
Small Landslide Susceptibility and Hazard  
Assessment Based on Airborne Lidar Data

Omar E. Mora, Jung-kuan Liu, M. Gabriela Lenzano, Charles K. Toth, and Dorota A. Grejner-Brzezinska

Abstract 
Landslides are natural disasters that cause environmental 
and infrastructure damage worldwide. To prevent future risk 
posed by such events, effective methods to detect and map 
their hazards are needed. Traditional landslide susceptibil-
ity mapping techniques, based on field inspection, aerial 
photograph interpretation, and contour map analysis are 
often subjective, tedious, difficult to implement, and may not 
have the spatial resolution and temporal frequency neces-
sary to map small slides, which is the focus of this investiga-
tion. We present a methodology that is based on a Support 
Vector Machine (SVM) that utilizes a lidar-derived Digital 
Elevation Model (DEM) to quantify and map the topographic 
signatures of landslides. The algorithm employs several 
geomorphological features to calibrate the model and delin-
eate between landslide and stable terrain. To evaluate the 
performance of the proposed algorithm, a road corridor in 
Zanesville, Ohio, was used for testing. The resulting landslide 
susceptibility map was validated to correctly identify 67 of 
the 80 mapped landslides in the independently compiled 
landslide inventory map of the area. These results sug-
gest that the proposed landslide surface feature extraction 
method and airborne lidar data can be used as efficient tools 
for small landslide susceptibility and hazard mapping. 

Introduction
The hazards of natural disasters occur from processes of the 
earth and cause damage, devastations, loss of life, and envi-
ronmental change. One particular natural hazard of interest 
known to cause economic, human and environmental damage 
worldwide are landslides (Glenn et al., 2006). Landslides 
have consistently damaged human infrastructure and have 
impeded the daily lives of many. They have a broad range of 
geologic processes that cause the downward movement of 
mass over spatial and temporal scales (McKean and Roering, 
2004). In addition, their effects have a strong dependability 
on their spatial pattern of incident, rate of recurrence, and 
amount of movement (McKean and Roering, 2004). Their 
hazards are well-understood, yet current methods of identi-
fying and assessing their conditions are inefficient, and are 

difficult to predict. Existing techniques are typically based on 
field inspection, aerial photograph interpretation, and contour 
map analysis (Booth et al., 2009). However, these methods 
have limitations that reduce the accuracy, completeness and 
reliability necessary to map landslides with high probabil-
ity, especially, small failures where mass movement rates 
are slower (Booth et al., 2009; Galli et al., 2008). Addition-
ally, many sites are not easily accessed for field inspections. 
Highly vegetated areas present difficulties for both on-site 
inspections and aerial photographic interpretation. Historical 
contour maps do not have the resolution necessary to map 
small landslides in highly vegetated areas where conventional 
remote-sensing methods cannot penetrate the land cover (Van 
Den Eeckhaut et al., 2005; Booth et al., 2009; James et al., 
2012). For these reasons, traditional methods are not cost-
effective and a new approach to landslide susceptibility and 
hazard mapping is necessary. 

Remote-sensing technology has seen large advances in 
the past decade, in cost, accuracy, and accessibility. One of 
the major improvements has been the spatial resolution of 
Light Detection and Ranging (lidar) technology. In earlier 
stages only coarse nominal point spacing (>10 meters) was 
available. Improvement of this technology has allowed for 
higher spatial resolutions (<1 meter). The increase made in 
spatial resolution provides mapping opportunities at remark-
able scales. This tool provides the accuracy necessary to map 
surface models precisely (Shan and Toth, 2008; Jaboyedoff 
et al., 2012). Furthermore, it has the potential to overcome 
many challenges faced in landslide susceptibility mapping, 
for example, the spatial resolution, broad terrain coverage and 
accuracy necessary to map precise surface models. A par-
ticular lidar technology capable of overcoming the aforemen-
tioned challenges is airborne lidar. This instrument is capable 
of penetrating vegetation, mapping areas up to thousands 
of square kilometers (Shan and Toth, 2008; Guzzetti et al., 
2012), and providing sub-meter spatial resolutions. For these 
reasons, it is a prime consideration.

