
Theoretical Computer Science 603 (2015) 3–22
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Linearizing well quasi-orders and bounding the length of bad

sequences

Sergio Abriola a, Santiago Figueira a,b,∗, Gabriel Senno a

a Departamento de Computación, FCEN, Universidad de Buenos Aires, Argentina
b CONICET, Argentina

a r t i c l e i n f o a b s t r a c t

Article history:
Received 11 February 2013
Accepted 27 November 2014
Available online 15 July 2015

Keywords:
Well quasi-order
Controlled bad sequence
Lexicographic ordering
Product ordering
Multiset ordering
Majoring ordering
Fast Growing Hierarchy

We study the length functions of controlled bad sequences over some well quasi-orders
(wqo’s) and classify them in the Fast Growing Hierarchy. We develop a new and self-
contained study of the length of bad sequences over the disjoint product in Nn (Dickson’s
Lemma), which leads to recently discovered upper bounds but through a simpler argument.
We also give a tight upper bound for the length of controlled decreasing sequences of
multisets of Nn with the underlying lexicographic ordering, and use it to give an upper
bound for the length of controlled bad sequences in the majoring ordering with the
underlying disjoint product ordering. We apply this last result to attain complexity upper
bounds for the emptiness problem of itca and atra automata.
For the case of the product and majoring wqo’s the idea is to linearize bad sequences, i.e.
to transform a bad sequence over a wqo into a decreasing one over a well-order, for which
upper bounds can be more easily handled.

© 2015 Elsevier B.V. All rights reserved.

1. Well quasi-orders and bad sequences

A quasi-order is a binary relation ≤ over a given set A that is reflexive and transitive. A sequence X = x0, x1, x2, . . . of
elements of A is called good if there are i < j such that xi ≤ x j . A sequence is bad if it is not good. A well quasi-order (wqo)
is a quasi-order where all infinite sequences are good, or, equivalently, all bad sequences are finite.

The theory of well quasi-orderings was initially developed by Higman [1] (under the name of “finite basis property”)
and by Erdös and Rado in an unpublished manuscript, although some early evidence of the theory had already appeared in
a work by Neumann [2]. Further developments were [3–5], and more recently [6]. Wqo’s have become a key ingredient in
a great number of results related with decidability, finiteness, and regularity results that appear in areas such as termina-
tion proofs for rewriting systems [7,8], their extensions [9,10], complexity upper bounds [11,12], well-structured transition
systems [13–16], etc.

From the analysis of a termination proof of a given algorithm S , whose correctness is grounded in the analysis of a
certain wqo, one may extract a computational complexity upper bound for S . Roughly, the idea is that any sequence of
successive configurations of S (with a given input) is transformed into a bad sequence in the wqo. Thus, having an upper
bound for the length of the bad sequence entails an upper bound for the number of steps that the algorithm needs to
terminate.

* Corresponding author.
E-mail address: santiago@dc.uba.ar (S. Figueira).
http://dx.doi.org/10.1016/j.tcs.2015.07.012
0304-3975/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2015.07.012
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:santiago@dc.uba.ar
http://dx.doi.org/10.1016/j.tcs.2015.07.012
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2015.07.012&domain=pdf

4 S. Abriola et al. / Theoretical Computer Science 603 (2015) 3–22
Consider the product ordering over Nn , one of the wqo’s analyzed in this work, defined as 〈z1, . . . , zn〉 ≤pr 〈y1, . . . , yn〉
iff ∀i ∈ {1, . . . , n} zi ≤ yi . A sequence x0, . . . , xk being bad in (Nn, ≤pr) means that for all i < j, there exists m such that
the m-th component of x j is strictly smaller than the m-th component of xi . Dickson’s Lemma [17] is the statement that
(Nn, ≤pr) is a wqo, so all bad sequences of this wqo are finite. How long can a bad sequence starting with a given tuple
be? For N2 and any N ∈N, the sequence

x = 〈0,1〉 , 〈N,0〉 , 〈N − 1,0〉 , 〈N − 2,0〉 , . . . , 〈1,0〉 , 〈0,0〉 (1)

is ≤pr-bad and has length greater than N . So in general there is no bound to the length of a bad sequence starting with a
given element: bad sequences in a wqo are finite but could be arbitrarily large.

In practice, in the analysis of termination proofs, one has two additional assumptions of a wqo (A, ≤). First, one has
some effective way of measuring the size of each element x ∈ A, notated |x|A or simply |x|.

Definition 1. (See [18].) A norm function | · |A over a set A is a mapping | · |A : A →N that provides every element of A with
a nonnegative integer, its norm. The norm function is said to be proper if {x ∈ A | |x|A < n} is finite for every n ∈ N. In this
article, whenever we consider A =Nn then | · |A will be defined as | · |∞ , the infinity norm.

Second, we may restrict ourselves to bad sequences x = x0, x1, x2 . . . with a controlled behavior, which means that there
is an effective way of computing, given i, an upper bound for |xi |.

Definition 2. Let g : N → N be an increasing function and let (A, ≤) be a wqo with a proper norm. A sequence x =
x0, x1, x2 . . . is g, t-controlled if for all i, |xi |A < g(t + i). We say that g is the control function for x.

Controlled bad sequences exclude arbitrary jumps as the one going from 1 to N in the sequence (1). As a consequence of
König’s Lemma, controlled bad sequences over wqo’s cannot be arbitrarily large: given a control, there exist upper bounds
for their lengths.

1.1. Some examples of bad sequences

Let us go back to the example of the ≤pr-bad sequence in (1). If we further impose that the sequence is g, 0-controlled,
where g(x) = x + 2, and we fix |x|N2 to be the infinity norm of x, then the longest g, 0-controlled ≤pr-bad sequence has
length 8, as it is shown by the following sequence:

〈1,1〉︸ ︷︷ ︸
x0

, 〈2,0〉︸ ︷︷ ︸
x1

, 〈1,0〉︸ ︷︷ ︸
x2

, 〈0,4〉︸ ︷︷ ︸
x3

, 〈0,3〉︸ ︷︷ ︸
x4

, 〈0,2〉︸ ︷︷ ︸
x5

, 〈0,1〉︸ ︷︷ ︸
x6

, 〈0,0〉︸ ︷︷ ︸
x7

. (2)

Indeed, observe that both coordinates of x0 take the maximum value allowed by the control, that is, g(0) − 1 = 1. Since
(2) is bad, for all i > 0 it must be xi
≥pr 〈1, 1〉, and this means that one of the coordinates of xi must be 0. Now x1 has
the second coordinate equal to 0 while the first one takes the maximum possible value allowed by the control function, i.e.
g(1) − 1 = 2. One can check that if we seek the longest g, 0-controlled ≤pr-bad sequence then x2 (which must be
≥pr 〈1, 1〉
and also
≥pr 〈2, 0〉) should be 〈1, 0〉—and not, for instance 〈0, 3〉. The next pair, x3 (which must be
≥pr 〈1, 1〉,
≥pr 〈2, 0〉
and
≥pr 〈1, 0〉), must now swap the zero-valued coordinate, and take value g(3) − 1 = 4 for the other coordinate. From
this point on, all the subsequent pairs x4, x5, . . . preserve the zero-valued first coordinate while the second one decreases
linearly down to 0. Of course, (2) is not the unique longest g, t-controlled ≤pr-bad sequence.

The above example might suggest that it is always fairly easy to calculate the length of the longest g, t-controlled
≤pr-bad sequence of Nn . This is not the case: just consider the same problem for N3 and one will shortly be captured by
cumbersome combinatorial calculations. Even more, getting upper bounds for the length of such sequences is also rather
complex.

Let us move to our second example of wqo, also analyzed in this work: the product ordering for disjoint union of tuples.
In general, the disjoint union of s sets A0, . . . , As−1 can be formalized as

⋃
0≤i<s{i} × Ai . Following this definition, the

disjoint union of s copies of Nn is the space [s] ×Nn , where [s] denotes {0, . . . , s − 1}. The disjoint product over [s] ×Nn is
defined as 〈a, z1, . . . , zn〉 ≤d

pr 〈b, y1, . . . , yn〉 iff a = b and 〈z1, . . . , zn〉 ≤pr 〈y1, . . . , yn〉. It is known that ≤d
pr over [s] × Nn is

a wqo. A sequence x0, . . . , xk of [s] ×Nn is ≤d
pr-bad if for all i < j either the first component of xi is different from the first

component of x j , or there is m such that the m-th component of x j is strictly smaller than the m-th component of xi . The
norm we will use for [s] ×Nn is the infinity norm on Nn+1. For instance, the reader can verify that

〈0,1〉 , 〈0,0〉 , 〈1,3〉 , 〈1,2〉 , 〈1,1〉 , 〈1,0〉 (3)

is a ≤d
pr-bad and g, 0-controlled sequence over [2] × N, for g(x) = x + 2. Observe that (3) is not ≤pr-bad over N2, as for

instance 〈0, 0〉 is ≤pr than any other tuple. A simple analysis also shows that (3) has maximum length, so the length of the
longest g, 0-controlled sequence over [2] ×N is 6.

The disjoint product wqo ≤d
pr over [s] × Nn is a generalization of the product wqo ≤pr over Nn: For s = 1 we have

〈0, z1, . . . , zn〉 ≤d
pr 〈0, y1, . . . , yn〉 iff 〈z1, . . . , zn〉 ≤pr 〈y1, . . . , yn〉.

S. Abriola et al. / Theoretical Computer Science 603 (2015) 3–22 5
i j possible values for x
0 1 〈1,4〉
0 2 〈1,4〉 or 〈4,1〉
0 3 〈4,1〉

i j possible values for x
1 2 〈3,2〉 or 〈5,1〉
1 3 〈3,2〉 or 〈5,1〉
2 3 〈2,1〉

Fig. 1. The sequence X in (4) is ≤(≤pr)

maj -bad: for any i < j, the tuple x ∈ Xi is
≤pr any element of X j .

As a final example, given a wqo (A, ≤), consider the majoring ordering over finite sets of elements of A, defined as
X ≤(≤)

maj Y iff every element of X is ≤-majored by some element of Y . The majoring ordering depends on an underlying

(A, ≤)—this is the reason of the superscript in ≤maj. It is known that ≤(≤)

maj is a wqo, provided (A, ≤) is also a wqo. In this

article we study the length of controlled ≤(≤pr)

maj -bad sequences of finite sets of Nn and of controlled ≤(≤d
pr)

maj -bad sequences

of finite sets of [s] × Nn . A sequence X0, . . . , Xk of Nn is ≤(≤pr)

maj -bad if for all i < j, there is x ∈ Xi such that for all y ∈ X j ,
we have x
≤pr y. For example, the following sequence

X = {〈1,4〉, 〈4,1〉}︸ ︷︷ ︸
X0

, {〈5,1〉, 〈3,2〉}︸ ︷︷ ︸
X1

, {〈2,1〉}︸ ︷︷ ︸
X2

, {〈1,5〉}︸ ︷︷ ︸
X3

(4)

is ≤≤pr

maj-bad, as it is explained in Fig. 1. To control a finite set of tuples means to control both the infinity norm of its tuples
and also the cardinality of the set. Thus, the sequence (4) is g, t-controlled, for g(x) = x + 5, though clearly it does not have
maximum length. Devising the longest g, t-controlled ≤(≤pr)

maj -bad sequences over finite sets of N2 is far from simple.
In this paper we give upper bounds for the length of g, t-controlled bad sequences, when t is a parameter. That is, given

a well (quasi-) order under study (A, ≤), we define L A
g (t) as the length of the longest g, t-controlled bad sequence in (A, ≤),

and we study upper bounds for L A
g , which are classified in the Fast Growing Hierarchy (Fα)α<ε0 of Löb and Wainer [19].

