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Abstract. In this article we extend a previous definition of Castelnuovo-Mumford regu-

larity for modules over an algebra graded by a finitely generated abelian group.

Our notion of regularity is based on Maclagan and Smith’s definition, and is extended

first by working over any commutative base ring, and second by considering local coho-

mology with support in an arbitrary finitely generated graded ideal B, obtaining, for each

B, a B-regularity region. The first extension provides a natural approach for working with

families of sheaves or of graded modules, while the second opens new applications.

Even in the more restrictive framework where Castelnuovo-Mumford was defined before

us, there were only very partial results on estimates for the shifts in a minimal graded

free resolution from the Castelnuovo-Mumford regularity. We prove sharp estimates in

our general framework, and this is one of our main advances.

We provide tools to deduce information on the graded Betti numbers from the knowl-

edge of regions where the local cohomology with support in a given graded ideal vanishes.

Conversely, vanishing of local cohomology with support in any graded ideal is deduced

from the shifts in a free resolution and the local cohomology of the polynomial ring. The

flexibility of treating local cohomology with respect to any B opens up new possibilities

for passing information.

We provide new persistence results for the vanishing of local cohomology that extend the

fact that weakly regular implies regular in the classical case, and we give sharp estimates

for the regularity of a truncation of a module.

In the last part, we present a result on Hilbert functions for multigraded polynomial

rings, which provides a simple proof of the generalized Grothendieck-Serre formula.

1. Introduction.

Castelnuovo-Mumford regularity is a fundamental invariant in commutative algebra and

algebraic geometry. In the classical case (standard graded algebras) it measures the maxi-

mum degree of the syzygies and provides a quantitative version of Serre’s vanishing theorem

for the associated sheaf. It in particular bounds the largest degree of the minimal generators
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and the smallest twist for which the sheaf is generated by its global sections. It has been

used as a measure for the complexity of computational problems in algebraic geometry and

commutative algebra (see for example [9] or [2]).

The two most frequent definitions of Z-graded Castelnuovo-Mumford regularity are the

one in terms of graded Betti numbers and the one using local cohomology. The equivalence

of this two definitions is one of the main basic results of the theory. For a wider discussion

about regularity, we refer to [18] or to the survey of Bayer and Mumford [2] and the more

recent one [5].

A multigraded extension of Castelnuovo-Mumford regularity for modules over a polyno-

mial ring over a field was introduced by Hoffman and Wang in a special case in [14], and

later by Maclagan and Smith in a more general setting in [16].

The main motivation for studying regularity over multigraded polynomial rings came

from toric geometry. For a toric variety X associated to a fan ∆, the homogeneous co-

ordinate ring, introduced in [8], is a polynomial ring R graded by the divisor class group

G of X together with a monomial ideal B∆ generated by monomials corresponding to the

complement of faces in ∆. The dictionary linking the geometry of X with the theory of

G-graded R-modules leads to geometric interpretations and applications for multigraded

regularity.

In [14], Hoffman and Wang define the concept of regularity for bigraded modules over a

bigraded polynomial ring motivated by the geometry of P1×P1. They prove analogs of some

of the classical results on m-regularity for graded modules over polynomial algebras. In [16],

Maclagan and Smith develop a multigraded variant of Castelnuovo-Mumford regularity also

motivated by toric geometry, working with G-graded modules over a Cox ring (S,G,B∆).

In this article, we introduce a further generalization of this notion, first by working over

any commutative base ring, and second by considering local cohomology with support in

any finitely generated graded ideal. The first extension provides a natural approach for

working with families of sheaves or of graded modules and the second provides a more

flexible and powerful tool for applications.

Our definition of multigraded regularity is given in terms of the vanishing of graded

components of local cohomology with respect to a graded ideal B, following [14] and [16].

We show how to transfer knowledge in two directions. First, to deduce some information

on the graded Betti numbers from the knowledge of regions where the local cohomology

with support in a given graded ideal vanishes. Second to assert the vanishing of local

cohomology of a graded module with support in any graded ideal from the shifts in a free

resolution of the graded module and the cohomology of the polynomial ring.
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The second direction was shown in [16, 7.2] –where they remark, besides their proof,

the result directly follows from a standard spectral sequence argument– but there was only

partial results concerning the reverse direction.

To go from regularity to resolutions, Maclagan and Smith proved the existence of a

complex with B-torsion homology and shifts bounded in terms of regB(M), that provides

a resolution at the sheaf level of a truncation of M giving rise to the same sheaf as M .

Our results give estimates for the shifts in a true resolution of the module itself. They are

sharper and valid for a much larger class of ideals B.

In the standard Zn-graded case, Hà [10] and Sidman et al. [22] gave estimates for the

multigraded Betti numbers in terms of two different notions of regularity. Their results

follow from our approach (with G = Z): in one case taking as base ring S = k[X2, . . . ,Xn],

R = S[X1], graded by the degree in X1 (the first group of variables) and B = R+, to

estimate degX1
of the syzygies (and similarly for the other groups of variables). In the

other case by taking S = k and coarsening the degree using a linear form l : Zn → G, with

B generated by all variables.

This article is organized into three sections. In Section 2, we gather some basic facts

on local cohomology. Local cohomology, defined as the cohomology of the Čech complex

constructed on a finite set of generators of B only depends on the radical of the ideal B, and

correspond to the sheaf cohomology with support in V (B) (see [12, Chap. 2.3] or [6]) but

not always coincide with the right derived functors of the left exact functor H0
B. We show

that both notions coincide when B is a finitely generated monomial ideal in a polynomial

ring, hence H i
B(M) coincides with lim

−→
t

ExtiR(R/Bt,M), and the approach of Mustaţă in

[19] provides a way of computing this limit for a monomial ideal.

The key result in Section 3 is Theorem 3.3 that allows to deduce vanishing of Tor modules

from vanishing of local cohomology, and vice-versa. More precisely, Theorem 3.3 applied

to a graded free resolution of a module M , provides bounds for the supports of H i
B(M)

in terms of the shifts in the resolution and vanishing regions for the local cohomology of

the polynomial ring (see for example Theorem 3.10). The same result applied to a Koszul

complex, gives bounds for the supports of Tor modules in terms of the vanishing regions

of the modules H i
B(M) (see for example Theorem 3.6 and 3.7). As in the standard Z-

graded case, a complex, extending a presentation, that has positive homology of small

cohomological dimension can be used in place of a resolution to bound the support of local

cohomology (and hence the regularity). The key results on persistence of local cohomology

vanishing are derived by very similar arguments (see Lemma 3.8 and Corollary 3.9).

In Section 4 we give the definition of regularity and we refine several results obtained by

D. Maclagan, H. T. Hà, J. Sidman, G. Smith, B. Strunk, A. Van Tuyl and H. H. Wang,
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in [16, 22, 23, 10, 11]. Before illustrating some differences on an example of Sidman et al.

[22, Ex. 1.1], we shall give some definitions and notations.

Let S be a commutative ring, G an abelian group and R := S[X1, . . . , Xn], with

deg(Xi) = γi ∈ G and deg(s) = 0 for s ∈ S. Consider B ⊆ (X1, . . . , Xn) a finitely

generated graded R-ideal and C the monoid generated by {γ1, . . . , γn}, we propose in Def-

inition 4.2 that for γ ∈ G, and for a graded R-module M , then M is weakly γ-regular

if

γ 6∈
⋃
i

SuppG(H i
B(M)) + Fi−1.

where we define the support (with respect to G) of a module M as follows :

Definition 1.1. LetH be a gradedR-module. The support of the moduleH is SuppG(H) :=

{γ ∈ G : Hγ 6= 0}.

and Fi := {γj1 + · · · + γji | j1 ≤ · · · ≤ ji} for i > 0, F0 := {0}, F−1 := −F1 and Fi = ∅
else. Further, if M is weakly γ′-regular for any γ′ ∈ γ + C, then M is γ-regular and

regB(M) := {γ ∈ G | M is γ−regular}.

It follows from the definition that regB(M) is the maximal set S of elements in G such

that S + C = S and M is γ-regular for any γ ∈ S.

Example 1.2 (Example 1.1 in [22]). Take I = (X0X1, Y0Y1) a complete intersection ideal in

R = k[X0, X1, Y0, Y1]. If mX = (X0, X1), mY = (Y0, Y1), R+ = mX+mY , and B = mX∩mY ,

in [22] Sidman, Tuyl and Wang show that regB(R/I) = (1, 1) +Z2
≥0. This can be obtained,

as the authors observe, by computing the Hilbert function of R/I and applying Proposition

6.7 in [16], or by relating H i
B(R/I)µ with sheaf cohomology (cf. [20]), or just from Mayer-

Vietoris exact sequence.

Since I is a complete intersection, R/I is Cohen-Macaulay of dimension two, hence

H i
R+

(R/I) = 0 for all i 6= 2 and H2
R+

(R/I) = ω∗R/I .

We get that regR+
(R/I) is the Z2

≥0-stable part

of

{(SuppG(ω∗R/I) + F1),

where SuppG(ω∗R/I) ⊆ Z2
≤0, and {(−) denote the

complement wrt. G.

