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Abstract. We discuss a Bayesian model selection approach to high dimensional
data in the deep under sampling regime. The data is based on a representation
of the possible discrete states s, as defined by the observer, and it consists of
M observations of the state. This approach shows that, for a given sample size
M , not all states observed in the sample can be distinguished. Rather, only
a partition of the sampled states s can be resolved. Such partition defines an
emergent classification qs of the states that becomes finer and finer as the sample
size increases, through a process of symmetry breaking between states. This allows
us to distinguish between the resolution of a given representation of the observer
defined states s, which is given by the entropy of s, and its relevance which is defined
by the entropy of the partition qs. Relevance has a non-monotonic dependence
on resolution, for a given sample size. In addition, we characterise most relevant
samples and we show that they exhibit power law frequency distributions, generally
taken as signatures of “criticality”. This suggests that “criticality” reflects the
relevance of a given representation of the states of a complex system, and does
not necessarily require a specific mechanism of self-organisation to a critical point.

1. Introduction

In the study of complex systems – such as the brain, cells or our economies – we face
conceptual issues of a novel type, because the systems studied involve many variables,
many of which are unknown. In addition, their behaviour is not constrained by well
established laws, as in physics. In such high dimensional inference problems one
is hardly ever sampling correctly an underlying probability distribution, even with
huge data sets. In order to evade the deep under-sampling domain, we implicitly
or explicitly resort to dimensionality reduction schemes, where the data is projected
into a low-dimensional space where statistics can provide accurate conclusions. Yet,
in this process, the data processing inequality [1] tells us that we inevitably loose
relevant information on the system’s “laws of motion”. So understanding which are
the relevant variables is crucial in order to limit information losses. This requires
guiding principles for the choice of dimensional reduction schemes, or for measuring
the relevance of a given set of variables.

Recently Ref. [2] suggested that the entropy of the frequency of observations (see
later) can be used as a measure of relevance of a given representation of the data.
This allows one to characterise most informative samples as those that maximise
this measure, at a given resolution and for a given sample size. Remarkably, one
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finds that most informative samples, in the under-sampling regime, have a power
law frequency distribution [2].

This finding sheds light on the widespread observation of “criticality” (i.e. power
law frequency/size distributions) in empirical data [3] ranging from language [4],
statistics of natural images [5], neural activity [6, 7], city size distribution [8], to name
just a few cases. In brief, this strongly suggests that the observed power laws usually
associated with “criticality” arise as a consequence of our choice of relevant variables
and that they do not necessarily require hidden mechanisms of self-organisation
to a critical point [9]. Besides the academic interest of such an interpretation of
“criticality”, its implication for data analysis are far reaching because the proposed
measure of relevance can be used as a universal guiding principle in the search of
optimal dimensional reduction schemes (e.g. data clustering) or for the identification
of relevant variables (e.g. keywords in texts, relevant amino acids in proteins) [2].

The purpose of this paper is to ground the finding of Ref. [2] in a model selection
Bayesian framework, thereby clarifying its information theoretic basis. In brief,
within this approach, we shall see statistical models of the data emerge from a process
of symmetry breaking between data points in the sample†, acquiring more and more
details as the size of the sample increases. In this way, model selection informs us on
what resolution in the space of outcomes is justified by the data. In order for different
outcomes to be assigned different probabilities, the frequency with which they occur
in the sample must be sufficiently different. Formally, this identifies an optimal
partition which distinguishes outcomes that occur with different probabilities. The
entropy of the size of the partitions provides a measure of the number of outcomes
that can be distinguished in the sample (or of the number of parameters that can be
estimated from the samples) and hence a measure of relevance. In what follows, for
the sake of simplicity, we shall define and refer to this measure as relevance.

The next section introduces the generic problem we deal with and discusses
model selection. Simple examples are presented to provide the main intuition. We
shall first show that, barring atypical cases, an upper bound to the relevance is given
by partitions in frequency classes. Next we shall see that most informative samples
are characterised by power law frequency distributions. This will be followed by an
application to two different examples of real data sets. The results suggest that the

† In what follows, a sample is a sequence of data points, each of which belong to a set of possible
outcomes, which are defined a priori.
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entropy of the frequency as suggested in Ref. [2], can be used in place of the entropy
of the optimal partition, which is computationally more demanding, as a measure of
relevance. A final discussion will close the paper.

2. The problem

Let ŝ = (s(1), . . . , s(M)) be a dataset of M observations of the state s of a system.
Here s(i) is a discrete variable, that we can think of as the label of the cluster to
which the ith observation belongs, or the configuration s = (s1, . . . , sn) of a system
of n discrete degrees of freedom (e.g. the amino acid sequence of a protein domain).
The number of possible different states s is much larger than M and it may even be
unknown. We restrict attention to the case where s(i) can be thought of as outcomes
of independent experiments, carried out in the same conditions.

The general question of interest is to infer the laws governing the system, from
the data. This can be formalised by assuming that the data can be thought of as M
i.i.d. draws from a generative model P{s(i) = s} = ps, where the function ps should
encode the property of the system and the functions it performs. The basic problem
then becomes that of inferring the generative model.

2.1. Resolution and relevance

Reference [2] has shown that, if we think of each sample s(i) as a realisation of an
optimisation problem of a function U(s, s̄) over an enlarged set of variables that
includes also unknown variables (s̄), then the frequency

ks =
M∑
i=1

δs(i),s

with which a given observation s occurs in the sample provides a noisy estimate
of that part us = Es̄[U(s, s̄)] of the function that is being optimised. Hence the
relevance of the particular choice of the variables s, among all those that enter U ,
is reflected in the statistics of the frequency ks of states s. Ref. [2] argues that a
quantitative measure of relevance, in information theoretic terms, is given by

Ĥ[K] = −
∑
k

kmk

M
log

kmk

M
, (1)

where

mk =
∑
s

δks,k
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is the number of states that occur k times in the sample ŝ. Notice that Ĥ[K] is the
entropy of the random variable Ki = ks(i) for a randomly chosen point s(i) of the
sample. This is different from the entropy of the state s itself ‡

Ĥ[S] = −
∑
s

ks
M

log
ks
M

= −
∑
k

kmk

M
log

k

M
. (2)

Intuitively, this measures the resolution of the description based on the variable s.
Indeed a more detailed definition of the state s of the system likely results in a higher
resolution (i.e. a larger value of) Ĥ[S] but not necessarily in a higher relevance Ĥ[K].