1.2. Linearizing

Our technique to obtain an upper bound for L A
g is to linearize the wqo (A, ≤A) with a proper norm | · |A into a suitable

well linear order (B, ≤B) with a proper norm | · |B . This means to find a function h : A+ → B such that for every a ∈ A+
and a ∈ A, if a�a is a bad sequence in (A, ≤A) then h(a) >B h(a�a). So if a = a0, . . . , ak is bad in (A, ≤A) then

b = h(a0),h(a0,a1),h(a0,a1,a2), . . . ,h(a)

is decreasing in (B, ≤B). Furthermore, for any control function g we seek a control function g̃ such that if a is g, t-controlled
then |h(a)|B < g̃(|a| + t − 1)—here |a| denotes the length of a. Hence if a is g, t-controlled then b is g̃, t-controlled and
therefore from a g, t-controlled bad sequence in (A, ≤A) one can get a g̃, t-decreasing sequence in (B, ≤B) of the same
length. Hence L A

g ≤ LB
g̃ , and the task is now to find an upper bound for LB

g̃ . In practice, these upper bounds are easier to
devise for well-orders than for wqo’s.

1.3. Contributions

Lexicographic ordering—Section 3 Being a well-order, bad is synonym of decreasing. Let Llex
n,g(t) and Llex

s,n,g(t) denote the length
of the longest g, t-controlled decreasing sequence over Nn and over [s] ×Nn respectively. In Theorem 1 we show that Llex

n,g
is tightly upper bounded by a function at the level Fγ +n−1 of the Fast Growing Hierarchy, whenever g is at the level Fγ .
In Theorem 2 we extend this result for Llex

s,n,g , showing that, irrespective of s, it is still upper bounded by a function
in Fγ +n−1.

Product and disjoint product ordering—Section 4 Let us denote Lpr
n,g(t) (resp. Lpr

s,n,g(t)) the length of the longest g, t-controlled
≤pr-bad (resp. ≤d

pr-bad) sequence over Nn (resp. over [s] × Nn). In Theorems 3 and 5 (and their respective Corollaries 4

and 6) we give a novel and elementary proof that both Lpr
n,g and Lpr

s,n,g have an upper bound in Fγ +n−1. This result has
been obtained in [20] but the argument presented here is markedly simpler, as it only uses a linearization of (Nn, ≤pr) and
([s] ×Nn, ≤d

pr) into the lexicographic ordering over Nn and [s] ×Nn respectively.

Multiset ordering—Section 5 This well-order will consume a rather large amount of development and technicalities for show-
ing the maximizing strategy first and devising its lower and upper bound next. Let Lms

n,g(t) (resp. Lms
s,n,g(t)) denote the length

of the longest g, t-controlled multiset-decreasing sequence of finite multisets of Nn (resp. of [s] × Nn) and the underlying
lexicographic ordering over Nn (resp. over [s] ×Nn). In Theorems 15 and 21 we show that Lms

s,n,g has a tight upper bound in
Fωn ·s whenever g is primitive recursive, which as a particular case implies a tight upper bound in Fωn for Lms

n,g .

6 S. Abriola et al. / Theoretical Computer Science 603 (2015) 3–22
Majoring ordering—Section 6 In Theorem 22 we give a general linearization of the majoring wqo into the multiset well-order.
Then we specialize it in the majoring ordering over the product and the disjoint product orderings. Let us denote Lmaj

n,g (t)

(resp. Lmaj
s,n,g(t)) the length of the longest g, t-controlled ≤(≤pr)

maj -bad (resp. ≤(≤d
pr)

maj -bad) sequence of finite sets of Nn (resp. of

[s] ×Nn). In Corollary 28 we show that if g is primitive recursive then Lmaj
s,n,g is upper bounded by a function in Fωn ·s and

hence, in particular, Lmaj
n,g is upper bounded by a function in Fωn .

Applications—Section 7 We finally give some applications on how our upper bound for Lmaj
s,n,g can be used in a known

decision procedure for the emptiness problem of two kind of automata over data trees: itca [21] and atra [22].

1.4. Related work

McAloon [23] shows an upper bound for Lpr
n,g when g is linear, and places it at the level Fn+1 of the Fast Growing

Hierarchy. Later Clote [24] simplifies McAloon’s argument and finds an upper bound in Fn+6. Neither of these proofs are
self-contained and both are quite complex.

In [20] D. and S. Figueira, Schmitz and Schnoebelen show an improved upper bound of Fn with a simpler proof, relying in
a mathematically more general setting of disjoint unions of powers of N. In fact, the main result of [20] is both more general
(because it is stated for Lpr

s,n,g instead of Lpr
n,g) and more precise (because it refines the upper bound in the Fast Growing

Hierarchy) than those of McAloon and Clote: if g ∈ Fγ then Lpr
s,n,g is bounded by a function in Fγ +n−1. Although this proof

is markedly simpler than those of [23] and [24], there are still some technical lemmas regarding this richer setting of sum
of powers. We arrive to the same results as in [20] through an argumentation which is shorter and still fully self-contained.
It consists in linearizing the disjoint product wqo into the lexicographic well-ordering, based on a constructive proof of
Dickson’s Lemma given by Harwood, Moller and Setzer [25].

To the best of our knowledge there are no rigorous study of the length of the controlled bad sequences for the other
orderings studied in this paper, namely the lexicographic, multiset and majoring ordering.

However there are some works that address Higman’s Lemma (subword ordering). Cichoń and Tahhan Bittar [26] show
a method for reducing bounds for tuples of words over a finite alphabet of p letters from bounds on the case for p − 1
letters. Weiermann [27] gives an Fωp−1 -like bound through a more general approach and a more involved analysis. More
recently, based on the techniques developed in [20], Schnoebelen and Schmitz [18] exhibit a new proof of the result for
finite alphabets—which is even more general than Weiermann’s—using an algebraic framework for handling normed wqo’s.
Finally in [28] these results are extended to infinite alphabets and an upper bound in F

ωωk is given for the length of the
longest controlled bad sequence in (Nk)∗ with the subword ordering.

2. Basic definitions

If A is a set then |A| denotes the cardinality of A. If x ∈ An then the i-th coordinate of x is denoted x[i], so x =
〈x[1], . . . , x[n]〉. Sequences are always in boldface and if x is a finite sequence then |x| denotes its length. A∗ denotes the set
of all sequences (including the empty sequence, notated ∅) of elements of A and A+ denotes the set of nonempty sequences
of elements of A. The concatenation of the sequence x and the element x at the rightmost place is denoted x�x. We fix
g :N →N to be an increasing function. For s ∈ N, [s] denotes the set {0, . . . , s − 1}.

Given a set X provided with a total order ≤, (X, ≤) is called a well-order if every non-empty subset of X has a minimum.
Recall that a quasi-order is a binary relation ≤ over a given set A that is reflexive and transitive. A sequence X = x0, x1, x2, . . .
of elements of A is called good if there are i < j such that xi ≤ x j . A sequence is bad if it is not good. A well quasi-order
(wqo) is a quasi-order where all infinite sequences are good, or, equivalently, all bad sequences are finite.

We work with the following wqo’s:

Lexicographic ordering If x, y ∈Nn then it is the well-order defined as

x <lex y
def⇔ x[1] < y[1] ∨ (x[1] = y[1] ∧ 〈x[2], . . . , x[n]〉 <lex 〈y[2], . . . , y[n]〉) .

The length of the longest g, t-controlled decreasing sequence in (Nn, ≤lex) is denoted by Llex
n,g(t). We will work with ≤lex

over [s] ×Nn , seen as a subset of Nn+1.

Product ordering If x, y ∈Nn then it is the wqo defined as

x ≤pr y
def⇔ (∀i ∈ {1, . . . ,n}) x[i] ≤ y[i].

The length of the longest g, t-controlled bad sequence in (Nn, ≤pr) is denoted by Lpr
n,g(t).

S. Abriola et al. / Theoretical Computer Science 603 (2015) 3–22 7
(Nn,≤lex) lexicographic ordering over Nn Llex
n,g(t)

([s] ×N
n,≤lex) lexicographic ordering over [s] ×N

n Llex
s,n,g(t)

(Nn,≤pr) product ordering over Nn Lpr
n,g(t)

([s] ×N
n,≤d

pr) disjoint product ordering over [s] ×N
n Lpr

s,n,g(t)

(M<∞(A),≤(≤A)
ms) multiset ordering over finite multisets of elements of A

with underlying ≤A over A
—

(M<∞(Nn),≤ms) multiset ordering over finite multisets Nn with underlying
≤lex

Lms
n,g(t)

(M<∞([s] ×N
n),≤ms) multiset ordering over finite multisets [s] ×N

n with
underlying ≤lex

Lms
s,n,g(t)

(P<∞(A),≤(≤A)

maj) majoring ordering over finite sets of elements of A with
underlying ≤A over A

—

(P<∞(Nn),≤maj) majoring ordering over finite sets of Nn with underlying
≤pr

Lmaj
n,g (t)

(P<∞([s] ×N
n),≤d

maj) majoring ordering over finite sets of [s] ×N
n with

underlying ≤d
pr

Lmaj
s,n,g(t)

Fig. 2. Summary of notation for the studied wqo’s and the length of g, t-controlled bad sequences.

Disjoint product ordering If x, y ∈ [s] ×Nn then it is the wqo defined as

x ≤d
pr y

def⇔ x[1] = y[1] ∧ 〈x[2], . . . , x[n + 1]〉 ≤pr 〈y[2], . . . , y[n + 1]〉.
The length of the longest g, t-controlled bad sequence in ([s] ×Nn, ≤d

pr) is denoted by Lpr
s,n,g(t).

Multiset ordering A multiset M over a set X is a function X → N. Intuitively a multiset is a generalization of a set, where
elements may be repeated. For x ∈ X , M(x) is called the multiplicity of x. A multiset is finite if the set of elements with
positive multiplicity is finite. We notate x ∈ M for M(x) > 0. Let M<∞(X) denote the class of finite multisets over X .

Let (X, ≤) be a poset and let M, N ∈M<∞(X). We define

N <
(≤)
ms M

def⇔ M
=N ∧ (∀x∈ X)[N(x)>M(x) ⇒ (∃y∈ X)[y>x ∧ M(y)>N(y)]].
Intuitively, this says that N can be obtained from M by replacing some elements by finitely many (possibly zero) smaller
(with respect to ≤) elements. If (X, ≤) is a well-order then (M<∞(X), ≤(≤)

ms) is also a well-order. See [29] for more details.
We will study (M<∞(Nn), ≤(≤lex)

ms), the multiset ordering of finite multisets of tuples with the underlying lexicographic
ordering. In this context, we simply write ≤ms for ≤(≤lex)

ms . Observe that it is a well-order because (Nn, ≤lex) is so.
The length of the longest g, t-controlled decreasing sequence in (M<∞(Nn), ≤ms) is denoted by Lms

n,g(t) and the length
of the longest g, t-controlled decreasing sequence in (M<∞([s] ×Nn), ≤ms) is denoted by Lms

s,n,g(t).

Majoring ordering Let P<∞(X) denote the finite and non-empty parts of X . For a wqo (X, ≤) and A, B ∈ P<∞(X), the
majoring ordering is defined as

A ≤(≤)

maj B
def⇔ (∀x ∈ A)(∃y ∈ B) x ≤ y.

We will study (P<∞(Nn), ≤(≤pr)

maj), the majoring ordering of finite sets of tuples with the underlying product ordering. In

this context, we write ≤maj for ≤(≤pr)

maj . We will also study (P<∞([s] × Nn), ≤(≤d
pr)

maj), the majoring ordering of finite sets of

[s] × Nn with the underlying ≤d
pr wqo. In this case, we write ≤d

maj for ≤(≤d
pr)

maj . Observe that these two orderings are wqo’s
because (Nn, ≤pr) and ([s] ×Nn, ≤d

pr) are so (see for instance [30, Prop. 2.15]).

