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We propose a novel scheme for the all-optical quantum simulation of topological phases by means of implemen-
tation of a discrete-time quantum walk architecture. The main novel ingredient is the inclusion of the nonlinear
process of spontaneous parametric downconversion (SPDC) along the quantum network. By means of a simple
theoretical model, the interplay between quantum walk lattice topology and spatial correlations of biphotons
produced by SPDC is numerically explored. We describe different optical detection methods suitable for the
implementation of our proposed experimental scheme. © 2016 Optical Society of America
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1. INTRODUCTION

Spontaneous parametric downconversion (SPDC) is a standard
technique in quantum optics. It results from the absorption and
spontaneous conversion of a pump incident photon in a non-
linear crystal or fiber, producing in this manner two lower en-
ergy photons (the so-called signal and idler). The pairs of
downconverted photons can be entangled in a multiparameter
space of frequency, momentum, and polarization [1–3,4]. In
Type II SPDC, the signal and idler photons are entangled
in frequency, and wave and momentum have orthogonal polar-
izations. In noncollinear Type II SPDC, the signal and idler
photons are entangled as well in polarization. Entangled pho-
tons have been used to demonstrate quantum nonlocality [5,6],
quantum teleportation [7–9], quantum information processing
[10–12], and quantum cryptography [13,14]. Recently there
has been much interest in controlling temporal and spatial
properties of entangled photons either by spectral filtering with
narrowband filters [15,16], tailored dispersion in photonic
crystal fibers [17], or by placing the nonlinear media in cavities
[18]. Temporal shaping has also been achieved using spectral
phase modulation of signal or idler photons produced in Type I
collinear parametric downconversion [19].

Random walks have been used to model a variety of dy-
namic physical processes containing some form of stochasticity,
including phenomena such as Brownian motion and the tran-
sition from binomial to Gaussian distribution in the limit of
large statistics. The quantum walk (QW) is the quantum ana-
logue of the random walk, where the classical walker is replaced
by a quantum particle, such as a photon or an electron, and the
stochastic evolution is replaced by a unitary process. The sto-
chastic ingredient is added by introducing some internal

degrees of freedom that can be stochastically flipped during
the evolution, which is usually referred to as a quantum coin.
One of the main features of QWs is that the different paths
of the quantumwalker can interfere and therefore present a com-
plicated (non-Gaussian) probability distribution for the final po-
sition of the walker after a number of discrete steps. In recent
years, QWs have been successfully implemented to simulate a
number of quantum phenomena, such as photosynthesis [20],
quantum diffusion [21], vortex transport [22], and electrical
breakdown [23], and they have provided a robust platform
for the simulation of quantum algorithms and maps [24]. QWs
have been experimentally implemented in the context of nuclear
magnetic resonance (NMR) [25], cavity quantum electrody-
namics (QED) [26], trapped ions [27,28], cold atoms [29], and
optics, both in the spatial [30] and frequency domains [12]. In
recent years, QWs with single and correlated photons have been
successfully introduced using waveguides [31] and bulk optics
[32], and time-domain implementations [33]. Moreover, dis-
crete-time quantum walks (DTQWs) [34] offer a versatile plat-
form for the exploration of a wide range of nontrivial geometric
and topological phenomena (experiment [27,35,36] and theory
[37–41]). Further, QWs are robust platforms for modeling a va-
riety of dynamic processes from excitation transfer in spin chains
[42,43] to energy transport in biological complexes [44]. They
enable study of multipath quantum interference phenomena
[45–48], and can provide for a route to validation of quantum
complexity [49,50] and universal quantum computing [51].
Moreover,multiparticleQWswarrant a powerful tool for encod-
ing information in an exponentially larger space, and for quan-
tum simulations in biological, chemical, and physical systems, in
1D and 2D geometries [31,52].
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In this paper, we propose a detailed research program for the
study for nonlinear effects in photonic QWs and their interplay
with topological phenomena [53–55]. More specifically, we
analyze the interplay between a nontrivial topology, determined
by the unitary step of a linear QW Hamiltonian (HQW), and
the phase-matching condition characterizing biphotons pro-
duced by the nonlinear process of spontaneous parametric
down conversion (SPDC) characterized by a nonlinear
Hamiltonian (H SPDC). By considering both linear and nonlin-
ear contributions in the overall biphoton Hamiltonian, we
analyze the coupling efficiency and emission probability in
different topological scenarios, determined by the linear
Hamiltonian. It is relevant to point out that most implemen-
tations of a QW [12,21–24,26,29,31–33,56,52] have intro-
duced passive linear elements only for the composing
elements of the random network, with the exception of a
few remarkable recent contributions [57].