Previous landslide susceptibility mapping techniques 
revealed the potential that remote-sensing technology pre-
sented to identify and map the geomorphic features related to 
landslide morphology (McKean and Roering, 2004; Glenn et 
al., 2006; Booth et al., 2009). However, their focus has been 
on mapping large landslides in hilly terrain and mountainous 
regions, along coastal bluffs, and river basins (e.g., Van Den 
Eeckhaut et al., 2005; Booth et al., 2009; Ballabio and Sterlac-
chini, 2012; Tien Bui et al., 2012). Less attention has been 
paid to map small failures, which impact our transportation 
networks. Small failures have been overlooked in previous 
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studies, potentially due to their impact being less severe com-
pared to large landslides. Furthermore, the spatial resolution 
needs to be relevant to the scale of the morphological features 
of the landslides in order to understand the spatial and tem-
poral process evident in small landslide morphology (Glenn 
et al., 2006). To our best knowledge, small landslide suscepti-
bility mapping has not been addressed in the literature and an 
evaluation is necessary to understand and propose a means of 
hazard assessment for the prevention of future events.

This paper presents a novel approach for small landslide 
susceptibility mapping utilizing an airborne lidar-derived 
Digital Elevation Model (DEM). The approach employs several 
geomorphologic features to analyze the local topography, spe-
cifically: the direction cosine eigenvalue ratios (λ1/λ2 and λ1/ 
λ3), resultant length of orientation vectors, aspect, roughness, 
hillshade, slope, a customized Sobel operator, and soil type. 
A sample set extracted from the data is used as observations 
of landslide and stable terrain to calibrate the supervised 
classification algorithm of Support Vector Machine (SVM). 
The calibrated SVM model is subsequently used to classify 
the lidar-derived DEM based on the extracted surface fea-
tures. Then, as a post-classification step, flat terrain is filtered 
and classified as stable terrain. Consequently, a conditional 
dilation/erosion filter is applied to minimize misclassified 
locations by the SVM algorithm, in addition to suppressing 
noise and generating landslide susceptible regions (clusters). 
Landslide susceptible regions are then analyzed to map areas 
of potential landslide activity. Finally, in order to evaluate the 
performance of our proposed approach, we assess how well 
the algorithms mapped landslides match the reference inven-
tory mapped landslides. 

Study Area and Data
Study Area
The study area selected was along the transportation corridor 
of state route (SR) 666 in Zanesville, Ohio, located in north-
central Muskingum County (Approx. Latitude: N39° 58' 00", 
Longitude: W81° 59' 00") along the east side of the Musking-
um River. The study area begins at the intersection of SR-60 
within the City of Zanesville just north of Interstate 70 (I-70) 

and south of the Muskingum River at mile marker (MM) 0.00, 
and ends at the intersection with SR-208 east of the Village 
of Dresden at MM 14.34 (23 km). The extent of the project 
coverage is 23 kilometers in length along SR-666 with a vary-
ing width of 75 to 180 meters and approximately 3.0 km2. 
The area is characterized by high vegetation densities, stream 
and river channeling, and some residential development. The 
study area was chosen due to the availability of an airborne 
lidar-derived DEM, a detailed landslide inventory map, and 
its prolonged history of slope instabilities, especially in areas 
where the river is close to the roadway. In 2004 and 2005, 
Muskingum County was declared a National Disaster Area 
due to extensive flooding in both tributaries and the main 
river channel. Along the road seven separate sections dam-
aged by landslides were corrected as a result of these storm 
events. Figure 1 presents an overview map of the study area.

Data
The lidar data was acquired in the spring of 2012 and has a 
point density of 5 pts/m2. The vertical accuracy of the points 
was assessed after the lidar was adjusted to the hard surface 
control. The vertical accuracy of the points was assessed by 
the root mean square error (RMSE), which was 9 cm for soft 
surfaces and 5 cm for hard surfaces. Additionally, the vertical 
accuracy was evaluated by the standard deviation, which was 
6 cm and 5 cm for soft and hard surfaces, respectively. The 
bare earth, filtered from the lidar data, was subsequently used 
for this investigation. The lidar point cloud was bare earth fil-
tered, and then was interpolated to a spatial resolution of 50 
cm using Kriging, after evaluating the nominal point spacing 
to be 45 cm. The statistical results demonstrated that Kriging 
provided the minimum error between the interpolated surface 
(DEM) and the bare-earth filtered lidar point cloud. For this 
reason, it was selected as the prime interpolation method. 
The preprocessing of the bare earth lidar data, including con-
verting to a regular grid, was done using LAStools (Isenburg, 
2013) and ArcGIS®, respectively. All sequential processing was 
performed in MATLAB. The results of the processing steps were 
integrated into the project GIS database.

