify the original source code to
break complex commands into multiple simpler ones, due to
some limitations in using the annotation language. Although
the process itself should not change the general behaviour
of the applications, it was conducted manually, and thus, we
could have made some mistake.

Threats to external validity In this paper, we applied our
approach to a set of four small applications. We have not yet
applied our approach to extract models of large-scale sys-
tems, which means that we have not yet dealt with a huge
number of elements and extremely long traces. However, the
number of elements should not be a problem, as each ele-
ment can be treated separately, extracting each model based
on the instrumentation of only the specific target element,
generating traces that concern only information about this
element. The problem could arise when composing multi-
ple models, as the composed model might get too large. In
this case, we offer the possibility of user-defined attributes,
which can reduce the space state. Another possibility is to
hide away all unnecessary actions, such as local actions that
do not interfere on the type of analysis being conducted. In
general, issues related to model composition might involve
more aspects inherent to the formalism we adopt than have
to do specifically with our approach, since we just produce
the models that could have been created manually. Our goal
was to ease the process of generating the model. As for the
length of the traces, it only means that it might take longer

to parse them and, perhaps, require more space to store the
necessary context information. Nevertheless, depending on
the behaviour of the component, a few, short traces might
be enough to capture its complete description. The length
and the quantity of the traces can be adjusted by focusing on
specific behaviours or particular coverage criteria.

Our approach is not well-suited for programs where most
of the control flow is based on local variables and/or most of
the code behaviour does not involve method calls. If the con-
trol flow is based on local variables, it might not be possible
to find an appropriate refinement, as we refine models based
on (expressions over) the values of program variables. This
situation appeared in the ThreadedPipeline case study,
where a local variable value was an important information
regarding the program behaviour. If the program makes little
use of method calls, a large number of user-defined actions
might have to be introduced to describe relevant events during
the execution, such as assignments and results of mathemat-
ical expressions, increasing the manual effort.

The requirement of access to the source code limits the
applicability of our approach, and the need to introduce anno-
tations in the code causes an effect on the program execution
time, which might be relevant in real-time systems. In con-
current systems, the fact that the annotations include the
evaluation of expressions and values of attributes may result
in a anomalous behaviour being introduced in the model. For
instance, if shared variables are used and the access to these
variables is not controlled, the value of a variable when the
annotation is recordedmight be different from the value actu-
ally evaluated by the program. This situation did not occur in
our experiments, but it is a possibility to be considered. We
do not handle local synchronisations, which also makes our
approach not suitable for programs that use suchmechanism.

Threats to construct validity The effort to produce a com-
plete model with respect to a certain specification/coverage
depends on the initial set of traces and the required coverage.
Although we could incrementally create a model based on an
initial small set of traces (perhaps, just a single trace), the cov-
erage provided by these traces and the desired coverage will
determine how many steps will be necessary to complete the
task. As this process is not automatic, it significantly affects
the effort of producing the models.

In the case studies, we applied different comparisons to
evaluate the extracted models. When evaluating complete-
ness, we compared our models to existing specifications.
In some cases, these specifications were not presented as
an LTS, which required a conversion. This means that our
comparisons did not consider the original models, but LTS
versions of them. Even though the underlying formalisms are
similar, we may have introduced some error in this conver-
sion. Nevertheless, the fact that all the case studies are based
on previous results of related work allows us to believe that

123

L. M. Duarte et al.

such errors, if they existed, would have been spotted. Our
choice of type of comparison for each case study may also
have influenced our results. However, they seemed appropri-
ate for each case and demonstrated the effectiveness of our
approach in different scenarios and the different uses of our
extracted models.

7 Related work

Our work was originally inspired onModEx [34], which pro-
posed to manually insert annotations in C code. The user had
to provide amapping between theC commands to commands
in PROMELA,which is the input language of the Spinmodel
checker [32], to allow the extraction of models that could be
used for model checking. Unlike the ModEx approach, our
mapping from the programming language to the modelling
language is predefined and automatic. In [37], the authors
propose an approach where the user provides rules to trans-
late an intermediate model, generated from the source code,
to the final model. This rules are basically syntactical but
incorporate the semantics of a specific domain or applica-
tion to apply the appropriate abstractions. Hence, whereas
ModEx uses purely syntactical rules, they provide a way of
associating semantics to these rules. Our rules are related
to the structure of programs and can be adapted to differ-
ent programming languages, just as their configuration rules
can be adapted for each application and domain. Although
our rules can be seen as basically syntactical, they contain
the semantics required to correctly describe the control flow
of the program and combine it with dynamic information,
which is not considered by their work, as they extract the
model based only on static information.