The unitary step in the DTQW characterizing the linear
Hamiltonian (HQW) consists of a sequence of rotations and
spin-dependent translations. This is implemented by means
of two half-wave plates and two (calcite or fiber) polarization
beam splitters, respectively, as proposed by Kitagawa et al. [37].
This simple unitary step has readily been shown to display non-
trivial topology [35,37]. It is beyond the scope of this article to
repeat the derivation that demonstrates the nontrivial topology
of the basic unitary step. We refer the interested reader to
Refs. [35,37] for further information on the topology of the
linear Hamiltonian. This unitary step is then repeated a num-
ber of times along the DTQW, by concatenating the same se-
quence of beam splitters and wave plates. The number of times
(T ) this unitary step is repeated represents the number of dis-
crete steps in the DTQW (see Fig. 1 for reference). Once the
unitary step is given, we find the eigenvectors of the linear
Hamiltonian (HQW) (Bloch vectors); this will determine, in
turn, the basis for decomposing the nonlinear Hamiltonian,
as well the phase-matching condition for maximizing the cou-
pling efficiency. We note that for the particular topology we
analyze here nz ! 0, the Bloch vectors are phasors, which de-
pend only on a relative phase ϕ"k#. The array of spatial modes
(n) defined by the sequence of beam splitters in the DTQW
determines, in turn, the underlying lattice network for our
analysis. We note that there is no evanescent coupling between
the different spatial modes. In addition to the linear term in the
DTQW Hamiltonian, which fully determines the topology of
the system and was analyzed in detail in Refs. [35,37], we ana-
lyze the contribution of a nonlinear spontaneous parametric
downconversion (SPDC) term. This is in contrast to the semi-
nal work by Kitagawa et al. [37], which considers propagation
of only a single photon, and does not analyze SPDC biphoton
contributions. The nonlinear SPDC Hamiltonian (H SPDC) is
decomposed as a linear sum of Bloch vectors, which determines
a Bloch wave. We then analyze the coupling efficiency Γ of this
SPDC Bloch wave to the nth lattice mode. For the particular
topology we analyze here (nz ! 0), and considering only two
spatial modes n ! 1, 2 in the lattice, the coupling efficiency is
fully determined by the phase-matching condition, which is
fixed by the relative phase between Bloch vectors ϕ"k# and
is fully determined by the topology of the unitary step.

Therefore, different topologies dictated by the unitary step
in HQW determine different phase-matching conditions. We
emphasize that the underlying lattice of spatial modes corre-
sponds to the modes dictated by the beam-splitter array.
There is no evanescent coupling between the different spatial
modes. Moreover, since it is not an array of nonlinear wave-
guides, there is no upconversion along the lattice of linear
spatial modes.

A full class of topological insulators can be realized in a sys-
tem of noninteracting particles, with a binary (pseudo) spin
space for (bosons) fermions, via a random walk of discrete time
unitary steps as described in Ref. [37]. The particular type of
phase is determined by the size of the system (1D or 2D) and
by the underlying symmetries characterizing the Hamiltonian,
such as particle-hole symmetry (PHS), time-reversal symmetry
(TRS), or chiral symmetry (CS). The 1D DTQW can be speci-
fied by a series of unitary spin-dependent translations T and
rotations R"θ#, where θ specifies the rotation angle. Thus,
the quantum evolution is determined by applying a series of
unitary operations or steps:

U "θ# ! TR"θ#: (1)

The generator of the unitary evolution operator (or map) in
Eq. (1) is the time-independent Hamiltonian H "θ#, for which
the discrete time evolution operator U "θ# can be defined as

U "θ# ! e−iH"θ#δt ; (2)

where we have chosen ℏ ! 1, and the finite time evolution
after N steps is given by UN ! e−iH "θ#N δt.