For the project area a geo-hazard inventory and evaluation 
of mass movement affecting the transportation network was 
completed in 2006 by the Ohio Department of Transportation 

Figure 1. Study area along transportation corridor SR-666, north of Zanesville, Ohio. The figures on the right display examples of rota-
tional slides affecting the embankment, near mile marker 7.3 (top), and 1.47 (bottom) that have since been stabilized.
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(ODOT) Office of Geotechnical Engineering, and provided im-
portant information about the general locations of landslides 
affecting the road prism. An updated landslide inventory map 
was compiled by a team of experts from Kent State University 
and The Ohio State University through contour map analysis, 
geo-hazard inventory evaluation and on-site validation in the 
summer of 2012. The updated landslide inventory was used 
for the investigation. Typical landslides affecting the road 
prism are: rotational, translational, complex, rockfall debris, 
and mudslides. The slopes for areas of instability range from 
18° to 80°, in which the most frequently slope observed was 
45°; additionally, the landslides described have a range of 
ages per the historical documents. The importance of the 
inventory map is that it provides a reference against which 
we can evaluate the performance of our proposed approach. A 
limitation found in the reference map is that it only provides 
the extents of the mapped landslides and does not offer ad-
ditional information about the rate of change experienced. 
The mapped landslides provided in the inventory range from 
200 m2 to 27,000 m2 in area. The soil map used for this study 
was available online from the Ohio Department of Natural 
Resources (ODNR) website (http://www.dnr.state.oh.us/tab-
id/9051/Default.aspx).  

Methodology
The effects of mass movement are important and greatly 
dependent on their spatial pattern of occurrence, frequency, 
and amount of activity (McKean and Roering, 2004). The 
temporal processes of landslides can reveal a wealth of 
information regarding the magnitude of surface deforma-
tion experienced and the expected change over time. While 
temporal changes cannot be revealed from individual surface 
models, identifying landslide-specific spatial features from 
single surface models is important, as not all the changes 
detected by temporal analysis represent landslide suspect 
areas. This study is focused on examining and evaluating 
single surface models, and the developed method can serve as 
a tool to filter landslide suspect areas. Landslides are known 
to have rougher surfaces than neighboring stable terrain. This 
is due to the mechanics, subsidence, and surface deforma-
tion experienced. The surface roughness of landslide (bottom) 
terrain experiences higher topographic variability than stable 
(top) terrain as illustrated in Figure 2. McKean and Roering 

(2004) and Glenn et al. (2006) exploited the surface roughness 
to detect and map landslides, and confirmed that the surfaces 
of landslides are rougher than neighboring stable terrain. For 
these reasons, the surface roughness will be the focus of the 
proposed algorithm. 

The objective of the approach is to identify surface features 
indicative of landslide activity and map their locations in the 
study area. The process to identify landslide surface features 
is as follows: (a) filter airborne lidar point cloud to contain 
bare-earth points only, (b) rasterize the bare-earth point cloud 
using Kriging interpolation method, (c) perform surface 
feature extraction, (d) classify lidar-derived DEM, (e) perform 
post-classification filtering, and lastly (f) map areas experienc-
ing landslide activity. The feature extraction algorithms used 
are described in the following sections.

Feature Extraction
To extract and quantify the amount of surface roughness 
observed in the terrain, the following eight geomorphological 
features were utilized: aspect, hillshade, roughness, slope, 
eigenvalue ratios (λ1/λ2 and λ1/λ3), customized Sobel operator, 
and the resultant length of orientation vectors. The selected 
feature extraction methods are further discussed below. Some 
of the surface feature extraction methods selected have been 
used to expose various topographic patterns (e.g., McKean 
and Roering, 2004; Glenn et al., 2006) and were therefore 
prime considerations. The standard algorithms available in 
the MATLAB TopoToolbox by Schwanghart and Kuhn (2010) 
were used for the evaluation of aspect, hillshade, roughness, 
and slope. Fixed sampling windows of size (9 × 9) were used 
to evaluate the direction cosine eigenvalue ratios and length 
of orientation vectors. Furthermore, a statistic measure of the 
standard deviation is evaluated from small sampling win-
dows of a fixed size (9 × 9) to define the local topographic 
variability of aspect, hillshade, roughness, slope, resultant 
length of orientation vectors, and customized Sobel opera-
tor. Areas experiencing higher degrees of surface deformation 
will illustrate higher topographic variability, thus, delineating 
rough and smooth terrain. 