Thus,

regR+
(R/I) = (Z≥2 ×Z)∪ (Z×Z≥2)∪ {(1, 1)},

as is shown on the right.
-2
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regR+(R/I)
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For any module M satisfying regR+
(M) ⊇ regR+

(R/I) and regB(M) ⊇ regB(R/I),

Theorem 4.7 gives that

SuppZ2(TorRj (M,k)) ⊂ Fj+1 + {regR+
(R/I)

which is described in the figure on the left, while applying Theorem 4.9 to regB(M) one

would get a less sharp region described in the figure on the right:

(j + 1, 0)

(0, j + 1)
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We see in this example that the estimate of Betti numbers is much sharper using R+-

regularity in place of B-regularity. In particular, the R+-regularity estimate leaves only a

finite number of possibilities for bigraded Betti numbers, while an infinite number of these

are left possible using the B-regularity estimate. This is a general phenomenon. However,

it is not always easy to compute or estimate the R+-regularity (which is defined for any

grading, as well as the one relative to any monomial ideal). In a toric setting, the coarser

information on Betti numbers given by the regularity relative to the irrelevant ideal B

attached to the Cox ring is often more accessible (see [4] for an example in this direction).

The fact that one can, in many cases, provide finite regions for the support of Tor modules

from R+-regularity is explained in Remark 4.11. This in particular applies to projective

toric varieties.

The results of Section 3 on persistence of vanishing properties for local cohomology gives

Theorem 4.5 that extends the fact that, in the classical case, weakly regular implies regular.

Our argument provides a very short proof of this fact in the classical case, that was first

established by Mumford in [18] for finitely generated modules, with a field as base ring,

and in full generality by Jouanolou (see [6, 2.2]). Our persistence results extend and refine

the results of [16] on this issue. They show that the vanishing of local cohomology modules

in a finite number of homological and internal degrees provides a regularity criterion, as in

the classical case.

The second and third subsections are dedicated to a detailed study of how one can pass

information from regularity to shifts in a free resolution and conversely. These results

rely heavily on the material in the third section and are the core of this section. Here

we present weaker versions of two of our main results. The first one extends the usual
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inequality end(TorRj (M,S)) ≤ reg(M) + j from the standard graded case to our general

setting. The second extends the opposite inequality.

Theorem 4.7 (Excerpt). Let M be a G-graded R-module. Then

SuppG(TorRj (M,S)) ⊂ Fj+1 + {regB(M)

for all j 6= n, and SuppG(TorRn (M,S)) ⊆ SuppG(H0
B(M)) + Fn.

In Theorem 4.7 Fi is replaced by a subset Ei.

Theorem 4.14 (Excerpt). Assume S is a field let M be a finitely generated G-graded

R-module. Then,

regB(M) ⊇
⋂

i,γ∈SuppG(TorRi (M,S))

regB(R) + γ −Fi.

In Theorem 4.14 S is any Noetherian ring, and regB(M) is refined.

Subsection 4.4 is dedicated to extending results in [16] and [22] by providing sharper

finite subsets of the grading group G that bound the degrees of the minimal generators of

a minimal free resolution of a truncation of M . In Lemma 4.16 we provide a multigraded

variant for the bounds on the shifts in a minimal free resolution of M≥d in the classical

case. Here “M≥d” is replaced by MS, S being a C-stable subset of G.

The result takes a simple form when S ⊆ regB(M), giving Theorem 4.17. In particular,

taking S = µ + C with µ ∈ regB(M), we get as corollary Theorem 5.4 in [16], as well as

several results in [22] and in Section 7 of [16]. Also notice that Lemma 4.19 allows one

to study regularity with respect to more general monoids than C in G, similarly as in the

approach of Maclagan and Smith.

The fifth subsection of Section 4 consists of a very simple example where we illustrate

that the vanishing of the local cohomology modules of a principal ideal depends not only

on the degree but on the generator itself, opposite to what happens in the classical theory.

For simplicity, we treat the case of a form of bidegree (1, 1), with R and B as in Example

1.2. The vanishing of local cohomology depends on the factorization of the form, and the

same kind of phenomenon occur for any bidegree. In this example the bounds obtained on

the support of Tor modules are pretty sharp. It shows that a R-module with regularity

Z2
≥0 = regB(R) can have a first syzygy of bidegree (1, 1). It also shows that two modules

with the same resolution may have different regularity at level 2, and we leave the following

open question:

As Matteo Varbaro pointed to us, it may happen that two modules M and N satisfy

SuppG(TorRi (M,k)) = SuppG(TorRi (N, k)) for all i, but regB(M) 6= regB(N). This for

instance happens for R := k[X,Y ] with its standard grading, B := (X), M = R/(X) and
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N := R/(Y ). One may wonder if this can happen in the toric setting, where B is the

monomial ideal associated to G, as in the work of Maclagan and Smith.

Castelnuovo-Mumford regularity has applications to Hilbert functions of graded modules,

to which we dedicate the last subsection of this paper. Such questions come intrinsically

from the algebraic perspective, but also motivated geometry. The study of Hilbert functions

over standard graded algebras has taken a central role in commutative algebra and algebraic

geometry since the famous paper of Hilbert [13] in 1890.

The Lemma 4.26 is the key ingredient of a short proof of Grothendieck-Serre formula for

standard multigraded polynomial rings, that was proved in [7, Prop. 2.4.3]). This lemma

shows in particular that if the function FR (see 4.6 (2)) of a multigraded polynomial ring R

belongs to a given class, closed under shifts and addition, then, so does FM for any finitely

generated R-module M . The computation of FR for a given grading and monomial ideal B

is a simple task —the standard multigraded case follows— so that this method also allows

to treat any given G and monomial ideal B.

2. Local Cohomology

Let R be a commutative ring and B be a finitely generated ideal. One can define the local

cohomology groups of an R-module M as the homologies of the Čech complex constructed

on a finite set of generators of B. These homology groups only depend on the radical of

the ideal B, and correspond to the sheaf cohomology with support in V (B) (see [12, Chap.

2.3] or [6]). This in particular implies that one has a Mayer-Vietoris sequence for Čech

cohomology. This cohomology commutes with arbitrary direct sums. It coincides with the

right derived functors of the left exact functor H0
B in several instances (notably when R

is Noetherian or B is generated by a regular sequence in R). From the Mayer-Vietoris

sequence, it also follows that both coincide when B is a finitely generated monomial ideal

in a polynomial ring (see below).

2.1. Local cohomology with support on monomial ideals. In this section, we study

the support of local cohomology modules with support on a monomial ideal B. Let R :=

S[X1, . . . , Xn] be a polynomial ring over a commutative ring S, deg(Xi) = γi ∈ G for

1 ≤ i ≤ n and deg(s) = 0 for s ∈ S.

Assume that B ⊆ (X1, . . . , Xn) is a monomial R-ideal. Then B is finitely generated, and

since local cohomology with support in the monomial ideals ideal B and
√
B coincide, we

can assume that B =
√
B, hence B =

⋂t
i=1 Ji, where Ji = (Xi1 , . . . , Xis(i)) is an R-ideal. A

motivating example is the Cox ring of a toric variety, see [8].
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Lemma 2.1. Let M be a graded R-module, then

(1) SuppG(H`
B(M)) ⊂

⋃
1≤i≤t

⋃
1≤j1<···<ji≤t

SuppG(H`+i−1
Jj1+···+Jji

(M)).

Proof. Let B =
⋂t
i=1 Ji. We induct on t. The result is obvious for t = 1, thus, assume that

t > 1 and that (1) holds for t− 1. Write J≤t−1 := J1 ∩ · · · ∩Jt−1. Then, for t > 1 and ` ≥ 0

consider the Mayer-Vietoris long exact sequence of local cohomology

· · · → H`
J≤t−1+Jt(M)→ H`

J≤t−1
(M)⊕H`

Jt(M)→ H`
B(M)→ H`+1

J≤t−1+Jt
(M)→ · · · .

Hence, SuppG(H`
B(M)) ⊂ SuppG(H`

J≤t−1
(M)) ∪ SuppG(H`

Jt
(M)) ∪ SuppG(H`+1

J≤t−1+Jt
(M)).

By inductive hypothesis

SuppG(H`
J≤t−1

(M)) ⊂
⋃

1≤i≤t−1

⋃
1≤j1<···<ji≤t−1

SuppG(H`+i−1
Jj1+···+Jji

(M)).

Since J≤t−1 + Jt = (J1 + Jt) ∩ · · · ∩ (Jt−1 + Jt), again by inductive hypothesis we obtain

that SuppG(H`+1
J≤t−1+Jt

(M)) ⊂
⋃

1≤i≤t−1

⋃
1≤j1<···<ji≤t−1 SuppG(H`+i−1

Jj1+···+Jji+Jjt
(M)) which

completes the proof. �

Remark 2.2. The exact sequence

H`
J1∩···∩Jt−1

(M)⊕H`
Jt(M)→ H`

B(M)→ H`+1
(J1+Jt)∩···∩(Jt−1+Jt)

(M)

applied for ` ≥ 1 and M injective shows, by recursion on t, that H`
B(M) = 0 in this case

(the case t = 1 is classical and follows from the fact that B is then generated by a regular

sequence). This in turn shows the following result (by reduction to the case of polynomial

rings in finitely many variables)

Theorem 2.3. Let R be a polynomial ring over a commutative ring S and B be a finitely

generated monomial R-ideal. Then the Čech cohomology functor H`
B is the `-th right derived

functor of H0
B.