The Hamiltonian H "θ# determined by the translation and
rotation steps T and R"θ#, possess PHS for some operator
P (i.e., PHP−1 ! −H ) and it also contains CS. The presence
of PHS and CS guarantees TRS. The presence of TRS and PHS
imply that the system belongs to a topological class contained in
the Su–Schrieffer–Heeger (SSH) model [58] and can thus be
employed to simulate a class of SSH topological phase. An ex-
tension to 2D topological insulators can be obtained by extend-
ing the lattice of sites to 2D. Different geometries, such as
square lattice or triangular lattice, are described in Ref. [37].
In this work we propose to study the dynamical evolution given
a general overall Hamiltonian of the form

H ! HQW $H SPDC; (3)

where the first term is the linear contribution given by the non-
trivial topology of the QW lattice, and the second term is the
nonlinear contribution due to the SPDC in nonlinear media
along the lattice.

2. SPLIT-STEP QW HAMILTONIAN (HQW)

The topology of the DTQW is fully determined by the unitary
step in the DTQW. The unitary step is indicated in Fig. 1 by a
dashed box. This unitary step consists of a rotation, typically
implemented by means of a half-wave plate (HWP), and a
polarization-dependent translation, typically implemented by
a calcite beam splitter [Fig. 1(a)] or by a fiber beam splitter
[Fig. 1(a)]. We stress that there is no evanescent coupling be-
tween the linear network of spatial modes defined by the array
of beam splitters.
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The basic step in the standard DTQW is given by a unitary
evolution operator U "θ# ! TRn⃗ "θ# [35,37], where Rn⃗ "θ# is a
rotation along an arbitrary direction n⃗ ! "nx; ny; nz#, given by

Rn⃗"θ# !
!
cos"θ# − inz sin"θ# "inx − ny# sin"θ#
"inx $ ny# sin"θ# cos"θ# $ inz sin"θ#

"
; (4)

in the Pauli basis [59]. In this basis, the y rotation is defined by
a coin operator of the form

Ry"θ# !
!
cos"θ# − sin"θ#
sin"θ# cos"θ#

"
: (5)

This is followed by a spin- or polarization-dependent trans-
lation T given by

T !
X

x
jx $ 1ihxj ⊗ jH ihH j$ jx − 1ihxj ⊗ jV ihV j; (6)

where H ! "1; 0#T and V ! "0; 1#T . The evolution operator
for a discrete-time step is equivalent to that generated by a
Hamiltonian H "θ#, such that U "θ# ! e−iH "θ# (ℏ ! 1), with

HQW"θ# !
Z

π

−π
dk%Eθ"k#n⃗ "k#:σ⃗ & ⊗ jkihkj; (7)

and σ⃗ the Pauli matrices, which readily reveals the spin–orbit
coupling mechanism in the system. The QW described by
U "θ# has been realized experimentally in a number of systems
[27,29,32,33], and has been shown to possess CS and display
a Dirac-like dispersion relation given by cos"Eθ"k## !
cos"k# cos"θ#.

Here we analyze a DTQW protocol consisting of two con-
secutive spin-dependent translations T and rotations R, such
that the unitary step becomes U "θ1; θ2# ! TR"θ1#TR"θ2#.
The so-called “split-step” QW, has been shown to possess a
nontrivial topological landscape characterized by topological
sectors with different topological numbers, such as the winding
numberW ! "0; 1# [37]. The dispersion relation for the split-
step QW results in [37]

cos"Eθ;ϕ"k## ! cos"k# cos"θ1# cos"θ2# − sin"θ1# sin"θ2#: (8)