Aspect
Slope orientation is the compass direction a land surface 
faces. To evaluate the slope orientation, also known as aspect, 
for a DEM grid point of a (3×3) local neighborhood, Z11, shown 
in Equation 1, the surface normals need to be computed. Sub-
sequently, the mapping system needs to be converted from a 
two-dimensional Cartesian coordinate system to a polar 

coordinate system:
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the polar coordinate system, and Nx and Ny are the surface 
normals in the east-west and north-south direction, respec-
tively. Finally, the slope orientation of a cell can be computed: 
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Hillshade
The relief depiction of a grid point in a DEM is described by 
the lighting effect of the angle between the surface and the 
incoming light beam. The approach uses the illumination 

Figure 2. The figure illustrates surface normals representing 
topographic variability (roughness) in a DEM. Smooth terrain 
(top), illustrates less variation. Rough terrain (bottom), illus-
trates higher variability from McKean and Roering, 2004.
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from a single direction for the shading of the terrain relief. 
Hillshading is typically used to display shaded relief images, 
however, it was observed that this feature provided important 
information regarding topographic variability found in land-
slide morphology, for this reason, hillshading was included. 
The shaded relief images used throughout this paper and sur-
face feature extractor follow the approach described in Katzil 
and Doytsher (2003). 

Roughness
The metric used to quantify deviations of a surface is called 
roughness. If the deviations are small, the surface is considered 
to be smooth, and if the deviations are high, it is considered 
rough. Roughness can be evaluated by computing the largest 
inter-cell difference of a central pixel and its surrounding cells 
using Equation 1, R = Max(Zij – Z11), where i = 0-2,  j = 0-2. 

Slope
The maximum rate of change between a cell and its neighbors 
is known as slope. It is evaluated by computing the steepest 

descent of a DEM using Equation 1, SD8 = max
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 i = 0-2, j = 0-2. Where ϕ(ij) = 1 for the cardinal (north, south, 
east, and west) and ϕ(ij) = 2  for the diagonal neighbors. 

Direction Cosine Eigenvalue Ratios
The eigenvalue ratios express the amount of roughness in 
three-dimensional surfaces (Kasai et al., 2009). The vec-
tors are defined by their direction cosines: xi = sinθicosϕi, yi 
= sinθisinϕi and zi = cosθi, where θi is the colatitude, and ϕi 
is the longitude of a unit orientation vector as described in 
McKean and Roering (2004). When considering (x1, y1, z1)…
(xn, yn, zn) as a set of n unit vectors perpendicular to each cell 
in the DEM, the orientation matrix, T, may be constructed, 
see Equation 2. Next, the eigenvalues are computed for T, 
consequently, ln(λ1/λ2) and ln(λ1/λ3) are evaluated, where, λk is 
the eigenvalue for k = 1,2,3. The ratios of normalized eigen-
values are often not normally distributed; for this reason, the 
logarithms of the ratios are evaluated (McKean and Roering, 
2004). Lower eigenvalue ratios indicate that the unit orienta-
tion vector of the cells will have higher degrees of surface 
roughness (Woodcock, 1977; McKean and Roering, 2004). 
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Resultant Length of Orientation Vectors
Another way to evaluate topographic variability is by comput-
ing the resultant length of orientation vectors in three dimen-
sions in a sampling window from the direction cosines used 
to compute the eigenvalue ratios as illustrated in McKean and 
Roering (2004), RL = ((∑xi)2 + (∑yi)2 + (∑zi)2)½, where RL is the 
resultant length of orientation vectors. This measure can be 
used to define surface roughness as variations within local 
neighborhoods will be coincident for smooth topography, 
and greater variations will be displayed for rough topography 
(McKean and Roering, 2004). 

Customized Sobel Operator
The Sobel operator computes an approximation of the gradi-
ent of the image intensity function. At each point in the 
image, the result of the Sobel operator is defined as either the 
corresponding gradient vector or the norm of this vector. The 
Sobel operator is based on convolving the image with a small 
and separable filter usually in a horizontal and vertical direc-
tion (Gonzalez and Woods, 2002).

Various kernels were evaluated, yet none of those tested 

provided unique characteristics depicting landslide morphol-
ogy. However, the kernels selected did extract distinctive fea-
tures, thus, enhancing those found in landslides. The kernels 
of the connected neighborhood cells are as follows: 
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The kernels used to compute the gradients in horizontal ( ��Gx), 

vertical ( ��Gy), diagonal left ( ��Gdl), and diagonal right ( ��Gdr) direc-
tions are illustrated in Eq.uation (3A), (3B), (3C), and (3D), 
respectively. The magnitude of the gradient was computed by 
modifying the typically used form illustrated in Gonzalez and 
Woods (2002) to include all directions:

	
�� �� �� �� ��G G G G Gx y dl dr= + + +

2 2 2 2

	 (4)