The approach of Mustaţă in [19] that we now recall uses the isomorphism

H i
B(M) ' lim

−→
t

ExtiR(R/Bt,M)

which holds over any commutative ring, taking for H i
B the i-th derived functor of H0

B. As

for a monomial ideal B this agrees with Čech cohomology we have an isomorphism in our

setting. Let B[t] := (f t1, . . . , f
t
s) where the fi’s are the minimal monomial generators of B,

the Taylor resolution T t• of R/B[t] has a natural map to the one of R/B[t′] for t ≥ t′ that

in turn provides a natural map: HomR(T t
′
• , R)→ HomR(T t•, R). This Zn-graded map is an

isomorphism of complexes in degree γ ∈ (−t′, . . . ,−t′) + Zn≥0 and else HomR(T t
′
• , R)γ = 0.
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For a = (a1, · · · , an) ∈ {0, 1}n, let Ea := {i, ai = 0} and R∗a = 1
XaS[Xi, X

−1
j , i ∈ Ea, j ∈

{1, . . . , n} \ Ea].
Setting Ni,a := H i(HomR(T•, R)−a), were T• := T 1

• is the Taylor resolution of R/B, by

Mustaţă description one has:

H i
B(R) = ⊕a∈{0,1}nH i

B(R)−a ⊗S R∗a = ⊕a∈{0,1}nNi,a ⊗S R∗a.

Furthermore, this sum is restricted by the inclusion (1) or by inspecting a little T 1
• . For

instance if n−#Ea = |a| < i then Ni,a = 0.

3. Local Cohomology and graded Betti numbers

In this chapter, we aim is to establish a clear relation between supports of local coho-

mology modules and supports of Tor modules and Betti numbers, in order to give a general

definition for Castelnuovo-Mumford regularity in next chapter.

Throughout this chapter, G is a finitely generated abelian group, R is a commutative

G-graded ring with unit and B is a finitely generated homogeneous R-ideal.

Remark 3.1. The case where R is a polynomial ring in n variables over a commutative

ring whose elements have degree 0 and G = Zn/K, is a quotient of Zn by some subgroup

K is of particular interest. Note that, if M is a Zn-graded module over a Zn-graded ring,

and G = Zn/K, we can give to M a G-grading coarser than its Zn-grading. For this, define

the G-grading on M by setting, for each γ ∈ G, Mγ :=
⊕

d∈π−1(γ)Md.

In order to fix the notation, we state the following definitions concerning local cohomology

of graded modules, and support of a graded modules M on G. Recall that the cohomological

dimension of a module M is cdB(M) := inf{i | Hj
B(M) = 0,∀j > i}.

If F• is a free resolution of a graded module M , much information on the module can be

read from the resolution. It has been observed by Gruson, Lazarsfeld and Peskine that a

complex which need not be a resolution of M , but M is its first non-vanishing homology,

can be used in place of a resolution in some circumstances. Our next result is following this

line of ideas. We first give a definition.

Definition 3.2. Let C• be a complex of graded R-modules. For all i, j ∈ Z we define a

condition (Dij) as follows

(Dij) H i
B(Hj(C•)) 6= 0 implies H i+`+1

B (Hj+`(C•)) = H i−`−1
B (Hj−`(C•)) = 0 for all ` ≥ 1.

The following result provides information on the support of the local cohomology modules

of the homologies of C• assuming (Dij).
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Theorem 3.3. Let C• be a complex of graded R-modules and i ∈ Z. If (Dij) holds, then

SuppG(H i
B(Hj(C•))) ⊂

⋃
k∈Z

SuppG(H i+k
B (Cj+k)).

Proof. Consider the two spectral sequences that arise from the double complex Č•BC• of

graded R-modules.

The first spectral sequence has as second screen ′2E
i
j = H i

B(Hj(C•)). Condition (Dij)

implies that ′∞E
i
j = ′

2E
i
j = H i

B(Hj(C•)). The second spectral sequence has as first screen
′′
1E

i
j = H i

B(Cj).

By comparing both spectral sequences, one deduces that, for all γ ∈ G, the vanishing

of (H i+k
B (Cj+k))γ for all k implies the vanishing of (′∞E

i+`
j+`)γ for all `, which carries the

vanishing of (H i
B(Hj(C•)))γ . �

We next give some cohomological conditions on the complex C• to imply (Dij) of Defi-

nition 3.2.

Lemma 3.4. Let C• be a complex of graded R-modules. Consider the following conditions

(1) C• is a right-bounded complex, say Cj = 0 for j < 0 and, cdB(Hj(C•)) ≤ 1 for all

j 6= 0.

(2) For some q ∈ Z ∪ {−∞}, Hj(C•) = 0 for all j < q and, cdB(Hj(C•)) ≤ 1 for all

j > q.

(3) Hj(C•) = 0 for j < 0 and cdB(Hk(C•)) ≤ k + i for all k ≥ 1.

Then,

(i) (1)⇒ (2)⇒ (Dij) for all i, j ∈ Z, and

(ii) (1)⇒ (3)⇒(Dij) for j = 0.

Proof. For proving item (i), it suffices to show that (2) ⇒ (Dij) for all i, j ∈ Z since

(1)⇒ (2) is clear.

Let ` ≥ 1.

Condition (2) implies that H i
B(Hj(C•)) = 0 for j > q and i 6= 0, 1 and for j < q. If

H i
B(Hj(C•)) 6= 0, either j > q and i ∈ {0, 1} in which case j + ` > q and i+ `+ 1 ≥ 2 and

i − ` − 1 < 0, or j = q in which case j + ` > q and i + ` + 1 ≥ 2 and j − ` < 0. In both

cases the asserted vanishing holds.

Condition (1) automatically implies (3). Condition (3) implies that H i+`+1
B (H`(C•)) = 0

and Hj−`(C•) = 0. �

In the following subsection, we establish the relation between the support of local coho-

mology modules and support of Tor modules, applying Theorem 3.3 and Lemma 3.4 to a

Koszul complex.
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3.1. From Local Cohomology to Betti numbers. In this subsection, we bound the

support of Tor modules in terms of the support of local cohomology modules. This

generalizes the fact that for Z-graded Castelnuovo-Mumford regularity, setting bi(M) :=

max{µ | TorRi (M,k)µ 6= 0} and ai(M) := max{µ | H i
m(M)µ 6= 0}, one has bi(M) − i ≤

reg(M) := maxi{ai(M) + i}.

Assume R := S[X1, . . . , Xn] is a polynomial ring over a commutative ring S, deg(Xi) =

γi ∈ G for 1 ≤ i ≤ n and deg(s) = 0 for s ∈ S.

Let B ⊆ (X1, . . . , Xn) be a finitely generated graded R-ideal.

Notation 3.5. For an R-module M , we denote by M [γ′] the shifted module by γ′ ∈ G,

with M [γ′]γ := Mγ′+γ for all γ ∈ G.

Let M be a graded R-module, f := (f1, . . . , fr) be a r-tuple of homogeneous elements

of R and I the R-ideal generated by the fi’s. Write K•(f ;M) for the Koszul complex of

the sequence (f1, . . . , fr) with coefficients in M . The Koszul complex K•(f ;M) is graded

as well as its homology modules H•(f ;M). Set δi := deg(fi), E f
0 := {0} and E f

i :=

{δj1 + · · ·+ δji , j1 < · · · < ji}.

Theorem 3.6. If B ⊂
√
I + annR(M), then

SuppG(Hj(f ;M)) ⊂
⋃
k≥0

(SuppG(Hk
B(M)) + E f

j+k),

for all j ≥ 0.

Proof. We first notice that Hj(f ;M) is annihilated by I + annR(M), hence it has cohomo-

logical dimension 0 relatively to B.

According to Lemma 3.4 (case (1)), Theorem 3.3 applies (with i = 0) and shows that

SuppG(Hj(f ;M)) ⊂
⋃
`≥0

SuppG(H`
B(Kj+`(f ;M))) =

⋃
k≥0

(SuppG(Hk
B(M)) + E f

j+k). �

Further notice that, by [6, Lem. 4.6], cdB(N) ≤ cdB(M) if M is finitely presented and

SuppR(N) ⊆ SuppR(M). This implies that Theorem 3.6 holds if cdB(M/IM) = 0 and M

is finitely presented.

In particular, taking r = n and fi = Xi for all i, this establishes a relationship between

the support of the local cohomologies and the graded Betti numbers of a module M .

Corollary 3.7. For any integer j, set X := (X1, . . . , Xn), then

SuppG(TorRj (M,S)) ⊂
⋃
k≥0

(SuppG(Hk
B(M)) + EX

j+k).
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Notice that taking G = Z and deg(Xi) = 1, Corollary 3.7 gives the well know bound

bi(M)− i ≤ reg(M) := maxi{ai(M) + i}.
The following lemma about persistence of cohomology vanishing contains the fact that

for the standard Z-grading of S the notions of weak and strong regularity coincides.

Lemma 3.8. Let ` be an integer. If ` > cdB(R/(I + annR(M))),

γ 6∈
⋃
i≥0

SuppG(H`+i
B (M)) + E I

i+1 ⇒ γ 6∈ SuppG(H`
B(M)).

If ` = cdB(R/(I + annR(M))) and γ 6∈
⋃
i>0 SuppG(H`+i

B (M)) + E I
i+1, then

(H`
B(M)/IH`

B(M))γ ⊆ H`
B(M/IM)γ

and equality holds if γ 6∈
⋃
i>0 SuppG(H`+i

B (M)) + E I
i .

Proof. Consider the two spectral sequences that arise from the double Čech-Koszul complex

Č•BK•(f ;M) of graded R-modules.

