
Information Processing Letters 115 (2015) 667–670
Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Approximation algorithms for clique transversals on some

graph classes

Min Chih Lin, Saveliy Vasiliev ∗

CONICET and Instituto de Cálculo, FCEyN, Universidad de Buenos Aires, Argentina

a r t i c l e i n f o a b s t r a c t

Article history:
Received 19 June 2014
Received in revised form 14 February 2015
Accepted 1 April 2015
Available online 3 April 2015
Communicated by Tsan-sheng Hsu

Keywords:
Approximation algorithms
Clique transversal
Graph classes
NP-hard

Given a graph G = (V , E) a clique is a maximal subset of pairwise adjacent vertices of
V of size at least 2. A clique transversal is a subset of vertices that intersects the vertex
set of each clique of G . Finding a minimum-cardinality clique transversal is NP-hard for
the following classes: planar, line and bounded degree graphs. For line graphs we present
a 3-approximation for the unweighted case and a 4-approximation for the weighted case
with nonnegative weights; a �(�(G) +1)/2�-approximation for bounded degree graphs and
a 3-approximation for planar graphs.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Given a graph G = (V , E) a clique is a maximal subset
of pairwise adjacent vertices in G of size at least 2. For no-
tational convenience we will also refer as clique to the in-
duced subgraph by such set of vertices. A clique transversal
is a set of vertices S ⊆ V such that each clique of G in-
tersects S . The Clique-Transversal-Set problem is to find
a minimum (cardinality) clique transversal of G . The size
of the minimum clique transversal is denoted by τC (G).
A closely related parameter is the clique-independence
number αC (G), which is the maximum number of disjoint
cliques in G . These parameters are related by the following
min-max duality relation: αC (G) ≤ τC (G). If the equality
holds for every induced subgraph of G , then G is clique-
perfect.

The Clique-Transversal-Set problem was studied in-
tensively since the publication [1] by Tuza in 1990. An ex-
tremal study of this problem was done in [2] by Erdős,

* Corresponding author.
E-mail addresses: oscarlin@dc.uba.ar (M.C. Lin), svassiliev@dc.uba.ar

(S. Vasiliev).
http://dx.doi.org/10.1016/j.ipl.2015.04.003
0020-0190/© 2015 Elsevier B.V. All rights reserved.
Gallai and Tuza in 1991. The authors proved this prob-
lem to be NP-complete for triangle-free graphs and gave
a linear time algorithm to find a clique transversal of size
at most n − √

2n + √
2 for general graphs. To our best

knowledge, it is unknown if this problem is NP for general
graphs because the number of cliques in a general graph
can be exponential, and we do not know how to efficiently
verify if a set of vertices is indeed a clique transversal,
and thus for general graphs this problem is considered
NP-hard. In 1993 Chang, Farber and Tuza proved this prob-
lem to be NP-complete for split graphs and gave a poly-
nomial algorithm for strongly chordal graphs [3]. In the
same year, Lee and Chang proved that distance-hereditary
graphs are clique-perfect and as a by product obtained a
linear time algorithm for computing τC (G) for the same
class [4]. In 1996 a polynomial algorithm for comparabil-
ity graphs was given by Rangan et al. [5]. In 2000, Gu-
ruswami and Rangan proved that the problem remains NP-
hard when restricted to co-comparability, planar and line
graphs [6]. They were the first to attempt the weighted
version of clique transversal – they obtained polynomial
time algorithms for strongly chordal graphs, chordal graphs
of bounded clique size and cographs. They also were the
first to solve this problem for a non-clique-perfect class:

http://dx.doi.org/10.1016/j.ipl.2015.04.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:oscarlin@dc.uba.ar
mailto:svassiliev@dc.uba.ar
http://dx.doi.org/10.1016/j.ipl.2015.04.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2015.04.003&domain=pdf

668 M.C. Lin, S. Vasiliev / Information Processing Letters 115 (2015) 667–670
they gave an O (n2) time algorithm for Helly circular-arc
graphs. In 2002, Durán, Lin and Szwarcfiter proved that the
problem of deciding whether a set of vertices is a clique
transversal is co-NP-complete [7]. In 2008, Durán, Lin,
Mera and Szwarcfiter gave a general algorithm for comput-
ing a minimum-cardinality clique transversal which runs in
O (n2τC (G)) time [8]. This algorithm is used to compute a
minimum-cardinality clique transversal in O (n4) time for
3K2-free circular-arc graphs. They also developed two al-
gorithms for Helly circular-arc graphs: for the weighted
case their algorithm runs in O (n2) and for the unweighted
case in linear time. In 2011, Liang and Shan proved that
computing τC (G) and αC (G) is NP-complete for cubic pla-
nar graphs of girth 3 [9]. For cubic graphs they gave a
1.96-approximation for computing τC (G).