Some techniques guarantee completeness by obtaining
the complete CFG of the system [4,11,30]. As expected,
this results in an over-approximated abstraction of the sys-
tem, which can yield a number of false alarms. They rule
out these false alarms by applying an automatic refinement
process based on predicate abstraction [28]. Though we still
do not provide automatic abstraction refinement, our refine-
ment process has proved to successfully eliminate some false
alarms. This process is simple and, unlike the aforemen-
tioned relatedwork, does not require the support of a theorem
prover. However, our model extraction process usually leads
to the creation of an incomplete model, as we depend on the
set of observed traces.

Static checkers, such as ESC/Java [23], also work on the
source or compiled code to detect possible run-time errors
(e.g. null references, wrong type assignments). As static
checkers, they do not require the execution of the system,
but have to rely on some sophisticated analysis technique
to help the process. In the specific case of ESC/Java, the
programmer has to provide annotations using a predefined

language in order to mark certain points of interest, regard-
ing invariants and preconditions, and enable a theoremprover
analysis. We also use annotations in the code, but they can be
automatically inserted and are generic, rather than containing
elements that are specific for each program. Moreover, these
static checkers only produce reports on detected errors and
warnings, whereas we generate a model of the behaviour of
the system. Hence, our result is an artefact that not only can
be used to document the software in a higher level than their
annotations, but also serves for other purposes, such as the
analysis of different types of properties.

TheBandera toolset [15] extractsmodels from Java source
code based on provided temporal properties, using a slicing
technique to reduce the size of the code, eliminating parts that
do not affect the validity of a given property. In commonwith
this approach,wehave the possibility of creating user-defined
data abstractions to reduce model complexity. Moreover, we
also allow the model construction to focus on a property of
interest, so that completeness is considered with respect to
the property and not to the entire behaviour of the system.
Nevertheless, we do not use a reduced version of the code
to generate models. This way, we do not need to conduct
control and data flow analysis to guarantee the correctness
of our models. On the other hand, Bandera is capable of
dealing with local information, which can be useful when
local variables are relevant for the program behaviour.

We apply the analysis of execution traces, as described
in [14], where collected traces were used to infer a model
based on techniques such as neural networks and statistical
analysis. Generally, similar techniques, based on automata
learning, such as [1,2,55], share with our approach the
dependence on the samples of execution to achieve complete-
ness. However, they usually do not provide means of refining
models to improve correctness. Moreover, though the work
presented in [47] describes an incremental approach, the
increase in completeness of an existing model usually causes
the decrease in correctness. This is a consequence of the lack
of information about how to combine different traces without
creating infeasible behaviours. Such information is provided
by our context abstraction; thus, the inclusion of new traces
is sound, considering the current level of abstraction.

Aiming to allowa sound state-merging, theworkdescribed
in [43] combines the samples of sequences of method invo-
cations with values of their parameters to generate extended
finite state machines (EFSM). They apply a merging tech-
nique based on similar possible futures of states, where
these possible futures are considered up to a specific, prede-
fined length. Instead of gradually adding information, context
information already provides us with more reliable infor-
mation regarding the possibility of merging different traces
correctly, so that improving completeness does not affect the
correctness of the models. Moreover, we do not need to limit
the length of the paths analysed, since we only need to com-

123

Using contexts to extract models from code

pare states based on the contexts they represent according to
the level of abstraction. This analysis guarantees that, when
we merge two states, they represent the same context and,
therefore, any paths from these states, however long they
might be, are always valid at the defined level of abstraction.
The work presented in [61] describes an iterative approach to
build EFSMs from a combination of names of events (func-
tion calls or I/O events) and values of some variables. They
use a data classifier technique to classify each event accord-
ing to a class of values. The idea is to improve the inference
process by adding data information to the events, which
means that they enrich the traces. An initial model is built
based on the classified traces and a state-merging algorithm,
based on scoring pairs of states to find out which ones are
more likely to be equivalent, is iteratively applied to obtain
more compact and general models. Though the combination
of names of events and values of variables resembles our
context information, they do not include any control flow
information. This means that they can improve the model
inference process based on the collected data, but they still
can infer incorrect sequences due to the absence of any infor-
mation about which were the control predicates evaluated to
enable each event and at which point of the code the event
was generated. For instance, consider a certain state s that is
reached through the occurrence of an event e and with the
set of variable values v. If there is another state s’, which is
reached with the same event e and the same set of variables
values v, then the inference process will deem these states
equivalent and merge them. However, event emight occur in
more than one location along the code and even have different
effects depending on its specific location. In our approach, on
the other hand, because of the control component of contexts,
we can safely identify events that are indeed the same (i.e.
generated under the same conditions, considering location
and variable values). Moreover, also because of contexts, we
do not need a state-merging algorithm. Contexts provide the
necessary information to identify equivalent states. Hence,
we always produce the more general and compact model of
the system behaviour that can be obtained from the collected
traces (with respect to the defined level of abstraction).