Soil Types
Soils have been widely considered in landslide susceptibil-
ity mapping studies (e.g., Wieczorek et al., 1996; Gomez and 
Kavzoglu, 2005). The six primary soil types found within the 
study area consists of alluvium, glacial outwash, lacustrine 
soils, colluvium, residual soils, and manmade fill. Berks-
Westmoreland complex (Bkf) soil found in 40 to 70 percent 
slopes was the soil type for approximately 92 percent of the 
mapped landslides in our study area, and was considered 
highly susceptible to landslides compared to all other soil 
types. Bkf has the most rugged terrain in the county and it is 
common to see unstable slopes in this soil type, in addition, 
the soil has a severe hazard of erosion. Moreover, cuts made 
along these slopes are unstable for building sites (Steiger, 
1996). For these reasons, the underlying soil was considered 
an important surface feature to map landslides. 

Landslide Classification 
Extracting landslide surface features is the core step in land-
slide susceptibility mapping. To quantify topographic rough-
ness it is necessary to understand and delineate the charac-
teristics found in landslide morphology. Therefore, a sample 
set representing these distinct features is necessary. SVM is a 
supervised classification method that is well established, and 
known to produce acceptable results in landslide susceptibil-
ity mapping (Samui, 2008; Yao, et al., 2008; Marjanović, et al., 
2011; Micheletti, et al., 2011; Ballabio and Sterlacchini, 2012; 
Tien Bui et al., 2012). The objective is to classify the lidar-
derived DEM based on the extracted surface features. In order 
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to automatically map terrain with surface features indicative 
of landslide activity, we analyze the surface features extracted 
as single observations with nine dimensions (surface features 
described earlier) to determine if the observation is repre-
sentative of landslide activity for each cell in the DEM. If it 
is, then it is mapped as landslide susceptible, otherwise, it is 
mapped as stable. Each cell in the DEM is considered a nine-
dimensional observation.

Support Vector Machine
SVM was developed by Vladimir Vapnik (1995). The idea of 
SVM is to determine the optimal hyperplane for linearly sepa-
rable patterns (see Figure 3). If the patterns are not linear then, 
the data is projected into a higher dimensional space using a 
kernel. Support vectors are selected to delineate the two class-
es and maximize the margin between them. Support vectors in 
general are the most difficult data points to classify, thus, lying 
closest to the decision surface (Tien Bui et al., 2012).

SVM was chosen for its advantages which are: its effective-
ness in high dimensional spaces, it utilizes a subset of the 
training sample in the decision function (support vectors), 
various kernel functions may be applied for the decision func-
tion, and it works well when there is a small sample available 
for training. For these reasons, it was the prime consideration 
for classification. In general, the SVM algorithm is calibrated 
through a sample set of two classes enclosing all features 
desired. The two classes are landslide and stable terrain, and 
the aforementioned surface features are those used in our 
case. After calibration is complete, the algorithm is tested on 
an independent data set to evaluate its performance, a lidar-
derived DEM in our case. 

Flat Terrain Filtering
Landslides have shown to occur more often on steeper slopes 
(Gomez and Kavzoglu, 2005). Locations are safer in terms of 
potential failures where the slope is near flat. Therefore, as 
the slope increases so does the probability of failure. Table 
1 illustrates unstable slopes for various types of mass move-
ment taken from Soeters and van Westen (1996). 

Given the ranges of slope instabilities in Table 1 and those 
found in our study area, it was determined that slopes (15° ≥) 
would be stable.

Conditional Dilation/Erosion Filter
Mathematical morphology is a method used to extract useful 
features found within an image that characterize shapes of 
objects (Gonzalez and Woods, 2002). Furthermore, it is help-
ful in filtering, which is our interest. Two common morpho-
logical operations are dilation and erosion. Dilation expands 
the shapes found within an image, while erosion removes 
them; both draw conclusions from a given structuring ele-
ment (e.g., kernel). In our algorithm we used a conditional 
dilation/erosion filter as we wanted the components to satisfy 
a size threshold (Shapiro and Stockman, 2000). The filter was 
designed as a sliding window of size n × n (n must be an odd 
integer), with a given threshold, to determine if the center cell 
should be dilated or eroded, with respect to the local neigh-
borhood, see Equation 5: 

	

#
#

of failedcells
of totalcells inwindow

Threshold≥ 	 (5)

The effect of the window size and threshold were tested 
and evaluated by having varying window widths between 3 
and 21 cells and varying thresholds between 50 percent and 
100 percent. After assessing potential thresholds, the most 
suitable window size and threshold found was 11 × 11 (5 m 
× 5m) and 60 percent, respectively. This particular window 
size and threshold did not distort the information produced 
from the classification algorithm. It only dilated and eroded 
the classification results as intended. For these reasons, the 
threshold and window size selected were subsequently used.