The length of the longest g, t-controlled bad sequence in (P<∞(Nn), ≤maj) is denoted by Lmaj
n,g (t) and the length of the

longest g, t-controlled bad sequence in (P<∞([s] ×Nn), ≤d
maj) is denoted by Lmaj

s,n,g(t).
Fig. 2 summarizes the notation for the wqo’s considered in this article and the notation for the length of the longest

controlled bad sequences over such wqo’s (whenever it applies).

The fast growing hierarchy (Fα)α<ε0 Let ε0 be the least infinite ordinal α such that ωα = α. The Fast Growing Hierarchy is
defined as

F0(x)
def= x + 1 Fα+1(x)

def= F x+1
α (x) Fλ(x)

def= Fλx(x),

where in general gk denotes the k-th iteration of g (i.e. g1 = g and gk+1 = g ◦ gk), α < ε0 is an ordinal, λ < ε0 is a limit
ordinal and (λx)x<ω is an increasing sequence of ordinals with limit λ (a fundamental sequence), which we fix to be:

(γ + ωβ+1)x
def= γ + ωβ · (x + 1) (γ + ωλ)x

def= γ + ωλx .

8 S. Abriola et al. / Theoretical Computer Science 603 (2015) 3–22
Observe that, in particular, for 1 ≤ s, n < ω, we have

Fωn·s(t) = Fωn·(s−1)+ωn(t)
def= Fωn·(s−1)+ωn−1·(t+1)(t).

The class Fα of the Fast Growing Hierarchy is the closure under substitution and limited recursion of the constant, sum,
projections, and the functions Fα . F0 = F1 contains all linear functions, F2 contains all the elementary functions, F3 contains
all the tetration functions.

⋃
n<ω Fn is the class of all primitive recursive functions and in general

⋃
α<ωk Fα is the class of

k-recursive functions [31]. There are a number of important monotonicity results regarding the Fast Growing Hierarchy: for
ordinals α < β < ε0, the function Fα is strictly increasing, Fα+1 ≥ Fα , Fα is eventually majorized by Fβ , and then Fα � Fβ

(except for α = 0 and β = 1), etc. For more results on the Fast Growing Hierarchy, cf. [19].

3. Lexicographic ordering

In [20, Section VI], it is shown that

Llex
1,g(t) = g(t), Llex

n+1,g(t) =
g(t)∑
j=1

Llex
n,g

(
o j−1

n,g (t)
)

, on,g(t)
def= t + Llex

n,g(t). (5)

Theorem 1 (Tight upper bound for Llex
n,g). For any ordinal γ ≥ 1, if g has an upper bound in Fγ then Llex

n,g has an upper bound
in Fγ +n−1 . This bound is tight.

Proof. Observe that if g ≤ G ∈ Fγ , then Llex
n,g ≤ Llex

n,G . Thus, for the upper bound, we can assume without loss of generality
that g ∈ Fγ ; the general result will then follow for g upper bounded in Fγ . We proceed by induction on n. If n = 1 then
Llex

1,g(t) = g(t), and by hypothesis g ∈ Fγ . Now suppose Llex
n,g ≤ h ∈ Fγ +n−1. We have Llex

n+1,g(t) ≤ g(t) · Llex
n,g(o

g(t)−1
n,g (t)) ≤

g(t) · og(t)
n,g (t), where the first inequality follows from (5), since on,g is growing, and the second one because Llex

n,g ≤ on,g .

Since Llex
n,g ≤ h ∈ Fγ +n−1 then on,g(t) ≤ h(t) + t and so on,g ∈ Fγ +n−1. In [19, Thm. 2.10] it is proved that if f ∈ Fα , then

there is a number p such that ∀x, f (x) < F p
α(x). Consequently there is p such that F p

γ +n−1 majorizes on,g . Therefore

Llex
n+1,g(t) < g(t) · F p·g(t)

γ +n−1(t)

≤ g(t) · F p·g(t)+1
γ +n−1 (p · g(t)) (monononicity of Fγ +n−1)

= g(t) · Fγ +n(p · g(t)),

which lies in Fγ +n , since it is the composition and product of functions in Fγ +n (and since γ + n ≥ 2, Fγ +n is closed by
products).

In [20, Prop. VI.3] it is shown that if g = Fγ then Llex
n,g ≥ Fγ +n−1. Hence our upper bound is tight if g ≥ Fγ , since

Llex
n,g ≥ Llex

n,Fγ
≥ Fγ +n−1. �

Theorem 2 (Tight upper bound for Llex
s,n,g). For any ordinal γ ≥ 1, if g has an upper bound in Fγ then Llex

s,n,g has an upper bound
in Fγ +n−1 . This bound is tight.

Proof. As in the proof of Theorem 1, for the upper bound we can assume that g ∈ Fγ . It is clear that

Llex
s,n,g(t) =

s∑
j=1

Llex
n,g

(
o j−1

n,g (t)
)

, (6)

and then

Llex
s,n,g(t) ≤ s · Llex

n,g(o
s−1
n,g (t)) (by (6), since on,g is growing)

≤ s · os
n,g(t) (since Llex

n,g ≤ on,g).

As we explained in the proof of Theorem 1, on,g ∈ Fγ +n−1. Since multiplication by a constant and bounded iteration do not
make us change the level of the hierarchy, we conclude that Llex

s,n,g ∈ Fγ +n−1.

Since Llex
n,g ≤ Llex

s,n,g and by [20, Prop. VI.3] Llex
n,g ≥ Fγ +n−1 if g ≥ Fγ , we conclude that Fγ +n−1 is a tight bound for

Llex
s,n,g . �

S. Abriola et al. / Theoretical Computer Science 603 (2015) 3–22 9
4. Product and disjoint product ordering

In Section 4.1 we linearize the wqo (Nn, ≤pr) into the well-order (Nn, ≤lex) and derive an upper bound for Lpr
n,g(t). In

Section 4.2 we extend this result and linearize the wqo ([s] × Nn, ≤d
pr) into ([s] × Nn, ≤lex) to get an upper bound for

Lpr
s,n,g(t).

4.1. Product ordering

The next result follows the idea of Harwood, Moller and Setzer [25] adapted to controlled bad sequences. For the sake of
completeness we include the full proof.

First, let us mention the intuition behind the proof. For x ∈ Nn , define ↑x def= {z ∈ Nn | x ≤pr z}. Let n = 2, and suppose

x = 〈x0, y0〉, 〈x1, y1〉, 〈x2, y2〉, . . . , 〈xk, yk〉
is a bad sequence in (N2, ≤pr). Let a(x) = min0≤i<|x| xi , b(x) = min0≤i<|x| yi and C(x) = ↑〈a(x), b(x)〉 \⋃

0≤i<|x| ↑〈xi, yi〉. It is

easy to see that C(x) is finite. Here is how we can linearize (N2, ≤pr) into (N2, ≤lex): Define h(x) def= 〈a(x) +b(x), |C(x)|〉 ∈ N2

and suppose that x�〈x, y〉 is bad. If x < a(x) ∨ y < b(x) then h(x�〈x, y〉)[1] < h(x)[1]; in case x ≥ a(x) ∧ y ≥ b(x)

then C(x�〈x, y〉) ⊆ C(x). In this last case, since 〈x, y〉 ∈ C(x) \ C(x�〈x, y〉), we have |C(x�〈x, y〉)| < |C(x)|. Therefore
h(x�〈x, y〉) <lex h(x). Furthermore, if x is g, t-controlled then C(x) has at most g(t + |x| − 1)2 elements, and a(x) + b(x) <
2g(t + |x| − 1). Hence if x is g, t-controlled, then the sequence

y = h(〈x0, y0〉),h(〈x0, y0〉, 〈x1, y1〉), . . . ,h(x),

is <lex-decreasing and g̃, t-controlled, where g̃(x) = 2g(x)2.
The argument cannot be generalized straightforwardly for any n > 2 to obtain a linearization into (Nn, ≤lex). For instance,

for n =3 and x =〈0, 0, 1〉, 〈0, 1, 0〉, we would have C(x) = ↑〈0, 0, 0〉 \ (↑〈0, 0, 1〉 ∪↑〈0, 1, 0〉) and this set is infinite ((N, 0, 0) ∈
C(x) for any N). However, (Nn, ≤pr) can be linearized into (Nn, ≤lex) by an inductive argument.

Theorem 3. There is a function hn : (Nn)+ → Nn such that if x�x is bad in (Nn, ≤pr) and x is nonempty, then hn(x�x) <lex hn(x).
Furthermore if x is g, t-controlled then |hn(x)|∞ < g̃(|x| − 1 + t), for g̃(x) = n! g(2nx)n. That is, hn(x) is g̃, t-controlled.

Proof. We define the functions hn by induction on n. If x = x0, x1, x2, . . . , xk is a bad sequence in N then define
h1(x0, x1, x2, . . . , xk)

def= xk . Since in N the product order and the lexicographic order coincide, we have h1(x�x) <lex h1(x).
For the inductive construction of hn , let n > 1 and assume the truth of the statement of the theorem for dimension n −1.

For 1 ≤ i ≤ n and x ∈Nn we define

deli(x)
def= 〈x[1], . . . , x[i − 1], x[i + 1], . . . , x[n]〉,

i.e. deli(x) deletes the i-th component of the n-tuple x. Given a finite and nonempty bad sequence x = x0, x1, . . . , xk of
n-tuples, we define the set

badi(x)
def= {deli(x j0), . . . ,deli(x jp) | p ≥ 0,0 ≤ j0 < · · · < jp ≤ k, and

deli(x j0), . . . ,deli(x jp) is bad},
i.e. badi(x) consists of the bad subsequences of (n − 1)-tuples of x in which the i-th components of the n-tuples have been
deleted. Finally we define

mini(x)
def= min

<lex
{hn−1(y) | y ∈ badi(x)} and

extn(x)
def= {x ∈Nn | (∀i ∈ {1, . . . ,n}) mini(x) = mini(x�x), and

(∀ j ∈ {0, . . . ,k}) x j
≤pr x},
which consists of the n-tuples with which the sequence x can be extended without altering the mini values and yet while
maintaining badness.

Fact 1. |extn(x)| < ∞, and if x is g, t-controlled, then |extn(x)| < g(k + t)n.

Proof. Let z = deli(x j0), . . . , deli(x jp) ∈ (Nn−1)+ be a bad sequence, suppose mini(x) = hn−1(z), and suppose that s ∈
extn(x). If the sequence z�deli(s) were bad, then by the ind. hyp. we would get that mini(x�s) ≤lex hn−1(z�deli(s)) <lex
hn−1(z) = mini(x), contradicting s ∈ extn(x). Therefore, since z is bad but z�deli(s) is not, we have deli(x jm) ≤pr deli(s) for
some m. But since s ∈ extn(x) we have that x jm
≤pr s, and therefore s[i] < x jm [i]. Now, since this goes for all i, we conclude
that |extn(x)| is finite.

10 S. Abriola et al. / Theoretical Computer Science 603 (2015) 3–22
Now if x is g, t-controlled, then x j[i] < g(k + t) for all j, because g is increasing. By the above argument |extn(x)| ≤
g(k + t)n , but since x was nonempty and x0 /∈ extn(x), we conclude |extn(x)| < g(k + t)n . �

We finally define

hn(x)
def=

〈
n∑

i=1

mini(x), |extn(x)|
〉

∈ Nn,

where the sum is taken componentwise and thus results in a tuple in Nn−1. We conclude the proof with the following two
facts:

Fact 2. If x�x is bad then hn(x�x) <lex hn(x).

Proof. Suppose that y = x�x bad. Since for any i ∈ {1, . . . , n}, badi(x) ⊆ badi(y), then mini(y) ≤lex mini(x); and if mini(y) =
mini(x) for all i then extn(y) � extn(x), since extn(y) ⊆ extn(x) but x ∈ extn(x) \ extn(y). Thus |extn(y)| < |extn(x)|. �
Fact 3. If x is g, t-controlled then |hn(x)|∞ < g̃(|x| − 1 + t), where g̃(x) = n! g(2nx)n.