The first spectral sequence has as second screen ′2E
i
j = H i

B(Hj(f ;M)). As I and annR(M)

annihilate Hj(f ;M), cdB(Hj(f ;M)) ≤ cdB(R/(I + annR(M))) < `, which shows that
′
2E

i
j = 0 for i − j = ` unless ` = cdB(M/IM) = cdB(R/(I + annR(M))), in which case

′
2E

i
j = 0 for j 6= 0 and ′2E

`
0 =′∞ E`0 = H`

B(M/IM). The second spectral sequence has as

first screen (′′1E
i
j)µ = ⊕γ∈E Ij

H i
B(M)

bj,γ
µ−γ for some positive bj,γ ∈ Z (b00 = 1).

By hypothesis (′′1E
`+i
i+1)µ = 0 for all i ≥ 0. As (′′1E

`−i
−i−1) = 0 for i ≥ 0, we deduce that

(′′1E
`
0)µ = (′′∞E

`
0)µ. As (′′1E

`
0)µ = H`

B(M)µ and ′′∞E
i
j =′∞ Eij = 0 for i− j = `, the conclusion

follows. �

The following special case gives a persistence criterion for local cohomology vanishing

that will be used to give cases where weak regularity implies regularity.

Corollary 3.9. Let ` ≥ 1 be an integer γ ∈ G and assume that B ⊆
√

(Rγ) + annR(M).

Then, for any µ ∈ G,

(1) H`+i
B (M)µ+iγ = 0, ∀i ≥ 0 ⇒ H`+i

B (M)(µ+γ)+iγ = 0,∀i ≥ 0.

(2) If H i+1
B (M)µ+iγ = 0,∀i ≥ 0, then

Mµ+jγ/RγMµ+(j−1)γ = H0
B(M)µ+jγ/RγH

0
B(M)µ+(j−1)γ , ∀j > 0.

3.2. From Betti numbers to Local Cohomology. In this subsection we bound the

support of local cohomology modules in terms of the support of Tor modules. This gener-

alizes the fact that for Z-graded Castelnuovo-Mumford regularity ai(M) + i ≤ reg(M) :=

maxi{bi(M)− i}.
We keep the same hypotheses and notation as in Section 3.1
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The next result gives an estimate of the support of local cohomology modules of a graded

R-module M in terms of the supports of those of base ring and the twists in a free resolution.

This, combined with Lemma 3.11, gives an estimate for the support of local cohomology

modules in terms of Betti numbers.

The key technical point is that Lemma 3.11 part (1) and (2) give a general version of the

Nakayama Lemma in order to relate shifts in a resolution with support of Tor modules while

part (3) is devoted to give a ‘base change lemma’ in order to pass easily to localization.

Theorem 3.10. Let M be a graded R-module and F• be a graded complex of free R-modules,

with Fi = 0 for i < 0 and H0(F•) = M . Write Fi =
⊕

j∈Ei R[−γij ] and Ti := {γij | j ∈ Ei}.
Let ` ≥ 0 and assume cdB(Hj(F•)) ≤ `+ j for all j ≥ 1. Then,

SuppG(H`
B(M)) ⊂

⋃
i≥0

(SuppG(H`+i
B (R)) + Ti).

Proof. Lemma 3.4 (case (3)) shows that Theorem 3.3 applies for estimating the support of

local cohomologies of H0(F•), and provides the quoted result as local cohomology commutes

with arbitrary direct sums

SuppG(Hp
B(R[−γ])) = SuppG(Hp

B(R)) + γ, and SuppG(⊕i∈ENi) = ∪i∈ESuppG(Ni)

for any set of graded modules Ni, i ∈ E. �

Lemma 3.11. Let M be a graded R-module.

(1) If S is a field and M is finitely generated, there exists a G-graded free resolution F•
of M with

Fi =
⊕
γ∈Ti

R[−γ]βi,γ , and Ti = SuppG(TorRi (M,S)).

(2) Assume that there exists φ ∈ HomZ(G,R) such that φ(deg(xi)) > 0 for all i. If

φ(deg(a)) > m for some m ∈ R and any a ∈ M , then there exists a G-graded free

resolution F• of M such that

Fi =
⊕
j∈Ei

R[−γij ] with γij ∈
⋃

0≤`≤i
SuppG(TorR` (M,S)) ∀j.

If, furthermore, there exists p and a graded free R-resolution F ′• of M such that F ′i
is finitely generated for i ≤ p, then Ei is finite for i ≤ p.

(3) Assume that (S,m, k) is local. Then

SuppG(TorRi (M,k)) ⊆
⋃
j≤i

SuppG(TorRj (M,S)).
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Proof. Part (1) follows the standard arguments of the Z-graded case. For part (2) see [1,

Prop. 2.4] and its proof. Part (3) follows from the fact that if (S,m, k) is local there is an

spectral sequence TorSp (TorRq (M,S), k)⇒ TorRp+q(M,k) and the fact that S ⊂ R0. �

Combining Theorem 3.10 with Lemma 3.11 (case (1)) one obtains:

Corollary 3.12. Assume that S is a field and let M be a finitely generated graded R-

module. Then, for any `,

SuppG(H`
B(M)) ⊂

⋃
i≥0

(SuppG(H`+i
B (R)) + SuppG(TorRi (M,S))).

If S is Noetherian, Lemma 3.11 (case (3)) implies the following:

Corollary 3.13. Assume that (S,m, k) is local Noetherian and let M be a finitely generated

graded R-module. Then, for any `,

SuppG(H`
B(M)) ⊂

⋃
i≥0(SuppG(H`+i

B (R)) + SuppG(TorRi (M,k)))

⊂
⋃
i≥j≥0(SuppG(H`+i

B (R)) + SuppG(TorRj (M,S))).

After passing to localization, Corollary 3.13 shows that:

Corollary 3.14. Let M be a finitely generated graded R-module, with S Noetherian. Then,

for any `,

SuppG(H`
B(M)) ⊂

⋃
i≥j≥0

(SuppG(H`+i
B (R)) + SuppG(TorRj (M,S))).

Proof. Let γ ∈ SuppG(H`
B(M)). Then H`

B(M)γ 6= 0, hence there exists p ∈ Spec(S) such

that (H`
B(M)γ)⊗S Sp = H`

B⊗SSp
(Mγ⊗S Sp) 6= 0. Applying Corollary 3.13 the result follows

since both the local cohomology functor and the Tor functor commute with localization in

S, and preserves grading as S ⊂ R0. �

Finally, Lemma 3.11 (case (2)) gives:

Corollary 3.15. Let M be a graded R-module, and assume that there exists φ ∈ HomZ(G,R)

such that φ(deg(xi)) > 0 for all i. If φ(deg(a)) > m for some m ∈ R and any a ∈M , then,

for any `,

SuppG(H`
B(M)) ⊂

⋃
i≥j≥0

(SuppG(H`+i
B (R)) + SuppG(TorRj (M,S))).

Notice that taking G = Z and deg(Xi) = 1, Corollaries 3.12, 3.13, 3.14 and 3.15 give the

well known bound ai(M) + i ≤ maxi{bi(M)− i}.
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4. Castelnuovo-Mumford regularity

In this section we give a definition for a G-graded R-module M and γ ∈ G to be weakly

γ-regular or just γ-regular, with respect to a graded R-ideal B, depending if γ is or is not

on the shifted support of some local cohomology modules of M with support in B (cf. 4.2).

The fact that weak regularity implies regularity in the classical case is generalized using

Lemma 3.8. The corresponding results are given in Theorem 4.5 that extends and refines

the results of [16] on this issue. It is proved that the vanishing of local cohomology modules

in a finite number of homological and internal degrees provides a regularity criterion, as in

the classical case.

The Castelnuovo-Mumford regularity of Z-graded R-module M is a cohomological in-

variant that bounds the degree of minimal generators of a minimal free resolution. In the

standard graded case, if F• is a minimal graded free resolution of M , then the degrees of

the generators of the modules Fi are bounded above by reg(M) + i (cf. Example 4.12).

As we mentioned in the introduction, partial results were obtained in [16] and in [22]

and [10]. In [16] by estimating, in the toric situation, the shifts in a resolution at the sheaf

level, and in the other works by considering, in special cases, variants of the definition of

regularity. In Theorem 4.7, we provide an estimate for the support of TorRj (M,S). This

estimate is refined in Theorem 4.9 under additional hypotheses that are often satisfied in

the toric setting (results in [16] are given in this situation).

Next, we provide bounds for the truncation of M . Precisely, Lemma 4.16 gives a multi-

graded variant for the bound on the shifts in a minimal free resolution of M≥d. Here “M≥d”

is replaced by MS, with S a C-stable subset of G.

As in the graded case, this result is of particular interest when d ≥ reg(M), which

corresponds here to study MS for S ⊆ regB(M). This is done in Theorem 4.17. In

particular taking S = µ+C, with µ ∈ regB(M) we get as corollary the results on truncation

of [16], as well as several results in [22].

An alternative way of getting this type of result, that works in many interesting cases, is

through the computation of the local cohomology of the restriction of M to some degrees.

This is explained in Lemma 4.19 and Proposition 4.21.

We then study the example of a form of bidegree (1, 1) in a standard bigraded polynomial

ring in four variables, over a field, corresponding to P1×P1. This extremely simple example

already shows that the support of local cohomology depends upon the form, and illustrate

some other features of Z2-graded regularity.