The work of Bodhuin et al. [8], like ours, attempts to
extract behaviour models based on traces collected from
instrumented Java programs. However, they obtain the mod-
els from the Java bytecodes. If, on one hand, it allows their
approach to be used even when no source code is available,
on the other handm itmakes their approach applicable only to
Java programs. Asmentioned before, the annotation rules we
have defined are based on common programming structures
and, therefore, can be adapted to any programming language
that contains these structures. Hence, if the annotation of
source code imposes a restriction, it also provides flexibil-
ity and a language-independent approach. Moreover, as they
only present examples of their approach applied to single

traces, it is not clear whether their approach also considers
the combination of multiple traces to create a global model.

The work described in [17] presents an approach that
combines test case generation (TAUTOKO tool) with type-
state mining (ABADU tool). They use test case generation
to systematically enrich dynamically mined specifications
and enable the detection of illegal interactions. Our case
study about the SMTPProtocol class showed that, com-
pared with their work, we obtained a model that contained
more behaviours than their initial typestate model, using
the same set of test cases. Moreover, with a smaller set of
traces, we built models that, when checked against their
enriched and complete models, were able to detect feasi-
ble behaviours of the code that were not allowed by their
models. This is a result of the use of contexts, which allow
us not only to generalise over the observed traces, but also
guarantee the correct merging of all traces, preserving each
original trace in the global model. We used the model of
PipedOutputStream, presented in [26], as a specifi-
cation in one of our case studies. Their work describes a
combination of the L* automata learning algorithm [3] with
symbolic execution [39] to learn component interfaces. Their
models describe the behaviour of a class in terms of the
effect of executing methods of the class interface depend-
ing on the evaluation of control predicates involving local
variables. Hence, they aim to produce specifications on the
usage of interfaces of components. Our models show a more
complete description of the component internal behaviour,
including internal calls (methods not available in the com-
ponent interface), the control flow, and the component state.
As we demonstrated in the case study, this approach can be
complimentary to ours, providing a specification that can
be directly used to evaluate the correctness and complete-
ness of our models. The work presented in [36] extends
the approach described in [26] by improving performance
through the more extensive use of concrete executions rather
than symbolic analysis, but it does not include any addi-
tional improvement related to the model. Approaches for
creating object usage models [54,62] aim to create models
that describe the correct usage of objects/classes. They resort
to inference methods to create their models, either based on
source code, examples of code, or observed executions. Our
models describe the actual behaviour of the implementation
and do not require any inference process to be built. The
work described in [63] also derives models from code, but
their objective was to create goal models, which are more
related to design strategies towards defining requirements of
the system than involving its actual behaviour.

The approach presented in [6] (which extends the work
described in [7]) uses the CSight tool to produce Communi-
cating Finite State Machines (CFSM) from logs of execution
based on regular expressions provided by users. They deal
with logs of concurrent systems and require that vector

123

L. M. Duarte et al.

timestamps be inserted in the traces to determine the partial
order of the concurrent events. Based on that, they create one
model for each component, just as we do. Also similar to our
approach, the composedmodel requires that the user provides
how the components interact through reliable FIFO channels.
Hence, they model interaction in a way similar to CCS [51].
We do not need the user to determine how the components
interact (unless some different configuration is necessary),
since we use the simple synchronisation on shared actions
to describe interactions. As these interactions are basically
related to components calling methods of other components,
they come naturally in the models of the involved compo-
nents. To extract our models, we do not require any regular
expressions or timestamps to determine the identification of
components or the order of events. Because we model each
component separately, considering their general execution
rather than their behaviours in a particular program, we only
need local ordering of events, which is guaranteed by the
order in which the annotations are inserted in the traces. Con-
sidering that every annotation contains the object ID, we can
distinguish the events pertaining to each different compo-
nent and even separate the behaviour of each instance of a
component. Our tool can then merge the behaviours of these
instances into a generic description of the behaviours of all
instances of the specific type of component.

Our combination of static and dynamic information was
inspired on the work of Nimmer and Ernst [52], where the
authors combined a tool that dynamically infers invariants
from an existing implementation with a static checker. They
used the static checker to confirm the results obtained with
the dynamic analysis. In our case, the context analysismerges
static and dynamic information into a single abstraction, so
that we can simultaneously work with these two types of
information. For this reason, we can use a single tool to run
the analysis and produce the models and better explore the
hybrid information.