Proof. By induction on n ≥ 1. If n = 1 then if x = x0, . . . , xk is g, t-controlled, then h1(x) = xk < g(t + k) = g(t + |x| − 1) ≤
g(2(t + |x| − 1)) = g̃(|x| − 1 + t).

Since any y ∈ badi(x) is a g, (t + k)-controlled bad sequence of Nn−1, by inductive hypothesis we get

|hn−1(y)|∞ < (n − 1)! g((n − 1)(|y| − 1 + t + k))n−1

≤ (n − 1)! g((n − 1)(k + t + k))n−1

≤ (n − 1)! g(2n(k + t))n−1

In particular, for y such that mini(x) = hn−1(y), we conclude |mini(x)|∞ < (n − 1)! g(2n(k + t))n−1, and so the first n − 1
coordinates of hn(x) are strictly bounded by n! g(2n(k + t))n−1 (the factor n comes from the n additions). By Fact 1, the last
coordinate of hn(x) is strictly bounded by g(k + t)n . Therefore,

|hn(x)|∞ < max{n! g(2n(k + t))n−1, g(k + t)n}
≤ n! g(2n(k + t))n

= n! g(2n(|x| − 1 + t))n

= g̃(|x| − 1 + t)

and this concludes the proof of Fact 3. �
This concludes the proof of Theorem 3. �

Recall that Lpr
n,g(t) denotes the length of the longest g, t-controlled bad sequence in (Nn, ≤pr), and Llex

n,g(t) denotes the
length of the longest g, t-controlled decreasing sequence in (Nn, ≤lex).

Corollary 4 (Tight upper bound for Lpr
n,g). Lpr

n,g ≤ Llex
n,g̃ , for g̃ as in Theorem 3. Hence if g has an upper bound in Fγ , and γ ≥ 2 is an

ordinal, then Lpr
n,g has an upper bound in Fγ +n−1 . This bound is tight.

Proof. Observe that for the upper bound of Lpr
n,g we can assume without loss of generality that g ∈ Fγ . The function g̃ is

defined through finite substitution from g and product. Since F2 and higher levels are closed under finite products, we have
g̃ ∈ Fγ . By Theorem 1, there is a function h ∈ Fγ +n−1 such that h ≥ Llex

n,g̃ . On the other hand, since Lpr
n,g ≥ Llex

n,g , by Theorem 1
the bound is tight. �
4.2. Disjoint product ordering

We extend Theorem 3 from ≤pr over Nn to ≤d
pr over [s] ×Nn:

Theorem 5. There is a function hs,n : ([s] ×Nn)∗ → [s] ×Nn such that if x�x is bad in ([s] ×Nn, ≤d
pr) then hs,n(x�x) <lex hs,n(x).

Furthermore if x is g, t-controlled then |hs,n(x)|∞ < ĝ(|x| − 1 + t), for ĝ(x) = s · g̃(2(x + 1)) and g̃ as in Theorem 3.

S. Abriola et al. / Theoretical Computer Science 603 (2015) 3–22 11
Proof. Given a (possibly empty) sequence x in [s] ×Nn and i ∈ [s], we define πi(x) as the (possibly empty) sequence of Nn

which results in selecting (in the order of x) the last n components of each element of x whose first component is i. More
formally, define πi : ([s] ×Nn)∗ → (Nn)∗ as follows:

πi(∅)
def= ∅

πi(x1, x2, . . . , xk)
def=

{ 〈x1[2], . . . , x1[n + 1]〉�πi(x2, . . . , xk) if x1[1] = i;
πi(x2, . . . , xk) otherwise.

Clearly, if x is ≤d
pr-bad and g, t-controlled then πi(x) is ≤pr-bad and g, t + |x|-controlled. If x = x1, . . . , xk , let c(x) def= {x j[1] |

j ∈ {1, . . . , k}}. Define

hs,n(x)
def=

〈
s − |c(x)|,

∑
i∈[s],πi(x)
=∅

hn(πi(x))

〉
∈ [s] ×Nn,

where hn : (Nn)+ →Nn is the one from Theorem 3 and the sum is taken componentwise.

Fact 4. If x�x is ≤d
pr-bad then hs,n(x�x) <lex hs,n(x).

Proof. If x[1] /∈ c(x) then hs,n(x�x)[1] < hs,n(x)[1], so hs,n(x�x) <lex hs,n(x). If x[1] ∈ c(x) then c(x) = c(x�x) and∑
i∈[s]

πi (x�x)
=∅

hn(πi(x�x)) = hn(πx[1](x�x)) +
∑
i∈[s]

πi (x�x)
=∅
i
=x[1]

hn(πi(x�x)). (7)

On the one hand, for i
= x[1] we have πi(x�x) = πi(x). On the other hand, πx[1](x�x) is ≤pr-bad, πx[1](x�x) =
πx[1](x)�〈x[2], . . . , x[n + 1]〉, and hence by Theorem 3, hn(πx[1](x�x)) <lex hn(πx[1](x)). So from (7) we obtain∑

i∈[s]
πi (x�x)
=∅

hn(πi(x�x)) <lex hn(πx[1](x)) +
∑
i∈[s]

πi (x)
=∅
i
=x[1]

hn(πi(x)),

and we conclude that hs,n(x�x) <lex hs,n(x). �
Fact 5. If x is g, t-controlled then |hs,n(x)|∞ < ĝ(|x| − 1 + t), where ĝ(x) = s · g̃(2(x + 1)).

Proof. It is clear that the first component of hs,n(x) is at most s. Since πi(x) is g, t + |x|-controlled, by Theorem 3
|hn(πi(x))|∞ < g̃(|x| − 1 + t + |x|) = g̃(2|x| − 1 + t), for g̃ as in Theorem 3. By the definition of hs,n we have |hs,n(x)|∞ <

s · g̃(2|x| − 1 + t). Since g is an increasing function, g̃(2|x| − 1 + t) ≤ g̃(2(|x| + t)), and then |hs,n(x)|∞ < ĝ(|x| − 1 + t) for
ĝ(x) = s · g̃(2(x + 1)). �

This concludes the proof of Theorem 5. �
We arrive to the same result as in [20]:

Corollary 6 (Tight upper bound for Lpr
s,n,g). Lpr

s,n,g ≤ Llex
s,n,ĝ

, for ĝ as in Theorem 5. Hence if g has an upper bound in Fγ , and γ ≥ 2 is
an ordinal, then Lpr

s,n,g has an upper bound in Fγ +n−1 . This bound is tight.

Proof. The upper bound is straightforward from Theorem 5 and Theorem 2. Also, since Lpr
s,n,g ≥ Llex

s,n,g , by Theorem 2 this
bound is tight. �
5. Multiset ordering

We need a notion of g, t-controlled sequence of (multi)sets. By Definition 2 it suffices to give a proper norm:

Definition 3 (A proper norm of sets and multisets of tuples). Given a set A with a proper norm | · |A , and given X ∈ M<∞(A),
we define |X |, the norm of X , as the maximum between

max
x∈A

X(x) and max{|x|A | x ∈ A ∧ X(x) > 0}.
For X ∈P<∞(A), |X | is defined analogously, as any set is a multiset.

In this section we give a tight upper bound for Lms
s,n,g (and consequently for Lms

n,g) in terms of the Fast Growing Hierarchy,
for g ≤ h ∈ Fα and α < ω.

12 S. Abriola et al. / Theoretical Computer Science 603 (2015) 3–22
5.1. Maximizing strategy

To study the longest g, t-controlled ≤ms-decreasing sequence of multisets we define the maximizing strategy which,
given a nonempty g, t-controlled multiset M , determines the greatest g, (t + 1)-controlled multiset N which is smaller than
M . The strategy says that to obtain N one should take out one of the minimum elements of M , say m, (i.e. decrement in
one the multiplicity of m) and add as many elements smaller than m as the control function permits.

For the rest of this subsection, assume (X, ≤) is a well-order. We write <ms instead of <(≤)
ms . Let M ∈ M<∞(X) be

g, t-controlled and let | · |X = | · | be a proper norm for X . We define the g, t-predecessor of M as follows: For x ∈ X ,

pred
g
t (M)(x)

def=
{ g(t + 1) − 1 if x < min M ∧ |x| < g(t + 1);

M(x) − 1 if x = min M;
M(x) otherwise.

where min M
def= min{x | M(x) > 0}.

Lemma 7. Let M be a g, t-controlled nonempty finite multiset over a totally ordered set P , and let N = pred
g
t (M). Then (1) N is

g, (t + 1)-controlled; (2) N <ms M; and (3) if N ′ is g, (t + 1)-controlled and N ′ <ms M then N ′ ≤ms N.

Proof. (1) is clear from the definition of N and the fact that g is monotone increasing. For (2), it is obvious that M
= N . By
definition, if N(x) > M(x) then x < m = min M and M(m) > N(m).

For (3), assume N ′ < M is g, (t + 1)-controlled. We show that if N ′(x) > N(x) then there is z > x such that N(z) > N ′(z).
Suppose N ′(x) > N(x).

1. Suppose x < min M . Then N(x) = g(t + 1) − 1 ≥ N ′(x), contradicting N ′(x) > N(x).
2. Suppose x > min M . Then N(x) = M(x) and therefore N ′(x) > M(x). Since N ′ <ms M there is z > x such that N(z) =

M(z) > N ′(z).
3. Suppose x = min M . Then N(x) = M(x) − 1, and so N ′(x) ≥ M(x). If N ′(x) > M(x) then, since M <ms N ′ , there is z > x

with M(z) > N ′(z). For such z, by definition of N , we have N(z) = M(z) > N ′(z). If N ′(x) = M(x) then, since N ′
= M ,
there is y such that N ′(y)
= M(y). Any such y must be different from x. Suppose that all such y’s were smaller than
x = min M . In this case M ≤ms N ′ and this contradicts the hypothesis. Hence there is y > x such that N ′(y)
= M(y).
If N ′(y) > M(y), there is z > y > x such that N ′(z) < M(z) = N(z). If N ′(y) < M(y), since M(y) = N(y), we conclude
N ′(y) < N(y).

This concludes the proof. �
We represent a finite multiset M such that {x | M(x) > 0} = {x1, . . . , xn} as M

def= M(x1) · x1 + · · · + M(xn) · xn . For n ∈ N

and S a set, we denote with n · S the multiset M such that M(x) = n if x ∈ S and M(x) = 0 otherwise. For a finite multiset
M , let Lg,M(t) denote the length minus one of the longest g, t-controlled and <ms-decreasing sequence of multisets starting
with the multiset M . For x ∈ X , let og,x(t) = t + Lg,1·{x}(t).

Lemma 8. If k ≥ 1 then Lg,k·{x}(t) = ∑k−1
i=0 Lg,1·{x}(oi

g,x(t)).

Proof. We write Lk for Lg,k·{x} and o for og,x . First we show that

Fact 6. oi(t) = t + ∑i−1
j=0 L1(o j(t)).

Proof. By induction on i ≥ 0. If i = 0 it is trivial. Now

oi+1(t) = o(oi(t))

= o(t +
i−1∑
j=0

L1(o
j(t))) (ind. hyp.)

= t +
i−1∑
j=0

L1(o
j(t))) + L1(o

i(t)) (def. of o and ind. hyp.)