2.2. Learning the generative model

Given a generative modelM = ps, the likelihood of ŝ is defined as:

P (ŝ|M) =
M∏
i=1

ps(i) =
∏
s

pkss , ks =
M∑
i=1

δs,s(i) . (3)

The frequentist approach estimates the best model as the one that maximises the
likelihood. This results in equating probabilities with frequencies: p̂s = ks/M .
The Bayesian approach, instead, invokes Bayes rule to turn the likelihood into a
(posterior) distribution over the parameters ~p of the model. This requires identifying
a prior distribution P0(~p) that reflects our ignorance on ~p before seeing the data.
A minimal requirement is that P0(~p) should be a symmetric function of the ps’s.
Dirichelet priors

P0(~p) = Γ

(∑
s

as

)∏
s

pas−1
s

Γ(as)
δ

(∑
s

ps − 1

)
(4)

are a mathematically convenient choice, and ignorance requires by symmetry that
as = a is independent of s. The posterior is easily computed:

P1(~p) = Γ

[∑
s

(ks + a)

]∏
s

pks+a−1
s

Γ(ks + a)
δ

(∑
s

ps − 1

)
(5)

This allows us to give a Bayesian estimate of the probabilities

〈ps〉1 =

∫
d~ppsP1(~p) =

ks + a

M + aS
(6)

‡ Again we use uppercase for random variables defined on the space of the points in the sample ŝ.
Also we assume maximum likelihood estimates of the probability P{S = s} = ks/M .
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where S is the number of states. When M � aS this converges to the frequentist
estimate ks/M , reminding us that in the presence of a large enough data set, the
choice of the prior does not matter.

There are a number of problematic issues with this procedure:

(i) The set of possible states and their number S should be known in advance. This
is not always the case.

(ii) The estimate of the entropy H[S] = −
∑

s〈ps log ps〉1 is strongly affected by the
prior and it converges slowly to its true value, as shown in Ref. [10].

(iii) The model assumes a different parameter for each state that occurs in the
sample. A posteriori, this assumption is not justified as there is nothing that
can be learned from the data on how the probabilities of two states that are
seen the same number of times differ. Indeed, the posterior estimate of these
probability depends on the frequency ks and is exactly the same for two states
s, s′ that occur the same number of times ks = ks′ .

In particular, the last point suggests that we are in a clear case of over-fitting
and indeed this model does not survive a model selection test, as we shall see in what
follows.

3. Model selection

The key issue is that the definition of states s is made by the observer, not by the
system. If the distinction between s and s′ is totally spurious, we expect that the
data will not distinguish between the two states, i.e. ks ≈ ks′ . Conversely, if two
states are seen the same number of times, there is no reason to assume that they
have a different probability. In terms of inference, we are not allowed to think that
ps 6= ps′ unless we have sufficient evidence.

3.1. An illustrative case: two states

Let there be only two states s = 0, 1 and assume there are M observations, k = k1

with s = 1 and M − k with s = 0. There are two possibilities: one is that
the two states are actually the same, i.e. that the underlying distribution has
p0 = p1 = 1/2, the other that the states are different, i.e. p1 = p = 1 − p0.
These correspond to different models that we can identify with different partitions
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of states and the associated probabilities. So the first case corresponds to a model
M0 = [({0, 1}, 1/2)] where the two states are symmetric, whereas the second to
a model M1 = [({0}, 1 − p), ({1}, p)]. Clearly P{ŝ|M0} = 2−M whereas for M1

the likelihood P{ŝ|M1} can be obtained by integrating the likelihood over the prior
distribution of the parameter p, for which again we take a Dirichelet form. Hence

P{ŝ|M1} =
Γ(2a)Γ(k + a)Γ(M − k + a)

Γ(a)2Γ(M + 2a)
. (7)

In order to compare the two models, we invoke Bayes rule and compute the posterior
probability

P (Mi|ŝ) =
P (ŝ|Mi)P0(Mi)∑
j P (ŝ|Mj)P0(Mj)

=
P (ŝ|Mi)P0(Mi)

P (ŝ)

where P0(Mi) is the prior probability of model i. For the sake of simplicity, we’re
going to assume that all models are a priori equally likely§. So the most probable
model is the one with the highest likelihood P{ŝ|M}. In the present case, it is easy
to check that, for M � 1, in the representative case of a uniform prior (a = 1) we
have that as long as∣∣∣∣ kM − 1

2

∣∣∣∣ <
√

log(2M/π)

2M

the symmetric modelM0 should be preferred.
Figure 1 shows an extension for the 3-states case. Here the possible models are

M0 with no parameters (each state has p = 1/3), M1,i where two out of the three
states have the same probability (pi = p and ps = (1 − p)/2 for i = 1, 2 or 3), and
M2 where all states have a different probability. If the frequencies are close enough,
the states should not be distinguished and the model with no parameters should be
preferred (blue surface in 1). Conversely the red surface reflect the cases where two
states should not be distinguished from each other, and the green shows the case
were the three states should be distinguished.

3.2. The general case

The argument above suggests that, in the general case, for each pair of states s and
s′ their probability should be the same, unless they occur in the data a sufficiently

§ By Occam’s razor, one would be tempted to prefer simpler models, i.e. those with fewer
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Figure 1. Model selection in a three state system with M = 150 observations.
k1, k2 and k3 are the number of observations of each state. The coloured
surface shows the preferred model in terms of the likelihood P (ŝ|Mi). M0 is
the model with no parameters (pi = 1/3,∀i), M1 is the one with one parameter
(pi = p, pj = pk = (1 − p)/2), and M2 is the one with two parameters
(pi = p, pj = q, pk = (1− (p+ q))).

different number of times. If ks ≈ ks′ instead, they should be assigned the same
probability, i.e. the symmetry between states s and s′ should not be broken.

Conversely, imagine the situation where the distinction between states s and s′

is completely arbitrary, with no relation with the internal states of the system under
study. Complete ignorance of the system about the distinction between states s and
s′ means that the probability distribution restricted to only these two states must
be the one of maximal entropy, i.e. that ps = ps′ .

We remind again that the definition of states s is made by the observer, not by
the system. If it distinguishes effectively different internal states of the system, then
this definition is relevant and meaningful, otherwise it is not. One way to turn this
observation into a quantitative criterium is to extend the model selection argument
above.