It is worth noting that with the reduction given by
Bertossi [10] the Dominating-Set problem on split graphs
is at least as difficult to approximate as the Set-Cover

problem. On the other hand, it is easy to see that the
size of a minimum-cardinality dominating set equals τC (G)

for each split graph G . Thus, the Clique-Transversal-Set

problem is at least as difficult to approximate as the Set-

Cover problem.
In this work we present constant ratio approximation

algorithms for the Clique-Transversal-Set problem for
line, planar and bounded degree graphs.

2. Line graphs

In this section we give a 3-approximation algorithm for
the Clique-Transversal-Set problem on unweighted line
graphs and a 4-approximation algorithm for weighted line
graphs with a weight function w : V −→ Q≥0.

In the following, we denote L(G) as the input of the
algorithms. Recall that due the algorithm of Roussopou-
los [11] we can find G = (V , E) given L(G) in linear
time. We assume that G has no isolated edges. Both algo-
rithms described in this section consist in analyzing two
types of cliques in L(G): the vertex-cliques and triangle-
cliques, where the former are given by δ(v) = {e ∈ E :
v is an endpoint of e} for some v ∈ V , and the latter are
triangles in G that will correspond to cliques of size 3
in L(G). These are all the possible cliques in L(G). Indeed,
if Kk is clique of L(G) with k ≥ 4, then it must be associ-
ated to a vertex of degree k. If we have a triangle in L(G)

which is a clique, then it may be associated to a vertex
of degree 3 in G or to a triangle in G . Finally, if we have
a K2 that it is a clique, it must correspond to a vertex of
degree 2 in G whose neighbors are non-adjacent.

Let S ⊆ V be the set of vertices that have degree at
least 3 or have degree 2 but its neighbors are non-adjacent.
For each v ∈ S it is easy to see that δ(v) is a clique in L(G).
Furthermore, for any z ∈ V \ S we have that δ(z) is not a
clique. To see this, suppose deg(z) = 1 and let u be the
neighbor of z. Since we assumed G without isolated edges,
u must have another neighbor; therefore δ(z) ⊂ δ(u). If
deg(z) = 2, call x and y the neighbors of z, and then
δ(z) ⊂ {zx, zy, xy}, and the latter induces a complete sub-
graph of L(G).
2.1. Unweighted case

Here we strongly exploit the fact that the graph is un-
weighted and the triangles have three edges. The algorithm
consists of two phases: we first transverse all the triangle-
cliques and afterwards extend this to transverse all the
remaining vertex-cliques.

Start by computing a maximal edge-disjoint set of tri-
angles in G , and take all the edges from these triangles as
part of the solution, and call this set of edges F . Observe
that we have k = |F |/3 edge-disjoint triangles. It is clear
that we need at least one edge for each of the selected tri-
angles, since they are edge-disjoint. Let S ′ ⊆ S be the set
of vertices associated to vertex-cliques that were yet not
transversed by F . We now introduce a technical result be-
fore explaining the second phase of the algorithm.

Lemma 1. Let E∗ ⊆ E be a minimum clique transversal of L(G)

and M a maximum matching in G[S ′]. Then,

|S ′| − |M| ≤ |E∗ \ F |.

Proof. Let E ′ ⊆ E of minimum cardinality that spans each
vertex in S ′ (that is, every vertex of S ′ is an endpoint of
some edge in E ′). Consider the subgraph H with vertex set
S ′ and the edges of E ′ that have both endpoints in S ′ . Let
M ′ be a maximum matching in H . Since E ′ is minimal, it
follows that |S ′| = 2|M ′| + p, where p = |E ′ \ M ′|. On the
other hand, we have |M ′| ≤ |M| and |E ′| = |M ′| + p. Finally,
E∗ \ F spans each vertex of S ′ , and then |E ′| ≤ |E∗ \ F |.
Therefore,

|S ′| = |E ′| + |M ′| ≤ |E∗ \ F | + |M ′|
≤ |E∗ \ F | + |M|. �

In the second phase compute a maximum matching M
in G[S ′], and extend this edge subset in G in a greedy fash-
ion until the subset spans all the vertices in S ′ . Name the
resulting set E ′ . By definition we have

|E ′| = |M| + |S ′| − 2|M| = |S ′| − |M|
and that E ′ ∪ F is a clique transversal for L(G). Let E∗ be
an optimum clique transversal for L(G). We have that

|E ′ ∪ F | = |S ′| − |M| + |F | = |S ′| − |M| + 3k

≤ |E∗ \ F | + 3|E∗ ∩ F | ≤ 3(|E∗ \ F | + |E∗ ∩ F |)
= 3|E∗|.

