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Given a graph G = (V , E) a clique is a maximal subset of pairwise adjacent vertices of 
V of size at least 2. A clique transversal is a subset of vertices that intersects the vertex 
set of each clique of G . Finding a minimum-cardinality clique transversal is NP-hard for 
the following classes: planar, line and bounded degree graphs. For line graphs we present 
a 3-approximation for the unweighted case and a 4-approximation for the weighted case 
with nonnegative weights; a �(�(G) +1)/2�-approximation for bounded degree graphs and 
a 3-approximation for planar graphs.
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1. Introduction

Given a graph G = (V , E) a clique is a maximal subset 
of pairwise adjacent vertices in G of size at least 2. For no-
tational convenience we will also refer as clique to the in-
duced subgraph by such set of vertices. A clique transversal
is a set of vertices S ⊆ V such that each clique of G in-
tersects S . The Clique-Transversal-Set problem is to find 
a minimum (cardinality) clique transversal of G . The size 
of the minimum clique transversal is denoted by τC (G). 
A closely related parameter is the clique-independence 
number αC (G), which is the maximum number of disjoint 
cliques in G . These parameters are related by the following 
min-max duality relation: αC (G) ≤ τC (G). If the equality 
holds for every induced subgraph of G , then G is clique-
perfect.

The Clique-Transversal-Set problem was studied in-
tensively since the publication [1] by Tuza in 1990. An ex-
tremal study of this problem was done in [2] by Erdős, 
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Gallai and Tuza in 1991. The authors proved this prob-
lem to be NP-complete for triangle-free graphs and gave 
a linear time algorithm to find a clique transversal of size 
at most n − √

2n + √
2 for general graphs. To our best 

knowledge, it is unknown if this problem is NP for general 
graphs because the number of cliques in a general graph 
can be exponential, and we do not know how to efficiently 
verify if a set of vertices is indeed a clique transversal, 
and thus for general graphs this problem is considered 
NP-hard. In 1993 Chang, Farber and Tuza proved this prob-
lem to be NP-complete for split graphs and gave a poly-
nomial algorithm for strongly chordal graphs [3]. In the 
same year, Lee and Chang proved that distance-hereditary 
graphs are clique-perfect and as a by product obtained a 
linear time algorithm for computing τC (G) for the same 
class [4]. In 1996 a polynomial algorithm for comparabil-
ity graphs was given by Rangan et al. [5]. In 2000, Gu-
ruswami and Rangan proved that the problem remains NP-
hard when restricted to co-comparability, planar and line 
graphs [6]. They were the first to attempt the weighted 
version of clique transversal – they obtained polynomial 
time algorithms for strongly chordal graphs, chordal graphs 
of bounded clique size and cographs. They also were the 
first to solve this problem for a non-clique-perfect class: 
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they gave an O (n2) time algorithm for Helly circular-arc 
graphs. In 2002, Durán, Lin and Szwarcfiter proved that the 
problem of deciding whether a set of vertices is a clique 
transversal is co-NP-complete [7]. In 2008, Durán, Lin, 
Mera and Szwarcfiter gave a general algorithm for comput-
ing a minimum-cardinality clique transversal which runs in 
O (n2τC (G)) time [8]. This algorithm is used to compute a 
minimum-cardinality clique transversal in O (n4) time for 
3K2-free circular-arc graphs. They also developed two al-
gorithms for Helly circular-arc graphs: for the weighted 
case their algorithm runs in O (n2) and for the unweighted 
case in linear time. In 2011, Liang and Shan proved that 
computing τC (G) and αC (G) is NP-complete for cubic pla-
nar graphs of girth 3 [9]. For cubic graphs they gave a 
1.96-approximation for computing τC (G).

It is worth noting that with the reduction given by 
Bertossi [10] the Dominating-Set problem on split graphs 
is at least as difficult to approximate as the Set-Cover

problem. On the other hand, it is easy to see that the 
size of a minimum-cardinality dominating set equals τC (G)

for each split graph G . Thus, the Clique-Transversal-Set

problem is at least as difficult to approximate as the Set-

Cover problem.
In this work we present constant ratio approximation 

algorithms for the Clique-Transversal-Set problem for 
line, planar and bounded degree graphs.

2. Line graphs

In this section we give a 3-approximation algorithm for 
the Clique-Transversal-Set problem on unweighted line 
graphs and a 4-approximation algorithm for weighted line 
graphs with a weight function w : V −→ Q≥0.