In a last part, we recall some results on Hilbert polynomials in the multigraded setting

and connect them with our results on regularity. We also prove a lemma that gives a short

and elegant way to extend to the standard multigrading the classical theory of Hilbert
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polynomials. It can be used as well for the product of anisotropic projective spaces, and

gives a way to handle any particular case.

4.1. Definition of regularity and persistence of cohomological vanishing. Let S be

a commutative ring, G an abelian group and R := S[X1, . . . , Xn], with deg(Xi) = γi ∈ G
and deg(s) = 0 for s ∈ S. Denote by C the monoid generated by {γ1, . . . , γn} and let

B ⊆ R+ := (X1, . . . , Xn) be a finitely generated graded R-ideal.

Definition 4.1. Set E0 := {0}, El := {γi1 + · · ·+ γil : i1 < · · · < il} for l > 0, E−1 := −E1

and El = ∅ for l < −1.

In addition to the definition of Ei, we introduce the following sets already used by Hoffman

and Wang, Maclagan and Smith and other authors. For i > 0,

Fi := {γj1 + · · ·+ γji | j1 ≤ · · · ≤ ji}

and Fi := Ei for i ≤ 0. It is clear that Ei ⊂ Fi.
Observe that if γi = γ for all i, El = {l · γ} when El 6= ∅ and Fl = {l · γ} when Fl 6= ∅.

Definition 4.2. For γ ∈ G and ` ∈ Z≥0, a graded R-module M is very weakly γ-regular

at level ` if

γ 6∈
⋃
i≥`

SuppG(H i
B(M)) + Ei−1.

M is very weakly γ-regular if it is very weakly γ-regular at level 0.

M is weakly γ-regular at level ` if

γ 6∈
⋃
i≥`

SuppG(H i
B(M)) + Fi−1.

M is weakly γ-regular if it is weakly γ-regular at level 0.

If further M is weakly γ′-regular (resp. weakly γ′-regular at level `) for any γ′ ∈ γ + C,
then M is γ-regular (resp. γ-regular at level `). One writes regB(M) := reg0

B(M) with

reg`B(M) := {γ ∈ G | M is γ−regular at level `}.

It immediately follows from the definition that reg`B(M) is the maximal set S of elements

in G such that S + C = S and M is weakly γ-regular at level ` for any γ ∈ S.

Before establishing the relation between weak γ-regularity at level ` and γ-regularity at

level `, we introduce a definition and some notation.

Definition 4.3. Let M be a graded module and γ ∈ G. Then B-regularity is γ-persistent

with respect to M if, for any η ∈ G,

η 6∈
⋃
i>0

SuppG(H i
B(M)) + (i− 1)γ ⇒ η + γ 6∈

⋃
i>0

SuppG(H i
B(M)) + (i− 1)γ.
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If B-regularity is γ-persistent with respect to any graded module, one simply says that

B-regularity is γ-persistent.

We can restate Corollary 3.9 in the following form, generalizing also Theorem 4.3 in [16].

Lemma 4.4. If B ⊆
√

(Rγ) + annR(M), then B-regularity is γ-persistent with respect to

M . Furthermore, if η 6∈
⋃
i>0 SuppG(H i

B(M)) + (i− 1)γ, then

Mη+jγ/RγMη+(j−1)γ = H0
B(M)η+jγ/RγH

0
B(M)η+(j−1)γ , ∀j > 0.

Notice that it in particular implies that B-regularity is γ-persistent if B ⊆
√

(Rγ).

Let us consider {µ1, . . . , µm} the set of {γ1, . . . , γn} without repetitions, i.e. with µi 6= µj
for i 6= j, and set Bi := (Rµi). For instance, in the standard bigraded P1 × P1, where

γ1 = γ2 = (1, 0) and γ3 = γ4 = (0, 1), then m = 2 and µ1 = (1, 0) and µ2 = (0, 1).

Theorem 4.5. Let M be a graded R-module.

(1) If B ⊂
√
Bi + annR(M) for every i ∈ E ⊂ {1, . . . ,m}, then B-regularity is γ-

persistent with respect to M , for any γ 6= 0 in the submonoid of C generated by the

µi’s with i ∈ E.

(2) If M is weakly γ-regular at level ` and ` > cdB(R/Bi + annR(M)) for every i, then

M is γ-regular at level `.

(3) If M is weakly γ-regular at level 1 and B ⊂
√
Bi + annR(M) for some i, then

(M/BiM)η = (H0
B(M)/BiH

0
B(M))η for η ∈ γ + µiZ>0.

(4) If B ⊂
√
Bi + annR(M) for every i and M is γ-regular, then (M/R+M)γ+η = 0

for all 0 6= η ∈ C.

Proof. For (1) let γ :=
∑

i∈E λiµi. Restricting E if needed, we may assume that λi 6= 0 for

all i. Then one has

B ⊆
⋂
i∈E

√
Bi + annR(M) ⊆

√
(
∏
i∈E

(Bi)λi) + annR(M) ⊆
√

(Rγ) + annR(M)

and the assertion follows from Lemma 4.4.

We next prove (2). For 1 ≤ p ≤ m let Fp0 = F (p)
0 = {0}, Fpi := {iµp},

F (p)
i := {γj1 + · · ·+ γji | j1 ≤ · · · ≤ ji and γjl 6= µp, ∀l}.

Applying Lemma 3.8 with I := Bp, one gets

γ 6∈
⋃
i≥0

SuppG(H`+i
B (M)) + Fpi ⇔ γ + µp 6∈

⋃
i≥0

⋃
j≥0

(SuppG(H
(`+i)+j
B (M)) + Fpj+1) + Fpi

⇒ γ + µp 6∈
⋃
i≥0

SuppG(H`+i
B (M)) + Fpi .
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For any p one can write⋃
i≥` SuppG(H i

B(M)) + Fi−1 =
⋃
j≥`
⋃
i≥0(SuppG(Hj+i

B (M)) + Fpi ) + F (p)
j−1

which shows that γ 6∈
⋃
i≥0 SuppG(H`+i

B (M))+Fi ⇒ γ+µp 6∈
⋃
i≥0 SuppG(H`+i

B (M))+Fi
for any p and concludes the proof of (2).

Statement (3) is the second part of Lemma 4.4 and (4) directly follows from (3). �

Next example illustrates Theorem 4.5 in the standard multigraded case.

Example 4.6. Assume that R = S[Xij , 1 ≤ i ≤ m, 0 ≤ j ≤ ri] is a finitely generated

standard multigraded ring, Bi := (Xij , 0 ≤ j ≤ ri), B := B1 ∩ · · · ∩ Bm and R+ :=

B1 + · · ·+Bm. Let M be a graded R-module.

If M is weakly γ-regular, then

(1) M/H0
B(M) is γ-regular,

(2) (H0
B(M)/R+H

0
B(M))γ′ = (M/R+M)γ′ , for any γ′ ∈ γ + C.

4.2. From B-regularity to Betti numbers. The next Theorem substantiate our results

in Section 3 on regularity. Together with the subsequent ones, they exhibit the importance

of (weak) γ-regularity (at level `).

Theorem 4.7. Let M be a G-graded R-module. Then

SuppG(TorRj (M,S)) ⊂ Ej+1 + {regB(M)

for all j 6= n, and SuppG(TorRn (M,S)) ⊆ SuppG(H0
B(M)) + En.

In terms of regularity, the case j = n gives

SuppG(TorRn (M,S)) ⊂ {(regB(M) + En + E1).

When G = Z and the grading is standard, this reads, with the usual definition of

reg(M) ∈ Z:

reg(M) + j ≥ end(TorRj (M,S))

for all j ≥ 0.

Proof. If γ ∈ SuppG(TorRj (M,S)), then it follows from Theorem 3.6 that γ ∈ SuppG(H`
B(M))+

Ej+` for some `. Hence

γ − γi1 − · · · − γij+` ∈ SuppG(H`
B(M))

for some i1 < · · · < ij+`. If ` = 1 it shows that µ 6∈ regB(M). If ` > 1, by definition, it

follows that if µ ∈ regB(M) and t1 < · · · < t`−1, then

γ − γi1 − · · · − γij+` 6= µ− γt1 − · · · − γt`−1
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in particular choosing tk := ij+k+1 for k > 0 one has

γ − γi1 − · · · − γij+1 6∈ regB(M).

If ` = 0, by definition, it follows that if µ ∈ regB(M)

γ − γi1 − · · · − γij 6= µ+ γt

for all t, which gives the conclusion unless j = n. �

The definition chosen for regularity is well fitted to the case where one has persistency

with respect to any of the γi’s. Let C∗ := C \ {0}. We have already seen that in this case,

M is generated by elements whose degrees are not in µ + C∗. In particular, Mµ+C has

regularity µ + C and is generated in degree µ, for any µ ∈ regB(M). The following result

shows that persistence in one direction can greatly improve the regularity control given by

Theorem 4.7.

A more precise version of Corollary 3.7 will be useful:

Lemma 4.8. Let E = {i1, . . . , it} ⊆ {1, . . . ,m} and

EEk := {γj1 + · · ·+ γik : i1 < · · · < ik, γji ∈ {µi1 , . . . , µit},∀i}.

If B ⊂
√
Bi1 + · · ·+Bit + annR(M), then for any integer j,

SuppG(TorRj (M,S)) ⊂
⋃
k≥0

(SuppG(Hk
B(M)) + EEk ) + Ej .