At this point, we have shown that this algorithm gives
a clique transversal of size at most 3 times τC (L(G)). Next,
we show the algorithm runs in O (n1.5 + m) time.

If n and m are the number of vertices and edges of L(G)

respectively, we can find G in O (n + m) [11]. Furthermore,
we can find all the triangles of G in O (|E|1.5) = O (n1.5)

using [12]. Clearly, G has no isolated vertices. Therefore,
G has n edges and O (n) vertices; thus, we can find a max-
imum matching in G in O (

√|V ||E|) = O (n1.5) using [13].
Hence, the resulting running time is O (n1.5 + m).

M.C. Lin, S. Vasiliev / Information Processing Letters 115 (2015) 667–670 669
In order to see the tightness of the analysis consider
the following scenario. We build the graph G and make
the analysis in G and not in L(G). For any integer k take
a path Pk , and for each vertex of the path add two neigh-
bors so that a triangle is formed. The algorithm uses 3k
edges, while an optimum solution uses only k edges, and
this may be constructed by taking one edge of each trian-
gle that it is incident to the vertex of Pk .

2.2. Weighted case

In this case we first transverse all the vertex-cliques
of L(G). To do so, we solve a minimum weighted edge
cover in a graph resulting of adding a new vertex w to G
and adding the edges uw for each u ∈ V \ S with weight 0.
It is easy to see that the optimum solution to this weighted
edge cover has the same value as the best way of spanning
the vertices in S . Furthermore, it is trivial to recover a so-
lution to the original problem from the edge cover. Recall
that weighted edge cover with nonnegative weights may
be solved in polynomial time using the reduction to maxi-
mum matching given in [14] (Section 19.3). The weight of
this edge cover is smaller than the weight of the optimum
clique-transversal, since we covered only a subset of all the
cliques.

The second part of the algorithm consists in spanning
all the triangle-cliques of L(G) that were not yet trans-
versed. Denote this family T . We are interested in se-
lecting the smallest subset of edges of G that will span
all the triangles from T . This is a Set-Cover problem,
where the universe of objects is T and the subsets are
Se = {T ∈ T : T contains e} for e ∈ E . Since each trian-
gle appears exactly in three sets Se , we can solve this set
cover problem with an approximation factor of 3 using the
well known frequency approximation algorithm given by
Hochbaum in [15].

Taking the union of both sets of edges we get a feasible
solution for clique transversal. The weight of edges in the
resulting set is at most the sum of the weight of both parts
of the algorithm, and thus the overall factor is 4.

3. Planar graphs

In general, for a fixed integer t one can approximate the
Clique-Transversal-Set problem with factor t on graphs
where the maximum clique has size at most t . This may
be achieved by taking a maximal set of vertex-disjoint
cliques and outputting all their vertices. This is a clique
transversal because of the maximality of the set. On the
other hand, each of these cliques requires at least one ver-
tex in order to be transversed, and in our solution we
use at most t vertices per clique. Therefore, we have a
t-approximation algorithm. By Kuratowski’s theorem [16],
any planar graph is K5-free; thus, the above approach
leads to a 4-approximation algorithm. In the following, we
improve this idea yielding a 3-approximation algorithm for
planar graphs.