Given the set S of states s that are seen (with multiplicity ks > 0), then a

parameters. Yet Occam’s razor already arises from the integration over the parameters implied by
Bayes rule, without the need to introduce it ad hoc.
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generic modelM = [Q, ~µ] is one where different states are divided into a partition

Q = (Q1, Q2, . . . , QN),
N⋃
q=1

Qq = S

of a number N of disjoint sets, and each state in the qth subset of the partition
(s ∈ Qq) has the same probability‖ µq. If mq = |Qq| is the number of states in subset
Qq, then µq satisfies the normalisation∑

q

mqµq = 1. (8)

Any possible partition corresponds to a different model, going from the one
where each state is in the same subset (s ∈ Q1,∀s), to the one where each state is
in a different subset (s ∈ Qs,∀s). It is possible to consider more general structure
that also includes yet not seen states (i.e. states with ks = 0). We shall see below
that these are less likely than those considered here. Each partition Q identifies a
different model M. This is why we shall use the partition Q to refer to the model
that is based on that partition.

It is straightforward to compute the likelihood of each model:

P{ŝ|Q} =

∫
d~µ
∏
q

µKq
q P

(Q)
0 (~µ), Kq =

∑
s∈Qq

ks (9)

where the prior P (Q)
0 contains the constraint Eq. (8). We take again conjugate

(Dirichelet) priors

P
(Q)
0 (~µ) = Γ(aN)

∏
q

ma
q

Γ(a)
µa−1
q δ

(∑
q∈Q

mqµq − 1

)
(10)

where N is the number of partitions in Q, i.e of parameters in Q. Then

logP{ŝ|Q} =
∑
q

[
log

Γ(Kq + a)

Γ(a)
−Kq logmq

]
− log

Γ(M + aN)

Γ(aN)
(11)

The posterior distribution, under model Q is

P
(Q)
1 (~µ|ŝ) = Γ(M + aN)

∏
q

m
Kq+a
q

Γ(Kq + a)
µKq+a−1
q δ

(∑
q

mqµq − 1

)
(12)

‖ All quantities N , mq, Qq µq depend on the modelM. We omit this dependence for the sake of
simplifying formulas.
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The expected value of ps for s ∈ Qq is

〈ps|Q〉1 =
1

mq

Kq + a

M + aN
, ∀s ∈ Qq (13)

where 〈. . . |Q〉1 indicates expected values over the posterior distribution Eq. (12).
The expected value of the entropy H[S] = −

∑
s ps log ps is given by

〈H[S]|Q〉1 = −
∑
q

Kq + a

M + aN
[ψ(Kq + a+ 1)− logmq − ψ(M + aN + 1)] (14)

where ψ(z) = d log Γ(z)
dz

is the digamma function.
Assuming that all models are a priori equally likely, P{ŝ|Q} is also proportional

to the posterior probability P{Q|ŝ} of modelQ given the data. Therefore the optimal
model is given by¶

Q∗ = arg max
Q

P{ŝ|Q}. (15)

The partition Q∗ identifies an emergent description of the system in terms of
effective states q, that we shall call q-states. This is the statistical description that
can be resolved on the basis of the dataset ŝ. The states s ∈ Q∗q in the same
partition q cannot be distinguished one from the other, hence they all correspond
to the same q-state. The variable q is associated to a distribution pq = mqµq,
which is the probability to observe the q-state. The entropy of this distribution
H[Q] = −

∑
q pq log pq provides a quantitative measure of the amount of information

that the data provides on the generative model. It’s expected value on the posterior
distribution Eq. (12)

〈H[Q]|Q〉1 = −
∑
q

Kq + a

M + aN
[ψ(Kq + a+ 1)− ψ(M + aN + 1)] (16)

= 〈H[S]|Q〉1 −
∑
q

Kq + a

M + aN
logmq (17)

is what we shall call relevance. Indeed, this is a measure of the relevance of the
original description based on the states s. Eq. (17) shows that 〈H[Q]|Q〉1 ≤
〈H[S]|Q〉1 with equality if and only if all partitions Qq contain only one state
(mq = 1 ∀q). The next section illustrates the behaviour of this measure in some
specific examples. Before doing that, it is instructive to discuss the issue of unsampled
states and two special cases, to make contact with the results of Ref. [2].

¶ A fully Bayesian approach would entail considering all possible partitions Q with their probability
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3.3. Unsampled states

In many instances, the sample contains only a partial coverage of the set of possible
states. There are two ways in which not yet sampled states could be included in one
of the partitions Q discussed above. Either adding them to one or more of the sets
Qq or augmenting the partition with a set Q0 that includes all states with ks = 0. In
the first case, the partition Q changes into one which is identical on all sets Qq′ with
q′ 6= q and with Qq → Q′q = Qq

⋃
Q0, where Q0 is the set of unseen states. Since

ks = 0 for s ∈ Q0, the count Kq does not change, and the change in the likelihood is
given by −Kq log(1+m0/mq), where m0 = |Q0| is the number of states s ∈ Q0. Since
the change in the likelihood is negative, the optimal partition Q∗ does not include
not yet sampled states.

The change in the likelihood when the unseen states are added to the partition
in a new set, Q → Q+0 = (Q, Q0) can also be easily computed. The first two terms
in Eq. (11) do not change, as K0 = 0, so the only difference is due to the fact that
the number of sets increases by one: N → N + 1. Hence the change in the likelihood

log
P{ŝ|Q+0}
P{ŝ|Q}

= − log
Γ(M + aN + a)Γ(aN)

Γ(M + aN)Γ(aN + a)
(18)

is again negative. Hence models based on partitions that include unseen states are
dominated by those discussed above, if they are considered equally likely a priori.

Yet, if one expects that the sample contains only a partial coverage of the set of
possible states, the uniform prior hypothesis needs to be revised. Therefore

log
P{Q+0|ŝ}
P{Q|ŝ}

= ∆0 −
M−1∑
k=0

log

(
1 +

a

k + aN

)
(19)

where ∆0 = log P0{Q+0}
P0{Q} encodes the a priori likelihood that states s that are not

present in the sample ŝ exist. Notice that the second term in Eq. (19) increases with
M (as a log(1+M/(aN)) forM,N � 1). Hence for a given ∆0, we expect the model
Q to become preferable to Q+0 as M grows large. When instead the model Q+0 is
the optimal, this approach also gives an estimate of the discovery probability

p0 =
a

M + aN + a
(20)

which is an intense subject of research in statistical learning+, since the work of Good

P{Q|ŝ}. Here we depart from this approach and focus on the most likely partition.
+ This discussion relates to the wider field of non-parametric Bayesian statistics which discusses
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and Turing [12].