= t +
i∑

L1(o
j(t)).
j=0

S. Abriola et al. / Theoretical Computer Science 603 (2015) 3–22 13
This concludes the proof of Fact 6. �
Now we show the statement of the lemma by induction on k ≥ 1: If k = 1 it is straightforward. For the inductive step,

observe that the longest g, t-controlled decreasing sequence of multisets beginning with M1 = (k + 1) · {x} is

M1 >ms M2 >ms . . . ,>ms Ml1 >ms N2 >ms N3 >ms . . . >ms Nl2 ,

of length l1 + l2 − 1 and where l1 = Lk(t) + 1, Ml1 = 1 · {x}, l2 = L1(t + Lk(t)) + 1 and Nl2 = ∅. We have:

Lk+1(t) = l1 + l2 − 2

= Lk(t) + L1(t + Lk)

=
k−1∑
i=0

L1(o
i(t)) + L1(t +

k−1∑
i=0

L1(o
i(t))) (ind. hyp.)

=
k−1∑
i=0

L1(o
i(t)) + L1(o

k(t)) + 1 (Fact 6)

=
k∑

i=0

L1(o
i(t)),

and this concludes the proof of Lemma 8. �
The following are straightforward consequences of Lemma 8.

Corollary 9. For k ≥ 1, t ≥ 0, Lg,k·{x}(t) ≥ Lk
g,1·{x}(t).

Corollary 10. For k ≥ 1, t ≥ 0, Lg,k·{x}(t) ≤ k · Lg,1·{x}(ok−1
g,x (t)).

5.2. Lower bound for multisets of [s] ×Nn

In the sequel we will initially fix (X, ≤) to be (Nn, ≤lex). At the end of the subsection we will derive a lower bound
for the maximum length of controlled sequences of decreasing multisets over ([s] × Nn, ≤lex), which in the case s = 1 is
equivalent to a lower bound for multisets over (Nn, ≤lex).

If M ∈M<∞(Nn) then let Pn,g(M, t) denote the length minus one of the longest g, t-controlled <ms-decreasing sequence
of multisets starting with M . If M consists of one copy of (x1, . . . , xn), we simply write Pn,g(x1, . . . , xn, t) instead of Pn,g(1 ·
{(x1, . . . , xn)}, t).

Observe that, having fixed (X, ≤) as (Nn, ≤lex), we have Lg,M(t) = Pn,g(M, t).
Define Gn,g : Nn+1 \ {(0, . . . , 0)} → N by multiple recursion as:

Gn,g(0, . . . ,0,1, t)
def= g(t + 1) (8)

Gn,g(x, x0 + 1, t)
def= G g(t+1)−1

n,g (x, x0, t) (9)

Gn,g(x, x j + 1,0, t)
def= Gn,g(x, x j, g(t + 1) − 1,0, t). (10)

In Eqn. (9), we let x = xn−1, . . . , x1. In Eqn. (10) we let x = xn−1, . . . , x j+1 and this equation only applies when
j > 0. Gk

n,g(a, t) denotes the k-th iteration of Gn,g in the last component, i.e. G1
n,g(a, t) = Gn,g(a, t) and Gk+1

n,g (a, t) =
Gn,g(a, Gk

n,g(a, t)).

Lemma 11. If g(t) ≥ t + 1 then Pn,g ≥ Gn,g .

Proof. By induction on the lexicographic order of (xn−1, . . . , x0):
If (x1, . . . , xn−1, xn) = (0, . . . , 0, 1) then for (8) the longest g, t-controlled <ms-decreasing sequence starting with

1 · {(0, 1)} is

1 · {(0,1)} >ms (g(t + 1) − 1) · {(0,0)} >ms . . . >ms 0 · {(0,0)} = ∅,

which has length g(t + 1) + 1 and then Pn,g(0, . . . , 0, 1, t) = g(t + 1) = Gn,g(0, . . . , 1, t).
For (9), the longest g, t-controlled <ms-decreasing sequence of multisets starting with 1 · {(x, x0 + 1)} contains the mul-

tiset M = (g(t + 1) − 1) · {(x, x0)}, so Pn,g(x, x0 + 1, t) ≥ Pn,g(M, t + 1). Therefore

14 S. Abriola et al. / Theoretical Computer Science 603 (2015) 3–22
Pn,g(x, x0 + 1, t) ≥ Pn,g((g(t + 1) − 1) · {(x, x0)}, t + 1)

≥ P g(t+1)−1
n,g (x, x0, t + 1) (Corollary 9)

≥ G g(t+1)−1
n,g (x, x0, t) (ind. hyp. and monot. of Gn,g)

= Gn,g(x, x0 + 1, t).

Finally, for (10), the longest g, t-controlled <ms-decreasing sequence of multisets starting with 1 · {(x, x j + 1, 0)} contains
1 · {(x1, . . . , x j, g(t + 1) − 1, 0)} as one of its terms, so

Pn,g(x, x j + 1,0, t) ≥ Pn,g(x, x j, g(t + 1) − 1,0, t)

≥ Gn,g(x1, . . . , x j, g(t + 1) − 1,0, . . . ,0, t) (ind. hyp.)

= Gn,g(x1, . . . , x j + 1,0, . . . ,0, t).

This concludes the proof. �
Now we prove some results regarding the Fast Growing Hierarchy that will be needed later on.

Lemma 12. Let c < ω, and 1 ≤ n < ω. For every t ≥ c − 1 and every ordinal γ of the form
∑m

i=n ωi · ai (where ai < ω), we have
Fγ +ωn (t) ≥ Fγ +c(t).

Proof. By induction on n. �
Corollary 13. For every 0 ≤ n < ω, every a ≤ b < ω, and every ordinal γ of the form

∑m
i=n ωi · ai (where ai < ω), we have

1. Fγ +ωn ·a+1 ≤ Fγ +ωn ·(a+1)

2. Fγ +ωn ·a ≤ Fγ +ωn ·b

Proof. Both cases are trivial for n = 0, and both are immediate consequences of Lemma 12 for n > 0. �
Lemma 14. If g is such that g(t) ≥ t + 2 for all t, then

Gn,g(xn−1, . . . , x0, t) ≥ Fα(t),

where α = ωn−1 · xn−1 + · · · + ω0 · x0 if xi > 0 for some i > 0, and α = x0 − 1 if x0 > 0 and xi = 0 for all i > 0.

Proof. We proceed by induction on (xn−1, . . . , x0).
First we have that Gn,g(0, . . . , 0, 1, t) = g(t + 1) ≥ t + 2 ≥ F0(t).
Second, for any x = xn−1, . . . , x1,

Gn,g(x, x0 + 1, t) = G g(t+1)−1
n,g (x, x0, t)

≥ Gt+1
n,g (x, x0, t) (g(t) ≥ t + 1)

= F t+1
α (t) = Fα+1(t).

Third, we consider two possibilities. First:

Gn,g(0,1,0, t) = Gn,g(0,0, g(t + 1) − 1, t)

≥ F g(t+1)−2(t) (ind. hyp.)

≥ Ft+1(t) (g(t) ≥ t + 2)

= Fω(t),

and lastly, if x = xn−1, . . . , x j+1, β = ωn−1 · xn−1 + · · · + ω j+1 · x j+1 and (x, x j + 1, 0, . . . , 0) >lex (0, . . . , 1, 0):

Gn,g(x, x j + 1,0, t) = Gn,g(x, x j, g(t + 1) − 1,0, t)

≥ Fβ+ω j ·x j+ω j−1·(g(t+1)−1)(t) (ind. hyp.)

≥ Fβ+ω j ·x j+ω j−1·(t+1)(t) (Corollary 13.2 and g(t) ≥ t + 1)

= Fβ+ω j ·(x +1)(t).
j

S. Abriola et al. / Theoretical Computer Science 603 (2015) 3–22 15
This concludes the proof. �
We now give a lower bound for Lms

s,n,g in terms of the Fast Growing Hierarchy. Observe that since Lms
1,n,g = Lms

n,g we also
get a lower bound for multisets of Nn .

Theorem 15 (Lower bound for Lms
s,n,g). Let g be a function such that g(t) ≥ t + 2 for all t and s ≤ g(0), then for all t, Lms

s,n,g(t) ≥
Fωn ·s(t − 1) (this last function belongs to Fωn·s \ ⋃

α<ωn ·s Fα).

Proof. Except when we have both s = 1 and n = 1, we proceed as follows:

Lms
s,n,g(t) ≥ Pn+1,g(s − 1, t + 1,0, t)

≥ Gn+1,g(s − 1, t + 1,0, t) (Lemma 11)

≥ Fωn·(s−1)+ωn−1·(t+1)(t) (Lemma 14)

= Fωn·s(t).

If s = n = 1, we proceed similarly, but in the third inequality Lemma 14 yields ≥ Ft(t) ≥ Ft(t − 1) = Fω(t − 1). �
5.3. Upper bound for multisets of [s] ×Nn

Define Un,g :Nn+1 \ {(0, . . . , 0)} → N by multiple recursion as:

Un,g(0, . . . ,0,1, t)
def= g(t + 1) (11)

Un,g(x, x0 + 1, t)
def= g(t + 1) · Un,g(x, x0,og(t+1)−1

xn−1,...,x0(t + 2)) (12)

Un,g(x, x j + 1,0, t)
def= Un,g(x, x j, g(t + 1),0, t + 2), (13)

where oxn−1,...,x0 (t) = t + Un,g(xn−1, . . . , x1, x0, t); Eqn. (13) applies when j > 0 and x=xn−1, . . . , x j+1.

Lemma 16. Pn,g ≤ Un,g .

Proof. By induction on the lexicographic order of (xn−1, . . . , x0). For (11), as in the proof of Lemma 11, the longest
g, t-controlled <ms-decreasing sequence starting with 1 · {(0, 1)} has length g(t + 1) + 1 and then Pn,g(0, 1, t) = g(t + 1) =
Un,g(0, 1, t). For (12) the longest g, t-controlled <ms-decreasing sequence starting with M0 = 1 · {(x, x0 + 1)} continues with
a multiset M1 whose <lex-maximum element is (x, x0), of multiplicity g(t + 1) − 1. Therefore if N = g(t + 1) · {(x, x0)} then
M0 >ms N >ms M1 and N is g, (t + 2)-controlled since g is increasing. Hence

Pn,g(x, x0 + 1, t) ≤ Pn,g(g(t + 1) · {(x, x0)}, t + 2)

≤ g(t + 1) · Pn,g(x, x0, õg(t+1)−1
x1,...,x0 (t + 2))

≤ g(t + 1) · Un,g(x, x0,og(t+1)−1
xn−1,...,x0(t + 2))

= Un,g(x, x0 + 1, t)

where õxn−1,...,x0 (t) = t + Pn,g(xn−1, . . . , x0, t), the second inequality follows from Corollary 10, and the third one from ind.
hyp. and monotonicity of Un,g . For (13) the longest g, t-controlled <ms-decreasing sequence of multisets starting with
M ′

0 = 1 · {(x, x j + 1, 0)} continues with a multiset M ′
1 whose <lex-maximum element is (x, x j, g(t + 1) − 1, . . . , g(t + 1) − 1),

of multiplicity g(t +1) −1. Then M ′
0 >ms N ′ >ms M ′

1, where N ′ = 1 · {(x, x j, g(t +1), 0)}, and hence N ′ is g, (t +2)-controlled.
Therefore by inductive hypothesis we have

Pn,g(x, x j + 1,0, t) ≤ Pn,g(x, x j, g(t + 1),0, t + 2)

≤ Un,g(x, x j, g(t + 1),0, t + 2)

= Un,g(x, x j + 1,0, t),

and this concludes the proof. �
Proposition 17. Let γ < ωω and let g and k be such that t ≥ k, g(t + 1) ≤ Fγ (t) and g(t) ≥ t + 1. Then for all t ≥ max{2, k}, all x =
xn−1, . . . , x1 and all x0: if Un,g(x, x0, t) ≤ Fγ (t) then Un,g(x, x0 +c, t) ≤ Fγ +3c(t). In particular, for all t ≥ max{2, k}, Un,g(0, x0, t) ≤
Fγ +3(x0−1)(t), since Un,g(0, 1, t) = g(t + 1).