The 3D norm for decomposing the QWHamiltonian of the
system in terms of Pauli matrices HQW ! E"k#n⃗ · σ⃗ becomes
[37]

nxθ1 ;θ2"k# !
sin"k# sin"θ1# cos"θ2#

sin"Eθ1 ;θ2"k##
;

nyθ1 ;θ2"k# !
cos"k# sin"θ1# cos"θ2# $ sin"θ2# cos"θ1#

sin"Eθ1 ;θ2"k##
;

nzθ1 ;θ2"k# !
− sin"k# cos"θ2# cos"θ1#

sin"Eθ1 ;θ2"k##
: (9)

Diagonalization ofHQW gives the lattice Bloch eigenvectors
that characterize the QW Hamiltonian, resulting in

u'"k# !
1

N

!
1;
nx"k# $ iny"k#
nz"k# ' λ"k#

"T
; (10)

with λ2 ! n2x $ n2y $ n2z , and N as a normalization factor. We
note that the relation between the two components of u' will

eventually determine the phase-matching condition for down-
converted photons, and for this reason it is of relevance for our
analysis.

For the particular case that nz"k# ! 0, the eigenvectors take
the simple form

u'"k# !
1ffiffiffi
2

p "1; e−iϕ"k##T ; (11)

with ϕ"k# ! atan"nynx#. For the split-step QW, this relative
phase results in

tan"ϕ"k## !
cos"k# sin"θ1# cos"θ2# $ sin"θ2# cos"θ1#

sin"k# sin"θ1# cos"θ2#
: (12)

3. SPDC HAMILTONIAN (HSPDC)

We can decompose the nonlinear Hamiltonian H SPDC in
terms of the Bloch eigenvectors u'"k# by defining Bloch
waves of the form Âp"k# !

P
nânu'"k#eikn, with ân ! "ân;1;

ân;2;…; âN ;m# and âN ;m the annihilation operator of the mth
sublattice mode.

We stress that the different sublattice modes correspond to
the linear network of spatial modes defined by the array of
beam splitters used at each unitary step (see Fig. 1). The net-
work does not correspond to an array of nonlinear waveguides,
and, therefore, there is no evanescent coupling or upconversion
between the different spatial modes. In Fig. 1 we consider a
single SPDC event; however, additional SPDC events could
be considered in the case of fiber beam splitters filled with non-
linear active media, as described in Section 5.A.

The SPDC Hamiltonian results in

H SPDC !
X

ps;i

Z
dks

Z
dkiΓps;i "ks; ki#Â

†
ps "ks#Â

†
pi "ki#; (13)

where the coupling efficiency Γps;i "ks; ki# to the Bloch wave re-
sults in the contribution of N sublattices of the form

Γps;i "ks; ki# ! γ
XN

n!1

Ep
n"ks $ ki#ups ;j"ks#upi ;j"ki#: (14)

For the case of a pump mode coupled to only two sublattices
labeled by n ! 1, 2, substituting the eigenmode profile deter-
mined by the topology of the QW Hamiltonian us;i, we obtain
an expression for Γps;i "ks; ki# of the form

Γps;i "ks; ki# ! γ

!
Ep
1"ks $ ki# $ Ep

2"ks $ ki#
nx"k# $ iny"k#
nz"k# ' λ"k#

"
:

(15)

For the particular case that nz ! 0, we obtain the simplified
expression

Γps;i "ks; ki# ! γ"Ep
1"ks $ ki#e−ijϕs"k#$ϕi"k#j $ Ep

2"ks $ ki##;

(16)

where ϕs;i"k# are the phase-matching functions for signal and
idler, which depend on the QW topology. For the particular
case of the split-step QW, this results in Eq. (12) for each
of the biphotons independently.
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4. NUMERICAL RESULTS

In Ref. [37] the authors demonstrate that the unitary step in the
DTQW we consider has a nontrivial topology. The nontrivial
topology of the unitary step is typically demonstrated by calcu-
lating pertinent topological invariants. For the case of 1D sys-
tems, the topological invariant is the winding number W .
Kitagawa et al. [37] showed that the winding number in the
unitary step we consider here takes two different values,W ! 0
or W ! 1 [38]. The value of the winding number W defines
topological sectors, since a topological sector can be defined as a
region in parameter space where the topological invariant takes a
fixed value. The existence of two different discrete values for this
topological invariant W demonstrates a nontrivial topological
landscape. We refer the interested reader to the seminal work by
Kitagawa et al. [37] for further details on the topological aspects
of the unitary step considered here. In this section we analyze the
impact of the unitary step topology, by considering DTQW
parameters θs;i1;2 belonging to the same topological sector,W ! 0
orW ! 1, as well as to different topological sectors correspond-
ing to different values of the winding number W ! 0, 1.