Begin by searching a maximal disjoint set of cliques of
size 2 and 3, and use all their vertices as part of the so-
lution, and call this vertex set S1. It is clear that all the
cliques not yet transversed are of size 4. We look among
these cliques a vertex v that belongs only to one non-
transversed clique. To see that is always possible to find
such vertex consider a planar representation of the graph,
and assume for contradiction that there is no such vertex.
Take any non-transversed clique of size 4. Clearly, one of
its vertices is drawn inside the triangle induced by the rest
of the vertices. Name this vertex u. Since there is no ver-
tex that belongs to only one non-transversed clique, there
must be another non-transversed clique of size 4 contain-
ing u. This clique has its own vertex in the middle which
cannot be shared with the previous clique. We can apply
this argument infinite times; thus, G has infinite vertices –
a contradiction. Now, take any such vertex among the un-
covered cliques and use the remaining 3 vertices of that
clique as part of the solution. Iterate the same process
with the remaining non-transversed cliques of size 4. Call
the set of vertices added in the second phase S2. S1 ∪ S2
is clearly a clique transversal. Furthermore, if in the first
phase we considered k1 disjoint cliques and in the sec-
ond k2, then k1 + k2 ≤ τC (G) and

|S1 ∪ S2| = |S1| + |S2| ≤ 3k1 + 3k2 ≤ 3τC (G).

Now we show this analysis to be tight. For any integer k
consider the path P2k+1, and for each edge of P2k+1 add a
vertex adjacent to both of its endpoints. The algorithm may
consider k disjoint triangles and use all its vertices as part
of the solution, and thus the algorithm uses 3k vertices.
On the other hand, we may construct a clique transversal
of cardinality k by only taking half of the vertices from the
initial path.

4. Bounded degree graphs

In this section we introduce a �(�(G) + 1)/2�-approx-
imation algorithm for the Clique-Transversal-Set prob-
lem when restricted to bounded degree graphs. The algo-
rithm consists in selecting a maximal vertex-disjoint set
of small cliques, and uses all their vertices in the solu-
tion. If there are still non-transversed cliques, these must
be big. In order to transverse these big cliques we take
one non-transversed clique and select a small subset of
its vertices as part of the solution. As long as there are
non-transversed cliques we apply the same procedure un-
til every clique is transversed. The approximation ratio is
yielded by the definition of small and a technical result.

Start by searching a maximal family F1 of disjoint
cliques of size at most �(�(G) + 1)/2�. Denote V 1 to the
vertices in the cliques of F1. Take V 1 as part of the so-
lution. If all cliques were transversed, the algorithm ends
here. Otherwise, let K be a non-transversed clique. By def-
inition, |K | > �(�(G) + 1)/2�, and K is disjoint with all
previously transversed cliques. Take any subset S ⊂ K of
size �(�(G) + 1)/2� and add it to the solution.

Lemma 2. Any non-transversed clique that intersects K must
intersect S.

Proof. For contradiction assume a non-transversed clique
C that intersects K but does not intersect S . Since all the
cliques of size at most �(�(G) + 1)/2� were transversed,

670 M.C. Lin, S. Vasiliev / Information Processing Letters 115 (2015) 667–670
|C | > �(�(G) + 1)/2�. Take a vertex v ∈ K ∩ C . The vertex
v is adjacent to each vertex from S and C . Thus,

deg(v) ≥ |S| + |C | − 1 > 2

⌈
�(G) + 1

2

⌉
− 1

≥ �(G). �
Once K is transversed apply the same procedure if

there are still non-transversed cliques. Call the set of
cliques used in the second phase of the algorithm F2 and
the vertices of these cliques V 2. Clearly, all these cliques
are disjoint by the above lemma. Furthermore, V 1 ∪ V 2
constitute a clique transversal set. The following holds:

|V 1 ∪ V 2| = |V 1| + |V 2| ≤
⌈

�(G) + 1

2

⌉
(|F1| + |F2|)

≤
⌈

�(G) + 1

2

⌉
τC (G).

The analysis is tight. To see this, it is enough to fix an
integer k and consider a graph with two disjoint cliques,
G = K�(k+1)/2� ∪ Kk+1. Because of the larger clique we get
�(G) = k. On the other hand, the algorithm takes all the
vertices from the smaller clique and �(�(G) + 1)/2� from
the bigger. Thus, the solution has 2�(�(G) + 1)/2� vertices
while τC (G) = 2.

A possible linear-time implementation of this algorithm
is the following. To build F1 initialize F1 = ∅, V 1 = ∅,
and take any ordering v1, . . . , vn of V . For i = 1, . . . , n
and vi /∈ V 1, consider all the subsets of N(vi) ∩ {vi+1, . . . ,
vn} ∩ V 1 of size at most �(�(G) + 1)/2� − 1. If T is one
of these subsets and T ∪ {vi} is a clique (clearly, vi is
the vertex of this clique with smallest index), then add
this clique to F1 and its vertices to V 1 and continue with
the next iteration. Observe that |N(vi) ∩ {vi+1, . . . , vn} ∩
V 1| ≤ deg(vi) and may be obtained in O (deg(vi)). Let
ri = min{deg(vi), �(�(G) + 1)/2� − 1}. Thus, this procedure
yields a running time of

O

⎛
⎝ n∑

i=1

⎛
⎝deg(vi)+

ri∑
j=1

(
deg(vi)

j

)
(j2 + j(deg(vi) − j)

⎞
⎠
⎞
⎠

= O

(
n∑

i=1

2�(G)�(G)2

)
= O (n).