16 S. Abriola et al. / Theoretical Computer Science 603 (2015) 3–22
Proof. We proceed by induction on c. For c = 1, let t ≥ max{2, k}:

Un,g(xn−1, . . . , x0 + 1, t) = g(t + 1) · Un,g(x, x0,og(t+1)−1
xn−1,...,x0(t + 2))

≤ g(t + 1) · Fγ (og(t+1)−1
xn−1,...,x0(t + 2)) (hyp.)

≤ g(t + 1) · Fγ (F g(t+1)−1
γ +1 (t + 2))

≤ g(t + 1) · (F g(t+1)+1
γ +1 (t + 2)

≤ g(t + 1) · (F g(t+1)+1
γ +1 (g(t + 1)) (g(t) ≥ t + 1)

= g(t + 1) · (Fγ +2(g(t + 1))

≤ Fγ (t) · (Fγ +2(Fγ +2(t)) (g(t + 1) ≤ Fγ (t))

≤ Fγ +2(t) · (Fγ +2(Fγ +2(t))

≤ Fγ +2(Fγ +2(Fγ +2(t))

= F 3
γ +2(t)

≤ Fγ +3(t) (t ≥ 2).

Where for the inequality in the third line we are using that oxn−1,...,x0 (t) = t + Un,g(xn−1, . . . , x0, t) ≤ t + Fγ (t) ≤ Fγ +1(t).
Now, for the inductive step, we prove the result for c + 1 assuming it is true for 1, . . . , c. For t ≥ max{2, k}, by ind. hyp.

Un,g(x, x0 +c, t) ≤ Fγ +3c(t). Therefore, if x̃0 = x0 +c and using the ind. hyp. we have Un,g(x, x0 +c+1, t) = Un,g(x, x̃0 +1, t) ≤
Fγ +3c+3(t). �

It is known that if α ≤ β then there is t0 such that for all t ≥ t0 we have Fα(t) ≤ Fβ(t). However, in principle, t0 may
depend on β in a non-uniform way. The following lemma makes a uniform statement that will be needed later.

Lemma 18. Let α ∈N. Then for all t ≥ α − 1 and for all β ≥ α we have Fα(t) ≤ Fβ(t).

Proof. We proceed by transfinite induction on β . Let t ≥ max{α − 1}. For β = α the result is trivial. Next, Fβ+1(t) ≥ Fβ(t)
and Fβ(t) ≥ Fα(t) by inductive hypothesis. Finally, for β a limit ordinal we have Fβ(t) = Fβt (t) ≥ Fα(t), as we can use ind.
hyp. because t ≥ α − 1 and β > βt ≥ α �
Corollary 19. Let g be upper bounded in Fα , for α < ω. Then there exists k such that for all β ≥ ω and all t ≥ k we have Fβ(g(t)) ≤
Fβ+1(t).

Proof. Since g is upper bounded in Fα , there exist a k′ such that if t ≥ k′ then g(t) ≤ Fα+1(t). Therefore

Fβ(g(t)) ≤ Fβ(Fβ(t)) (for t ≥ max{α,k′} by Lemma 18)

= F 2
β(t)

≤ Fβ+1(t). (for t ≥ 1)

To conclude, take k = max{1, α, k′}. �
Lemma 20. If g has a primitive recursive upper bound and ∀∞t (that is, for all t save for a finite number), g(t) ≥ t + 1, then there is k
such that for all t ≥ k and all x = xn−1, . . . , x1
= 0 we have Un,g(x, 0, t) ≤ Fα(t), where α = ωn−1 · xn−1 + ωn−2 · xn−2 + · · · + ω2 ·
x2 + ω · x1 + 1.

Proof. First, let e < ω be an ordinal such that ∀∞t, g(t + 1) ≤ Fe(t). Now, let k′
0 ≥ 2 be a constant such that for all t ≥ k′

0
we have g(t + 1) ≤ Fe(t) and g(t) ≥ t + 1. Also, let k′′

0 be the constant given by Lemma 18 so that, in particular, for all
t ≥ k′′

0 and for all β ≥ ω, g(t) ≤ Fβ(t). We now take k0 = max{k′
0, k

′′
0}, restrict ourselves to t ≥ k0 and proceed by induction

on x
= 0.

Un,g(0,1,0, t) = Un,g(0, g(t + 1), t + 2)

≤ Fd(t)(t + 2) (Proposition 17)

≤ Fd(t)+1(d(t))

= Fω(d(t))

≤ Fω+1(t), (∀t ≥ k1)

S. Abriola et al. / Theoretical Computer Science 603 (2015) 3–22 17
where d(t) def= 3(g(t + 1) − 1) + e.
Next,

Un,g(0, x1 + 1,0, t) = Un,g(0, x1, g(t + 1), t + 2)

≤ Fω·x1+1+d(t)(t + 2) (ind. hyp. and Proposition 17)

≤ Fω·x1+d(t)+1(d(t))

= Fω·(x1+1)(d(t))

≤ Fω·(x1+1)+1(t). (∀t ≥ k2 by Corollary 19)

Observe that k2 does not depend on x1.
Finally, let x = xn−1, . . . , x j+1 and let β = ωn−1 · xn−1 + · · · + ω j+1 · x j+1.

Un,g(x, x j + 1,0, t) = Un,g(x, x j, g(t + 1),0, t + 2)

≤ Fβ+ω j ·x j+ω j−1·g(t+1)+1(t + 2) (ind. hyp.)

≤ Fβ+ω j ·x j+ω j−1·(g(t+1)+1)(t + 2)

≤ Fβ+ω j ·x j+ω j−1·(g(t+1)+1)(g(t + 1)) (g(t) ≥ t + 1)

= Fβ+ω j ·(x j+1)(g(t + 1))

≤ Fβ+ω j ·(x j+1)+1(t). (∀t ≥ k3, by Corollary 19)

Observe that k3 does not depend on x, x j . To finish, take k = max{k0, k1, k2, k3}, which is clearly independent of x, x j . �
We now give a tight upper bound for Lms

s,n,g in terms of the Fast Growing Hierarchy. Observe that since Lms
1,n,g = Lms

n,g we
also get a tight upper bound for multisets of Nn .

Theorem 21 (Tight upper bound for Lms
s,n,g). If g has a primitive recursive upper bound then Lms

s,n,g has an upper bound in Fωn·s . If
s ≤ g(0) and ∀∞t, g(t) ≥ t + 2 this bound is tight.

Proof. Without loss of generality, we can assume that g is primitive recursive and that ∀t, g(t) ≥ t + 2 (if the upper bound
holds for functions g with this last condition, it will also hold for potentially smaller functions by the monotonicity of
Lms

s,n,g respect to g). Observe that the tightness will follow from Theorem 15. Suppose g ∈ Fe−1 for 1 ≤ e < ω. Observe that
∀∞t, g(t + 1) ≤ Fe(t). We first show for n > 1 that

∀∞t, Lms
s,n,g(t) ≤ Fωn·s(g(t)), (14)

and, if n = 1, that

∀∞t, Lms
s,n,g(t) ≤ Fω·s(3(g(t) − 1) + e). (15)

Let M1, M2, . . . be a g, t-controlled bad sequence of multisets over ([s] × Nn, ≤lex). Since the ≤lex-greatest element of
M1 is not greater than (s − 1, g(t) − 1, . . . , g(t) − 1), we have that M1 <ms 1 · {(s − 1, g(t), 0, . . . , 0)}.

Suppose now n > 1. Recall the definitions of Pn,g from Section 5.2 and of Un,g from Section 5.3. We have:

Lms
s,n,g(t) ≤ Pn+1,g(s − 1, g(t),0, t + 1)

≤ Un+1,g(s − 1, g(t),0, t + 1) (Lemma 16)

≤ Un+1,g(s − 1, g(t),0, g(t)) (g(t) ≥ t + 1 and monot. of Un+1,g)

≤ Fωn·(s−1)+ωn−1·g(t)+1(g(t)) (∀t ≥ k by Lemma 20)

≤ Fωn·(s−1)+ωn−1·(g(t)+1)(g(t)) (∀t by Corollary 13.1)

= Fωn·s(g(t)),

and we conclude (14). Notice that Fωn ·s ◦ g ∈ Fωn ·s , since g is primitive recursive.
If n = 1, we use Proposition 17 at the third inequality above and obtain:

Lms
s,n,g(t) ≤ Fω·(s−1)+1+3(g(t)−1)+e(t + 1)

≤ Fω·(s−1)+1+3(g(t)−1)+e(3(g(t) − 1) + e) (g(t) ≥ t + 2)

= Fω·s(3(g(t) − 1) + e),

and we conclude (15). Notice that this last function is in Fωn ·s . �

18 S. Abriola et al. / Theoretical Computer Science 603 (2015) 3–22
6. Majoring ordering

In this section we state a general result for linearizing the majoring ordering into the multiset ordering. We apply it
to linearize the majoring ordering over finite sets of Nn with ≤pr as the underlying ordering into the multiset ordering
over finite multisets of Nn with ≤lex as the underlying ordering, and to linearize the majoring ordering over finite sets of
[s] × Nn with ≤d

pr as the underlying ordering into the multiset ordering over finite multisets of [s] × Nn and ≤lex as the
underlying ordering. From these results we derive an upper bound for the length of the longest controlled bad sequences of
the respective wqo’s.

For a given wqo (A, ≤A) with a proper norm | · |A and x ∈N, we define

[x]A
def= |{y ∈ A | |y|A < x}|.

Theorem 22. Let (A, ≤A) be a wqo with a proper norm | · |A and let (B, ≤B) be well-order with a proper norm | · |B such that (A, ≤A)

is linearized into (B, ≤B) via h : A+ → B. Then there is a function f : (P<∞(A))+ → M<∞(B) such that if X�X is a bad sequence
in (P<∞(A), ≤(≤A)

maj), X is a nonempty sequence and X is a nonempty set, then f (X�X) <(≤B)
ms f (X).

Furthermore, suppose X is g, t-controlled, and let g̃ be a control function independent of X such that if a is a g, t-controlled and
nonempty bad sequence in (A, ≤A) then |h(a)|B < g̃(|a| + t − 1). Then | f (X)| < g(|X| + t − 1), for any g(x) > max{([g(x)]A)x+1,

g̃(2x)}.

Proof. Our linearization will be done in two steps. First, from a ≤(≤A)

maj -bad sequence X = X0, X1, . . . , Xk of finite and
nonempty sets of A, we define a sequence T0, T1, . . . , Tk of trees whose nodes (except the root) are labeled with elements
of A. If w is a node of Ti , we denote as v(w) the value of its label. The trees Ti will satisfy the following conditions:

1. For any i ∈ {0, . . . , k}, if w0, . . . , wm is a path in Ti then v(w1), . . . , v(wm) is a ≤A -bad sequence of elements of A.
Furthermore, if X is g, t-controlled then v(w1), . . . , v(wm) is g, t + i-controlled.

2. Ti+1 is a strict extension of Ti .

The second step of our construction uses the hypothesis that the wqo (A, ≤A) is linearized into the well-order (B, ≤B) and
transforms the trees Ti into finite multisets Mi of elements of B in such a way that M = M0, M1, . . . , Mk is <(≤B)

ms -decreasing.
Observe that since ≤B is a well-order then ≤(≤B)

ms also is one. Furthermore, given a control for X, we find a control for M.
By taking f (X) = M|X|−1 we obtain the desired result.

Here are the details of the construction. Let X ⊆ A. We say X avoids x if for all y ∈ X we have x
≤A y. Since X =
X0, X1, . . . , Xk is bad, then for any i < j, X j avoids some tuple of Xi . In particular for all j ∈ {1, . . . , k}, X j avoids some tuple
of X0.

Construction of the trees Ti Define the following sequence of finite trees, whose nodes, except the root, are labeled with
elements of A. By a path we always refer to a simple path (i.e. a path without backtracking) from the root to a leaf.