3.4. Special cases

For the model based on the atomic partition S, where each subset contains one state
Qs = {s}

logP{ŝ|S} =
∑
s

log
Γ(ks + a)

Γ(a)
− log

Γ(M + aNs)

Γ(aNs)
(21)

=
∑
k

mk log
Γ(k + a)

Γ(a)
− log

Γ(M + aNs)

Γ(aNs)
(22)

where Ns = |S| is the number of different states s that occur in the sample ŝ. Note
that ms = 1 and Ks = ks is simply the frequency of state s.

For the model based on the frequency partition K, where subset Qk = {s : ks =

k} for k = 1, 2, . . ., we have Kk = kmk and

logP{ŝ|K} =
∑
k

log
Γ(kmk + a)

Γ(a)mkmk
k

− log
Γ(M + aNk)

Γ(aNk)
(23)

where Nk = |K| is the number of different values of ks that appear in the sample.
Naïvely one would expect that P{ŝ|K} > P{ŝ|S}, i.e. that the K partition

should always be preferred to the atomic partition S. Appendix C proofs that this is
indeed the case for a = 1 and for a→ 0. But it also exhibit counterexamples where
this is not so, in the limit of large a. These however correspond to rather atypical
samples and no counterexample to the rule P{ŝ|K} > P{ŝ|S} has been found in
the data we have analysed. This strongly suggests that, in practical terms, the K
partition should always be preferred to the S partition.

4. Properties of the optimal partition Q∗

Finding the optimal partition Q∗ for a given sample ŝ is a non-trivial task. It is
reasonable to assume that partitions that merge states with adjacent frequencies are

models that reproduce sampling processes. For a general introduction, the reader is referred to [11].
A model of the sampling process based on our approach departs from this literature in that non-
parametric Bayesian models such as the Dirichelet’s process are based on a single partition (S in
this case) whereas we consider selecting the optimal partition for eachM . Further discussion of this
issue would bring us too far from the main aim of the present paper and will be dealt with elsewhere.
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more likely than those that merge states with non-adjacent frequencies∗. Therefore,
it is enough to consider partitions where all states s ∈ Qq have frequency ks which
is larger than that of all states s′ ∈ Qq′ with q > q′. This leads us to the following
heuristics to derive the optimal partition Q∗ of a finite sample:

(i) Starting from Q = K:
(ii) For every q = 1, . . . , NQ− 1, define a new partition Q(q) by merging the subsets

Qq and Qq+1 of the current partition Q and compute the change in the log-
likelihood.

(iii) If the largest increase in the log likelihood over all possible values of q is positive,
then merge the corresponding subsets, update the partition Q accordingly and
repeat the previous step.

(iv) If the largest increase in the log likelihood over all possible values of q is negative,
then return Q∗ as the optimal partition.

In order to explore the properties of Q∗ we study ensembles where the states s
are drawn from power law distributions P (s) ∼ s−α. This choice serves for generating
data with a broad distribution of frequencies, such as those that are often observed
in empirical studies. Varying α allows us to probe the merging algorithm proposed
over a broad range of underlying distributions.

Figure 2 gives a pictorial representation of the merging process during a typical
run. Interestingly, visual inspection suggests that the frequencies of the optimal
model Q∗ are evenly spaced in a logarithmic scale.

One can think as well of variations to the algorithm such as selecting a favourable
move at random in step (ii) instead of choosing the one that maximizes the likelihood,
or merging triplets of subsets instead of pairs. We have seen that the overlaps in
the final representations obtained using these variations in the algorithm are always
larger than 90%. Moreover we see that for large samples the probability of finding
a representation with H[Q] greater than H[Q∗] goes to zero, meaning that the later
yields a more relevant description of the data. This issue is discussed in Appendix
D.

∗ If ks1 > ks2 > ks3 then a partition Q where s1, s3 ∈ Qq1 and s2 ∈ Qq2 will be dominated by
partitions where either all three states are in different sets, or s1, s2 ∈ Q′q′1 and s3 ∈ Q′q′2 , or s1 ∈ Q

′
q′1

and s2, s3 ∈ Q′q′2 , or they are all in the same set.



Criticality of mostly informative samples: A Bayesian model selection approach 14

��� ��� �� �� �� ��
�	
������

K

Q*
�
��

�
�


�
�	
��
��

Figure 2. Illustration of the Merging Process. M = 105 data points were drawn
from a distribution P (s) ∼ s−α, with α = 1.2. The x-axis shows the estimated
probability (13) for states in each subset Q ∈ Q. The y-axis stands for the different
partitions Q in the merging process from K to Q∗.

4.1. Distance between Q∗ and K and scaling with the sample size

Figure 3 shows the difference between Q∗ and K as a function of the sample size
M . Panel A shows the estimated parameters 〈ps〉 (Eq. 13) for both models and
two sample sizes M1 = 103 and M2 = 106. The states with higher frequency ks are
not merged, so the partitions S, K and Q∗ overlap on the left tail of the curve on
a number ξ of identical subsets of states. We estimated the Q∗ partition and the
parameters ps using priors with a ranging from 0.01 to 10. The different overlapping
curves in panel A stand for the different values of a. Clearly neither the number
of subsets in Q∗ (NQ∗) nor the estimated parameters 〈ps〉 vary strongly with a. In
the following analysis we set a = 1. Panel B shows that the overlap ξ between the
two partitions scales with M with a non-trivial exponent (γ) which depends on the
underlying distribution parametrized by α (panel C). The number of parameters (N)
in each partition gives a measure of the overfitting done in K with respect to Q∗.
Panel D shows that N ∼M δ has a power law dependence on M with an exponent δ
that depends on α] (panel E). The exponent δ for the Q∗ partition is smaller than

] For the K partition it is possible to show that δ = 1/(1+α). The argument relies on the fact that
the frequency of state s approximates the probability ks/M ' ps ∼ s−α as long as ks � 1 is large
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that of the K partition implying that the difference between NQ∗ and NK increases
with M .

An interesting observation is that the optimal partition Q∗ provides an estimate
of the entropy of the underlying distribution that converges faster than that based
on the S partition. The slow convergence of the entropy based on the S partition
and its strong dependence on the prior where noticed in Ref. [10], that also proposed
a remedy based on treating a as a hyper-parameter in Bayesian inference. Figure
4 shows that the estimate based on the optimal partition Q∗ converges faster than
finer representations, and that Bayesian inference and model selection are enough to
have a reliable estimate of the entropy. This also suggests that the information kept
in the coarser representation is truly relevant for characterising the sample, while the
discarded information is noise associated with the finite number of data points.

