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a b s t r a c t

We study the computational complexity of the minimum dominating set problem on
graphs restricted by forbidden induced subgraphs. We give some dichotomies results for
the problem on graphs defined by any combination of forbidden induced subgraphswith at
most four vertices, implying either an NP-Hardness proof or a polynomial time algorithm.
We also extend the results by showing that dominating set problem remains NP-hard even
when the graph has maximum degree three, it is planar and has no induced claw, induced
diamond, induced K4 nor induced cycle of length 4, 5, 7, 8, 9, 10 and 11.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Dominating set is a fundamental problem of algorithmic graph theory [14] with many applications [7,13,21]. It arises
naturally in many areas including mathematics, operations research, logistics, economics, and computer science. A typical
application related with the problem is the following: Assume you have a representation of a city given by a grid, where
intersection points are the corners, and you want to put cameras on it to observe the entire grid (city). The goal is to choose
a set of points in the plane in order to observe the remaining points. The grid can be represented as a graph where corners
are vertices and adjacent corners are joined by edges. Since one can be interested in the observation of certain regions of
the city, it makes sense to use as representation an induced graph of the grid. These graphs are a subclass of K3-free, which
is one of the classes we analyze.

The problem remains NP-hard in many restricted graph families such as planar [18], chordal [3], split and bipartite [1],
planar graphs of maximum degree 3 [11], among others. On the other hand, the problem has efficient algorithms for classes
such as interval and circular-arc graphs [5], AT-free graphs [16], and strongly chordal graphs [10]. Many graph classes can be
defined by forbidding certain induced subgraphs. For instance, split graphs, interval graphs, bipartite graphs, permutation
graphs, among others can be defined as F -free graphs, for some graph family F . Several of them are interesting from the
geometric point of view. In this paper we present a systematic analysis of the complexity for the minimum dominating set
problem onF -free graphs, whereF is a family of graphs of order atmost four. For unary familyF = {F}, usually we denote
F-Free instead of F -free.

The next section gives the notations used throughout this paper. In the third section we show previous results that will
be used for simplifying the analysis, along with some remarks that were not mentioned previously but are needed for our
work. At the end of this section we present the current known information, and also give a graph representation of the
results as a help for visualization. In the following section we prove the complexity of the domination problem for several
graph classes in order to obtain the desired results. Finally we give the conclusions of this paper.
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2. Notations

LetG = (V , E) be an undirected graphwhere V (G) and E(G) denote the vertex set and the edge set respectively. Through-
out the paper, nG = |V (G)| and mG = |E(G)| denote the numbers of vertices and edges of the graph G, respectively. Denote
by NG(v) the subset of vertices adjacent to v, and let NG[v] = NG(v) ∪ {v}. Set NG(v) is called the neighborhood of v, while
NG[v] is the closed neighborhood of v. Let S ⊆ V (G), we denote the neighborhood of S asNG(S) =


v∈S NG(v)\S and the closed

neighborhood of S asNG[S] = NG(S)∪S. The degree of v is dG(v) = |NG(v)|. By∆(G)wedenote themaximumvertex degree in
G. When there is no ambiguity, wemay omit the subscripts from n,m,N and d. We say that u is universalwhenN[u] = V (G).
Say that w is dominated by vertex v if N[w] ⊆ N[v]. A subset S of V dominates another subset T of V if T ⊆ N[S].

As usual, Cn and Pn denote the chordless cycle and the chordless path on n vertices, respectively. A dominating set of G is
a setW ⊆ V (G) such that every vertex in V (G) \ W is adjacent to some vertex ofW . The size of a minimum dominating set
in a graph G is called the domination number of G and is denoted as γ (G). An induced subgraph H of G is said dominating H
if V (H) is a dominating set of G. Clearly, if there is a dominating H then γ (G) ≤ |V (H)|.

The graph Kq is the complete graph of q vertices, and the graph tKq consists of the disjoint union of t copies of the graph Kq.
Subdivision of an edge is the operation of creation of a new vertex on the edge. When a polynomial-time algorithm has

been shown for a problem, we say that the problem is in P . Whenever the problem is in the complexity class NP-Complete
we say that the problem is NPC .

We assume G is connected, since domination problem can be solved independently in each connected component.