In the following, we denote L(G) as the input of the 
algorithms. Recall that due the algorithm of Roussopou-
los [11] we can find G = (V , E) given L(G) in linear 
time. We assume that G has no isolated edges. Both algo-
rithms described in this section consist in analyzing two 
types of cliques in L(G): the vertex-cliques and triangle-
cliques, where the former are given by δ(v) = {e ∈ E :
v is an endpoint of e} for some v ∈ V , and the latter are 
triangles in G that will correspond to cliques of size 3 
in L(G). These are all the possible cliques in L(G). Indeed, 
if Kk is clique of L(G) with k ≥ 4, then it must be associ-
ated to a vertex of degree k. If we have a triangle in L(G)

which is a clique, then it may be associated to a vertex 
of degree 3 in G or to a triangle in G . Finally, if we have 
a K2 that it is a clique, it must correspond to a vertex of 
degree 2 in G whose neighbors are non-adjacent.

Let S ⊆ V be the set of vertices that have degree at 
least 3 or have degree 2 but its neighbors are non-adjacent. 
For each v ∈ S it is easy to see that δ(v) is a clique in L(G). 
Furthermore, for any z ∈ V \ S we have that δ(z) is not a 
clique. To see this, suppose deg(z) = 1 and let u be the 
neighbor of z. Since we assumed G without isolated edges, 
u must have another neighbor; therefore δ(z) ⊂ δ(u). If 
deg(z) = 2, call x and y the neighbors of z, and then 
δ(z) ⊂ {zx, zy, xy}, and the latter induces a complete sub-
graph of L(G).
2.1. Unweighted case

Here we strongly exploit the fact that the graph is un-
weighted and the triangles have three edges. The algorithm 
consists of two phases: we first transverse all the triangle-
cliques and afterwards extend this to transverse all the 
remaining vertex-cliques.

Start by computing a maximal edge-disjoint set of tri-
angles in G , and take all the edges from these triangles as 
part of the solution, and call this set of edges F . Observe 
that we have k = |F |/3 edge-disjoint triangles. It is clear 
that we need at least one edge for each of the selected tri-
angles, since they are edge-disjoint. Let S ′ ⊆ S be the set 
of vertices associated to vertex-cliques that were yet not 
transversed by F . We now introduce a technical result be-
fore explaining the second phase of the algorithm.

Lemma 1. Let E∗ ⊆ E be a minimum clique transversal of L(G)

and M a maximum matching in G[S ′]. Then,

|S ′| − |M| ≤ |E∗ \ F |.

Proof. Let E ′ ⊆ E of minimum cardinality that spans each 
vertex in S ′ (that is, every vertex of S ′ is an endpoint of 
some edge in E ′). Consider the subgraph H with vertex set 
S ′ and the edges of E ′ that have both endpoints in S ′ . Let 
M ′ be a maximum matching in H . Since E ′ is minimal, it 
follows that |S ′| = 2|M ′| + p, where p = |E ′ \ M ′|. On the 
other hand, we have |M ′| ≤ |M| and |E ′| = |M ′| + p. Finally, 
E∗ \ F spans each vertex of S ′ , and then |E ′| ≤ |E∗ \ F |. 
Therefore,

|S ′| = |E ′| + |M ′| ≤ |E∗ \ F | + |M ′|
≤ |E∗ \ F | + |M|. �

In the second phase compute a maximum matching M
in G[S ′], and extend this edge subset in G in a greedy fash-
ion until the subset spans all the vertices in S ′ . Name the 
resulting set E ′ . By definition we have

|E ′| = |M| + |S ′| − 2|M| = |S ′| − |M|
and that E ′ ∪ F is a clique transversal for L(G). Let E∗ be 
an optimum clique transversal for L(G). We have that

|E ′ ∪ F | = |S ′| − |M| + |F | = |S ′| − |M| + 3k

≤ |E∗ \ F | + 3|E∗ ∩ F | ≤ 3(|E∗ \ F | + |E∗ ∩ F |)
= 3|E∗|.

At this point, we have shown that this algorithm gives 
a clique transversal of size at most 3 times τC (L(G)). Next, 
we show the algorithm runs in O (n1.5 + m) time.