Proof. Let YE denote the tuple of variables whose degrees are in {µi1 , . . . , µit}, with the or-

der induced by the one of the variables, and E′ := {1, . . . ,m}\E. Set TEj := SuppG(TorRj (M,R/(YE)))

and SkB := SuppG(Hk
B(M)). The double complex with components Kp(YE ;M)⊗RKq(YE′ ;M)

whose totalization is isomorphic to K•(X;M) gives rise to a spectral sequence

E1
p,q = Kp(YE′ ; TorRq (M,R/(YE)))⇒ TorRp+q(M,S).

which implies that SuppG(TorRj (M,S)) ⊂ ∪p+q=j(TEp + EE′q ). On the other hand, the

spectral sequence:

′
1E

i
j = Kj(YE ;H i

B(M))⇒ TorRj−i(M,R/(YE)),

implies that TEp ⊆ ∪k≥0(SkB + EEp+k). It follows that,

SuppG(TorRj (M,S)) ⊆
⋃

p+q=j

⋃
k≥0

SkB + EEp+k

+ EE′q =
⋃
k≥0

(SkB + EEk ) + Ej .

�

An application of the above result gives the following interesting case:
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Theorem 4.9. Let M be a G-graded R-module. If B ⊂
√
Bi + annR(M), then

SuppG(TorRj (M,S)) ⊆ γi + Ej + {regB(M)

for all j.

Proof. Let C :=
⋃
k(SkB + Ek−1) and notice that S0

B + Ej ⊆ S0
B + E−1 + Ej + γi ⊆ C + γi.

Lemma 4.8 applied to E = {i} implies that

SuppG(TorRj (M,S)) ⊆
(⋃

k≥0 SkB + kγi

)
+ Ej ⊆ C + Ej + γi

By definition, (regB(M) + γi + C) ∩ (C + γi) = ∅. The claim follows. �

The following corollary contains the estimates for the degrees of generators of [16, The-

orem 1.3] (case j = 0) and extend it to higher syzygies (j > 0):

Corollary 4.10. Let M be a G-graded R-module. If B ⊂
√
Bi + annR(M) for every i,

then

SuppG(TorRj (M,S)) ⊆
⋂
i

(γi + Ej + {regB(M))

for any j.

Remark 4.11. Notice that if R is a graded polynomial ring such that for any γ ∈ G, (γ +

C)∩ (−C) is a finite subset of G, then (Ej+1 +{regR+
(R))∩C is a finite set for any j. Hence,

if R is Noetherian and M is a finitely generated R-module, (Ej+1+{regR+
(M))∩SuppG(M)

is a finite set for any j. In particular, applying Theorem 4.7 for B = R+ one gets that

SuppG(TorRj (M,S)) is contained in an explicit finite set, written in terms of regularity, for

any j.

The finiteness of (γ + C)∩ (−C) holds for instance when C is the monoid spanned by the

degrees of the variables of the Cox ring of any product of anisotropic projective spaces.

The following example explains the relation between regularity and vanishing of Betti

numbers in the probably most common situation. This result generalizes the fact that when

G = Z and the grading is standard, reg(M) + j ≥ end(TorRj (M,S)).

Example 4.12. Assume (S,m, k) is local Noetherian, B ⊂ Bi and let F• be a minimal

free R-resolution of a finitely generated R-module M . Then, by Theorem 4.9 and Lemma

3.11(3)

SuppG(Fj ⊗R k) ⊂
⋃

0≤j′≤j
γi + Ej′ + {regB(M) = γi + Ej + {regB(M).

Also notice that SuppG(M ⊗R S) ⊂ γi + {(regB(M)).
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In the case G = Z and γi = 1 for all i, this gives the classical inequality

end(Fj ⊗R S) ≤ j + 1 + (reg(M)− 1) = j + reg(M)

for all j.

4.3. From Betti numbers to B-regularity. First Corollary 3.14 shows that:

Proposition 4.13. Assume S is Noetherian, let M be a finitely generated G-graded R-

module and set Ti := SuppG(TorRi (M,S)). Then, for any `,

SuppG(H`
B(M) + E`−1) ⊂

⋃
i≥j

(SuppG(H`+i
B (R)) + E`−1 + Tj).

If further S is a field,

SuppG(H`
B(M) + E`−1) ⊂

⋃
i

(SuppG(H`+i
B (R)) + E`−1 + Ti).

Proposition 4.13 was stated requesting S to be Noetherian and M be a finitely generated,

for the sake of simplicity. These hypotheses can omitted in the case there exists a function

f : G → R such that f(γi) > 0 for all i, and f(deg(α)) is bounded below for 0 6= α ∈ M ,

as in the case (2) of Lemma 3.11 (cf. [6]). This generalization include many rings from

algebraic geometry, like projective toric schemes over an arbitrary base ring.

Proposition 4.13 gives the following result:

Theorem 4.14. Assume S is Noetherian, let M be a finitely generated G-graded R-module.

Then,

(1) for any ` ≥ 1,

reg`B(M) ⊇
⋂

i≥j,γ∈Tj

reg`+iB (R) + γ −Fi.

(2)

regB(M) ⊇
⋂

i≥j,i>0,k,γ∈Tj

regiB(R) + γ − γk −Fi−1.

The above intersections can be restricted to i ≤ cdB(R)− `.
If further S is a field,

reg`B(M) ⊇
⋂

i,γ∈Ti

reg`+iB (R) + γ −Fi

Proof. Set Ti := SuppG(TorRi (M,S)). If µ 6∈ reg`B(M), by Proposition 4.13, there exists

`′ ≥ ` and i ≥ j such that

µ ∈ SuppG(H`′+i
B (R)) + F`′−1 + Tj .
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Hence, for proving (1), since `′ ≥ ` ≥ 1, F`′−1 + Fi = F`′−1+i. Thus, for any γ′ ∈ Fi,

µ+ γ′ ∈ SuppG(H`+i
B (R)) + Fi+`−1 + Tj .

Thus, there exists γ ∈ Tj such that µ + γ′ − γ ∈ SuppG(H`+i
B (R)) + Fi+`−1, showing that

µ 6∈ reg`+iB (R) + γ − γ′.
For (2), if ` > 0 or i = 0 we proceed as above. Now assume `′ = 0 and i > 0, then, there

exists γ ∈ Tj and k such that for γk ∈ F1 and allγ′ ∈ Fi−1,

µ+ γk − γ + γ′ ∈ SuppG(H i
B(R)) + Fi−1. �

Example 4.15. When G = Z and the grading is standard, this reads with the usual

definition of reg`(M) ∈ Z (notation as in Section 3):

reg`B(M) ≤ reg`(R) + max
i
{end(TorRi (M,S))− i} = reg`(R) + max

i
{bi(M)}.

4.4. Regularity and truncation of modules. In this section, we extend the results in

[16] and [22] and give sharper finite subsets of the grading group G that bound the degrees

of the minimal generators of a minimal free resolution of a truncation of M .

Lemma 4.16 below provides a multigraded variant for the bounds on the shifts in a

minimal free resolution of M≥d in the classical case. Here “M≥d” is replaced by MS, S

being a C-stable subset of G.

As in the graded case this results are of particular interest when d ≥ reg(M), and when

we apply Lemma 4.16 taking S ⊆ regB(M), obtaining Theorem 4.17. In particular, taking

S = µ + C, with µ ∈ regB(M) we get as a corollary Thm. 5.4 in [16], as well as several

results in [22] and Section 7 in [16] by studying higher Tor’s modules.

Lemma 4.16. Let M be a G-graded R-module and S ⊂ G such that S + C = S. Set

N := MS.

(1) SuppG(TorRj (N,S)) ⊆ Ej + S.

(2) The natural map

TorRj (N,S)η → TorRj (M,S)η

is surjective for η ∈
⋂
γ∈Ej (γ + S) and an isomorphism for η ∈

⋂
γ∈Ej+1

(γ + S).

(3) Let E = {i1, . . . , it} ⊆ {1, . . . ,m} and EEi for i ∈ Z be as in Lemma 4.8. Denote

by IE the ideal generated by the variables whose degrees are in {µi1 , . . . , µit}. The

natural map,

TorRj (N,R/IE)η → TorRj (M,R/IE)η

is surjective for η ∈
⋂
γ∈EEj

(γ + S) and an isomorphism for η ∈
⋂
γ∈EEj+1

(γ + S).
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(4) With the hypotheses and notations of Lemma 4.8,

SuppG(TorRj (N,S)) ⊂

⋃
k≥0

(SuppG(Hk
B(M)) + EEk ) + Ej

 ∪( j⋃
l=0

(
EEl+1 + EE′j−l + {S

))
.

Proof. For (1) notice that SuppG(TorRj (N,S)) ⊆ SuppG(Kj(X;N)) = SuppG(N) + Ej .
For (2), consider the exact sequence 0 → N → M → C → 0 defining C. One has by

hypothesis, SuppG(C) ⊆ G \S. The exact sequence

TorRj+1(C, S)→ TorRj (N,S)→ TorRj (M,S)→ TorRj (C, S)

shows our claim since, for any i,

SuppG(TorRi (C, S)) ⊆ SuppG(C) + Ei ⊆ G \ (
⋂
γ∈Ei

γ + S).

For (3) one has similarly an exact sequence,

TorRj+1(C,R/IE)→ TorRj (N,R/IE)→ TorRj (M,R/IE)→ TorRj (C,R/IE)

and the proof follows from the inclusion SuppG(TorRi (C,R/IE)) ⊆ SuppG(C) + EEi , that

holds for any i.