We first performed simulations to quantify the impact of the
pump envelope Ep

1"ks $ ki# on the coupling efficiency
Γps;i "ks; ki#. This, in turn, can provide information about the
spatial correlations between the biphotons produced by SPDC,
since the efficiency is proportional to the probability amplitude
of emission of biphotons. In all simulations we assumed a suf-
ficiently large crystal length L, so that the sinc dependence of
the phase-matching function is maximal and can be considered
constant. This is illustrated in Fig. 2, for "θs;i1 ! 0.01;
θs;i2 ! 0.0001#, for two different pump envelope widths
σ ! 500 and σ ! 10, and for different relative phases between

the signal and idler ϕs"k# ! 'ϕi"k#. In Fig. 2(a), θs;i1 ! 0.01,
θs;i2 ! 0.001, ϕs"k# ! ϕi"k#, and pump envelope width
σ ! 500; in Fig. 2(b), θs;i1 ! 0.01, θs;i2 ! 0.001,
ϕs"k# ! −ϕi"k#, and pump envelope width σ ! 500; in
Fig. 2(c), θs;i1 ! 0.01, θs;i2 ! 0.001, ϕs"k# ! ϕi"k#, and pump
envelope width σ ! 10; and in Fig. 2(d), θs;i1 ! 0.01,
θs;i2 ! 0.001, ϕs"k# ! −ϕi"k#, and pump envelope width
σ ! 10. It is apparent that a small envelope reduces coupling
efficiency to only the large values of momentum for signal and
idler. On the other hand, as expected, as the width σ of the
pump envelope increases, so does the coupling efficiency.

In order to further analyze the impact of the QW lattice
topology on the type of coupling efficiency that can be ex-
pected, we performed simulations considering a constant am-
plitude for the pump, Ep"ks $ ki# ! Ep, with no dependence
on k in Fourier space. We consider two cases, corresponding to
phase parameters θs;i1;2 defining different phase-matching con-
ditions ϕs;i"k# for signal and idler photons. This is illustrated
in Fig. 3: in Fig. 3(a), θs;i1 ! 0.01, θs;i2 ! 9 × π∕20, and
ϕs"k# ! ϕi"k#; in Fig. 3(b), θs;i1 ! 0.01, θs;i2 ! 0.001, and
ϕs"k# ! ϕi"k#; in Fig. 3(c), θs;i1 ! 0.01, θs;i2 ! 9 × π∕20,
and ϕs"k# ! −ϕi"k#; and in Fig. 3(d), θs;i1 ! 0.01,
θs;i2 ! 0.001, and ϕs"k# ! −ϕi"k#. Figure 3 reveals the emer-
gence of a nontrivial 2D grid in the coupling efficiency for QW
lattice parameters in distinct topological sectors [Figs. 3(a) and
3(c)]. The periodicity in the grid is a clear consequence of the
periodicity in lattice parameters and k space. On the other
hand, for lattice parameters in the same topological sector
[Figs. 3(b) and 3(d)], we obtain the same type of coupling co-
efficient as expected for standard SPDC, with, of course, no
k-dependence since this was ignored in the approximation
of constant pump envelope Ep"ks $ ki# ! Ep.

Fig. 2. Numerical simulation of coupling efficiency Γps;i "ks; ki# in
Fourier domain. (a) θs;i1 ! 0.01, θs;i2 ! 0.001, ϕs"k# ! ϕi"k# and
pump envelope width σ ! 500, (b) θs;i1 ! 0.01, θs;i2 ! 0.001,
ϕs"k# ! −ϕi"k# and pump envelope width σ ! 500,
(c) θs;i1 ! 0.01, θs;i2 ! 0.001, ϕs"k# ! ϕi"k# and pump envelope
width σ ! 10, (d) θs;i1 ! 0.01, θs;i2 ! 0.001, ϕs"k# ! −ϕi"k# and
pump envelope width σ ! 10.