Noise Suppression
The analysis of clusters is a vital component of feature extrac-
tion. The importance of this step is to analyze clusters and 
suppress noise. Small regions do not provide useful informa-
tion; therefore, they are not of interest and are ignored. The 
importance of determining a good threshold is so that the 
noise level is minimized and useful information is not lost. 
In our approach clusters of cells classified as landslide terrain 
are analyzed and evaluated to determine if the cluster will be 
classified as landslide or stable given the following criterion: 

	 Cluster Area ≥ Minimum Area Threshold	 (6)

The minimum area to be considered landslide susceptible 
was tested and evaluated by having varying areas of 50 to 
250 m2. This range was selected after evaluating the mini-
mum size of the mapped landslides provided by the reference 
inventory map, which was 200 m2. After evaluating potential 

thresholds, it was determined that 150 m2, was the 
most appropriate threshold, for this reason, all clus-
ters less than 150 m2 were ignored and considered as 
noise. The criterion selected will allow for clusters 
of said size to be mapped as landslide susceptible, 
additionally, minimizing the probability of small 
landslides being overlooked.

Figure 3. The rectangles and ovals represent the data points, the solid 
line is the (hyperplane) selected to divide the two classes, and the dashed 
lines define the distance between the hyperplane line and the support 
vectors from Sherrod, 2008.

Table 1. Slope Instability for Mass Movement Type 

Mass Movement Type Slope Instability

Fall and Topple 20 °- 30°

Rotational Slide 20° - 40°

Lateral Spread < 10°

Mudslide 15° - 25°

Earth flow > 25°

Debris avalanche > 35°
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Figure 5. Distribution of training samples before being normalized between [-1 1], where, stable and landslide terrain are represented 
on the left and right, respectively, for each surface feature extracted.

Results
Training Sample Evaluation
To determine characteristics of landslide surface features 
in the study area, we first select a representative patch of a 
mapped landslide and stable terrain. We use a section 450 m 
north of MM9 as representative patches (see Figure 4). The 
size of the representative patch was 30 × 40 m (1,200 obser-
vations) for stable and 60 × 25 m (1,500 observations) for 
landslide terrain. The representative terrain elected was less 
than 1 percent of the entire study area. Next, we compute the 
surface features for each patch of terrain. Figure 5 shows the 
distribution of the samples elected for each surface feature. 
The topographic variability is higher for landslide than stable 
terrain. These patterns indicate that the landslide surface in 
our study area tends to experience higher amounts of surface 
deformation, meaning, it is rougher in texture. Earth processes 
that can generate such behavior are those of mass movement 
found in landslides. 

The distributions in Figure 5 can be described as follows: 
the central mark in each box is the median (Q2), the limits 
of the box are the 25th (Q1) and 75th (Q3) percentiles of the 
samples, the interquartile range (IQR) is equal to Q3 − Q1, 
the dashed line (whiskers) extend to the typically used Q1 - 
1.5(IQR) and Q3 + 1.5(IQR) range which is about ±2.7σ and 99.3 
percent of the data, if the data are normally distributed. The 
remaining samples not lying within these limits are considered 
outliers (are not plotted). It is expected to observe outliers as 
not all landslide and stable terrain will have complete coverage 
of surface features representative of each. Therefore, it is pos-
sible to observe a few instances of landslide surface features in 
stable terrain and vice versa. These instances can be caused by 
noise in the data or irregularities observed within the terrain. 

The representative patches demonstrate that 75 percent 
or more of the training samples are linearly separable for all 

surface features (see Figure 5). It was found that the eigenvalues 
ratio (see Table 2) express the behavior described in Mckean and 
Roering (2004), where the ratios are lower for landslide than sta-
ble terrain. Additionally, roughness, customized Sobel operator, 
aspect, hillshade, slope, and resultant length of orientation vec-
tors, all experienced higher topographic variability (see Table 2) 
for landslide terrain as described in McKean and Roering (2004), 
and Glenn et al., (2006). The variation of the surface features ex-
tracted is less for stable terrain for all surface features (Figure 5). 
This behavior is expected as stable terrain will experience lower 
rates of mass movement, therefore, most stable surface features 
are expected to express the same behavior.