For (4), set TEp (—) := SuppG(TorRp (—, R/(YE))) and Tp(—) := SuppG(TorRp (—, S)),

SkB(M) := SuppG(Hk
B(M)).

The spectral sequence E1
p,q = Kp(YE′ ; TorRq (N,R/(YE))) ⇒ TorRp+q(N,S) implies that

Tj(N) ⊂
⋃
p+q=j(T

E
p (N) + EE′q ). By (3),

TEp (N) ⊆ TEp (M) ∪ {
⋂

γ∈EEp+1

(γ + S) = TEp (M) ∪ (EEp+1 + {S)

The inclusion TEp (M) ⊆ ∪k≥0(SkB(M) + EEp+k) gives, as in the proof of Lemma 4.8,

SuppG(TorRj (N,S)) ⊆

⋃
k≥0

(SkB(M) + EEk ) + Ej

 ∪
 ⋃
p+q=j

(EEp+1 + EE′q ) + {S

 . �

As we mentioned, Theorem 4.17 is a G-graded version of the bounding of the degrees

of minimal generators of a minimal free resolution of M≥d, where d ≥ reg(M). This is

essentially obtained from Lemma 4.16 taking S ⊆ regB(M).

Theorem 4.17. Let M be a G-graded R-module, S ⊆ G such that S + C = S and

N := MS. Then

SuppG(TorRj (N,S)) ⊆ Ej+1 + {(S ∩ regB(M)).
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If furthermore B ⊂
√
Bi + annR(M), then

SuppG(TorRj (N,S)) ⊆ γi + Ej + {(S ∩ regB(M)).

Also recall that, by Lemma 4.16 (1), SuppG(TorRj (N,S)) ⊆ Ej + S, in particular if

S ⊆ regB(M), one has

SuppG(TorRj (N,S)) ⊆ (Ej + S) ∩ (Ej+1 + {S),

and

SuppG(TorRj (N,S)) ⊆ (Ej + S) ∩ (γi + Ej + {S).

if B ⊂
√
Bi + annR(M).

Proof. By Lemma 4.16 (2),

SuppG(TorRj (N,S)) ⊆ SuppG(TorRj (M,S)) ∪ {
⋂

γ∈Ej+1

(γ + S)

because {
⋂
γ∈Ej+1

(γ + S) = Ej+1 + {S the first inclusion follows from Theorem 4.7.

The second inclusion follows from Lemma 4.16 (4), along the lines of the proof of Theorem

4.9, observing that whenever E = {i}, EEl+1 + EE′j−l ⊆ γi + Ej . �

We use again Example 4.12 in order to show the relation between regularity and vanishing

of Betti numbers in the probably most common situation for a truncation of M . This

result generalizes the fact that when G = Z and the grading is standard, reg(M≥d) + j ≥
end(TorRj (M≥d, S)) if d ≥ reg(M).

Example 4.18. Consider Example 4.12 again and take any µ ∈ G, and S = µ+ C.
Lemma 4.16 says that if N := MS.

(1) SuppG(TorRj (N,S)) ⊆ µ + Ej + C. In particular, if the grading is standard, since

reg(M) ≤ µ in Z, this give SuppZ(TorRj (N,S)) ≥ µ+ j.

(2) If η ∈ µ+
⋂
γ∈Ej+1

(γ + C) then,

TorRj (N,S)η ∼= TorRj (M,S)η

With the standard grading we get,

TorRj (N,S)≥µ+j+1
∼= TorRj (M,S)≥µ+j+1

Theorem 4.17 with µ ∈ regB(M) says that SuppG(TorRj (N,S)) ⊆ µ+ Ej+1 + {C.
Again taking the standard grading we obtain,

end(TorRj (N,S)) ≤ µ+ j + 1 + {Z≥0 = µ+ j.

This, together with point (1) above gives SuppZ(TorRj (N,S)) = µ+ j that in turns shows

the fact that in the classical case M≥µ admits a µ-linear resolution
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We now compare the cohomology modules of M with the cohomology modules of the

truncations of M .

Lemma 4.19. Let M be a G-graded R-module, let Γ be the submonoid of C generated by

the degrees of elements of B, and take S ⊂ G such that S+ C = S. Set N := MS, RΓ the

subring of R of elements of degree in Γ, and ZΓ ⊆ G be the subgroup generated by Γ. If the

RΓ-module MS+ZΓ/MS is B-torsion, then:

(1) H i
B(M)γ = H i

B(Mγ+ZΓ)γ, for every i and γ ∈ G.

(2) H i
B(N)γ = 0, for all i, if γ 6∈ S + ZΓ.

(3) H i
B(N)γ = H i

B(M)γ for i ≥ 2 and γ ∈ S + ZΓ.

(4) For γ ∈ S + ZΓ,

H1
B(N)γ 6= 0 ⇐⇒ H1

B(M)γ 6= 0 or γ ∈ SuppG(M/H0
B(M)) \S.

(5) SuppG(H0
B(N)) = SuppG(H0

B(M)) ∩S, and H0
B(N)γ = H0

B(M)γ if H0
B(N)γ 6= 0.

Proof. Set M ′ := Mγ+ZΓ.

For (1) notice that the complexes of RΓ-modules Č•B(M)γ and Č•B(M ′)γ coincide.

Statement (2) holds since the complex of RΓ-modules Č•B(N)γ is the zero complex when-

ever γ 6∈ S + ZΓ.

The short exact sequence 0 → N → M ′ → C → 0 induces a long exact sequence on

cohomology that proves (3) using (1), since H i
B(C) = 0 for i > 0 as C is B-torsion. It also

provides an exact sequence

0→ H0
B(N)→ H0

B(M ′)→M ′/N → H1
B(N)→ H1

B(M ′)→ 0

This sequence shows (5) and proves that H i
B(N)γ = H i

B(M ′)γ for all i if γ ∈ S. For

γ ∈ (S + ZΓ) \S, it gives the exact sequence

0→ H0
B(M)γ →Mγ → H1

B(N)γ → H1
B(M)γ → 0

which completes the proof. �

Notice that when G = Zr and the grading is the classical multigrading, then C = Zr≥0,

and Γ = (1, . . . , 1) · Zr≥0. Thus, ZΓ = G, and in particular S + ZΓ = G.

Remark 4.20. The equality H i
B(N)γ = H i

B(M)γ , for γ ∈ S and all i, that we have proved

above, is sufficient for most of the applications.

Proposition 4.21. Let M be a G-graded R-module, let Γ be the submonoid of C generated

by the degrees of elements of B, and take S ⊂ G such that S + C = S. If MS+ZΓ/MS is

B-torsion, for instance if B ⊆ Bi for all i, then:

(1) reg`B(MS) = reg`B(M) ∩ (S + ZΓ), for ` ≥ 2.
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(2) reg`B(MS) ∩S = reg`B(M) ∩S for all for `.

Proof. Statement (1) follows directly from Lemma 4.19 (2) and (3).

Statement (2) follows from 4.19 (3) for ` ≥ 2 and from 4.19 (3) and (4) for ` = 1.

As H0
B(N)γ ⊂ H0

B(M)γ for all γ ∈ G and reg1
B(MS) ∩ S = reg1

B(M) ∩ S, one has

regB(MS) ∩S ⊃ regB(M) ∩S, and if this inclusion is strict, there exists γ ∈ regB(MS) ∩
reg1

B(M)∩S such that M is not weakly γ-regular. This implies that γ ∈ SuppG(H0
B(M))+

E−1, hence γ+γi ∈ SuppG(H0
B(M)) for some i. Since γ+γi ∈ S and γ+γi /∈ SuppG(H0

B(MS))

this contradicts 4.19 (5). �

Example 4.22. When G = Z and the grading is standard, if S = Z≥d, Proposition

4.21 says the following: max{reg(M≥d), d} = max{reg(M), d}, showing that reg(M≥d) =

max{reg(M), d} unless M≥d = 0.

Remark 4.23. In the case MS+ZΓ/MS is B-torsion, Theorem 4.17 follows from Theorems

4.7 and 4.9 using Proposition 4.21(2).

4.5. Example: a hypersurface in P1×P1. The next example illustrates in a very simple

case that local cohomology vanishing of a principal ideal depends not only on the degree

but on the generator, contrary to the classical theory. For simplicity we treat the case of

a form of bidegree (1, 1), we show that the vanishing of local cohomology depends on the

factorization of the form. The same kind of phenomenon occurs for any bidegree. This is

not the case in Pr × Ps: the support depends in this case at least on the heights of the

content of the polynomial with respect to the two sets of variables.

In this example we show that the bound on Tor is sharp in the sense that an R-module

with regularity Z2
≥0 = regB(R) can have a first syzygy of bidegree (1, 1). It also shows that

two modules with the same resolution may have different regularity at level 2.

Let k be a field, and R = k[X1, X2, Y1, Y2] with its standard bigrading, B1 := (X1, X2)

and B2 := (Y1, Y2) B := B1 ∩ B2 and R+ := B1 + B2. Let F 6= 0 be a bi-homogeneous

element of R of bidegree (1, 1) ∈ Z2.