To build F2 the procedure is similar. We avoid consider-
ing the already transversed cliques by searching big cliques
in N(vi) ∩ {vi+1, . . . , vn} ∩ V 1 ∩ V 2, for each vi /∈ V 1 ∪ V 2.
The selection of the subset S in each big clique is arbitrary.
The running time of this phase is also O (n).

Note that in [9], the authors gave a 1.96-approximation
algorithm for cubic graphs. When relaxed to graphs with
�(G) ≤ 3 our �(�(G) + 1)/2�-approximation for bounded
degree graphs yields a 2-approximation.

Acknowledgements

We thank the unknown reviewers for their helpful com-
ments.

The authors were partially supported by UBACyT Grants
20020130100800BA and 20020120100058 and PICT AN-
PCyT Grants 2010-1970 and 2013-2205.

References

[1] Z. Tuza, Covering all cliques of a graph, Discrete Math. 86 (13) (1990)
117–126.

[2] P. Erdős, T. Gallai, Z. Tuza, Covering the cliques of a graph with ver-
tices, Discrete Math. 108 (13) (1992) 279–289.

[3] G. Chang, M. Farber, Z. Tuza, Algorithmic aspects of neighborhood
numbers, SIAM J. Discrete Math. 6 (1) (1993) 24–29.

[4] C.-M. Lee, M.-S. Chang, Distance-hereditary graphs are clique-perfect,
Discrete Appl. Math. 154 (3) (2006) 525–536.

[5] V. Balachandran, P. Nagavamsi, C. Rangan, Clique transversal and
clique independence on comparability graphs, Inf. Process. Lett.
58 (4) (1996) 181–184.

[6] V. Guruswami, C.P. Rangan, Algorithmic aspects of clique-transversal
and clique-independent sets, Discrete Appl. Math. 100 (3) (2000)
183–202.

[7] G. Durán, M.C. Lin, J.L. Szwarcfiter, On clique-transversals and clique-
independent sets, Ann. Oper. Res. 116 (1–4) (2002) 71–77.

[8] G. Durán, M.C. Lin, S. Mera, J.L. Szwarcfiter, Algorithms for finding
clique-transversals of graphs, Ann. Oper. Res. 157 (1) (2008) 37–45.

[9] Z. Liang, E. Shan, Approximation algorithms for clique-transversal
sets and clique-independent sets in cubic graphs, Inf. Process. Lett.
111 (23–24) (2011) 1104–1107.

[10] A.A. Bertossi, Dominating sets for split and bipartite graphs, Inf. Pro-
cess. Lett. 19 (1) (1984) 37–40.

[11] N.D. Roussopoulos, A max{m, n} algorithm for determining the graph
H from its line graph G, Inf. Process. Lett. 2 (4) (1973) 108–112.

[12] N. Chiba, T. Nishizeki, Arboricity and subgraph listing algorithms,
SIAM J. Comput. 14 (1) (1985) 210–223.

[13] S. Micali, V.V. Vazirani, An O (
√|V ||E|) algorithm for finding maxi-

mum matching in general graphs, in: FOCS, IEEE Computer Society,
1980, pp. 17–27.

[14] A. Schrijver, Combinatorial Optimization – Polyhedra and Efficiency,
Springer, 2003.

[15] D.S. Hochbaum, Approximation algorithms for the set covering and
vertex cover problems, SIAM J. Comput. 11 (3) (1982) 555–556.