• If X0 = {a1, . . . , ap} then T0 is the tree formed by a root r (the value of v(r) is irrelevant) and r has exactly p children,
say w1, . . . , w p , such that v(wi) = ai for all i ∈ {1, . . . , p}.

• Ti+1 is formed by extending Ti as follows. Suppose Xi+1 = {a1, . . . , ap}. For any path w0, . . . , wm in Ti do the following:
if for all j = 1, . . . , m, Xi+1 avoids v(w j) then add exactly p new children of wm , say w ′

1, . . . , w
′
p , such that v(w ′

i) = ai
for all i ∈ {1, . . . , p}.

See Fig. 3 for an example of this construction when (A, ≤A) = (N2, ≤pr) and the sequence (4) of page 5.

Proposition 23. At least one path of Ti is strictly extended in Ti+1.

Proof. Recall that X j
= ∅ for all j. It is clear that if all internal nodes (i.e. nodes that are not leaves) of Ti have a child
whose label is avoided by Xi+1 then there is a path w0, . . . , wm in Ti such that Xi+1 avoids v(w j) for all j ∈ {1, . . . , m}.

If Ti+1 = Ti then, by construction, there is no path w0, . . . , wm in Ti such that v(w j) is avoided by Xi+1 for all j ∈
{1, . . . , m}. Then there is an internal node of Ti , say w , with none of its children containing labels avoided by Xi+1. But this
contradicts the badness of X since by construction the set of children’s values of w is X j for some j ≤ i. �

As the example in Fig. 3 shows, the height of Ti+1 is not necessarily greater than the height of Ti . The following easily
follows by construction:

Proposition 24. If w0, . . . , wm is a path in Ti then v(w1), . . . , v(wm) is a ≤A -bad sequence of elements of A. Furthermore if X is
g, t-controlled then v(w1), . . . , v(wm) is g, (t + i)-controlled.

S. Abriola et al. / Theoretical Computer Science 603 (2015) 3–22 19
Fig. 3. Construction of the trees for the ≤maj-bad sequence X = X0, X1, X2, X3 defined in (4) of page 5.

Construction of the multisets Mi By hypothesis, h : A+ → B satisfies that for every ≤A -bad sequence a�a of elements of A
we have h(a�a) <B h(a).

Let Mi ∈M<∞(B) be defined as: Mi(y) def= d iff there are exactly d paths in Ti , say

w1
0, . . . , w1

m1
...

wd
0, . . . , wd

md
,

such that h(v(w j
1), . . . , v(w j

m j
)) = y for all j ∈ {1, . . . , d}. In other words, Mi is the multiset where we put h(v(w1), . . . ,

v(wm)) for every path w0, . . . , wm in Ti .

Proposition 25. Mi+1 <
(≤B)
ms Mi .

Proof. If the path w0, . . . , wm in Ti is extended to w0, . . . , wm, w in Ti+1 then h(v(w1), . . . , v(wm), v(w)) <B h(v(w1),

. . . , v(wm)). By the construction of the multisets Mi , Proposition 23, and the definition of ≤(≤B)
ms , it follows straightforwardly

that Mi+1 <
(≤B)
ms Mi . �

Observe that the need for working with multisets and not simply with sets resides in the fact that h may not be injective.

Proposition 26. Let g(x) > max{([g(x)]A)x+1, ̃g(2x)}. If X = X0, . . . , Xk is g, t-controlled then |Mk| < g(|X| + t − 1). Therefore,
M0, M1, . . . , Mk is g, t-controlled.

Proof. The maximum multiplicity of an element in Mk is bounded by

k∏
j=0

[g(t + j)]A ≤ ([g(t + k)]A)k+1

≤ ([g(t + k)]A)t+k+1

< g(t + k)

= g(|X| + t − 1).

On the other hand, suppose w0, . . . , wm is a path in Tk . By Proposition 24, v(w1), . . . , v(wm) is a ≤A -bad sequence of
elements of A which is g, (t + k)-controlled. Then

|h(v(w1), . . . , v(wm))|B ≤ g̃(m + t + k − 1) (hypothesis)

≤ g̃(t + 2k − 1) (m ≤ k)

≤ g̃(2(t + k))

< g(t + k)

= g(|X| + t − 1).

By Definition 3 we conclude that |Mk| < g(|X| + t − 1). �
By taking f (X) = M|X|−1 we conclude the proof of Theorem 22. �

We are now ready to derive the upper bounds for the length of bad sequences over the majoring ordering over finite
sets of Nn and [s] ×Nn .

20 S. Abriola et al. / Theoretical Computer Science 603 (2015) 3–22
Corollary 27. There is a function f s,n : (P<∞([s] × Nn))+ → M<∞([s] × Nn) such that if X�X is a bad sequence in (P<∞([s] ×
Nn), ≤maj), X is nonempty and X is a nonempty set, then f s,n(X�X) <ms f s,n(X). Furthermore if X is g, t-controlled then | f s,n(X)| <
g(|X| − 1 + t), for g(x) = (s · ĝ(2x))n(x+1) + 1, where ĝ is as in Theorem 5.

Proof. The first part follows from Theorem 22 and Theorem 5 by taking (A, ≤A) to be ([s] × Nn, ≤d
pr) and (B, ≤B) to be

([s] ×Nn, ≤lex) (as usual | · |[s]×Nn is taken to be | · |∞).
For the second part, we verify that g(x) satisfies the conditions of Theorem 22, when the function g̃ of Theorem 22

is set to ĝ . On the one hand, since [g(x)][s]×Nn ≤ s · g(x)n and g̃ ≥ g is increasing, it is clear that g(x) > (s · g(x)n)x+1 ≥
([g(x)][s]×Nn)x+1. On the other, it is straightforward that g(x) > ĝ(2x). �
Corollary 28 (Upper bound for Lmaj

s,n,g). For any primitive recursive g there is a primitive recursive g̃ such that Lmaj
s,n,g ≤ Lms

s,n,g̃ . Hence if

g has a primitive recursive upper bound then Lmaj
s,n,g has an upper bound in Fωn·s .

Proof. It follows from Corollary 27 and Theorem 21. �
Corollary 29 (Upper bound for Lmaj

n,g). If g has a primitive recursive upper bound then Lmaj
n,g has an upper bound in Fωn .

Proof. Immediate from Corollary 28 taking s = 1 and observing that (0, x) ≤d
pr (0, y) iff x ≤pr y. �

7. Applications

Jurdziínki and Lazić [21] showed that for the class of incrementing tree counter automata (itca) as well as the class of
alternating top-down tree one register automata (atra), the emptiness problem—i.e. deciding whether the language accepted
by an automaton of such classes is empty—over finite data trees is decidable. Figueira [30] later showed that for some
extensions of atra decidability still holds. All these proofs go along the lines of interpreting the automaton execution as a
downward well-structured transition system, then showing that it is reflexive-downward-compatible with respect to a wqo
between sets of configurations, and finally applying Finkel and Schnoebelen results [32] (mainly Prop. 5.4). That wqo is
precisely the majoring order over the disjoint product ordering.

From [21], we know that the computational complexity of such decision procedures is lower-bounded by a non-primitive
recursive function. For the upper-bound for itca’s, an algorithm can be given in a manner analogous to [20, §VII.B.] for
finding the levels (a finite set of configurations) reachable from the initial level—the emptiness problem is then reduced
to testing whether the empty level is amongst them. The complexity of such an algorithm is mainly determined by the
length of a bad sequence of levels V = V 0, V 1, . . . , Vm . In more detail, suppose an itca C has k counters and a finite set of
states Q . Then a level of C is a finite set of tuples of the form 〈q, v〉, where q ∈ Q and v = 〈a1, . . . , ak〉 ∈ Nk is the current
value of the k counters. The levels are ordered by the majoring ordering with the underlying disjoint product ordering over
[|Q |] ×Nk (mapping the set of states Q to {0, . . . , |Q | − 1}). The complexity of the emptiness problem can be bounded by
the length of the longest bad sequence in (P<∞([|Q |] × Nk), ≤d

maj). Regarding how V is controlled, the analysis is almost
the same as in [20, §VII .B.]. Let V 0 = {〈0, 0〉} and V i = {c1, . . . , cpi }. From Definition 3 we have that |V i | = max j{|c j |∞}. The
change from V i to V i+1 may involve a change of state or increment of c j ’s counters’ values by one. The ‘state part’ of c j is
controlled by the constant |Q | and the ‘counters part’ is controlled by the successor function. Hence, the bad sequence of
sets is g, 0-controlled by g(x) = x + 1 + |Q |. Now, applying Corollary 28 we conclude

Proposition 30. The time complexity of the emptiness problem for an itca with k counters and a finite set of states Q is upper bounded
by a function in Fωk·|Q | .

This immediately gives us an upper bound for the emptiness problem for atra. From [21, Thm. 3.1] we have that empti-
ness for atra follows from a pspace-reduction to emptiness for itca. For a fixed alphabet, if the atra A has s states then the

itca C constructed in the reduction has k(s) def= 2s − 1 + 24s many counters1 and f ∈ O (2s) many states. Hence we conclude

Proposition 31. The time complexity of the emptiness problem for an atra with s states is upper bounded by a function in Fωk(s)· f (s) ,
for some f ∈ O (2s).

8. Conclusions

Upper bounds for controlled decreasing sequences in a well-order are easier to obtain than for controlled bad sequences
in a wqo. We studied the length of controlled decreasing sequences of two well-orders: lexicographic and multiset. For these,

1 In [21] there is typo in the number of counters in the auxiliary array c′. Where it says 2|Q |4 , it should read 24|Q | .

S. Abriola et al. / Theoretical Computer Science 603 (2015) 3–22 21
control
function

well quasi-order length
function

upper
bound

tight?

g ∈ Fγ ([s] ×N
n,≤lex) Llex

s,n,g Fγ+n−1 �
g ∈ Fγ ([s] ×N

n,≤d
pr) Lpr

s,n,g Fγ+n−1 �
g prim. rec. (M<∞([s] ×N

n),≤ms) Lms
s,n,g Fωn ·s �

g prim. rec. (P<∞([s] ×N
n),≤d

maj) Lmaj
s,n,g Fωn ·s ?

Fig. 4. Summary of main results.2

the upper bounds in the Fast Growing Hierarchy had to be crafted from scratch. We also studied three well quasi-orders:
product, disjoint product and majoring. The length of controlled bad sequences over these wqo’s had been determined by
linearizing them into the previous well-orders, and hence avoiding a direct classification of the length function in the Fast
Growing Hierarchy. The case of the disjoint product had been previously analyzed in [20]. However we gave a straightfor-
ward and elementary proof which keeps away the “sum of powers of N” approach. This last approach—being noticeably
more understandable than previous proofs, and also leading to a sharper result—still needs some rather technical lemmas.

Motivated by the study of the disjoint product wqo, we analyzed, for all the previous wqo’s, not only the space Nn but
also [s] × Nn . In general we first addressed the former to then adapt it to the latter. By the characteristics of the wqo’s
studied here, in all the cases, the most general results are those [s] ×Nn .

For the lexicographic, (disjoint) product and multiset case, our upper bounds are tight. For the majoring ordering the
question of tightness remains open. In Fig. 4 we summarize our main results.

As applications we stated complexity upper bounds for the emptiness problem for itca and atra automata.
For future research we plan to investigate the length of controlled bad sequences of the minoring ordering, which is

defined over a quasi-order (X, ≤) as follows: A ≤(≤)

min B def⇔ (∀y ∈ B)(∃x ∈ A) x ≤ y, and which turns out to be a wqo under
some assumptions on (X, ≤). For some easy observations on this ordering, see [33].