Work on Learning-Based Testing (LBT) [21,48,49] com-
bines model checking with inference algorithms, using a
learned model to automatically derive test cases. Hence, the
focus is on automating test case generation following an
approach similar to CEGAR [12], but directed to testing,
where counterexamples represent new test cases and queries
to the inference algorithm. Our main goal was not to create
models for a specific purpose, such as deriving test cases
or model checking, but rather providing an approach for
extracting customisable, multi-purpose models. Moreover,
unlike LBT, our model extraction process is not based on
an inference/learning algorithm; we actually merge observed
samples of execution, guided by the context information, to
generalise the behaviour of a systemover a set of traces, with-
out the risk of introducing infeasible behaviours. Thus, the
results of our approach could be used in combination with
LBT, providing a model that correctly describes the system

behaviour at a certain level of abstraction and that could be
generated based on random traces. This means that the initial
model would not be a hypothesis model, but a partial repre-
sentation of the actual system behaviour. The use of contexts
would also guarantee that the model would fit well in the
incremental characteristic of LBT.

Althoughwe obtained the same result as the analysis using
JPF [59] for the RAX case study [29], there are differences
in the two approaches. JPF acts directly in the Java byte-
codes, executing a customised JavaVirtualMachine to obtain
run-time data from the code. It gradually explores possible
paths by commanding the execution and conducting back-
tracks when some path has been completed. Because it only
stores some run-time information, JPF does not generate a
proper model, as it builds only an internal representation that
allows it to control the state space and memory usage. We
believe that having a model is important not only for verifi-
cation, but also for many other purposes. Hence, even though
JPF is applicable in situations where our approach cannot be
used, because it works on bytecodes, we producemodels that
can be visualised, manipulated, and customised for different
types of analysis.

Considering all the discussed related work, we believe
that our approach advances the current state of the art by
combining the following characteristics:

– Defining an abstraction (contexts) to represent states of a
system that, unlikemost of theworkwith traces, provides
confidence on the correctness of the model generalised
from the set of observed behaviours, without resorting to
any type of inference algorithm to determine state equiv-
alence;

– Enabling an incremental approach that can iteratively
improve a model, both by refining it (many approaches
do not provide support for refinement) in a property-
preserving way and by allowing the later addition of new
observed traces, which can eventually lead to a complete
model, without introducing infeasible behaviours (which
is a common problem of dynamic approaches);

– Providing support for the customisation of the model for
different purposes and representations of actions. This
gives theflexibility that is not present in other approaches,
specifically those where the model is tailored for a par-
ticular use;

– Allowing the modular extraction of models for concur-
rent systems, which supports reuse, modular analysis,
and the exploration of different scenarios of instances
and compositions. These models are composed based on
a simple principle, provided by the adopted formalism,
which can be directly mapped from programming lan-
guages. The use of a call stack as part of the context
information also supports the identification of situations
that cannot be detected with any other approach, involv-

123

Using contexts to extract models from code

ing the analysis of the state of a componentwhenmethods
execute isolated or with pending calls.

8 Conclusions and future work

Our model extraction process generates models based on
traces containing context information. They can be used for
multiple purposes and customised according to the user’s
needs. The completeness of these models depends on the
quantity and the quality of the observed behaviours and can
be gradually improved with the inclusion of more behav-
iours. The correctness of the models is affected by the set
of attributes used as the system state. Improvement of cor-
rectness can be achieved by the addition of more attributes to
contexts, thus ruling out false alarms.This refinement process
is property-preserving provided that the properties only pred-
icate over actions of the more abstract model. The LTSE tool
automates the process of creating a representation of an LTS
model from a set of collected traces.

Results of case studies have demonstrated that our
approach can generate models that are useful for a num-
ber of applications, including validation and verification of
specifications. The approach is also applicable to concur-
rent systems in a modular manner, allowing the user to build
individual models for elements of the system and then apply
parallel composition. The refinement process has proved to
effectively eliminate false alarms when the counterexample
is produced by the absence of information about some global
variable of the system. Although completeness is not always
possible to obtain, including only relevant behaviours (e.g.
for checking a certain property) improves coverage and tai-
lors the model to the specific purpose.

The manual refinement of models is a limitation of our
approach. We intend to implement an automatic refinement
mechanism based on the ideas discussed in Sect. 4.4 and the
CEGARprocess [12].Moreover, theThreadedPipeline
case study demonstrated that, on some occasions, the refine-
ment of contexts does not rule out infeasible behaviours.
Hence, we plan to investigate how we could handle these
situations.

As future work, we also intend to apply techniques for
the automatic selection of test cases based on a specification,
such as [22,44], to produce our traces. This would facilitate
the identification of which behaviours could affect the spec-
ification in order to choose an appropriate test suite. This
investigation will also enhance our knowledge on how much
results of an analysis using our models can improve and/or
complement previous analyses based on testing outcomes.
Another possible path to be followed could be the application
of program slicing [15] or predicate slicing [42] to eliminate
unnecessary parts of the code and allow the instrumentation
and execution of a reduced version of the implementation.

Using a specification as the criterion to create the slice, we
might be able to more quickly achieve completeness with
respect to this specification.