5. Criticality of maximally informative partitions

Having provided a measure for the relevance of a given sample, allows one to
characterise the typical properties of most relevant samples, i.e. of samples that
are maximally informative. This question was partly addressed in Ref. [2], where
an upper bound to the entropy Ĥ[K], for a given sample size M and at a given
resolution Ĥ[S], was derived. Interestingly, this exercise shows that the distributions
that achieve the upper bound in the under-sampling regime, are power laws, i.e.
mk ∼ k−µ−1. This suggests that “criticality”, i.e. the observation of scale-free
frequency distribution, may be a consequence of choosing the most informative
variables, and need not necessarily imply underlying mechanisms of self-organisation
to a critical point.

In Appendix A we revisit the argument leading to the upper bound and
also derive a lower bound for Ĥ[K], showing that this is also achieved when the
distribution of frequencies has a power law behaviour mk ∼ k−µ−1.

The observation (see Fig. 2) that model selection identifies partitions Q∗ with
posterior probabilities 〈ps|Q∗〉1 that are evenly spaced on a logarithmic scale, suggests
that the same may be true for samples of a given sizeM , with a maximal 〈H[Q]|Q∗〉1
enough. We note that mk ' ds/dk is the number of states s in an interval of frequency dk = 1,
hence mk ∼ sα+1/M ∼ k−1/α−1M1/α. The number Nk of states corresponds to the value of k such
that mk becomes of order one. Therefore Nk ∼M1/(α+1). Interestingly, we also find that γ = δ/2

for the K partition, to numerical precision. These relations do not hold for the Q partition.
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Figure 3. Scaling of the optimal partition with the sample size M . Panel A
shows the estimated parameters < ps > for each subset in partitions K and Q∗.
The data was drawn from a power law distribution P (s) ∼ s−α, with α = 1.2. For
both partitions we show the estimated parameters for a sample of size M1 = 103

and M2 = 106. ξ denotes the number of parameters which are identical under
both models K and Q∗. NK and NQ∗ are the number of parameters (subsets) in
each model. The different overlapping red (black) curves correspond to estimations
using different values for the prior parameter a, ranging from 0.01 to 10. Panels
B-E show analysis using a = 1. Panel B shows the scaling of ξ with the sample
size, for α = 1.2, which follows a power law ξ ∼ Mγ(α). Panel C shows the
dependence of γ with α. Panel D shows the scaling of the number of parameters
in each model with the sample size, which follows a power law N ∼Mδ(α). Panel
E shows that the number of parameters in Q∗ grows slower with M than in K for
a wide range of systems (α).
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respective model using a flat prior (a = 1). ML stand for the maximum
likelihood estimate (2). The dashed line is the true entropy of the underlying
distribution P (s) ∼ s−3. Error bars denote standard errors over 1000 samples
of each size M . The inset shows the difference between the bayesian estimates
based on the posterior distribution (14) and the likelihood of the model (11)
∆H[S] = 1

H∗

[
〈H[S]|Q〉1 − (− 1

M log(P{ŝ|Q}))
]
where H∗ is the true entropy of

the distribution.

at a given resolution 〈H[S]|Q∗〉1.
Yet, in order to further corroborate this conclusion, one needs to resort

to numerical simulations. To this end, we generated samples from Montecarlo
simulations maximising the measures of relevance proposed above. The simulations
consisted in the following steps:

(i) Start with an arbitrary sample defined by the frequencies k̂ = (k1, ..., kN), with∑N
s ks = M , and N the initial number of states. Without loss of generality sort

the frequencies in decreasing order k1 ≥ ... ≥ kN .
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(ii) Consider every possible move of n samples from state i into state j 6= i for
all i ∈ [1, N ],j ∈ [1, N + 1] and n, under the constraint that ki − n ≥ ki+1 and
kj−1 ≥ kj+n. Notice that j = N+1 implies defining a new state with frequency
n. Conversely if ki = 1 this state will disappear after moving the one sample to
state j.

(iii) Choose the move which maximizes the Lagrange function L = H[Q] + µH[S],
with Q = K and Q = Q∗ independently, for a fixed value of µ.

(iv) Repeat (ii)-(iii) until there is no favourable move.

Keeping µ fixed in step (iii) and allowing H[S] to fluctuate accordingly during
the simulation favoured the ergodicity of the dynamics with respect to fixing H[S]
and maximizing H[Q]. We repeated the simulations for different values of µ ∈ [−1, 5].
For each value of µ we repeated the simulations with different initial conditions. This
was not essential for the maximization of H[K] but for the maximization H[Q∗] the
process converged to local maxima strongly dependent on the initial conditions. We
therefore varied the initial number of states N from 25 to 950, for a sample of size
M = 1000, and performed 20 independent realizations for each initial resolution. The
absolute maximum of H[Q∗] + µH[S] across realizations was kept for each µ. Panel
A in figure 5 shows the results for both relevance measures H[K] and H[Q∗]. Values
of µ < −1 yield the trivial result of H[Q] = 0 and H[S] = 0 which corresponds to
the solution k1 = M , kj>1 = 0. µ = −1 yields solutions with H[Q] = H[S] in the
well sampled regime (left part of the diagram). In the case of Q = K, the solutions
are of the form mk ∼ k−µ−1 (see Appendix A). Panel B shows the solutions obtained
for µ = 1 which match the expected Zipf law. The dashed curves in panel A refer to
theoretical upper and lower bounds for the value of H[K] (Appendix A).

6. Application to real data

In this section we compare the models based on the K and Q∗ partitions in two
applications to real data. The K partition is derived directly and exactly from
the data whereas the Q∗ partition requires a calculation that may be heavy and
approximate. The scope of this section is to show that in practical cases, the K
partition is a very good approximation to the optimal one Q∗. Intuitively, the reason
why this is so relies on the fact that informative samples (those with a large H[Q∗]

or H[K]) have broad frequency distributions, and as we have seen, the Q∗ and K
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Figure 5. Maximally relevant samples. Samples of size M=1000 were generated
via Monte Carlo simulations maximizing H[K] + µH[S] and H[Q∗] + µH[S] (see
main text), for fixed values of µ ∈ [−1, 5] which determine the resolutionH[S] of the
solutions. All entropies are normalised by log(M). Panel A shows the maximized
H[K](red) and H[Q∗](blue) together with theoretical bounds for H[K] (dashed).
The solutions expected are of the form mk ∼ k−µ−1. Panel B shows the solutions
obtained for µ = 1, which are power laws of exponent 2 (Zipf’s law). The dashed
line is an approximate solution to the theoretical lower bound for H[K] where mk

is assumed to be a poisson variable (see Appendix A).