The exact sequence 0 → R(−1,−1)
×F−→ R → R/F → 0 gives rise to the long exact

sequence

0→ H1
B(R/F ) // H2

B(R(−1,−1))
ϕ // H2

B(R) // H2
B(R/F )

// H3
B(R(−1,−1))

ψ // H3
B(R) // H3

B(R/F ) // 0,
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where ϕ and ψ are multiplication by F . The commutative square

H3
B(R(−1,−1))

'
��

ψ // H3
B(R)

'
��

H4
R+

(R(−1,−1))
×F // H4

R+
(R)

identifiesK := ker(ψ) withH3
R+

(R/F ), which is the graded k-dual of ωR/F = (R/F )(−1,−1).

Hence, SuppZ2(K) = Z2
<0.

One further notice that the map ϕ(a,b) is not injective for a = −1 and b ≥ 1 and

b = −1 and a ≥ 1 as this map goes from a non-zero source to zero. It follows that

SuppZ2(H1
B(R/F )) ⊃ ({−1} × Z>0) ∪ (Z>0 × {−1}).

As SuppZ2(H2
B(R/F )) ⊂ SuppZ2(K) ∪ SuppZ2(H2

B(R)) one deduces that

regB(R/F ) = Z2
≥0.

Remark 4.24. Notice that regB(R/F ) does not depend on F even though the support of

H1
B(R/F ) and H2

B(R/F ) do depend on F , and reg2
B(R/F ) as well.

Indeed, the supports of H1
B(R/F ) ' ker(ϕ) and C := coker(ϕ) depend upon the re-

ducibility of F .

The following picture shows the support of the two cohomology modules in the two cases.

For H1
B(R/F ): N indicates a bidegree that is in the support of H1

B(R/F ) independently

of F 6= 0 (of bidegree (1, 1)), and 4 indicates a bidegree where H1
B(R/F ) 6= 0 iff F is a

product of two linear forms. The non-marked spots are never in the support of H1
B(R/F ).

For H2
B(R/F ): • indicates a bidegree in the support of K (which is independent of

F 6= 0), � stands for a bidegree where C 6= 0 independently of F 6= 0, and � indicates a

bidegree where C 6= 0 iff F is a product of two linear forms. The non-marked spots on the

upper-right part are never in the support of H2
B(R/F ).
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The computation of the regions marked with squares comes from the explicit calculation

of H1
B(R/F ) and C. After linear change of coordinates one is reduced to treat the two

cases: F1 = X1Y1 and F2 = X1Y1 +X2Y2.

Notice that the source and target of ϕ(a,b) vanish unless a ≤ −1 and b ≥ 0 or b ≤ −1

and a ≥ 0. We treat the first case, the second can be treated the same way by changing

the roles of X and Y .

Now, ϕ(−1,∗) = 0 and when a ≤ −2, ϕ(a,∗) : k[Y1, Y2](−1)−a → k[Y1, Y2]−a−1 is given by

one of the two following matrices
Y1 0 · · · 0 0

0 Y1
. . .

...
...

...
. . .

. . . 0
...

0 · · · 0 Y1 0

 and


Y1 Y2 0 · · · 0

0 Y1 Y2
. . .

...
...

. . .
. . .

. . . 0

0 · · · 0 Y1 Y2

 ,

the first for F1 and the second for F2. It follows that the kernel of ϕ(a,∗) is k[Y1, Y2](−1)

in the first case, and k[Y1, Y2](a) in the second case. The cokernel of ϕ(a,∗) is k[Y2]−a−1 in

the first case and is (Y1, Y2)-primary generated in degree 0 and of regularity −a+ 2 in the

second case.

A similar computation shows that for a form F of arbitrary bidegree (d, e) the regularity

is (d−1, e−1) + regB(R), and the support of local cohomology depends upon the existence

of factors of F in k[X1, X2], or k[Y1, Y2], or both.

Applying Theorem 4.9 to an R-module M with regularity and support in Z2
≥0, one

obtains that SuppG(TorR1 (M,k)) is in the intersection

((1, 0) + E1 + {Z2
≥0) ∩ ((0, 1) + E1 + {Z2

≥0) ∩ (Z2
≥0 + E1),

which is equal to (0× Z>0) ∪ (Z>0 × 0) ∪ {(1, 1)}.
Taking M = R/F as above one sees that indeed (1, 1) ∈ SuppZ2(TorR1 (R/F, k)) may

occur.

For concluding this section we leave the following open question:

Question 4.25. Is there a ring R, a finitely generated ideal B and two modules M and N

satisfying: SuppG(TorRi (M,k)) = SuppG(TorRi (N, k)), and regB(M) 6= regB(N)?

This example given provides a positive answer for reg`B(M) 6= reg`B(N) when ` = 2, and

we expect the answer to be positive for ` = 0.

4.6. Hilbert functions and regularity for standard multigraded polynomial rings.

The aim of this part is to recall the application of Castelnuovo-Mumford regularity to the

study of Hilbert functions. Lemma 4.26 provides a short proof of the Grothendieck-Serre
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formula for standard multigraded polynomial rings. This lemma shows in particular that if

the function FR (given in (2)) of a multigraded polynomial ring R belongs to a class closed

under shifts and addition then so does FM for any finitely generated R-module M .

Let R be a Noetherian polynomial ring over a field k, graded by an abelian group G and

B be a non trivial graded ideal. Assume that H i
B(R)µ is a finite dimensional k-vector space

for any µ ∈ G.

For a finitely generated graded R-module M set [M ](µ) := dimk(Mµ) and

(2) FM (µ) := [M ](µ)−
∑
i

(−1)i[H i
B(M)](µ).

It follows from the proof of Lemma 4.26 below that [H i
B(M)](µ) is finite for any i and

µ. Recall that in the standard graded situation, FM is a polynomial function, called the

Hilbert polynomial of M .

Lemma 4.26. Let C be the smallest set of numerical functions from G to Z containing FR
such that for any F,G ∈ C and γ ∈ G, the function F +G, −F and F{γ} : g 7→ F (γ + g)

are in C.

Then C coincides with the set of functions of the form
∑s

i=0(−1)iFMi with s ∈ Z≥0 and

the Mi’s in the category of finitely generated graded R-modules.

Proof. First notice that any function in C can be written in the form
∑s

i=0(−1)iFMi , with

Mi = R[γi] for some i. On the other hand if F• is a graded finite free R-resolution of M ,

[M ] =
∑

j(−1)j [Fj ] and the spectral sequence H i
B(Fj)⇒ H i−j

B (M) shows that H i
B(M)µ is

a finite dimensional vector space for any µ and that∑
i,j

(−1)i−j [H i
B(Fj)] =

∑
`

(−1)`[H`
B(M)].

Since Fj = ⊕q∈EjR[γj,q], it follows that

FM =
∑
j

(−1)j [Fj ] +
∑
i,j

(−1)i−j [H i
B(Fj)] =

∑
j

(−1)j
∑
q∈Ej

FR{γj,q} ∈ C. �

Lemma 4.26 shows in particular that if FR is a numerical polynomial (resp. quasi-

polynomial) of degree d, then the class C is contained in the class of numerical polynomials

(resp. quasi-polynomials) of degree at most d.

In the case R := k[Xi,j | 1 ≤ i ≤ n, 0 ≤ j ≤ ri] is a standard Zn-graded polynomial ring

over a field k, deg(Xi,j) = ei, let B := ∩ni=1(Xi,j , 0 ≤ j ≤ ri). The following result due to

G. Colomé i Nin generalizes [15, Thm. 2.4], which considers the case n = 2.

Proposition 4.27. [7, Prop. 2.4.3] Let R be a standard Zn-graded Noetherian polynomial

ring over k, B be defined as above, and M be a finitely generated graded R-module. For
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any µ ∈ Zn, H i
B(M)µ is a finite dimensional vector space and there exists a numerical

polynomial PM such that

[M ](µ) = PM (µ) +
∑
i

(−1)i[H i
B(M)](µ).

From Proposition 4.27 and the definition of regB we conclude that

Corollary 4.28. Under the hypothesis of Proposition 4.27, there exists a numerical poly-

nomial PM such that

[M ](µ) = PM (µ), ∀µ ∈ regB(M).

An alternative proof of Proposition 4.27 is given by Lemma 4.26 and the following result

Lemma 4.29. With the above notations,

FR(a1, . . . , as) =
∏

1≤i≤s

(
ri + ai
ri

)
.

and C is the set of numerical polynomials of multidegree ≤ (r1, . . . , rn).

Proof. The computation of FR follows from the explicit description of H`
B(R) as a direct

sum of local cohomology with support on ideals generated by variables (see the proof of

Lemma 2.1, or [3, Lem. 6.4.7] for more details), and the fact that(
r + (−a− r − 1)

r

)
= (−1)r

(
r + a

r

)
.

The second claim comes from the first and [21, Thm. 2.1.7]. �

Proposition 4.27 can be extended in several direction, for instance to a product of

anisotropic projectives or when set set of degrees of variables has linearly independent

elements (see [7, Prop. 2.4.3]). Using a result of Sturmfels on vector partition function [24],

Maclagan and Smith also treated the case of a smooth toric variety in [17, Lem. 2.8 and

Prop. 2.14].
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[10] Huy Tài Hà. Multigraded regularity, a∗-invariant and the minimal free resolution. J. Algebra,

310(1):156–179, 2007.
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Departamento de Matemática, FCEN, Universidad de Buenos Aires, Argentina

E-mail address: nbotbol@dm.uba.ar

URL: http://mate.dm.uba.ar/~nbotbol/
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