Acknowledgements

The authors wish to thank Philippe Schnoebelen and Sylvain Schmitz for fruitful discussions on the subject. They also
thank anonymous referees for careful reading and useful suggestions. This work was partially supported by grants ANPCyT-
PICT-2011-0365, UBACyT 20020110100025, the FP7-PEOPLE-2011-IRSES Project MEALS and the Laboratoire International
Associé INFINIS.

References

[1] G. Higman, Ordering by divisibility in abstract algebras, Proc. Lond. Math. Soc. s3-2 (1) (1952) 326–336.
[2] B. Neumann, On ordered division rings, Trans. Amer. Math. Soc. 66 (1949) 202–252.
[3] R. Rado, Partial well-ordering of sets of vectors, Mathematika 1 (1954) 89–95.
[4] J. Kruskal, The theory of well-partially-ordered sets, PhD thesis, Princeton University, Jun. 1954.
[5] J. Kruskal, Well-quasi-ordering, the tree theorem, and Vazsonyi’s conjecture, Trans. Amer. Math. Soc. 95 (1960) 210–225.
[6] N. Robertson, D. Seymour, Graph minors. XX. Wagner’s conjecture, J. Combin. Theory Ser. B 92 (2) (2004) 325–357.
[7] N. Dershowitz, J.-P. Jouannaud, Rewrite systems, in: J. van Leeuwen (Ed.), Handbook of Theor. Comput. Sci.: Volume B: Formal Models and Semantics,

Elsevier, Amsterdam, 1990, pp. 243–320.
[8] D. Detlefs, R. Forgaard, A procedure for automatically proving the termination of a set of rewrite rules, in: Proc. of the First International Conference

on Rewriting Techniques and Applications, Springer-Verlag, 1985, pp. 255–270.
[9] L. Puel, Using unavoidable set of trees to generalize Kruskal’s theorem, J. Symbolic Comput. 8 (4) (1989) 335–382.

[10] P. Lescanne, Well rewrite orderings and well quasi-orderings, J. Symbolic Comput. 14 (5) (1992) 419–436.
[11] M. Fellows, M. Langston, Nonconstructive tools for proving polynomial-time decidability, J. ACM 35 (3) (1988) 727–739.
[12] B. Mohar, Embedding graphs in an arbitrary surface in linear time, in: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of

Computing, STOC ’96, 1996, pp. 392–397.
[13] P. Abdulla, B. Jonsson, Ensuring completeness of symbolic verification methods for infinite-state systems, Theoret. Comput. Sci. 256 (1–2) (2001)

145–167.
[14] A. Finkel, P. Schnoebelen, Well-structured transition systems everywhere!, Theoret. Comput. Sci. 256 (1–2) (2001) 63–92.
[15] P. Abdulla, B. Cerans, K. Jonsson, Y.-K. Tsay, General decidability theorems for infinite-state systems, in: LICS, 1996, pp. 313–321.
[16] P. Abdulla, A. Nylén, Better is better than well: on efficient verification of infinite-state systems, in: LICS, 2000, pp. 132–140.
[17] L. Dickson, Finiteness of the odd perfect and primitive abundant numbers with n distinct prime factors, Amer. J. Math. 35 (4) (1913) 413–422.
[18] S. Schmitz, P. Schnoebelen, Multiply-recursive upper bounds with Higman’s lemma, in: Proceedings of the 38th International Conference on Automata,

Languages and Programming – Volume Part II, ICALP’11, Springer-Verlag, 2011, pp. 441–452
.

[19] M. Löb, S. Wainer, Hierarchies of number theoretic functions, I, Arch. Math. Logic 13 (1970) 39–51.
[20] D. Figueira, S. Figueira, S. Schmitz, P. Schnoebelen, Ackermannian and primitive-recursive bounds with Dickson’s lemma, in: LICS, 2011, pp. 269–278.
[21] M. Jurdziński, R. Lazić, Alternating automata on data trees and XPath satisfiability, ACM Trans. Comput. Log. 12 (3) (2011) 1–21.
[22] M. Jurdzinski, R. Lazic, Alternation-free modal mu-calculus for data trees, in: 22nd Annual IEEE Symposium on Logic in Computer Science, LICS 2007,

2007, pp. 131–140.

2 The second case was first shown in [20]. For the tightness of the majoring ordering, we only know that if g ∈ Fγ , then a lower bound lies in Fγ+n−1

(this follows from the fact that {x} ≤d
maj {y} iff x ≤d

pr y).

http://refhub.elsevier.com/S0304-3975(15)00633-7/bib4869676D616E3532s1
http://refhub.elsevier.com/S0304-3975(15)00633-7/bib4E65756D616E3439s1
http://refhub.elsevier.com/S0304-3975(15)00633-7/bib5261646F3534s1
http://refhub.elsevier.com/S0304-3975(15)00633-7/bib4B7275736B616C506844s1
http://refhub.elsevier.com/S0304-3975(15)00633-7/bib4B7275736B616C3630s1
http://refhub.elsevier.com/S0304-3975(15)00633-7/bib44424C503A6A6F75726E616C732F6A63742F526F62657274736F6E533034s1
http://refhub.elsevier.com/S0304-3975(15)00633-7/bib44657273686F7769747A3A3930s1
http://refhub.elsevier.com/S0304-3975(15)00633-7/bib44657273686F7769747A3A3930s1
http://refhub.elsevier.com/S0304-3975(15)00633-7/bib4465746C6566733A313938353A5041503A343933332E34393435s1
http://refhub.elsevier.com/S0304-3975(15)00633-7/bib4465746C6566733A313938353A5041503A343933332E34393435s1
http://refhub.elsevier.com/S0304-3975(15)00633-7/bib5075656C3A313938393A5555533A37353733392E3735373432s1
http://refhub.elsevier.com/S0304-3975(15)00633-7/bib6A6F75726E616C732F6A73632F4C657363616E6E653932s1
http://refhub.elsevier.com/S0304-3975(15)00633-7/bib46656C6C6F77733A313938383A4E54503A34343438332E3434343931s1
http://refhub.elsevier.com/S0304-3975(15)00633-7/bib4D6F6861723A313939363A4547413A3233373831342E323337393836s1
http://refhub.elsevier.com/S0304-3975(15)00633-7/bib4D6F6861723A313939363A4547413A3233373831342E323337393836s1
http://refhub.elsevier.com/S0304-3975(15)00633-7/bib44424C503A6A6F75726E616C732F7463732F416264756C6C614A3031s1
http://refhub.elsevier.com/S0304-3975(15)00633-7/bib44424C503A6A6F75726E616C732F7463732F416264756C6C614A3031s1
http://refhub.elsevier.com/S0304-3975(15)00633-7/bib46696E6B656C393877656C6C2D737472756374757265647472616E736974696F6Es1
http://refhub.elsevier.com/S0304-3975(15)00633-7/bib44424C503A636F6E662F6C6963732F416264756C6C61434A543936s1
http://refhub.elsevier.com/S0304-3975(15)00633-7/bib636F6E662F6C6963732F416264756C6C614E3030s1
http://refhub.elsevier.com/S0304-3975(15)00633-7/bib4469636B736F6E3133s1
http://refhub.elsevier.com/S0304-3975(15)00633-7/bib6869676D616Es1
http://refhub.elsevier.com/S0304-3975(15)00633-7/bib6869676D616Es1
http://refhub.elsevier.com/S0304-3975(15)00633-7/bib66617374s1
http://refhub.elsevier.com/S0304-3975(15)00633-7/bib6469636B736F6Es1
http://refhub.elsevier.com/S0304-3975(15)00633-7/bib6A7572647A696E736B6932303131616C7465726E6174696E67s1
http://refhub.elsevier.com/S0304-3975(15)00633-7/bib6A7572642D6C617A2D61747261s1
http://refhub.elsevier.com/S0304-3975(15)00633-7/bib6A7572642D6C617A2D61747261s1

22 S. Abriola et al. / Theoretical Computer Science 603 (2015) 3–22
[23] K. McAloon, Petri nets and large finite sets, Theoret. Comput. Sci. 32 (1–2) (1984) 173–183.
[24] P. Clote, On the finite containment problem for Petri nets, Theoret. Comput. Sci. 43 (1986) 99–105.
[25] W. Harwood, F. Moller, A. Setzer, Weak bisimulation approximants, in: Z. Ésik (Ed.), Computer Science Logic, 20th International Workshop, CSL 2006,

15th Annual Conference of the EACSL, in: Lecture Notes in Computer Science, vol. 4207, 2006, pp. 365–379.
[26] E. Cichoń, E. Tahhan Bittar, Ordinal recursive bounds for Higman’s Theorem, Theoret. Comput. Sci. 201 (1–2) (1998) 63–84.
[27] A. Weiermann, Complexity bounds for some finite forms of Kruskal’s Theorem, J. Symbolic Comput. 18 (5) (1994) 463–488.
[28] S. Haddad, S. Schmitz, P. Schnoebelen, The ordinal-recursive complexity of timed-arc Petri nets, data nets, and other enriched nets, in: LICS, Dubrovnik,

Croatia, 2012, pp. 355–364.
[29] N. Dershowitz, Z. Manna, Proving termination with multiset orderings, Commun. ACM 22 (8) (August 1979) 465–476.
[30] D. Figueira, Reasoning on words and trees with data, PhD thesis, Laboratoire Spécification et Vérification, ENS Cachan, France, Dec. 2010.
[31] R. Péter, Recursive Functions, Academic Press, 1967.
[32] A. Finkel, P. Schnoebelen, Well-structured transition systems everywhere!, Theoret. Comput. Sci. 256 (1–2) (2001) 63–92.
[33] S. Abriola, S. Figueira, A note on the order type of minoring orderings and some algebraic properties of ω2-well quasi-orderings, in: XL Latin American

Computing Conference, CLEI 2014, Montevideo, Uruguay, September 15–19, 2014, 2014, pp. 1–9.

http://refhub.elsevier.com/S0304-3975(15)00633-7/bib6D63616C6F6F6Es1
http://refhub.elsevier.com/S0304-3975(15)00633-7/bib636C6F7465s1
http://refhub.elsevier.com/S0304-3975(15)00633-7/bib484D533036s1
http://refhub.elsevier.com/S0304-3975(15)00633-7/bib484D533036s1
http://refhub.elsevier.com/S0304-3975(15)00633-7/bib636963686F6E3938s1
http://refhub.elsevier.com/S0304-3975(15)00633-7/bib77656965726D616E6E3934s1
http://refhub.elsevier.com/S0304-3975(15)00633-7/bib4853532D6C69637332303132s1
http://refhub.elsevier.com/S0304-3975(15)00633-7/bib4853532D6C69637332303132s1
http://refhub.elsevier.com/S0304-3975(15)00633-7/bib44657273686F7769747A4D616E6E61s1
http://refhub.elsevier.com/S0304-3975(15)00633-7/bib466967506844s1
http://refhub.elsevier.com/S0304-3975(15)00633-7/bib7065746572s1
http://refhub.elsevier.com/S0304-3975(15)00633-7/bib66696E6B656C3230303177656C6Cs1
http://refhub.elsevier.com/S0304-3975(15)00633-7/bib416272696F6C6146696775656972613134s1
http://refhub.elsevier.com/S0304-3975(15)00633-7/bib416272696F6C6146696775656972613134s1

	Linearizing well quasi-orders and bounding the length of bad sequences
	1 Well quasi-orders and bad sequences
	1.1 Some examples of bad sequences
	1.2 Linearizing
	1.3 Contributions
	1.4 Related work

	2 Basic deﬁnitions
	3 Lexicographic ordering
	4 Product and disjoint product ordering
	4.1 Product ordering
	4.2 Disjoint product ordering

	5 Multiset ordering
	5.1 Maximizing strategy
	5.2 Lower bound for multisets of [s]xNn
	5.3 Upper bound for multisets of [s]xNn

	6 Majoring ordering
	7 Applications
	8 Conclusions
	Acknowledgements
	References