If n and m are the number of vertices and edges of L(G)

respectively, we can find G in O (n + m) [11]. Furthermore, 
we can find all the triangles of G in O (|E|1.5) = O (n1.5)

using [12]. Clearly, G has no isolated vertices. Therefore, 
G has n edges and O (n) vertices; thus, we can find a max-
imum matching in G in O (

√|V ||E|) = O (n1.5) using [13]. 
Hence, the resulting running time is O (n1.5 + m).
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In order to see the tightness of the analysis consider 
the following scenario. We build the graph G and make 
the analysis in G and not in L(G). For any integer k take 
a path Pk , and for each vertex of the path add two neigh-
bors so that a triangle is formed. The algorithm uses 3k
edges, while an optimum solution uses only k edges, and 
this may be constructed by taking one edge of each trian-
gle that it is incident to the vertex of Pk .

2.2. Weighted case

In this case we first transverse all the vertex-cliques 
of L(G). To do so, we solve a minimum weighted edge 
cover in a graph resulting of adding a new vertex w to G
and adding the edges uw for each u ∈ V \ S with weight 0. 
It is easy to see that the optimum solution to this weighted 
edge cover has the same value as the best way of spanning 
the vertices in S . Furthermore, it is trivial to recover a so-
lution to the original problem from the edge cover. Recall 
that weighted edge cover with nonnegative weights may 
be solved in polynomial time using the reduction to maxi-
mum matching given in [14] (Section 19.3). The weight of 
this edge cover is smaller than the weight of the optimum 
clique-transversal, since we covered only a subset of all the 
cliques.

The second part of the algorithm consists in spanning 
all the triangle-cliques of L(G) that were not yet trans-
versed. Denote this family T . We are interested in se-
lecting the smallest subset of edges of G that will span 
all the triangles from T . This is a Set-Cover problem, 
where the universe of objects is T and the subsets are 
Se = {T ∈ T : T contains e} for e ∈ E . Since each trian-
gle appears exactly in three sets Se , we can solve this set 
cover problem with an approximation factor of 3 using the 
well known frequency approximation algorithm given by 
Hochbaum in [15].

Taking the union of both sets of edges we get a feasible 
solution for clique transversal. The weight of edges in the 
resulting set is at most the sum of the weight of both parts 
of the algorithm, and thus the overall factor is 4.

3. Planar graphs

In general, for a fixed integer t one can approximate the
Clique-Transversal-Set problem with factor t on graphs 
where the maximum clique has size at most t . This may 
be achieved by taking a maximal set of vertex-disjoint 
cliques and outputting all their vertices. This is a clique 
transversal because of the maximality of the set. On the 
other hand, each of these cliques requires at least one ver-
tex in order to be transversed, and in our solution we 
use at most t vertices per clique. Therefore, we have a 
t-approximation algorithm. By Kuratowski’s theorem [16], 
any planar graph is K5-free; thus, the above approach 
leads to a 4-approximation algorithm. In the following, we 
improve this idea yielding a 3-approximation algorithm for 
planar graphs.

Begin by searching a maximal disjoint set of cliques of 
size 2 and 3, and use all their vertices as part of the so-
lution, and call this vertex set S1. It is clear that all the 
cliques not yet transversed are of size 4. We look among 
these cliques a vertex v that belongs only to one non-
transversed clique. To see that is always possible to find 
such vertex consider a planar representation of the graph, 
and assume for contradiction that there is no such vertex. 
Take any non-transversed clique of size 4. Clearly, one of 
its vertices is drawn inside the triangle induced by the rest 
of the vertices. Name this vertex u. Since there is no ver-
tex that belongs to only one non-transversed clique, there 
must be another non-transversed clique of size 4 contain-
ing u. This clique has its own vertex in the middle which 
cannot be shared with the previous clique. We can apply 
this argument infinite times; thus, G has infinite vertices – 
a contradiction. Now, take any such vertex among the un-
covered cliques and use the remaining 3 vertices of that 
clique as part of the solution. Iterate the same process 
with the remaining non-transversed cliques of size 4. Call 
the set of vertices added in the second phase S2. S1 ∪ S2
is clearly a clique transversal. Furthermore, if in the first 
phase we considered k1 disjoint cliques and in the sec-
ond k2, then k1 + k2 ≤ τC (G) and

|S1 ∪ S2| = |S1| + |S2| ≤ 3k1 + 3k2 ≤ 3τC (G).

Now we show this analysis to be tight. For any integer k
consider the path P2k+1, and for each edge of P2k+1 add a 
vertex adjacent to both of its endpoints. The algorithm may 
consider k disjoint triangles and use all its vertices as part 
of the solution, and thus the algorithm uses 3k vertices. 
On the other hand, we may construct a clique transversal 
of cardinality k by only taking half of the vertices from the 
initial path.