[16] C. Kuratowski, Sur le problme des courbes gauches en topologie, Fun-
dam. Math. 15 (1) (1930) 271–283.

http://refhub.elsevier.com/S0020-0190(15)00063-0/bib54757A6131393930313137s1
http://refhub.elsevier.com/S0020-0190(15)00063-0/bib54757A6131393930313137s1
http://refhub.elsevier.com/S0020-0190(15)00063-0/bib4572646F7331393932323739s1
http://refhub.elsevier.com/S0020-0190(15)00063-0/bib4572646F7331393932323739s1
http://refhub.elsevier.com/S0020-0190(15)00063-0/bib646F693A31302E313133372F30343036303032s1
http://refhub.elsevier.com/S0020-0190(15)00063-0/bib646F693A31302E313133372F30343036303032s1
http://refhub.elsevier.com/S0020-0190(15)00063-0/bib4C656532303036353235s1
http://refhub.elsevier.com/S0020-0190(15)00063-0/bib4C656532303036353235s1
http://refhub.elsevier.com/S0020-0190(15)00063-0/bib42616C616368616E6472616E31393936313831s1
http://refhub.elsevier.com/S0020-0190(15)00063-0/bib42616C616368616E6472616E31393936313831s1
http://refhub.elsevier.com/S0020-0190(15)00063-0/bib42616C616368616E6472616E31393936313831s1
http://refhub.elsevier.com/S0020-0190(15)00063-0/bib44424C503A6A6F75726E616C732F64616D2F477572757377616D69523030s1
http://refhub.elsevier.com/S0020-0190(15)00063-0/bib44424C503A6A6F75726E616C732F64616D2F477572757377616D69523030s1
http://refhub.elsevier.com/S0020-0190(15)00063-0/bib44424C503A6A6F75726E616C732F64616D2F477572757377616D69523030s1
http://refhub.elsevier.com/S0020-0190(15)00063-0/bib6475726D696E737A773032s1
http://refhub.elsevier.com/S0020-0190(15)00063-0/bib6475726D696E737A773032s1
http://refhub.elsevier.com/S0020-0190(15)00063-0/bib6D696E30387472616E7376657273616C73s1
http://refhub.elsevier.com/S0020-0190(15)00063-0/bib6D696E30387472616E7376657273616C73s1
http://refhub.elsevier.com/S0020-0190(15)00063-0/bib44424C503A6A6F75726E616C732F69706C2F4C69616E67533131s1
http://refhub.elsevier.com/S0020-0190(15)00063-0/bib44424C503A6A6F75726E616C732F69706C2F4C69616E67533131s1
http://refhub.elsevier.com/S0020-0190(15)00063-0/bib44424C503A6A6F75726E616C732F69706C2F4C69616E67533131s1
http://refhub.elsevier.com/S0020-0190(15)00063-0/bib426572746F737369313938343337s1
http://refhub.elsevier.com/S0020-0190(15)00063-0/bib426572746F737369313938343337s1
http://refhub.elsevier.com/S0020-0190(15)00063-0/bib526F7573736F706F756C6F7331393733313038s1
http://refhub.elsevier.com/S0020-0190(15)00063-0/bib526F7573736F706F756C6F7331393733313038s1
http://refhub.elsevier.com/S0020-0190(15)00063-0/bib6A6F75726E616C732F7369616D636F6D702F43686962614E3835s1
http://refhub.elsevier.com/S0020-0190(15)00063-0/bib6A6F75726E616C732F7369616D636F6D702F43686962614E3835s1
http://refhub.elsevier.com/S0020-0190(15)00063-0/bib44424C503A636F6E662F666F63732F4D6963616C69563830s1
http://refhub.elsevier.com/S0020-0190(15)00063-0/bib44424C503A636F6E662F666F63732F4D6963616C69563830s1
http://refhub.elsevier.com/S0020-0190(15)00063-0/bib44424C503A636F6E662F666F63732F4D6963616C69563830s1
http://refhub.elsevier.com/S0020-0190(15)00063-0/bib73636872696A7665722D626F6F6Bs1
http://refhub.elsevier.com/S0020-0190(15)00063-0/bib73636872696A7665722D626F6F6Bs1
http://refhub.elsevier.com/S0020-0190(15)00063-0/bib44424C503A6A6F75726E616C732F7369616D636F6D702F486F63686261756D3832s1
http://refhub.elsevier.com/S0020-0190(15)00063-0/bib44424C503A6A6F75726E616C732F7369616D636F6D702F486F63686261756D3832s1
http://refhub.elsevier.com/S0020-0190(15)00063-0/bib4B757261746F77736B6931393330s1
http://refhub.elsevier.com/S0020-0190(15)00063-0/bib4B757261746F77736B6931393330s1

	Approximation algorithms for clique transversals on some graph classes
	1 Introduction
	2 Line graphs
	2.1 Unweighted case
	2.2 Weighted case

	3 Planar graphs
	4 Bounded degree graphs
	Acknowledgements
	References