partitions have a sizeable overlap in these cases.
In the first example, we analyse a financial market data set of stock returns. The

data set (used previously in [13, 14]) span a period from 1st January 1990 to 30th
April 1999 (2249 time points) and it covers the M = 2000 most frequently traded
stocks in the New York Stock Exchange in that period. Assuming that returns
are gaussian with a block diagonal correlation matrix allows one to group stocks in
clusters of “sectors”, by maximum likelihood (see [14, 13] for details). The cluster
label si of each stock i = 1, . . . ,M identifies the S partition in this context. As the
number Ns of clusters varies from 1 toM , the algorithm produces partitions S with a
different resolution H[S]. We compare the relevance of different levels of description
by computing H[K] and H[Q∗]. Here the optimal partition Q∗ is obtained with
the algorithm defined in Section 4 starting from K. Panel A in figure 6 shows both
measures of relevance as a function of the resolution H[S]. The dashed curves are
theoretical upper and lower bounds to the estimate of the maximal value of H[K],
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given H[S] and M (see Appendix A). Panel B illustrates the relation between the
K and Q∗ representations, at the resolution marked by the vertical dashed line in
panel A. Bars in panel B denote the K partition, whereas the colours indicate which
frequencies were merged together to form the coarser optimal model Q∗. Panels C
and D provide a closer look at the distance between partitions K and Q∗. Panel C
shows the overlap between the K and Q∗ partitions at each resolution. The overlap
was computed by the Adjusted Rand Index ([15]), which is bounded above by 1
and yields 0 when the overlap matches the one expected by chance. For illustrative
purposes we show the overlap between shuffled versions of the partitions (red curve),
which indeed yield constant zero for all resolutions. We point out that in the strongly
under-sampled domain, both models are practically the same. Panel D shows the
estimated parameters (Eq. 13) in the K and Q∗ models, at the resolution marked by
the vertical line in A. The dashed line is a Zipf law for comparison.

As a second example, following Ref. [2], we consider the problem of identifying
relevant positions in the sequence of amino acid that correspond to a particular
protein domain. In brief, the data consists of Multiple Sequence Alignments (MSA)
of M sequences of the same protein domain, across different species. We refer to
[16] for a detailed description, for our purposes here, suffice it to say that a protein
domain can be identified by a sequence ~a = (a1, . . . , aL) of L amino acids, each being
of one of 21 possible types (e.g. ai = V for valine, ai = A for alanine, etc) and that
an MSA is a collection of M such sequences across different organisms or species.
The key point is that, while the whole sequence is subject to a random process of
mutations, there are features which need to be conserved in order to perform the
function the protein is supposed to do. In order to understand which positions along
the sequence are relevant for the biological function, we observe that each subset
I ⊆ {1, 2, . . . , L} of the positions identifies a partition Si of the MSA data, whose
elements s = (ai, i ∈ I) are the subsequences of the domain on the positions i ∈ I.
From this we can define the K and the optimal Q∗ partitions, and compute both the
resolution HI [S] and the relevance HI [Q

∗] or HI [K] corresponding to this subset of
positions. This makes it possible to look for the most relevant subset of positions I∗,
as the one that maximises HI [Q

∗]. This program is carried out in Ref. [16] to which
we refer the interested reader. Here we confine the discussion to the comparison of
the K and Q∗ partitions. In brief, the maximisation (of either K or Q∗) is done
using a Montecarlo algorithm for subsequences of a fixed number n of amino acids.
We applied the algorithm to the Voltage Sensor Domain of ion channels (Pfam code
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Figure 6. K and Q∗ representations of a financial market data set of stock returns.
Stocks where clustered at different resolutions (H[S]) by means of the algorithm
developed in Ref. [13]. The relevance of each level of description is quantified by
H[K] and H[Q∗] in Panel A (all entropies are normalized by log(M)). Panel C
shows the overlap between partitions K and Q∗ at each resolution. The overlap
index is the Adjusted Rand Index (ARI, Ref. [15]) which yields 1 for identical
partitions and 0 when the overlap is expected by chance. The partition labels
where shuffled before computing the ARI (red curve) to illustrate this case. Panels
B and D refer to partitions K and Q∗ of the data, at the resolution marked by the
vertical dashed line in A (H[S] ∼ 0.75). Bars in Panel B show the K partition. The
x-axis are the frequencies and the y-axis are the number of states seen with each
frequency. The colours show the coarser Q∗ partition, obtained by the algorithm
of section 4. Panel D shows the estimated parameters with the model based on K
and Q∗. The dashed line is a Zipf law for comparison.
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PF000520). The data was the same as that used in Klein et al. [17]. In brief, the
algorithm of Ref. [16] produces a distribution over the subsets I∗ of n relevant sites
that allows one to compute the probability that a site is either selected or not in two
different realisations of I∗. Fig. 7 shows that optimising the relevance of the K or the
Q partitions provides a sharp separation between relevant and irrelevant positions,
which is sharper for the K partition. In addition, the selected subsets of sites I∗K and
I∗Q∗ under the optimisation of H[K] or H[Q∗] have a large relative overlap: in 90%
of the cases, the two optimisation schemes yield the same prediction on whether a
site that is relevant or not (see Fig. 7 and the caption for details).

These two examples suggest that, in practical applications, H[K] can be used
as a proxy for H[Q∗] in measuring the relevance. This is particularly useful to avoid
the optimisation leading from K to Q∗ and speed up numerical calculations.

7. Conclusion

The Big Data revolution has made available data of unprecedented detail on the
working of complex systems, such as cells, networks of neurons and the brain,
ecologies, social networks, economies and financial markets. This, in particular,
indicates that quantitative approaches typical of hard sciences can be extended to
life sciences as well. Yet, the fact that such phenomena are not constrained by well
known laws, as in physics, makes inference of behaviour a daunting task. Indeed, one
is rarely in the circumstance where behaviour depends on only few variables that can
be controlled. In such cases, the resolution of high dimensional data, is not given by
the number of variables that one can measure simultaneously, but rather is limited
by statistical errors induced by finite sample size. Dimensionality reduction schemes
have to be invoked to adjust the resolution so that reliable statistical information can
be extracted from the data. This inevitably introduces a tradeoff between relevance
and resolution, which is addressed in this paper.