4. Bounded degree graphs

In this section we introduce a �(�(G) + 1)/2�-approx-
imation algorithm for the Clique-Transversal-Set prob-
lem when restricted to bounded degree graphs. The algo-
rithm consists in selecting a maximal vertex-disjoint set 
of small cliques, and uses all their vertices in the solu-
tion. If there are still non-transversed cliques, these must 
be big. In order to transverse these big cliques we take 
one non-transversed clique and select a small subset of 
its vertices as part of the solution. As long as there are 
non-transversed cliques we apply the same procedure un-
til every clique is transversed. The approximation ratio is 
yielded by the definition of small and a technical result.

Start by searching a maximal family F1 of disjoint 
cliques of size at most �(�(G) + 1)/2�. Denote V 1 to the 
vertices in the cliques of F1. Take V 1 as part of the so-
lution. If all cliques were transversed, the algorithm ends 
here. Otherwise, let K be a non-transversed clique. By def-
inition, |K | > �(�(G) + 1)/2�, and K is disjoint with all 
previously transversed cliques. Take any subset S ⊂ K of 
size �(�(G) + 1)/2� and add it to the solution.

Lemma 2. Any non-transversed clique that intersects K must 
intersect S.

Proof. For contradiction assume a non-transversed clique 
C that intersects K but does not intersect S . Since all the 
cliques of size at most �(�(G) + 1)/2� were transversed, 
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|C | > �(�(G) + 1)/2�. Take a vertex v ∈ K ∩ C . The vertex 
v is adjacent to each vertex from S and C . Thus,

deg(v) ≥ |S| + |C | − 1 > 2

⌈
�(G) + 1

2

⌉
− 1

≥ �(G). �
Once K is transversed apply the same procedure if 

there are still non-transversed cliques. Call the set of 
cliques used in the second phase of the algorithm F2 and 
the vertices of these cliques V 2. Clearly, all these cliques 
are disjoint by the above lemma. Furthermore, V 1 ∪ V 2
constitute a clique transversal set. The following holds:

|V 1 ∪ V 2| = |V 1| + |V 2| ≤
⌈

�(G) + 1

2

⌉
(|F1| + |F2|)

≤
⌈

�(G) + 1

2

⌉
τC (G).

The analysis is tight. To see this, it is enough to fix an 
integer k and consider a graph with two disjoint cliques, 
G = K�(k+1)/2� ∪ Kk+1. Because of the larger clique we get 
�(G) = k. On the other hand, the algorithm takes all the 
vertices from the smaller clique and �(�(G) + 1)/2� from 
the bigger. Thus, the solution has 2�(�(G) + 1)/2� vertices 
while τC (G) = 2.

A possible linear-time implementation of this algorithm 
is the following. To build F1 initialize F1 = ∅, V 1 = ∅, 
and take any ordering v1, . . . , vn of V . For i = 1, . . . , n
and vi /∈ V 1, consider all the subsets of N(vi) ∩ {vi+1, . . . ,
vn} ∩ V 1 of size at most �(�(G) + 1)/2� − 1. If T is one 
of these subsets and T ∪ {vi} is a clique (clearly, vi is 
the vertex of this clique with smallest index), then add 
this clique to F1 and its vertices to V 1 and continue with 
the next iteration. Observe that |N(vi) ∩ {vi+1, . . . , vn} ∩
V 1| ≤ deg(vi) and may be obtained in O (deg(vi)). Let 
ri = min{deg(vi), �(�(G) + 1)/2� − 1}. Thus, this procedure 
yields a running time of

O

⎛
⎝ n∑

i=1

⎛
⎝deg(vi)+

ri∑
j=1

(
deg(vi)

j

)
( j2 + j(deg(vi) − j)

⎞
⎠
⎞
⎠

= O

(
n∑

i=1

2�(G)�(G)2

)
= O (n).

To build F2 the procedure is similar. We avoid consider-
ing the already transversed cliques by searching big cliques 
in N(vi) ∩ {vi+1, . . . , vn} ∩ V 1 ∩ V 2, for each vi /∈ V 1 ∪ V 2. 
The selection of the subset S in each big clique is arbitrary. 
The running time of this phase is also O (n).

Note that in [9], the authors gave a 1.96-approximation 
algorithm for cubic graphs. When relaxed to graphs with 
�(G) ≤ 3 our �(�(G) + 1)/2�-approximation for bounded 
degree graphs yields a 2-approximation.
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