Fig. 1. Experimental scheme for implementation of DTQW based
on (a) a sequence of calcite beam splitters, and (b) a sequence of fiber
beam splitters. While the lattice itself is defined by the spatial modes
characterizing the array of beam splitters, the lattice topology is fully
determined by the unitary step in the QW, indicated with a dashed
box. We note that there is no evanescent coupling or upconversion
between the different spatial modes determined by the beam-splitter
network. This experimental scheme can be employed for measurement
of spatial correlation via coincidence counts between different sublat-
tice modes (n).
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5. EXPERIMENTAL METHODS
A. Fiber Network

In Ref. [32] the authors performed an optical implementation
of the operator defined by Eq. (1), using polarization degrees
of freedom of single photons and a sequence of half-wave plates
and calcite beam splitters. On the other hand, in Ref. [31], the
authors implemented a QW in a lattice of coupled wave guides.
In this work, we propose to use a fiber network to implement a
QW to simulate 1D and 2D topological phases. One of the main
ingredients is the implementation of an optical nonlinearity that
can introduce the production of biphotons, for instance, via the
process of SPDC as described in the previous sections. The non-
linear contribution can be considered a single SPDC event (see
Fig. 1), or it can be introduced sequentially along the network by
using, for instance, fiber beam splitters filled with active media.
We note that there is no evanescent coupling between the spatial
modes defined by the beam splitters, and therefore no evanescent
coupling between two hollow-core fibers is required. We argue
that, in this way, one could simulate both attractive and repulsive
interactions (for the cases of correlated or anticorrelated down-
converted biphotons). A similar idea was already proposed in
Ref. [60], where attractive interactions were introduced in a pla-
nar AlGaAs waveguide characterized by a strong focusing Kerr
nonlinearity. Likewise, repulsive interactions can be simulated us-
ing defocusing nonlinearities [60], though this would remain part
of future efforts. A suitable alternative waveguide for the simu-
lation of attractive interactions is a photonic bandgap fiber with
a Raman active gas, which is predicted to have a strong nonlin-
earity. These fibers consist of hollow-core photonic crystal fibers
filled with an active Raman gas, which are capable of exceeding
intrinsic Kerr nonlinearities by orders of magnitude [61,62].

B. Input State Preparation

For the linear (noninteracting) case [QW with SU(2) sym-
metry] we plan to use single-mode states both with

Poissonian and sub-Poissonian statistics, such as coherent states
and squeezed coherent or single-photon states. The nonclassical
nature of the squeezed and single-photon states should be re-
vealed in the intensity distribution of counts, as well as in the
standard deviation. On the other hand, for the nonlinear (in-
teracting) case [SPDC with SU(1,1) symmetry], quantum
theory predicts that the probability amplitudes of the modes
should interfere, leading to an enhancement/reduction of
the initial correlations. One of the goals of the project is to
analyze the sensitivity of the nonlinear network to phase rela-
tions dictated by the topology of the network in the input state
and to the amount of gain. We also plan to analyze the effect of
correlations and entanglement in the input state on localized
edge states and to find some kind of nonlocal order parameter
characterizing topological order [63]. Finally, one of the aims of
this research plan is to demonstrate the feasibility of entangle-
ment topological protection [53].