We will analyse whether work on trace sampling [53] and
trace compression [9,24] could be used to reduce the length
of traces we have to analyse. As this is an important issue
when it comes to the performance and, therefore, scalability
of our approach, decreasing the number of lines to be parsed
would enhance our approach.

The improvement of tool support is considered as well, in
particular concerning the development of a graphical inter-
face for the LTSE tool. A next step would then be the
integration of the tool with the LTSA, resulting in an envi-
ronment for a complete model analysis process.

References

1. Alur, R., Černý, P., Madhusudan, P., Nam, W.: Synthesis of inter-
face specifications for java classes. In: ACM POPL, pp. 98–109.
ACM, New York, NY, USA. doi:10.1145/1040305.1040314

2. Ammons, G., Bodìk, R., Larus, J.R.: Mining specifications. In:
ACM POPL, pp. 4–16. ACM, Portland, OR, USA (2002). doi:10.
1145/503272.503275

3. Angluin, D.: Learning regular sets from queries and counterexam-
ples. Inf. Comput. 75(2), 87–106 (1987)

4. Ball, T., Rajamani, S.K.: The SLAM project: debugging system
software via static analysis. In: ACM POPL, pp. 1–3. ACM, New
York, NY, USA (2002). doi:10.1145/565816.503274

5. Belinfante, A.: Jtorx: a tool for on-line model-driven test derivation
and execution. In: Esparza, J., Majumdar, R. (eds.) TACAS, LNCS,
vol. 6015, pp. 266–270. Springer, Berlin, Germany (2010)

6. Beschastnikh, I., Brun, Y., Ernst, M.D., Krishnamurthy, A.: Infer-
ring models of concurrent systems from logs of their behavior with
CSight. In: Jalote, P., Briand, L., van der Hoek, A. (eds.) ICSE,
pp. 468–479. ACM, New York, NY, USA (2014). doi:10.1145/
2568225.2568246

7. Beschastnikh, I., Brun, Y., Schneider, S., Sloan, M., Ernst,
M.D.: Leveraging existing instrumentation to automatically infer
invariant-constrained models. In: ACM ESEC/FSE, pp. 267–277.
ACM, Szeged, Hungary (2011). doi:10.1145/2025113.2025151

8. Bodhuin, T., Pagnozzi, F., Santone, A.: Abstracting models from
execution traces for performing formal verification. In: Šęzak, D.,
Kim, T-H., Kiumi, A., Jiang, T., Verner, J.,Abrahã, S. (eds.) ASEA
2009, CCIS, vol. 59, pp. 143–150. Springer, Berlin, Heidelberg
(2009). doi:10.1007/978-3-642-10619-4_18

9. Burtscher, M.: VPC3: a fast and effective trace-compression algo-
rithm. ACM Perform. Eval. Rev. 32(1), 167–176 (2004)

10. Chaki, S., Clarke, E., Ouaknine, J., Sharygina, N., Sinha, N.: Con-
current software verification with states, events, and deadlocks.
Form. Asp. Comput. 17(4), 461–483 (2005)

11. Chaki, S., Clarke, E.M., Groce, A., Jha, S., Veith, H.: Modular
verification of software components in C. IEEE TSE 30(6), 388–
402 (2004)

12. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.:
Counterexample-guided abstraction refinement for symbolic
model checking. JACM 50(5), 752–794 (2003)

13. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The
MIT Press, Cambridge, Massachusetts, USA (1999)

14. Cook, J.E., Wolf, A.L.: Discovering models of software processes
from event-based data. ACM ToSEM 7(3), 215–249 (1998)

123

http://dx.doi.org/10.1145/1040305.1040314
http://dx.doi.org/10.1145/503272.503275
http://dx.doi.org/10.1145/503272.503275
http://dx.doi.org/10.1145/565816.503274
http://dx.doi.org/10.1145/2568225.2568246
http://dx.doi.org/10.1145/2568225.2568246
http://dx.doi.org/10.1145/2025113.2025151
http://dx.doi.org/10.1007/978-3-642-10619-4_18

L. M. Duarte et al.

15. Corbett, J.C., Dwyer, M.B., Hatcliff, J., Laubach, S., Păsăreanu,
C.S., Robby, Zheng, H.: Bandera: extracting finite-state models
from java source code. In: ACM ICSE, pp. 439–448. IEEE, Lim-
erick, Ireland (2000). doi:10.1145/337180.337234

16. Cordy, J.R., Dean, T.R., Malton, A.J., Schneider, K.A.: Source
transformation in software engineering using the TXL transfor-
mation system. IST 44(13), 827–837 (2002)

17. Dallmeier, V., Knopp, N., Mallon, C., Hack, S., Zeller, A.: Gen-
erating test cases for specification mining. In: ACM ISSTA, pp.
85–96. ACM, Trento, Italy (2010). doi:10.1145/1831708.1831719