Classification Performance Evaluation
The mapped locations will vary for each area, which reflects 
the variation in the topography (see Figure 6A, 6B, 6C, and 
6D). Areas that are smooth will go undetected by the pro-
posed algorithm (SW corner Figure 6B, and West section 
of Figure 6C), while areas that are rough will be mapped as 
landslide susceptible (East section of Figure 6A, and Figure 
6B). The rough areas shown in Figure 6 tend to correspond to 
those mapped in Figure 7. Additionally, the areas identified 
as landslide susceptible by the proposed algorithm tend to 
coincide to those mapped locations provided by the reference 
inventory map, verifying that the proposed SVM model can 
delineate landslide terrain (see Figure 7).

In our study area, the proposed algorithm is capable of iden-
tifying 84 percent of the inventory map landslides (Figure 7A, 
7B, 7C, and 7D). This defines that the training samples elected 
for calibrating the classification model were representative of 
the landslide terrain throughout the study area, thus, identifying 
a high percentage of the landslides. As anticipated earlier, some 
topographic features display characteristics of stable terrain 
within a landslide and vice versa. In particular (Figure 7D), a 
vast majority of the inventory mapped landslides are incorrectly 
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classified as stable, it is expected to classify incorrectly as the 
surface roughness is low for this area (see Figure 6D). In order 
to understand and potentially overcome the limitations further 
evaluation is necessary beyond the scope of this study.  

The algorithm tends to misclassify topographic features 
with sharp edges or abrupt changes in elevation (SE and NE 
corner of Figure 7C and SE corner of Figure 7A). Even though, 
some of the incorrectly classified areas are along these abrupt 
surface changes, many inventory mapped landslides are also 
along abrupt changes in elevation, especially, along SR-666. 
Additionally, natural surface features also express abrupt 
changes or high surface roughness in the terrain, which 
include: riverbanks (SW corner of Figure 7C, and Figure 6C), 
bluffs, streams, creeks, and high elevation changes in a short 
distance. These natural features increase in surface roughness 
due to erosion and geomorphological events, which cause 
surface features to mimic those of landslides. Nonetheless, the 
algorithm also tends to overlook topographic features found 
within the boundaries of inventory mapped landslides due 
to insufficient surface roughness or man-made improvements 

made to the environment. Although, a GIS database was avail-
able and can be used to minimize misclassifications gener-
ated by the proposed algorithm, it was only used to store 
geographic information of roads, rivers, creeks, residential 
development, etc, and the results generated by the algorithm.

In the study area, landslides have a range of ages and 
activity levels, so the surfaces of various landslides have 
undergone different degrees of surface deformation and post-
failure improvement. The transportation of soil and weather-
ing over time along older slides will cause them to smoothen 
and make them difficult to identify. For example, most of the 
mapped landslides shown in Figure 7D are mapped incor-
rectly due to the smooth topography from an older landslide. 
The removal of landslide features prevents the algorithm from 
detecting and identifying the mapped landslides in this area.

The performance of the proposed algorithm assessed how 
well the mapped areas coincide with the mapped landslides 
(reference) in the study area. The proposed algorithm was able 
to map a total of 200 locations throughout the study area. One 
hundred and ten of those identified areas overlapped mapped 