3. Previous results

The set of graphs of order three are: P3, K3, 3K1 and co-P3. Since P3-free is a subclass of P4-free, which is a subclass of
permutation graphs, then by applying [6],wededuce that domination problem restricted to P3-free graphs is in P . In addition,
P3-free graphs are also known as cluster graphs which are disjoint unions of complete graphs and there is a trivial linear-
time algorithm to solve the minimum dominating set problem in this class of graphs. From [1] it is known that domination
problem restricted to bipartite graphs is in NPC , hence for K3-free graphs the problem is also in NPC and from [16] we can
conclude that domination restricted to co-paw-free graphs or 3K1-free graphs is in P since both are subclasses of AT-free
graphs.

Lemma 3.1 ([1]). Domination problem restricted to split graphs is in NPC.

Corollary 3.2. Since (2K2, C4)-free graphs is a superclass of split graphs, then domination problem restricted to this class is also
in NPC.

Lemma 3.3 ([23]). Domination Problem restricted to (Kp, P5)-free graphs for fixed p is in P.

Corollary 3.4. Domination problem restricted to (2K2, K4)-free graphs is in P.

Lemma 3.5 ([2]). The clique-width of (claw, co-claw)-free graphs and (claw, paw)-free graphs is bounded.

Lemma 3.6 ([9]). The clique-width of (K2 ∪ claw, K3)-free graphs is bounded.

Lemma 3.7 ([8]). Domination problem is in P for graph classes with bounded clique-width.

Corollary 3.8. Domination problem restricted to (claw, co-claw)-free graphs or (claw, paw)-free or (K2 ∪ claw, K3)-free graphs
is in P.

We add some remarks for easy results for which we could not find any references:

Remark 3.9. Note that (claw, K3)-free ⊆ (K2 ∪ claw, K3)-free graphs. Hence the domination problem on (claw, K3)-free
graph class is in P .

Remark 3.10. The minimum dominating set problem restricted to 4K1-free graphs is in P .

Proof. Given a 4K1-free graph G, any maximal independent set I of G has at most 3 vertices. It is well-known that every
maximal independent set is a dominating set, then there is at least one dominating set of size atmost 3. Hence, theminimum
dominating set for G can be solved by checking for each possible subset of at most three vertices if it is a dominating set.
This can be done in O(n3). �

Remark 3.11. The minimum dominating set problem restricted to co-diamond-free graphs is in P .

Proof. Given a co-diamond-free graph G, if G has no edge then γ (G) = n. Otherwise, let e = v1v2 be an arbitrary edge. If
{v1, v2} is not a dominating set then ∃ w such that {v1, v2} ∩ N(w) = ∅. Clearly, {v1, v2, w} is a dominating set because if
exists some vertex x ∈ V (G) such that is not adjacent to any of them, then {v1, v2, w, x} induces a co-diamond which is a
contradiction. �
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Fig. 1. Scheme of graph classes complexity for the dominating set problem.

3.0.1. Summary

We enumerate existent results for the complexity of the problem restricted to F -free graphs where F is a family of
graphs with 3 or 4 vertices:

Forbidden induced subgraphs Complexity References
P3 P [6]
3K1 P [16]
co-P3 P [16]
P4 P [6]
4K1 P Remark3.10
co-diamond P Remark3.11
paw, claw P [2,8]
claw, co-claw P [2,8]
co-paw P [16]
claw, K3 P [9,8]
K3 NPC [22]
claw NPC [12]
paw NPC [19]
diamond NPC [19]
co-claw NPC [19]
2K2, C4 NPC [1]

We represent certain information contained in above table as a meta-graph where each vertex corresponds to an F-free
graph (a vertex gets rectangle shape if the domination problem restricted to its corresponding class is in P; otherwise, it
gets circular shape which means the corresponding class is in NPC) and each edge vw corresponds to an intersection of
NPC-classes corresponding to v and w such that the intersection is in P . In next section, we will complete the meta-graph
with new edges. This allows to determine the complexity of domination problem restricted to any F -free graphs where F
is a family of graphs with at most 4 vertices.

4. Completing hierarchy

In order to complete Fig. 1, we need to prove the complexity of the domination problem for the intersection of classes
that belongs toNPC . Note that any connected graphwhich is K3-free and has at least four vertices is also (K4, paw, diamond)-
free graphs. Since the problem is in NPC for K3-free graphs then it is NPC for (K4, paw, diamond)-free graphs, therefore the
vertices corresponding to K4-free, paw-free and diamond-free graphs form an independent set.

Theorem 4.1. Domination problem restricted to (2K2, claw)-free graphs class is in P.