18. Duarte, L., Kramer, J., Uchitel, S.: Towards faithful model extrac-
tion based on contexts. In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE,
LNCS, vol. 4961, pp. 101–115. Springer, Berlin, Germany (2008)

19. Duarte, L.M.: Behaviour model extraction using context informa-
tion. Ph.D. thesis, Imperial College London, University of London
(2007)

20. Duarte, L.M., Kramer, J., Uchitel, S.: Model extraction using con-
text information. In: Nierstrasz, O., Whittle, J., Harel, D., Reggio,
G. (eds.) MoDELS, LNCS, vol. 4199, pp. 380–394. Springer,
Berlin, Germany (2006)

21. Feng, L., Lundmark, S., Meinke, K., Niu, F., Sindhu, M., Wong, P.:
Case studies in learning-based testing. In: Yenigün, H., Yilmaz, C.,
Ulrich, A. (eds.) Testing Software and Systems, LNCS, vol. 8254,
pp. 164–179. Springer, Berlin, Heidelberg (2013)

22. Fernandez, J., Mounier, L., Pachon, C.: Property oriented test case
generation. In: Petrenko, A., Ulrich, A. (eds.) FATES, LNCS, vol.
2931, pp. 147–163. Springer, Berlin, Heidelberg (2003)

23. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe,
J.B., Stata, R.: Extended static checking for java. In: ACM PLDI,
pp. 234–245. ACM, Berlin, Germany (2002). doi:10.1145/512529.
512558

24. Gao, X., Snavely, A., Carter, L.: Path grammar guided trace com-
pression and trace approximation. In: IEEE HPDC, pp. 57–68.
IEEE, Paris, France (2006). doi:10.1109/HPDC.2006.1652136

25. Giannakopoulou, D., Magee, J.: Fluent model checking for event-
based systems. In: ACMESEC/FSE, pp. 257–266. ACM,Helsinki,
Finland (2003). doi:10.1145/940071.940106

26. Giannakopoulou, D., Rakamarić, Z., Raman,V.: Symbolic learning
of component interfaces. In: Proceedings of the 19th International
Conference on Static Analysis, pp. 248–264 (2012)

27. Gradara, S., Santone, A., Villani, M.L., Vaglini, G.: Model check-
ing multithreaded programs by means of reduced models. ENTCS
110, 55–74 (2004)

28. Graf, S., Saidi, H.: Construction of abstract state graphs with PVS.
LNCS 1254, 72–83 (1997)

29. Havelund,K., Pressburger, T.:Model checking java programs using
java pathFinder. STTT 2(4), 366–381 (2000)

30. Henzinger, T., Jahla, R.,Majumdar, R., Sutre, G.: Lazy abstraction.
In: ACM POPL, pp. 58–70. ACM, Portland, OR, USA (2002).
doi:10.1145/503272.503279

31. Hoare, C.: Communicating Sequential Processes. Prentice-Hall
International, Englewood Cliffs, NJ, USA (1985)

32. Holzmann, G.: Themodel checker Spin. IEEETSE 23(5), 279–295
(1997)

33. Holzmann, G.: From code to models. In: ACSD, pp. 3–10.
IEEE Computer Society, Washington, DC, USA (2001). http://doi.
ieeecomputersociety.org/10.1109/CSD.2001.981759

34. Holzmann, G., Smith, M.: A practical method for verifying event-
driven software. In: ACM ICSE, pp. 597–607. ACM, Los Angeles,
USA (1999). doi:10.1145/302405.302710

35. Holzmann, G.J., Smith, M.: Software model checking: extracting
verification models from source code. STVR 11(2), 65–79 (2001)

36. Howar, F., Giannakopoulou, D., Rakamarić, Z.: Hybrid learning:
interface generation through static, dynamic, and symbolic analy-
sis. In: ACM ISSTA, pp. 268–279. ACM, Lugano, Switzerland
(2013). doi:10.1145/2483760.2483783

37. Ichii, M., Myojin, T., Nakagawa, Y., Chikahisa, M., Ogawa, H.: A
rule-based automated approach for extracting models from source
code. In: Oliveto, R., Poshyvanyk, D., Cordy, J., Dean, T. (eds.)
WCRE, pp. 308–317. IEEE, Kingston, ON, Canada (2012). doi:10.
1109/WCRE.2012.40

38. Keller, R.: Formal verification of parallel programs. CACM 19(7),
371–384 (1976)

39. King, J.: Symbolic execution and program testing. CACM 19(7),
385–394 (1976)

40. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: probabilis-
tic symbolic model checker. In: P. Kemper (ed.) Proceedings
of the Tools Session of Aachen 2001 International Multiconfer-
ence on Measurement, Modelling and Evaluation of Computer-
Communication Systems, pp. 7–12 (2001)