The main contribution of this paper is to make this tradeoff explicit and
quantitative in information theoretic terms, on the basis of a Bayesian model selection
approach. We focus on the limiting case where the system under study is severely
under-sampled and no other information apart the frequency of observations is
available. There, models are in one to one correspondence with partition of the set
of observed states. So while resolution is a measure of the number of different states,
relevance can be defined in terms of the number of different elements in the partition,
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Figure 7. Self-overlap OK and OQ∗ (filled circles) of the subset of site I∗K and I∗Q∗
produced by the optimisation of H[K] and H[Q∗], respectively, on the MSA for
the voltage sensor protein domain. Self-overlaps are computed as the probability
that a randomly chosen site is either selected or not in two different runs of the
algorithm of Ref. [16] and are shown, in the plot, as a function of the number n of
sites in I∗. The overlap O(K,Q) between the subsets I∗K and I∗Q∗ is also computed
in the same way, and it is shown with filled squares. The dashed line corresponds
to the overlap between subsets of n sites chosen randomly among the L = 114

possible sites.

i.e. the number of different states that the data allows one to distinguish. We find
that, as resolution increases from the coarser possible level, relevance increases up
to a maximum, beyond which it starts decreasing. In the extreme limit where each
observation is seen only once, relevance vanishes, signalling that data contains no
relevant information on the system.

The resolution (i.e. the number of sets in the partition) also provides a natural
cutoff in the number of parameters that the data allows us to infer, beyond which
inference would result in overfitting. The number of parameters (and of partitions)
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increases with the sample size M . Loosely speaking, as M increases, the model
passes through a sequence of symmetry breaking transitions where more and more
distinctions between states can be made. This process, indeed, bears well known
formal analogies with the symmetry breaking process in physical systems when the
temperature (here proportional to 1/M) decreases.

There are several interesting directions for further research along these lines.
One is to extend the approach in Section 3.3 to explore sampling processes [12]
that are consistent with the Bayesian model selection scheme. The second is to
exploit these results for inference of graphical models in cases where states can be
considered as a configuration s = (σ1, . . . , σn) of an extended system. There, a
well established technique is Boltzmann learning (see e.g. [7]) which, given a set of
relevant observables, invokes maximum entropy principle and predicts a distribution
P (σ1, . . . , σn). The set of relevant observables determines the model. Yet, no general
criterium exists for dictating what relevant observables should be and it seems natural
to invoke model selection schemes to address the issue.

Finally, the present approach also suggests a new perspective on the widespread
occurrence of criticality. It suggests that the occurrence of broad frequency
distributions is a consequence of sampling relevant variables in the under sampling
regime. In this spirit the interesting question is not whether or why "biological
systems are poised at criticality" [18] but rather how to use the "apparent criticality"
of frequency distributions to select relevant variables.
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Appendix A. Samples that maximise Ĥ[K] have power law distribution

The problem is to find the distributions mk ∈ N that satisfy∑
k

kmk = M, Ĥ[s] ≡ −
∑
k

kmk

M
log

k

M
= H0 (A.1)

and maximize

Ĥ[K] ≡ −
∑
k

kmk

M
log

kmk

M
. (A.2)
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The problem is difficult because it has to be solved for integer mk. In order to
circumvent this problem we think of mk as being drawn from a distribution and
maximise the expected value of Ĥ[K], subject to the constraints that the expected
value of Ĥ[s] and M =

∑
k kmk are fixed. The main technical problem relies in

computing the expected value of mk logmk. On one side, one can observe that

E [mk logmk] ≥ nk log nk, nk = E[mk].

This makes it possible to derive an upper bound on the maximal value of Ĥ[K].
Indeed, one particular distribution of mk is one where mk = nk for all k, with integer
nk. The maximisation over these distributions coincides with the original problem.
Maximising

Ĥann[K] = −
∑
k

knk
M

log
knk
M

over all real nk ≥ 0 with
∑

k kmk = M and
∑

k knk log(k/M) = −MH0, clearly
produces an upper bound to the true solution. This upper bound, as discussed in [2]
predicts power law distributions mk ∼ k−µ−1 with µ ≥ 1.

In order to derive a lower bound, we confine ourselves to a specific class of
distributions. More precisely, we take mk as Poisson variables with mean nk and
solve the problem of finding nk such that the average of Ĥ[K] is maximised under
the same constraints as above. Notice that this is akin to studying the problem in
the analog Gran Canonical Ensemble where M is a allowed to fluctuate. What we
need to check a posteriori is that the fluctuations of M are small compared to the
mean.

The only nontrivial part of the calculation has to do with computing the
expected value of mk logmk, for which we use the formula

log z =

∫ ∞
0

du

u

(
e−u − e−zu

)
(A.3)

so that, for a Poisson variable m with mean n, we find

E[m logm] = n

∫ ∞
0

du

u

(
1− e−n(1−e−u)

)
(A.4)

= n

∫ 1

0

dz
e−nz − 1

log(1− z)
(A.5)

=

∫ n

0

dt
e−t − 1

log(1− t/n)
(A.6)
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The first expression can be used to check that

E[m logm] ' an2 +O(n3), a = −
∫ 1

0

dz
z

log(1− z)

for n� 1, whereas the last shows that E[m logm] ' n log n for n� 1.
Writing E[F ] = F we find

F = −
∑
k

knk
M

[
L(nk) + (µ+ 1) log

k

M
− λ
]
− µH0 − λM (A.7)

where

L(n) =

∫ 1

0

dz
e−nz − 1

log(1− z)
(A.8)

Notice that the only problematic thing here is that we are not taking into account
that M also is a random variable. Operationally, one could think at taking an
ensemble of systems, m(a)

k all strictly satisfying the constraint. Then we define the
ensemble average nk of the mk’s and pretend that its distribution be Poisson, which
seems reasonable.

The extrema of F can now be computed: nk will satisfy

nkL′(nk) = λ− (µ+ 1) log
k

M
− L(nk) (A.9)

that can be solved numerically foe each k.
Notice that P{mk > 0} = 1− e−nk , therefore the expected number N of states

s visited is

N =
∑
k

(1− e−nk) (A.10)

In order to compute kmax notice that

P{kmax < q} =
∞∏
k=q

P{mk = 0} = e−
∑

k>q nk (A.11)

Finally, the variance of M is given by

V (M) =
∑
k

k2V (mk) =
∑
k

k2nk (A.12)

and the validity of the method relies on the fact that

lim
M→∞

V (M)

M2
= 0 (A.13)
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A rather crude approximation of the solution is possible if we take

nkL′(nk)+L(nk) ≈ log(1+nk/nc) = −(µ+1) log
k

kc
, kc = Me−λ/(µ+1)(A.14)

for k < kc and nk = 0 for k ≥ kc. With nc = 0.38 the approximation is valid to less
than 1% for n > 10 but it underestimates by 80% the true vale at small n (a larger
value of n0 would give a best fit to the small n region).