Proof. Let G = (V , E) be a connected (2K2, claw)-free graph. Since the domination problem for P4-free graphs is in P , then
we consider the case where G has an induced P4 = {p1, p2, p3, p4} (p1p2, p2p3 and p3p4 are edges of P4).

Let U = V (G) \ N[P4]. If U = ∅, then γ (G) is at most 4. Hence, the problem is in P . Now, we suppose that U ≠ ∅.
Clearly, U is an independent set because G is 2K2-free. Hence, N(U) ⊆ N(P4). As G is a connected graph, N(u) ≠ ∅ for
every u ∈ U . Moreover, if u, u′ are two different vertices of U then N(u) ∩ N(u′) = ∅ by claw-freeness. Let v be any vertex
in N(U) which means v is neighbor of some u ∈ U . Clearly, N(v) ∩ P4 = {p2, p3} because otherwise there is a 2K2 or a
claw as induced subgraph which is a contradiction. Now, we will prove that N(U) induces a complete subgraph. Suppose
there are two vertices v, v′

∈ N(U), (v, v′) ∉ E(G). Recall that N(v) ∩ {p1, p2, p3, p4} = {p2, p3} {p1, p2, v, v′
} induces a
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Fig. 2. Scheme of graph classes complexity for the dominating set problem.

claw which is a contradiction. Hence, N(U) induces a complete subgraph. We show that p1 and p4 cannot have a common
neighbor. Suppose w is a common neighbor of p1 and p4. In this case, w belongs to N(P4) \ N[U]. If w is adjacent to some
vertex v ∈ N(U) (Recall that N(v) ∩ {p1, p2, p3, p4} = {p2, p3}), then {w, v, p1, p4} induces a claw, a contradiction. Hence,
w is not adjacent to any v ∈ N(U). Choose any edge uv where u ∈ U . Clearly, {u, v, w, p1} induces a 2K2. Again, this is a
contraction. In Consequence, N[p1] ∩ N[p4] = ∅ which implies the closed neighborhoods of vertices in U ∪ {p1, p4} are all
disjoint. Then, γ (G) ≥ |U| + 2. Now, we prove that D = U ∪ {p2, p3} is a dominating set of G and it must be minimum.
Suppose there is some vertex w not dominated by D. Clearly, w ∈ N({p1, p4}) \ N[{p2, p3}]. If w is not adjacent to p1 (p4),
then {w, p4, p1, p2} ({w, p1, p3, p4}) induces a 2K2 which is a contradiction. Hence, w is adjacent to p1 and p4. Again, this is
a contradiction. Consequently, D is a (minimum) dominating set and it can be obtained in polynomial time. �

Theorem 4.2. Domination problem restricted to (2K2, diamond)-free graphs class is in P.

Proof. Let G be a (2K2, diamond)-free graph and Kp = {u1, . . . , up} be a maximum clique in G, which can be obtained in
polynomial time (the number of maximal cliques is polynomial). We separate the proof in two cases according to the size
of Kp

• p ≤ 3: Then G is (2K2, K4)-free. By Corollary 3.4 the problem is in P
• p ≥ 4: If G = Kp then γ (G) = 1. Otherwise, let v ∈ N(Kp). It is easy to see that |N(v) ∩ Kp| = 1, otherwise G is not

diamond-free. Suppose w.l.o.g. u1 ∈ N(v) and let w ∈ N(v) \ Kp. Since Gmust be 2K2-free then w must be connected to
at least p−2 vertices of {u2, . . . , up} but then again G is not diamond-free, hencew cannot exist. Thus the graph is a split
graph (K = Kp, S) where every vertex of S has degree one. Clearly, N(S) is the minimum dominating set of G, which can
be obtained in polynomial time. �

Now we proceed to prove the complexity for the domination problem restricted to (2K2, co-claw)-free is in P . We begin
showing a lemma that turns out to be useful for proving the desired property.

Lemma 4.3. Let G be a connected (2K2, K3)-free graph with an induced C5 = {v1, v2, v3, v4, v5}. Then C5 is a dominating set.

Proof. Suppose that C5 is not a dominating set and let w be a vertex from G which is not in N[C5]. Since w cannot be an
isolated vertex it must be connected with some other vertex x ∉ C5. Then {w, x} forms a K2. Since G is 2K2-free then (w, x)
cannot be disjoint with any K2 from C5. In this case x must be connected to at least three vertices from C5 which implies
there is some K3 formed by x and two consecutive vertices of C5. Absurd since G is K3-free. �

Theorem 4.4. Domination problem restricted to (2K2, co-claw)-free graphs class is in P.