Table 2. Percentiles of Distribution Samples

Stable Landslide

Surface Feature Q1 Q2 Q3 Q1 Q2 Q3

Eigenvalues Ratio ln(λ1/λ2) 1.15 1.30 1.45 0.38 0.60 0.85

Eigenvalues Ratio ln(λ1/λ3) 2.32 2.47 2.61 1.57 1.80 1.99

Roughness (m) 0.03 0.04 0.05 0.07 0.08 0.11

Customized Sobel Operator (m) 0.68 0.85 1.17 1.82 2.43 3.29

Aspect (°) 11.53 13.42 15.75 23.76 40.57 66.51

Hillshade 0.05 0.06 0.07 0.09 0.10 0.12

Slope (°) 3.45 4.02 4.79 5.51 6.74 8.47

Resultant Length of Orientation Vectors 0.35 0.49 0.69 3.91 6.54 10.56

Figure 4. Lidar-derived hillshade map of SR-666, Zanesville, Ohio study area with the entire training sample used to calibrate the SVM 
algorithm outlined on top, and bottom, for stable and landslide terrain, respectively. The map is displayed in US survey feet for the 
State Plane Coordinate System, Ohio South Zone.  
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landslides (reference), providing an accuracy of 55 percent 
for the algorithm. Additionally, twenty of the misclassified 
mapped areas were along rivers and creeks crossing the trans-
portation network, which does not include areas along the 
Muskingum riverbank, thus, accounting for 10 percent of the 
mapped areas. The reason for these areas being consistently 
mapped can be attributed to the amount of erosion generated, 
in turn, creating high surface roughness. Nonetheless, the al-
gorithm was able to identify 67 out of 80 mapped landslides in 
the inventory map, illustrating that 84 percent of the mapped 
landslides from the reference were identified. Although some 
of the mapped areas did not overlap the reference map, they 
were adjacent to these areas (see Figure 7C). Further analysis 
is necessary to verify that these mapped areas are indeed not 
new developing landslides or existing landslides that have 
developed further. Moreover, additional analysis is required to 
evaluate why some of the inventory mapped landslides were 
overlooked by the proposed algorithm. One reason for over-
looking mapped landslides (reference) is the amount of sur-
face roughness exhibited within the landslides (see SW corner 
of Figure 7A, West of road for Figure 7B and Figure 7D). The 
amount of surface roughness is not sufficient to delineate them 
from stable terrain. Therefore, these mapped landslides (refer-
ence) will go undetected, until enough surface roughness is 
displayed from experienced mass movement.

Conclusions
Landslide susceptibility mapping using remote-sensing 
techniques may never completely replace traditional map-
ping methods of field inspection, aerial photograph inter-
pretation, and contour map analysis. Moreover, the mapping 
methods presented in this and other studies often rely on 
objective topographic data that relies on the morphologic 
expressions in the area studied, and often cannot differentiate 
between adjacent landslides. However, as the spatial resolu-
tion, accuracy, and availability of remote-sensing technology 
increases, new landslide susceptibility mapping methods will 
provide efficient tools that can assist traditional methods. The 
proposed approach quantifies and identifies landslide surface 
features producing results that can potentially become useful 
in the prevention of future hazardous events. 

Although, the generation of landslide maps remains a sub-
jective and time consuming task, airborne lidar provides new 
opportunities for mapping the topographic features found in 
small landslides. lidar technology has become both more ac-
cessible and affordable, and the advancements in airborne lidar 
have allowed for a new method to map landforms, including 
landslides, over broad swaths of terrain at higher spatial resolu-
tions and accuracy. To our best knowledge, the literature has not 
capitalized on airborne lidar-derived DEMs to investigate small 
landslide susceptibility mapping at sub-meter scales over large 

Figure 6. Topographic variability of four segments along SR-666. The surface feature used to depict the topographic variability was 
roughness. The higher variability the rougher the surface, which is darker in the figure. 

Figure 7. Comparison between the mapped landslide suspect areas by the proposed technique and those provided in the reference 
inventory map. The mapped landslides with a solid black line are those mapped by the proposed algorithm, and those mapped by the 
dashed line in white are the landslides mapped in the inventory map. The underlying DEM is a rasterized hillshade DEM.
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swaths of terrain under land cover. Previous landslide suscep-
tibility mapping investigations have focused on geotechnical 
mapping evaluations over large landslides (e.g., Van Den Eeck-
haut et al., 2005; Booth et al., 2009; Ballabio and Sterlacchini, 
2012; Tien Bui et al., 2012). Our study presents a new opportu-
nity to map small failures utilizing airborne lidar-derived DEMs.

This proposed algorithm provides a means to evaluate each 
cell in the DEM to identify patterns of slope instability over the 
study area, which covers an area of approximately 3.0 square 
kilometers. The outputs of the algorithm were tested and 
compared to an independently compiled landslide inventory 
map to assess the classification performance. Assuming, that 
the landslide inventory is complete and accurate, our algo-
rithm was able to identify 84 percent of the landslides in the 
study area. The findings of this study demonstrate that various 
types, scales, and deformations of landslide surface features 
(such as hummocky terrain, scarps and displaced blocks of 
material) can be extracted through the proposed approach and 
a surface model generated from sub-meter spatial resolution. 
Although, the local topographic roughness can be exploited 
through the geomorphological features described, an adequate 
sample representative of the study area is necessary to train 
the supervised classification algorithm. It is not foreseen for 
new landslide susceptibility mapping techniques to replace 
traditional mapping methods; however, new opportunities can 
improve the efficiency of landslide susceptibility mapping. 
Future studies may include; water tables or water entering the 
landslide area, the angle of internal friction of the landslide 
material and the configuration of the landslide itself. 

In order to quantify the amount of activity observed be-
tween landslides, careful monitoring is necessary. It is clear 
that there are different scales and degrees of surface deforma-
tion observed within the landslides throughout the study 
site. To monitor and quantify the temporal changes, further 
research is necessary to investigate more quantitative patterns 
of the surface deformation observed, between the different 
landslides. However, this task is not time and cost-effective, 
although, it can be highly effective; it is dependent on the 
needs to monitor mass movement. The proposed approach 
allows for a semi-automated, fast, objective surface feature 
extraction of small landslide topography. 
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