41. Leuschel, M., Massart, T., Currie, A.: How to make FDR Spin:
LTL model checking of CSP by refinement. LNCS 2021, 99–118
(2001)

42. Li, H.F., Rilling, J., Goswami, D.: Granularity-driven dynamic
predicate slicing algorithms for message passing systems. ASE
11(1), 63–89 (2004)

43. Lorenzoli, D., Mariani, L., Pezzè, M.: Automatic generation of
software behavioral models. In: ACM ICSE, pp. 501–510. ACM,
Leipzig, Germany (2008). doi:10.1145/1368088.1368157

44. Machado, P.D.L., Silva, D., Mota, A.C.: Towards property oriented
testing. ENTCS 184, 3–19 (2007)

45. Magee, J., Kramer, J.: Concurrency: State Models and Java Pro-
gramming, 2nd edn. Wiley, Chichester, England (2006)

46. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Con-
current Systems. Springer, New York, USA (1992)

47. Mariani, L.: Behavior capture and test: dynamic analysis of
component-based systems. Ph.d., Università degli Studi di Milano
Bicocca (2005)

48. Meinke, K., Niu, F., Sindhu, M.: Learning-based software test-
ing: a tutorial. In: Hähnle, R., Knoop, J., Margaria, T., Schreiner,
D., Steffen, B. (eds.) Leveraging Applications of Formal Meth-
ods, Verification, and Validation, Communications in Computer
and Information Science, pp. 200–219. Springer, Berlin, Germany
(2012)

49. Meinke, K., Sindhu, M.: Incremental learning-based testing for
reactive systems. In: Gogolla,M.,Wolff, B. (eds.) Tests and Proofs,
LNCS, vol. 6706, pp. 134–151. Springer, Berlin, Germany (2011)

50. Milner, R.: An algebraic definition of simulation between pro-
grams. In: Society, B.C. (ed.) 2nd IJCAI, pp. 481–489. Morgan
Kaufmann Publishers Inc., London, England (1971)

51. Milner, R.: Communication and Concurrency. Prentice-Hall Inc,
Passau, Germany (1989)

52. Nimmer, J., Ernst, M.: Automatic generation of program specifica-
tions. In: ISSTA, pp. 232–242. ACM, Rome, Italy (2002). doi:10.
1145/566172.566213

53. Odom, J., Hollingsworth, J., DeRose, L., Ekanadham, K.,
Sbaraglia, S.: Using dynamic tracing sampling to measure long
running programs. In: ACM/IEEE SC, p. 59. IEEE, Seattle, WA,
USA (2005). doi:10.1109/SC.2005.77

54. Pradel, M., Gross, T.R.: Automatic generation of object usage
specifications from large method traces. In: Ceballos, S. (ed.)
IEEE/ACM ASE, pp. 371–382. IEEE Computer Society, Wash-
ington, DC, USA (2009). doi:10.1109/ASE.2009.60

55. Raffelt, H., Steffen, B., Berg, T., Margaria, T.: LearnLib: a frame-
work for extrapolating behavioral models. STTT 11(5), 393–407
(2009)

56. Strom, R.E., Yemini, S.: Typestate: a programming language con-
cept for enhancing software reliability. IEEE TSE 12(1), 157–171
(1986)

57. Utting, M.: How to Design Extended Finite State Machine Test
Models in Java. CRC Press, Boca Raton, FL, USA (2011)

123

http://dx.doi.org/10.1145/337180.337234
http://dx.doi.org/10.1145/1831708.1831719
http://dx.doi.org/10.1145/512529.512558
http://dx.doi.org/10.1145/512529.512558
http://dx.doi.org/10.1109/HPDC.2006.1652136
http://dx.doi.org/10.1145/940071.940106
http://dx.doi.org/10.1145/503272.503279
http://doi.ieeecomputersociety.org/10.1109/CSD.2001.981759
http://doi.ieeecomputersociety.org/10.1109/CSD.2001.981759
http://dx.doi.org/10.1145/302405.302710
http://dx.doi.org/10.1145/2483760.2483783
http://dx.doi.org/10.1109/WCRE.2012.40
http://dx.doi.org/10.1109/WCRE.2012.40
http://dx.doi.org/10.1145/1368088.1368157
http://dx.doi.org/10.1145/566172.566213
http://dx.doi.org/10.1145/566172.566213
http://dx.doi.org/10.1109/SC.2005.77
http://dx.doi.org/10.1109/ASE.2009.60

Using contexts to extract models from code

58. Utting, M., Legeard, B.: Practical Model-Based Testing: A Tools
Approach. Morgan Kaufmann Publishers Inc, San Francisco, CA,
USA (2007)