Within this approximation

nk = nc

(
k

kc

)−µ−1

(A.15)

and it is consistent to take

L(n) ≈
(

1 +
nc
n

)
log

(
1 +

n

nc

)
− 1 (A.16)

Therefore

Ĥ[s] ≈
kc∑
k=1

knk
M

log
k

M
(A.17)

Ĥ[K] ≈ Ĥ[s] +
kc∑
k=1

knk
M

[(
1 +

nc
nk

)
log

(
1 +

nk
nc

)
− 1

]
(A.18)

Appendix B. Properties of L(n)

For small n:

L(n) =

∫ 1

0

dz
e−nz − 1

log(1− z)
(B.1)

' log(2)n− 1

2
log

(
4

3

)
n2 +

1

6
log

(
32

27

)
n3 − 1

24
log

(
4096

3645

)
n4 +O(n5)

We can write

L(n) =

∫ ∞
0

dxe−xli(1−x/n) = log n+

∫ n

0

dz

z

[
e−z − e−z/n−n(1−e−z/n)

]
(B.2)

where li(x) = E1(log x) is the logarithmic integral function.
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Appendix C. Comparison between the K and the S partitions

The partition K is clearly preferable to S in the limit a→ 0, as the likelihood ratio
behaves as aNs−Nk . We first argue that this is also the case for a = 1 (uniform prior)
and then we analyse the opposite limit a→∞.

Consider the K partition of size N for a = 1. Suppose that there are m states
that occur with frequency k, being therefore in the same subset in K. Consider now
a new partition Q in which we have atomised one of the m states to a new subset of
size 1. We will show that the likelihood of the Q model is smaller than the one of K

P{ŝ|K}
P{ŝ|Q}

> 1 (C.1)

for a = 1.
Using Eq. (11), equation (C.1) takes the form

P{ŝ|K}
P{ŝ|Q}

= f(k,m)g(M,N) (C.2)

f(k,m) =
(km!)

(k(m− 1))!k!

1

mk

(
1− 1

m

)k(m−1)

(C.3)

where g(N,M) = M+N
N

is an increasing function of M and it decreases with N . So
the worst case scenario is when M is small and N is large. This corresponds to an
original K partition with N − 1 subsets of size mk = 1 and k = 1, 2, ..., N − 1, plus
the one subset of size m and frequency k = N from which we are atomising one
state. This yields the smallest value of M , compatible with k,m and N , which is

M∗ = km+
N(N − 1)

2
. (C.4)

This gives g(N,M∗) = N+1
2

+ km
N
. The minimal value of g is now obtained for

N∗ =
√

2km, which implies that

g(M,N) ≥ g(M∗, N∗) =
√

2km+
1

2
.

On inspection, it is easy to check that f(k,m) · g(M∗, N∗) is an increasing function
of m, so it attains its minimum value at m = 2. Therefore

P{ŝ|K}
P{ŝ|Q}

≥ 2√
π

+
1

2
√
πk

>
2√
π

= 1.128 . . . > 1. (C.5)

Notice that the worst case limit of m = 2 is attained when the Q partition becomes
exactly S.
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Yet, in the limit of large a, the ratio of the likelihood may become less than one.
In order to address this issue, we shall exhibit a specific case for a→∞.

Let us split the log-likelihood ratio in three pieces:

∆(a) = log
P{ŝ|K}
P{ŝ|S}

=
∑
k

log
Γ(kmk +mka)/Γ(mka)

[Γ(k + a)/Γ(a)mk
k]
mk

(C.6)

−
∑
k

log
Γ(kmk +mka)/Γ(mka)

Γ(kmk + a)/Γ(a)

+ log
Γ(M + aNs)/Γ(aNs)

Γ(M + aNk)/Γ(aNk)

Writing ∆ = ∆1 + ∆2 + ∆3, that correspond to the three lines above, using Stirling’s
approximation, it is easy to show that

∆1 '
∑

k:mk≥1

(mk − 1)k

2a
+O(a−2) (C.7)

∆2 ' −
∑
k

kmk logmk +
∑

k:mk≥1

mk(mk − 1)k2

2a
+O(a−2) (C.8)

∆3 'M log
Ns

Nk

− (N−1
k −N

−1
s )

M2

2a
+O(a−2) (C.9)

The leading order term can be cast in the form

∆ = M
[
logNs − Ĥ[S]

]
−M

[
logNk − Ĥ[K]

]
(C.10)

The first is the amount of information, in nats, that one gains from the knowledge
of ps = ks/M (over the uniform distribution on s) whereas the second is the amount
of information one gains from the knowledge of pk = kmk/M (over the uniform
distribution on k). It seems intuitive that the first is larger then the second.

Yet it is easy to find counterexamples: Take a sample with M = mk + k0

points, m states occur ks = k times and one occurs k0 times, therefore Ns = m + 1

and Nk = 2. Then pk = 1/(1 + x) and pk0 = x/(1 + x), with x = k0/(mk) and
ps = (k/M, . . . , k/M, k0/M). Then

Ĥ[S]− Ĥ[K] =
1

1 + x
logm, ∆ = log

m+ 1

2
− 1

1 + x
logm

Then ∆ < 0 for

k0 ≤ mk
log[2m/(m+ 1)]

log[(m+ 1)/2]
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Figure D1. Relative relevance of the optimal partition Q∗ with respect to
partitions Q∈ and Q3 (see main text).

For m = 2 this occurs for k0 < 1.419 · k, for m = 3 k0 < 1.755 · k and for m = 10

k0 < 3.507·k. These, however seem rather pathological samples that will not typically
arise in a sampling process.

Appendix D. Variations in the algorithm for defining Q∗

To check on the robustness of the algorithm presented in section 4, we compared the
Q∗ partition with the solutions obtained via two variations of the algorithm. The
first variation consists on choosing the pair of adjacent subsets to be merged in step
(ii) at random, and accept the move if the likelihood increases. We name this solution
Q2. The second variation consists in merging triplets of adjacent subsets, selected
at random and accepting the move if the likelihood increases. We call this solution
Q3. We draw 50 samples of size M from a distribution P (s) ∼ s−α, with α = 1 and
compute the models Q2 and Q3 1000 times for each sample. Figure D1 shows the
probability of finding a partition Q2 (Q3) with larger entropy than Q∗. We see that
in both cases this probability goes to zero for large sample sizes, meaning that the
Q∗ partition is more relevant in that limit. We also computed the overlap between
Q∗, Q2 and Q3 finding overlaps (measured by the Adjusted Rand Index) over 90%

for a wide range of parameters (α ∈ [0.5, 3], M ∈ [103, 106]).
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