Proof. Let G be a connected (2K2, co-claw)-free graph. Suppose G has a cycle, since if it has no cycle it is a tree where
domination problem is in P [20]. Suppose also that G is K3-free, since if it has K3 = U ⊆ V (G) then any vertex from V (G)
must be in N[U], hence there is a dominating set of cardinality 3 and minimum dominating set can be obtained in O(n3).

It is clear that G is Cn+5-free (n > 0) because it is 2K2-free. If G is C5-free, then from [16] it is known that domination
problem restricted to (2K2, C5, K3)-free graphs is in P . Now, we consider that G contains a C5, then we apply Lemma 4.3
described above and we affirm there is a dominating set of Gwith size at most 5. Thus the minimum dominating set can be
found in O(n5). �

Theorem 4.5. Domination problem restricted to (2K2, paw)-free graphs class is in P.

Proof. Let T = {t1, t2, t3} be a K3 ∈ G. Let v be a vertex not adjacent to T and P = {u1, . . . , uk = v} a shortest path from
T to v, w.l.o.g. u1 = t1. Then u2 must be adjacent to t1 and some other vertex of T , otherwise {u2, t1, t2, t3} induces a paw.
Without loss of generality, u2 is adjacent to t2. Let ui be the vertex from P such that ui is not adjacent to t2 with smallest
index i. Clearly, {t2, ui−2, ui−1, ui} induces a pawwhich is a contradiction. Since we take v as an arbitrary vertex from G, then
we showed that any vertex is adjacent to T and the minimum dominating set has at most three vertices. �

Fig. 2 shows the final meta-graph, which means the complexity of any F -free graphs, where F consists of graphs with
at most 4 vertices, can be determined from this picture.

Let W be the subset of corresponding vertices of meta-graph to each member of F : (a) if the submeta-graph induced
byW is an independent set of circular-shaped vertices, then the domination problem restricted to F -free graphs is in NPC;
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Fig. 3. Replace each claw-vertex in the graph with this new structure. H9 .

(b) otherwise, the problem is in P . By described results, Let W be an induced subgraph which is an independent set with
only circular-shaped vertices.We can extendW to amaximal circular-shaped vertex-independent setW ′. Clearly,W ′ corre-
sponds toF ′-free graphswhich is a subclass ofF -free graphs. If we prove that the problem restricted toF ′-free graphs is in
NPC then the problem restricted toF -free graphs is also inNPC . It is easy to see there are exactly 3maximal circular-shaped
vertex-independent sets: W1 = {C4, 2K2},W2 = {C4, K3, K4, diamond, paw, co-claw} and W3 = {C4, K4, diamond, claw}.
By [1], the problem restricted to (C4, 2K2)-free graphs is inNPC . Theorem 4.7 proves the problem restricted to (C4, K3, K4, di-
amond, paw, co-claw)-free graphs is inNPC and Corollary 4.10 proves the problem restricted to (C4, K4, diamond, claw)-free
graphs is in NPC .

Lemma 4.6 ([17]). If a graph G′ is obtained from a graph G by triple subdivision of an edge, then γ (G′) = γ (G) + 1.

Theorem 4.7. The domination problem restricted to (K3, C4)-free graphs is in NPC.

Proof. It is trivial to check that after applying a triple subdivision to every edge of an arbitrary graph G = (V , E), the result
graph G′ is (K3, C4)-free. Applying Lemma 4.6, if we can solve in polynomial time the domination problem restricted to
(K3, C4)-free graphs, thenwe can solve the problemon an arbitrary graph (γ (G) = γ (G′)+|E(G)|). Consequently domination
problem restricted to (K3, C4)-free graphs is in NPC . �

Definition. Say a vertex v is a claw-vertex if d(v) = 3 and its neighbors form an independent set.

Definition. Let G be an arbitrary graph that has a claw-vertex v and its neighbors are w1, w2 and w3. Say a magnification
for v is the replacement of v by a cycle C9 = {v1, v2, . . . , v9} with three additional edges v2v9, v3v5 and v6v8, where v1
connects to w1, v4 connects to w2 and v7 connects to w3 (See Fig. 3). We call the C9 with three additional arcs H9.