59. Visser,W.,Havelund,K., Brat, G., Park, S., Lerda, F.:Model check-
ing programs. ASE 10(2), 203–232 (2003)

60. Walkinshaw, N., Bogdanov, K., Holcombe, M., Salahuddin, S.:
Reverse engineering state machines by interactive grammar infer-
ence. In: Penta, M.D., Maletic, J.I. (eds.) WCRE, pp. 209–218.
IEEE Computer Society, Washington, DC, USA (2007). doi:10.
1109/WCRE.2007.45

61. Walkinshaw, N., Taylor, R., Derrick, J.: Inferring extended finite
state machine models from software executions. In: Lähmmel, R.,
Oliveto, R., Robbes, R. (eds.)WCRE, pp.301–310. IEEE,Koblenz,
Germany (2013). doi:10.1109/WCRE.2013.6671305

62. Wasylkowski, A., Zeller, A., Lindig, C.: Detecting object usage
anomalies. In: ACM ESEC/FSE, pp. 35–44. ACM, Dubrovnik,
Croatia (2007). doi:10.1145/1287624.1287632

63. Yu, Y., Wang, Y., Mylopoulos, J., Liaskos, S., Lapouchnian, A.,
Sampaio do Prado Leite, J.: Reverse engineering goal models from
legacy code. In: IEEERE, pp. 363–372. IEEE, Paris, France (2005).
doi:10.1109/RE.2005.61

Lucio Mauro Duarte is a Senior
Lecturer at the Department of
Theoretical Computer Science of
the Institute of Informatics of
the Federal University of Rio
Grande do Sul (UFRGS), where
he teachs Algorithms and Soft-
ware Verification. He holds a
PhDdegree inComputing (Impe-
rial College London, Univer-
sity of London), and his main
research areas are Validation and
Verification of Systems, Soft-
ware Testing, and SoftwareMod-
elling. His Web page is www.inf.
ufrgs.br/~lmduarte.

Jeff Kramer is a Professor at
Imperial College London. He
was Head of the Department of
Computing from 1999 to 2004,
Dean of the Faculty of Engi-
neering from 2006 to 2009, and
Senior Dean from 2009 to 2012.
His research work is primarily
concerned with software engi-
neering, focusing on software
architecture, behaviour analysis,
the use of models in require-
ments elaboration and architec-
tural approaches to adaptive soft-
ware systems. He was Editor in

Chief of IEEE TSE from 2006 to 2009 and was awarded the 2005 ACM
SIGSOFT Outstanding Research Award and the 2011 ACM SIGSOFT
Distinguished Service Award. He is co-author of books on Concurrency
and on Distributed Systems and Computer Networks, and the author of
over 200 journal and conference publications. He is a Fellow of the
Royal Academy of Engineering, a Chartered Engineer, Fellow of the

ACM, Fellow of the IET, Fellow of the BCS, and Fellow of the City
and Guilds of London Institute.

Sebastian Uchitel holds a Pro-
fessorship at the Department of
Computing, FCEN, University
of Buenos Aires, and a Read-
ership at Imperial College Lon-
don. He is also an Indepen-
dent Researcher at CONICET.
Dr. Uchitel was Associate Editor
of IEEE Transactions on Soft-
ware Engineering and is cur-
rently Associate Editor of the
Requirements Engineering Jour-
nal and the Science of Computer
Programming. He was program
co-chair of the 21st IEEE/ACM

International Conference on Automated Software Engineering and of
the 32nd IEEE/ACM International Conference on Software Engineer-
ing. Dr. Uchitel has been distinguished with the Philip Leverhulme
Prize, the ERC Starting Grant award, the KONEX prize. and by the
Argentine National Academy of Exact Sciences.

123

http://dx.doi.org/10.1109/WCRE.2007.45
http://dx.doi.org/10.1109/WCRE.2007.45
http://dx.doi.org/10.1109/WCRE.2013.6671305
http://dx.doi.org/10.1145/1287624.1287632
http://dx.doi.org/10.1109/RE.2005.61
www.inf.ufrgs.br/~lmduarte
www.inf.ufrgs.br/~lmduarte

	Using contexts to extract models from code
	Abstract
	1 Introduction
	2 Background
	2.1 Model faithfulness

	3 Context information
	4 Model extraction based on contexts
	4.1 Information gathering
	4.2 Context identification
	4.3 Model generation
	4.3.1 LKS construction
	4.3.2 Final model generation

	4.4 Refining models
	4.5 Contexts in concurrent systems
	4.6 Tool support

	5 Formal foundations
	5.1 Mapping from code to an LKS model
	5.2 Mapping from an LKS to an LTS
	5.3 Refinement relation

	6 Case studies
	6.1 Evaluation of results
	6.2 Threats to validity

	7 Related work
	8 Conclusions and future work
	References