C. Detection Schemes

1. Intensity Probability Distributions and Standard
Deviation

The most direct form of measurement is to detect the statistics
of counts by studying intensity histograms of photons and their
standard deviation, as described in Refs. [32,60]. In particular,
by placing a avalanche photodiode (APD) at the output of each
fiber, characterizing a given site in the network, it is possible to
obtain a probability distribution of counts and its standard
deviation along the N steps of the QW. While in the case
of input states with Poissonian statistics we expect to find a
classical binary distribution of counts as the output of the QW,
in the nonclassical case we expect to find a localized edge state
at the boundary between two different topological sectors.
Furthermore, we plan to measure the normalized standard
deviation σN for the classical and nonclassical case, where
we expect to find a markedly different dependence on the num-
ber of steps N ; namely, while for the classical walk (coherent
states) we plan to obtain σN ∝

ffiffiffiffiffi
N

p
diffusive dependence, for

the nonclassical case (squeezed states, single photons) we plan
to obtain an σN ∝ N ballistic dependence with the number of
discrete steps.

2. HBT Correlation Measurements

When using nonlinear fibers in the amplifying network, it
would be interesting to analyze one-mode (g1"Δr#) and
two-mode (g2"Δr#) spatial correlations functions by means
of Hanbury Brown–Twiss (HBT)-like interferometers between
different output modes in the network, as described in
Ref. [60]. In particular, while in the case of attractive inter-
actions, as simulated by Kerr nonlinearities in fibers, the cor-
relations are expected to increase, for the repulsive case the
correlations are expected to decrease. We also plan to analyze
the dependence of spatial correlations on the amount of gain
present in the medium. In particular, for some critical value of
the overall gain Gc , we expect to find a decay of the correla-
tions, which in turn can be related to the classical–quantum
transition in amplifying media [62]. Finally, we will also inves-
tigate the response of the amplifying network to different
phases in the input states dictated in turn by the topology

Fig. 3. Numerical simulation of coupling efficiency Γps;i "ks; ki#
in the Fourier domain. (a) θs;i1 ! 0.01, θs;i2 ! 9 × π∕20, and
ϕs"k# ! ϕi"k#. (b) θs;i1 ! 0.01, θs;i2 ! 0.001, and ϕs"k# ! ϕi"k#.
(c) θs;i1 ! 0.01, θs;i2 ! 9 × π∕20, and ϕs"k# ! −ϕi"k#, θs;i1 ! 0.01.
(d) θs;i1 ! 0.01, θs;i2 ! 0.001, and ϕs"k# ! −ϕi"k#.
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of the network, as well as the response to phase noise, by intro-
ducing phase-averaging mechanisms.

6. DISCUSSION AND OUTLOOK

In this work we propose an experimental implementation of
topological phases by means of an optical implementation of
a discrete-time quantum walk (DTQW) architecture. One
of the main novel ingredients is the inclusion of nonlinear me-
dia and nonlinear effects in the DTQW via the possibility of
spontaneous parametric downconversion (SPDC) in the lattice.
By means of numerical simulations, we have analyzed the inter-
play between quantum walk (QW) topology and spatial prop-
erties of photon pairs produced by SPDC. In particular, we
have numerically described how the topology of the QW lattice
can play an important role in the phase-matching function of
biphotons produced by SPDC. As a future work, we expect to
characterize the robustness of such topological phases and their
characteristic bound states against amplitude and phase noise,
as well as to decoherence, by tracing over spatial modes of the
field. One of the main goals of the proposed work is to inves-
tigate the use of parametric amplifiers as a means of simulating
many-body effects in topological phases. In particular, we ex-
pect to link such phases with the classical or quantum statistics
of the fields by means of intensity distribution and spatial cor-
relation measurements, and we intend to find a link between
some measure of entanglement and a nonlocal order parameter
characterizing the topology of the phase [63], or the feasibility
of entanglement topological protection approaches [53]. Some
significant signatures of many-body dynamics in topological or-
der are expected to be apparent, such as charge fractionalization
and Hall quantization, which motivate the extension of the re-
search to the nonlinear (many-body) scenario. Furthermore,
other more complex topological phases (such as spin-Hall
phase) could be simulated in the future by all-optical means
by using 2D QWs and higher dimensional internal degrees
of freedom of the radiation field, such as the orbital angular
momentum [64]. Furthermore, topological order has been con-
sidered as a useful ingredient for fault-tolerant quantum com-
putation, as it can protect the system against local perturbations
that would otherwise introduce decoherence and loss of quan-
tum information [65].
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