Lemma 4.8. Given a graph G with a claw-vertex v. If G′ is the resulting graph after magnification of v, then γ (G′) = γ (G) + 2.

Proof. Let D be aminimum dominating set of G, |D| = γ (G). We construct a dominating set D′ of G′ such that |D′
| ≤ |D|+2

for the following cases, then γ (G′) ≤ |D′
| ≤ |D| + 2 = γ (G) + 2.

1. v ∈ D: Thus D′
= (D \ v) ∪ {v1, v4, v7} is a dominating set from G′ and |D′

| = |D| + 2.
2. v ∉ D: Suppose w.l.o.g. w1 ∈ D. Then D′

= D ∪ {v3, v8} is a dominating set from G′ and |D′
| = |D| + 2.

Next, wewill show that γ (G′) ≥ γ (G)+2. Let D′ aminimum dominating set of G′, |D′
| = γ (G′). As NG′ [v3]∩NG′ [v8] = ∅

then |D′
∩H9| ≥ 2. We analyze each possible value of |{w1, w2, w3} ∩D′

|. For each case, we construct a dominating set D of
G such that |D| ≤ |D′

| − 2 which implies γ (G′) ≥ γ (G) + 2.

1. |w2, w2, w3 ∩ D′
| = 0: N[v1],N[v4],N[v7] are disjoint sets. Each neighborhood must contain a vertex from D′

∩ H9.
Hence, H9 has at least 3 vertices from D′. We remove those vertices from D′ and add v. The result set D is a dominating
set from G.

2. |{w2, w2, w3} ∩ D′
| = 1: Suppose w.l.o.g. w1 ∈ D′ and w2, w3 ∉ D′. In case H9 contains at least three vertices from D′,

then we repeat the reasoning of the previous item. Otherwise, there are exactly two vertices from H9 belong to D′. Those
should be v3 and v8, hence w2, w3 are dominated with vertices outside H9. Therefore, D can be obtained by removing
{v3, v8} from D′. Clearly, D is a dominating set from G.

3. |{w2, w2, w3} ∩ D′
| = 2: Suppose w.l.o.g. {w1, w2} ⊆ D′. If in |H9 ∩ D′

| ≥ 3, we can apply the same reasoning as in the
first item and obtain the same result. Otherwise, there are exactly two vertices from H9 belong to D′. If v7 ∈ D′, then no
vertex fromH9 can dominate the set {v9, v2, v3, v5}. Thus, v7 ∉ D′, andw3 is dominated by a vertex outsideH9. Therefore,
the set D = D′

\ H9 is a dominating set of G.
4. |{w2, w2, w3} ∩ D′

| = 3: {w1, w2, w3} ∈ D′. Thus D = D′
\ H9 is a dominating set of G. �

Theorem 4.9. The domination problem restricted to maximum degree 3 planar (K4, C4, C5, C7, C8, C9, C10, C11, diamond, claw)-
free graphs is in NPC.
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Proof. The domination problem restricted to planar graph G of maximum degree 3 is in NPC [11]. Given any planar graph
G of maximum degree 3, we apply a triple subdivision for each edge of G and obtain a graph G′. It is easy to see that G′

is a planar graph of maximum degree 3 and it’s (K4, C4, C5, C7, C8, C9, C10, C11, diamond, claw)-free. Clearly, G and G′ have
the same number of claw-vertices. By Lemma 4.6, we know that γ (G′) = γ (G) + |E(G)|. We can apply magnification for
each claw-vertex of G′ in order to remove claws, obtaining a graph G′′ which is maximum degree 3 planar (K4, C4, diamond,
claw)-free graph. Applying Lemma 4.8 we know that γ (G′′) = γ (G′) + 2|U ′

| = γ (G) + |E(G)| + 2|U|, where U ′ is the set
of claw-vertices of G′ and U is the set of claw-vertices of G. Therefore the problem remains in NPC restricted to maximum
degree 3 planar (K4, C4, diamond, claw)-free graphs. �

Corollary 4.10. The domination problem restricted to (K4, C4, claw, diamond)-free graph G is in NPC.

5. Conclusions

Weclose the gaps ofmissing information about the complexity of theminimumdominating set problem for graph classes
given by forbidden induced subgraphs of order at most four. The study of induced subgraphs of size at most four had been
already studied [4,15]. Many of these classes defines the first barrier where problems become P instead of NPC . On the other
hand, it seems that the same technique can be applied to many of the classic problems in order to close the similar gaps.
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